MB3782PF-XXXE1 [FUJITSU]

Switching Controller, 0.075A, 500kHz Switching Freq-Max, BIPolar, PDSO20, 5.30 X 12.70 MM, 2.25 MM HEIGHT, 1.27 MM PITCH, ROHS COMPLIANT, PLASTIC, SOP-20;
MB3782PF-XXXE1
型号: MB3782PF-XXXE1
厂家: FUJITSU    FUJITSU
描述:

Switching Controller, 0.075A, 500kHz Switching Freq-Max, BIPolar, PDSO20, 5.30 X 12.70 MM, 2.25 MM HEIGHT, 1.27 MM PITCH, ROHS COMPLIANT, PLASTIC, SOP-20

开关 光电二极管
文件: 总28页 (文件大小:294K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU MICROELECTRONICS  
DATA SHEET  
DS04-27205-7Ea  
ASSP Power Supplies  
BIPOLAR  
Switching Regulator Controller  
MB3782  
DESCRIPTION  
The FUJITSU MICROELECTRONICS MB3782 is a PWM-type switching regulator controller, designed with open-  
collector output for connection to external drive transistors and coils, providing a selection of three types of output  
voltage: step-up, step-down or inverting (inverting output is available on one circuit only).  
The MB3782 features identical oscillator output waveforms to enable completely synchronous operation and  
prevent the occurrence of low-frequency beat between channels.  
Also, the MB3782 features low power dissipation (2.1 mA Typ) and a built-in standby mode (10 µA), making  
possible the configuration of a wide variety of high-efficiency, stable power supplies, even with the use of battery  
power. The MB3782 is an ideal power supply for high-performance portable devices such as video camcorders  
and cameras.  
FEATURES  
• Wide voltage range (3.6 V to 18 V)  
• Low power dissipation (operating mode: 2.1 mA (Typ), standby mode: 10 µA (Max)  
• Wide range of oscillator frequencies, high-frequency capability (1 kHz to 500 kHz)  
• On-chip timer-latch type short detection circuit  
• On-chip undervoltage lockout circuit  
• On-chip 2.50 V reference voltage circuit (1.25 V output available at RT pin)  
• Dead time adjustment over full duty cycle range  
• On-chip standby mode (power on/off function)  
• One type of package (SOP-20pin : 1 type)  
APPLICATIONS  
• LCD monitor/panel  
• Surveillance camera  
etc.  
Copyright©1995-2008 FUJITSU MICROELECTRONICS LIMITED All rights reserved  
2006.5  
MB3782  
PIN ASSIGNMENT  
TOP VIEW  
VREF  
CT  
1
2
20  
VCC  
19  
18  
17  
16  
15  
14  
13  
12  
11  
CTL  
RT  
3
IN3  
FB3  
+ IN1  
IN1  
FB1  
4
5
DTC3  
OUT3  
SCP  
IN2  
FB2  
6
DTC1  
PUT1  
GND  
OUT2  
7
8
9
10  
DTC2  
(FPT-20P-M01)  
PIN DESCRIPTION  
Pin No.  
Pin Name  
I/O  
Description  
2.50 V (typ) voltage output: provides load current up to 3 mA,  
for use as error amplifier reference input and for dead time  
setting.  
1
VREF  
O
Oscillator timing capacity connection: should be used in the  
capacity range 150 pF to 15000 pF.  
2
3
CT  
Oscillator timing resistor connection: should be used in the  
resistance range 5.1 kto 100 k. This pin can also provide  
output at voltage level VREF/2, for use as error amplifier  
reference input.  
RT  
4
5
+IN1  
–IN1  
I
I
Error amplifier 1 non-inverting input pin.  
Error amplifier 1 inverting input pin.  
Error amplifier 1 output pin: connect resistor and capacitor  
between this pin and the –IN1 pin to set gain and adjust  
frequency characteristics.  
6
7
FB1  
O
I
OUT1 dead time setting pin: VREF voltage is divided by an  
external resistor and applied to set dead time. Also, a capacitor  
may be connected between this pin and the GND pin to perform  
soft start operations.  
DTC1*1  
(Continued)  
2
MB3782  
(Continued)  
Pin No.  
Pin Name  
I/O  
Description  
Open collector type output pin with an emitter connected to  
GND.  
8
VOUT1  
O
Output current may be up to 50 mA.  
9
GND  
O
Ground pin  
Open collector type output pin with an emitter connected to  
GND. Output current may be up to 50 mA.  
10  
OUT2  
Used to set OUT2 pin dead time. VREF voltage is divided by an  
external resistor and applied to set dead time. Also, a capacitor  
may be connected between this pin and the GND pin to perform  
soft start operations.  
11  
DTC2*1  
I
Error amplifier 2 output pin: connect resistor and capacitor  
between this pin and the –IN2 pin to set gain and adjust  
frequency characteristics.  
12  
13  
FB2  
O
I
–IN2  
Error amplifier 2 inverting input pin.  
Time constant setting capacitor connection for timer-latch  
type short prevention circuit: a capacitor should be connected  
between this pin and the GND pin. For details, see “Setting  
the Time Constant for the Timer-Latch Type Short Prevention  
Circuit.”  
14  
SCP*2  
Open collector type output pin for emitter connected to GND.  
Output current may be up to 50 mA.  
15  
16  
OUT3  
O
I
Used to set OUT3 pin dead time. VREF voltage is divided by an  
external resistor and applied to set dead time. Also, a capacitor  
may be connected between this pin and the GND pin to perform  
soft start operations.  
DTC3*1  
Error amplifier 3 output pin: connect resistor and capacitor  
between this pin and the –IN3 pin to set gain and adjust  
frequency characteristics.  
17  
18  
19  
20  
FB3  
–IN3  
CTL  
VCC  
O
I
Error amplifier 3 inverting input pin.  
Power supply control pin: low level places the IC in standby  
mode and reduces power consumption to 10 µA or lower. Input  
level may be driven by TTL or CMOS.  
I
Power supply pin: voltage range is 3.6 V to 18 V.  
*1: DTC = Dead Time Control  
*2: SCP = Short Circuit Protection  
3
MB3782  
BLOCK DIAGRAM  
RT  
CT  
VREF  
V
CC  
CLT  
3
2
1
20  
19  
1.25 V  
2.5 V  
Reference  
voltage  
source  
Power on/off  
control  
Triangular wave  
oscillator  
9
GND  
circuit  
Error Amp 1  
PWM Comp.1  
Ch.1  
+
-
4
+ IN1  
8
OUT1  
+
+
-
- IN1  
5
FB1  
6
7
DTC1  
Error Amp 2  
PWM Comp.2  
Ch.2  
-
13  
- IN2  
10  
OUT2  
+
+
-
+
1.25 V  
12  
11  
FB2  
DTC2  
Error Amp 3  
-
PWM Comp.3  
Ch.3  
- IN3 18  
15  
OUT3  
+
+
-
+
1.25 V  
17  
FB3  
16  
DTC3  
SCP Comp.  
-
-
-
+
2.1 V  
VREF  
1 µA  
14  
SCP  
S
R
Latch  
U.V.L.O.  
4
MB3782  
FUNCTIONAL DESCRIPTIONS  
1. Reference Voltage Source  
The reference voltage source uses the voltage provided at the VCC pin (pin 20) to generate a temperature-  
compensated reference voltage (2.50 V), which is used as the operating power supply for the internal circuits  
of the IC. The reference voltage source can be output through the VREF pin (pin 1).  
2. Triangular Wave Oscillator  
By connecting a timing capacitor and resistor respectively to the CT pin (pin 2) and RT pin (pin 3), the oscillator  
can provide a triangular waveform at any desired frequency.  
The waveform has an amplitude of 1.3 V to 1.9 V, and can be connected to the non-inverting input of the on-  
chip PWM comparator and also output through the CT pin (pin 2).  
3. Error Amps  
The error amps are amplifiers that detect the output voltage of the switching regulator and send the PWM control  
signal. The common-mode input voltage range is 1.05 V to 1.45 V, so that the voltage applied to the non-inverting  
input pin as a reference voltage should be either the voltage obtained by dividing the IC reference voltage output  
(recommended value: VREF/2) or the voltage obtained from the RT pin (pin 3) (1.25 V). The non-inverting input  
for the error amps 1 and 2 is internally connected to VREF/2 voltage.  
Also, a feedback transistor and capacitor can be connected between the error amp output pin and inverting input  
pin to provide any desired level of loop gain, enabling stable phase compensation.  
4. Timer Latch (S-R Latch) Type Short Prevention Circuit  
The timer-latch type short prevention circuit detects the output levels from each of the error amps. Whenever  
one or more error amps produces an output level of 2.1 V or higher, the timer circuit is activated starting the  
charging of the external protection enabler capacitor.  
If the error amp output voltage does not return to normal range before the voltage in this capacitor reaches the  
transistor’s base-emitter junction voltage (VBE (0.65 V)), the latch circuit will operate to turn the output transistor  
off and at the same time set the dead time to 100%.  
Once the prevention circuit is activated, the power must be switched on again to resume normal operation.  
5. Low Input Voltage Fault Prevention Circuit (Under Voltage Lock-Out (UVLO) function)  
When power is switched on, excess power or momentary drops in power line current can cause operating faults  
in the controller IC, which can in turn lead to damage or deterioration in systems.  
The low input voltage fault prevention circuit detects the internal reference voltage level with respect to the power  
supply voltage level and acts to reset the latch circuit, thereby turning the output transistor off and at the same  
time setting the dead time to 100% and holding the SCP pin (pin 14) at “low.Operation returns to normal when  
the power supply voltage reaches or exceeds the UVLO threshold voltage level.  
6. PWM Comparator  
The PWM comparator is a voltage comparator with one inverting and two non-inverting inputs, which acts as a  
voltage to pulse width converter controlling the on-time of the output pulse according to the input voltage level.  
When the triangular waveform produced by the oscillator is lower than either the error amp output or the DTC  
pin voltage, the output transistor is switched on.  
It is also possible to use the DTC terminal to provide a soft start function.  
7. Output Transistor  
The output is open-collector type, with the emitter of the output transistor connected to the GND pin. The power  
transistor for external switching can carry a base current of up to 50 mA.  
8. Power Supply Control  
Power supply on/off control is enabled through the CTL pin (pin 19). (In standby mode, power supply current is  
10 µA or less.)  
5
MB3782  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Parameter  
Symbol  
Condition  
Unit  
Min  
Max  
20  
Power supply voltage  
Error amp input voltage  
Dead time control input voltage  
Control input voltage  
VCC  
VIN  
V
V
–0.3  
–0.3  
–0.3  
+10  
+2.8  
+20  
20  
Vdt  
V
VCTL  
VOUT  
IOUT  
PD*1  
Ta  
V
Collector output voltage  
Collector output current  
Allowable loss  
V
75  
mA  
mW  
°C  
°C  
740*2  
+85  
+125  
Ta +25°C SOP Version  
Operating ambient temperature  
Storage temperature  
–30  
–55  
Tstg  
*1: For operation in conditions where Ta > +25°C, and the SOP version should be derated by 7.4 mW/°C.  
*2: When mounted on a 4 cm-square dual-sided epoxy board.  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
RECOMMENDED OPERATING CONDITIONS  
Value  
Parameter  
Symbol  
Condition  
Unit  
Min  
3.6  
1.05  
0
Typ  
6.0  
Max  
18.0  
1.45  
18  
Power supply voltage  
VCC  
VIN  
V
V
Error amp input voltage  
Control input voltage  
VCTL  
VOUT  
IOUT  
IREF  
CT  
V
Collector output voltage  
Collector output current  
Reference voltage output current  
Timing capacitance  
18  
V
0.3  
–3  
50  
mA  
mA  
pF  
kΩ  
kHz  
°C  
–1  
0
150  
5.1  
1
15000  
100  
500  
+85  
Timing resistance  
RT  
Oscillator frequency  
fOSC  
Ta  
Operating ambient temperature  
–30  
+25  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device’s electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
representatives beforehand.  
6
MB3782  
ELECTRICAL CHARACTERISTICS  
(VCC = 6 V, Ta= +25°C)  
Value  
Unit  
Parameter  
Output voltage  
Symbol  
Conditions  
IOR = –1 mA  
Min  
Typ  
Max  
VREF  
2.45  
2.50  
2.55  
V
Output voltage  
temperature variation  
VRTC  
Ta = 30°C to +85°C  
–2  
±0.2  
+2  
%
Input stability  
Line  
Load  
IOS  
VCC = 3.6 V to 18 V  
IOR = –0.1 mA to –1 mA  
VREF = 2 V  
2
10  
7.5  
–3  
mV  
mV  
mA  
V
Load stability  
1
Short output current  
–30  
–10  
2.72  
2.60  
120  
VtH  
IOR = –0.1 mA  
Threshold voltage  
Hysteresis width  
VtL  
IOR = –0.1 mA  
V
VHYS  
IOR = –0.1 mA  
80  
mV  
Reset voltage (VCC)  
VR  
1.5  
1.9  
V
Input threshold voltage  
Input standby voltage  
Input latch voltage  
VtPC  
VSTB  
VIN  
No pull-up  
No pull-up  
0.60  
0.65  
50  
0.70  
100  
100  
–0.6  
V
mV  
mV  
µA  
50  
Input source current  
Ibpc  
–1.4  
–1.0  
Comparator threshold  
voltage  
VtC  
Pin 6, pin 12, pin 17  
2.1  
V
Oscillator frequency  
fOSC  
fdev  
fdV  
CT = 330 pF, RT = 15 kΩ  
CT = 330 pF, RT = 15 kΩ  
VCC = 3.6 V to 18 V  
160  
200  
±5  
240  
kHz  
%
Frequency deviation  
Frequency deviation (VCC)  
±1  
%
Frequency deviation (Ta)  
Input threshold voltage  
fdT  
Ta = 30°C to +85°C  
–4  
+4  
%
Vt0  
Vt100  
Dtr  
Duty cycle = 0 %  
Duty cycle = 100 %  
Vdt = VR/1.45 V  
1.05  
1.3  
1.9  
65  
2.25  
75  
V
V
ON duty cycle  
55  
%
µA  
µA  
V
Input bias current  
Latch mode sink current  
Latch input voltage  
Ibdt  
Idt  
0.2  
500  
1
Vdt = 2.5 V  
150  
Vdt  
Idt = 100 µA  
0.3  
(Continued)  
7
MB3782  
(Continued)  
(VCC = 6 V, Ta= +25°C)  
Value  
Unit  
Parameter  
Symbol  
Conditions  
Min  
–6  
Typ  
Max  
Input offset voltage  
Input offset current  
Input bias current  
VIO  
IIO  
IB  
VOUT = 1.6 V  
+6  
mV  
nA  
nA  
VOUT = 1.6 V  
VOUT = 1.6 V  
–100  
+100  
–500 –100  
Common mode input  
voltage range  
VICR  
VCC = 3.6 V to 18 V  
1.05  
1.45  
V
Voltage gain  
Av  
70  
80  
dB  
Frequency bandwidth  
BW  
Av = 0 dB  
0.8  
MHz  
Common mode rejection  
ratio  
CMRR  
VOM+  
60  
80  
dB  
V
VREF  
–0.3  
Maximum output voltage  
range  
VOM-  
IOM+  
IOM-  
Vt0  
VOUT = 1.6 V  
VOUT = 1.6 V  
Duty cycle = 0 %  
Duty cycle = 100 %  
Pin 6, pin 12, pin 17  
Pin 6, pin 12, pin 17  
0.7  
1.0  
–60  
1.3  
1.9  
1.0  
–60  
0.9  
V
mA  
µA  
V
Output sink current  
Output source current  
1.05  
Input threshold voltage  
Vt100  
IIN+  
2.25  
V
Input sink current  
mA  
µA  
V
Input source current  
Input OFF conditions  
Input ON conditions  
Control pin current  
Output leak current  
IIN-  
VOFF  
VON  
ICTL  
0.7  
2.1  
V
VCTL = 10 V  
200  
400  
10  
µA  
µA  
Leak  
VOUT = 18 V  
Output saturation voltage  
Standby current  
VSAT  
ICCS  
ICCa  
IOUT = 50 mA  
1.1  
1.4  
10  
V
VCTL = 0 V  
µA  
mA  
Average feed current  
VCTL = VCC, no output load  
2.1  
3.2  
Notes : Voltage control on channel 1 may be positive or negative.  
The non-inverting input to the error amps on channel 2 and channel 3 is internally connected to VREF/2,  
and therefore voltage control is positive only.  
VREF/2 output can be obtained from the RT pin.  
8
MB3782  
SETTING THE TIME CONSTANT FOR THE TIMER-LATCH TYPE SHORT PREVENTION  
CIRCUIT  
Figure 1 shows the configuration of the protection latch circuit.  
The output lines from the error amps are each connected to the inverting input lines of the short protection  
comparator, which constantly compares them with the reference voltage of approximately 2.1 V connected to  
the non-inverting input.  
When load conditions in the switching regulator are stabilized, there is no variation in the output from the error  
amps, and therefore the short prevention controls are held in equilibrium. In this situation, voltage at the SCP  
pin (pin 14) is held at approximately 50 mV.  
When load conditions change rapidly, as in the case of a load short, high potential signal (greater than 2.1V)  
fromthe erroramps isinput totheinvertingsignalinputoftheshortprotection comparator, andtheshort protection  
comparator outputs a “low” level signal. The transistor Q1 is consequently switched off, so that short protection  
capacitor CPE externally connected to the SCP pin voltage is then charged according to the following formulas.  
VPE = 50 mV + tPE × 10–6/CPE  
0.65 = 50 mV + tPE × 10–6/CPE  
CPE = tPE/0.6 (µF)  
When the short protection capacitor is charged to a level of approximately 0.65 V, the SR latch is set and the  
low input voltage fault prevention circuit is enabled, turning the output drive transistor off. At the same time, the  
dead time isset to 100% and the SCP pin (pin 14) is held “low.” This closes the S-R latch input and then discharges  
the capacitor CPE  
2.50 V  
1 µA  
S.C.P.Comp.  
Out  
14  
PWM  
Comp.  
-
-
Error Amp 1  
Error Amp 2  
Error Amp 3  
S
R
CPE  
-
U.V.L.O.  
Latch  
+
Q1  
Q3  
2.1 V  
Figure 1 Protection Latch Circuit  
9
MB3782  
SETTING OUTPUT VOLTAGE  
The following diagrams show the connections used to set the output voltage.  
Because the power supply to the error amps is provided by the same reference voltage circuit used for the other  
internal circuits, the common-mode input voltage range is set at 1.05 V to 1.45 V.  
The reference voltage input to the +IN and -IN pins should be set at 1.25 V (VREF/2). The method of connection  
for channel 1 is different from channel 2 and channel 3. In addition, channel 1 is capable of picking up both  
positive and negative voltages, while channel 2 and channel 3 can pick up only positive output voltages.  
VREF  
VREF  
+
+ =  
V0  
× (R1 + R2)  
V0  
2R2  
R
R1  
+
pin 6  
R
R2  
RNF  
Figure 2 Error amp (channel 1) connection: Output voltage VO positive  
VREF  
VREF  
× (R1 + R2) + VREF  
=  
V0  
2×R2  
R
R1  
+
pin 6  
R
R2  
RNF  
V0  
Figure 3 Error amp (channel 1) connection: Output voltage VO positive  
10  
MB3782  
1.25  
R2  
+
+ =  
× (R1 + R2)  
V0  
V0  
R1  
+
pin 12,17  
R2  
RNF  
1.25 V  
Figure 4 Error amp (channel 2, channel 3) connection  
The non-inverting input to the error amps on channel 2 and channel 3 is internally connected to VREF/2, and  
therefore cannot be configured for inverting output.  
ch.1  
ch.2  
ch.3  
Step up  
Step down  
Inverting  
×
×
11  
MB3782  
USING THE RT PIN  
The triangular waves, as shown in Figure 5, act to set the oscillator frequency by charging and discharging the  
capacitor connected to the CT pin using the current value of the resistor connected to the RT pin.  
In addition, when voltage level VREF/2 is output to external circuits from the RT pin, care must be taken in making  
the external circuit connections to adjust for the fact that I1 is increased by the value of the current I2 to the  
external circuits in determining the oscillator frequency (see Figure 6).  
ICT = IRT  
Triangular wave oscillator  
VREF  
=
2RT  
VREF  
2
2
1
IRT  
RT  
ICT  
CT  
Figure 5 No VREF/2 connection to external circuits from RT pin  
ICT = IRT  
Triangular wave generator  
= I1 + I2  
VREF  
2RT  
=
+ I2  
VREF  
2
2
1
IRT  
I1  
ICT  
To external circuits  
IRT  
CT  
RT  
Figure 6 VREF/2 connection to external circuits from RT pin  
12  
MB3782  
TREATMENT OF UNUSED ERROR AMPS  
Any error amps that are not used should be handled as follows.  
Note that failure to apply proper treatment to error amps will cause the SCP circuit to activate and disable the  
switching regulator output.  
1. Error Amp (channel 1) Not In Use  
1
VREF  
3
RT  
4
5
+ IN1  
– IN1  
7
9
DTC1  
GND  
Note: Pin 6 and pin 8 shoud be left open.  
2. Error Amp (channel 2) Not In Use  
1
VREF  
13  
11  
– IN2  
GND  
DTC2  
9
Note: Pin 10 and pin 12 shoud be left open.  
3. Error Amp (channel 3) Not In Use  
1
VREF  
– IN3  
DTC3  
18  
16  
9
GND  
Note: Pin 15 and pin 17 shoud be left open.  
13  
MB3782  
TREATMENT OF UNUSED SCP PIN  
When the timer latch short protection circuit is not used, the SCP pin (pin 14) should be connected to the GND  
by the shortest possible path.  
SCP  
14  
14  
MB3782  
TEST CIRCUIT  
OUTPUT  
4.7 kΩ  
OUTPUT  
4.7 kΩ  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VCC  
330 pF  
CTL  
150 kΩ  
4.7 kΩ  
TEST  
INPUT  
TEST  
INPUT  
OUTPUT  
CPF  
TEST  
INPUT  
15  
MB3782  
TIMING CHART (INTERMAL WAVEFORMS)  
CT pin wavefoms  
Short protection  
comparator reference input  
2.1 V  
1.9 V  
1.6 V  
1.3 V  
Dead time,PWM input voltage  
Error amp output  
"High"  
PWM comparator output  
"Low"  
Dead time 100 %  
"High"  
Output transistor-collector  
waveforms  
"Low"  
0.6 V  
SCP pin waveforms  
0 V  
tPE  
"High"  
Short protection comparator output  
"Low"  
Power ON  
Power OFF  
2.1 V  
Control pin voltage (VCTL: minimum value)  
0 V  
3.6V  
Power supply voltage (VCC: minimum)  
0V  
6
Protection enable time tPE 0.6 × 10 × CPE (µs)  
16  
MB3782  
EXAMPLE OF APPLICATION  
16 kΩ  
5.6 kΩ  
9.1 kΩ  
1 µF  
1.8 kΩ  
10 kΩ  
4.7kΩ  
10 kΩ  
1 µF  
2.4 kΩ  
10 kΩ  
1 µF  
4.7 kΩ  
5.6 µH  
V
IN (6V)  
CTL  
11  
16  
19  
1
7
20  
4.7 kΩ  
VREF  
DTC1  
DTC2  
DTC3 VCC CTL  
4
5
6
+IN1  
IN1  
FB1  
V −  
O
330 Ω  
330 Ω  
(5V)  
120 µH  
4.7 kΩ  
1.8 kΩ  
8
OUT1  
0.033 µF  
150 k  
120 µH  
220 µF  
V +  
O
+
330 Ω  
330 Ω  
(+5V)  
10  
OUT2  
13  
12  
IN2  
0.033 µF  
0.033 µF  
150 k  
150 k  
120 µH  
FB2  
MB3782  
+
V
O
1.8 kΩ  
+
(+12V)  
220 µF  
18  
IN3  
3.9 k100 Ω  
17  
FB3  
15  
820 pF  
OUT3  
GND  
2
CT  
8.2 kΩ  
9
3
RT  
0.1 µF  
14  
SCP  
17  
MB3782  
TYPICAL CHARACTERISTICS CURVES  
Reference voltage vs. Power supply voltage  
Average feed current vs. Power supply voltage  
Ta = +25˚C  
5.0  
3.0  
Ta = +25˚C  
2.5  
1.5  
0
0
0
0
4
8
12  
16  
20  
4
8
12  
16  
20  
Power supply voltage VCC (V)  
Power supply voltage VCC (V)  
Reference voltage vs. Operating ambient temperature  
2.51  
2.50  
2.49  
2.48  
2.47  
2.46  
Triangular wave maximum amplitude voltage vs. Timing capacitance  
2.2  
V
CC = VCTL = 6 V  
= -1 mA  
I
OR  
VCC = 6 V  
R = 15 kΩ  
Ta = +25˚C  
T
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
2.45  
2
10  
3
4
10  
-
40  
-
20  
0
+ 20 + 40 + 60 + 80 + 100  
10  
Timing capacitance C  
Operating ambient temperature Ta (˚C)  
T
(pF)  
Collector saturation voltage vs. Sink current  
2.0  
VCC = 6 V  
Ta = +25˚C  
Error amp maximum output voltage amplitude vs. Frequency  
1.5  
3.0  
2.0  
1.0  
0
V
CC = 6 V  
Ta = +25˚C  
1.0  
0.5  
0
100  
500 1 k  
5 k 10 k  
50 k 100 k  
500 k  
0
10  
20  
30  
40  
50  
Fequency f (Hz)  
Sink current IOL (mA)  
(Continued)  
18  
MB3782  
Oscillator frequency vs. Timing resistance  
V
CC = 6 V  
Ta = +25˚C  
Triangular wave period vs. Timing capacitance  
100  
10  
V
R
CC = 6 V  
T
= 15 kΩ  
1 M  
Ta = +25˚C  
100 k  
10 k  
C = 150 pF  
T
CT  
= 1500 pF  
1
2
10  
3
10  
4
10  
5
10  
CT  
= 15000 pF  
Timing capacitance C  
T
(pF)  
1 k  
1 k  
5 k 10 k 50 k  
100 k  
500 k  
Timing resistance R  
T
(
)
Frequency variation vs. Operating ambient temperature  
ON duty cycle vs. Oscillator frequency  
10  
0
100  
80  
V
C
R
CC = 6 V  
V
C
R
CC = 6 V  
T
T
= 1330 pF  
= 15 kΩ  
T
= 330 pF  
T
= 15 kΩ  
Ta = +25˚C  
60  
40  
20  
0
-10  
5 k 10 k  
50 k 100 k  
500 k 1 M  
-
40  
-20  
0
+20 +40 +60 +80 +100 +120  
Oscillator frequency (Hz)  
Operating ambient temperature Ta (˚C)  
Reference voltage vs. Control input voltage  
Control input current vs. Control input voltage  
V
C
CC = 6 V  
VCC = 6 V  
CT = +25˚C  
5.0  
2.5  
0
500  
250  
T
= +25˚C  
0
0
4
8
12  
16  
20  
0
1
2
3
4
5
Control input voltage VCTL (V)  
Control input voltage VCTL (V)  
(Continued)  
19  
MB3782  
Voltage gain and phase vs. Frequenncy  
CNF = open  
Voltage gain and phase vs. Frequenncy  
CNF = 0.047 pF  
40  
20  
180  
90  
40  
20  
180  
90  
AV  
AV  
0
0
0
0
φ
φ
-20  
-40  
-90  
-180  
-20  
-40  
-90  
-180  
10  
100  
1 k  
10 k  
100 k  
1 M  
10  
100  
1 k  
10 k  
100 k  
1 M  
Frequenncy f (Hz)  
Frequenncy f (Hz)  
Voltage gain and phase vs. Frequenncy  
CNF = 470 pF  
Voltage gain and phase vs. Frequenncy  
CNF = 4700 pF  
40  
20  
180  
90  
40  
20  
180  
90  
AV  
AV  
0
0
0
0
φ
φ
-20  
-40  
-90  
-180  
-20  
-40  
-90  
-180  
10  
100  
1 k  
10 k  
100 k  
1 M  
10  
100  
1 k  
10 k  
100 k  
1 M  
Frequenncy f (Hz)  
Test Circuit  
Frequenncy f (Hz)  
VREF  
VREF  
CNF  
4.7 k4.7 kΩ  
240 kΩ  
4
5
-
10 µF  
-
OUT  
6
+
+
IN  
4.7 k4.7 kΩ  
Error amp  
(Continued)  
20  
MB3782  
(Continued)  
Allowable loss vs. Operating ambient temperature  
1200  
1110  
1000  
800  
740  
SOP version  
600  
400  
200  
0
-30 -20 -10  
+85  
0
+10 +20 +30 +40 +50 +60 +70 +80  
Operating ambient temperature Ta (˚C)  
21  
MB3782  
CONCERNING EQUIVALENT SERIES RESISTANCE AND STABILITY OF SMOOTHING  
CAPACITORS  
In DC/DC converters, the equivalent series resistance value (ESR) of smoothing capacitors has a major influence  
on loop phase characteristics.  
The ESR is a means by which phase characteristics approximate phase relationships to ideal capacitors in high-  
frequencybands(seeGraph1), thusimproving system stability. Atthesametime, theuseofsmoothingcapacitors  
with low ESR reduces system stability, so that care must be taken when using semiconductor electrolytic ca-  
pacitors (OS-CONTM*) or tantalum capacitors with low ESR.  
* : OS-CON is a trademark of Sanyo Electric Co., Ltd.  
L
Tr  
Rc  
VIN  
D
RL  
C
Figure 7 Basic circuit for step-down voltage DC/DC converter  
Phase vs. frequency  
Gain vs. frequency  
0
20  
0
2
90  
20  
40  
60  
2
: Rc = 0 Ω  
1
2
1
: Rc = 0 Ω  
1
: Rc = 31 mΩ  
1
180  
2 : Rc = 31 mΩ  
10  
100  
1 k  
Frequency f (Hz)  
10 k  
100 k  
10  
100  
1 k  
10 k  
100 k  
Frequency f (Hz)  
Graph 1 Gain and phase vs. frequency  
22  
MB3782  
• Reference data  
Changing the smoothing capacitor from an aluminum electrolytic capacitor (RC 1.0) to a lower-ESR semi-  
conductor electrolytic capacitor (OS-CONTM: RC 0.2 ) decreases the phase margin (see Graphs 2, 3).  
V out  
+
V0  
CNF  
AV and phase characteristics  
measured between these points  
– IN  
VIN  
FB  
+ IN  
R1  
R2  
+
VREF/2  
Error amp  
Figure 8 Measurement of DC/DC Capacitor AV and Phase (φ) Characteristics  
DC/DC converter + 5 V output Gain and Phase vs. Frequency  
Graph 2  
60  
Vcc = 10 V  
RL = 25 Ω  
40  
20  
0
180  
90  
0
Cp = 0.1 µF  
Av  
+
V0  
φ
Aluminum electrolytic  
capacitor  
220 µF (16 V)  
RC 1.0 Ω  
+
62°  
: fosc = 1 kHz  
20  
40  
90  
180  
100 k  
10  
100  
1 k  
Frequency f (Hz)  
10 k  
Graph 3  
DC/DC converter + 5 V output Gain and Phase vs. Frequency  
Vcc = 10 V  
60  
Av  
RL = 25 Ω  
180  
90  
0
40  
20  
0
Cp = 0.1 µF  
OS-CONTM  
22 µF (16 V)  
RC 0.2 Ω  
+
φ
27°  
: fosc = 1 kHz  
90  
20  
40  
180  
100  
1 k  
10 k  
100 k  
10  
Frequency f (Hz)  
23  
MB3782  
NOTES ON USE  
Take account of common impedance when designing the earth line on a printed wiring board.  
Take measures against static electricity.  
- For semiconductors, use antistatic or conductive containers.  
- When storing or carrying a printed circuit board after chip mounting, put it in a conductive bag or container.  
- The work table, tools and measuring instruments must be grounded.  
- The worker must put on a grounding device containing 250 kto 1 Mresistors in series.  
• Do not apply a negative voltage  
- Applying a negative voltage of 0.3 V or less to an LSI may generate a parasitic transistor, resulting in  
malfunction.  
ORDERING INFORMATION  
Part number  
MB3782PF-■■  
MB3782PF-■■E1  
Package  
Remarks  
20 pin plastic SOP  
(FPT-20P-M01)  
Conventional version  
20 pin plastic SOP  
(FPT-20P-M01)  
Lead Free version  
RoHS Compliance Information of Lead (Pb) Free version  
The LSI products of Fujitsu Microelectronics with “E1” are compliant with RoHS Directive , and has observed  
the standard of lead, cadmium, mercury, Hexavalent chromium, polybrominated biphenyls (PBB) , and polybro-  
minated diphenyl ethers (PBDE) .  
The product that conforms to this standard is added “E1” at the end of the part number.  
MARKING FORMAT (Lead Free version)  
MB3782  
XXXX XXX  
E1  
SOP-20  
INDEX  
Lead Free version  
24  
MB3782  
LABELING SAMPLE (Lead free version)  
Lead free mark  
JEITA logo JEDEC logo  
MB123456P - 789 - GE1  
(3N) 1MB123456P-789-GE1 1000  
G
Pb  
(3N)2 1561190005 107210  
QC PASS  
PCS  
1,000  
MB123456P - 789 - GE1  
ASSEMBLED IN JAPAN  
2006/03/01  
MB123456P - 789 - GE1  
1/1  
1561190005  
0605 - Z01A 1000  
Lead Free version  
25  
MB3782  
MB3782PF-■■E1 RECOMMENDEDCONDITIONSOF MOISTURESENSITIVITYLEVEL  
Item  
Condition  
IR (infrared reflow) , Manual soldering (partial heating method)  
2 times  
Mounting Method  
Mounting times  
Please use it within two years after  
Before opening  
Manufacture.  
From opening to the 2nd  
Less than 8 days  
reflow  
Storage period  
When the storage period after  
opening was exceeded  
Please processes within 8 days  
after baking (125 °C, 24H)  
Storage conditions  
5 °C to 30 °C, 70%RH or less (the lowest possible humidity)  
[Temperature Profile for FJ Standard IR Reflow]  
(1) IR (infrared reflow)  
H rank : 260 °C Max  
260 °C  
255 °C  
170 °C  
to  
190 °C  
(b)  
(c)  
(d)  
(e)  
RT  
(a)  
(d')  
(a) Temperature Increase gradient : Average 1 °C/s to 4 °C/s  
(b) Preliminary heating : Temperature 170 °C to 190 °C, 60s to 180s  
(c) Temperature Increase gradient : Average 1 °C/s to 4 °C/s  
(d) Actual heating  
(d’)  
: Temperature 260 °C Max; 255 °C or more, 10s or less  
: Temperature 230 °C or more, 40s or less  
or  
Temperature 225 °C or more, 60s or less  
or  
Temperature 220 °C or more, 80s or less  
(e) Cooling  
: Natural cooling or forced cooling  
Note : Temperature : the top of the package body  
(2) Manual soldering (partial heating method)  
Conditions : Temperature 400 °C Max  
Times  
: 5 s max/pin  
26  
MB3782  
PACKAGE DIMENSION  
20-pin plastic SOP  
Lead pitch  
1.27 mm  
Package width  
package length  
×
5.3 × 12.7 mm  
Gullwing  
Lead shape  
Sealing method  
Mounting height  
Weight  
Plastic mold  
2.25 mm MAX  
0.28 g  
Code  
(Reference)  
P-SOP20-5.3×12.7-1.27  
(FPT-20P-M01)  
20-pin plastic SOP  
(FPT-20P-M01)  
Note 1) *1 : These dimensions include resin protrusion.  
Note 2) *2 : These dimensions do not include resin protrusion.  
Note 3) Pins width and pins thickness include plating thickness.  
Note 4) Pins width do not include tie bar cutting remainder.  
0.17 +00..0043  
*112.70 +00..2205 .500 +..000180  
.007 +..000021  
20  
11  
*2 5.30±0.30 7.80±0.40  
(.209±.012) (.307±.016)  
INDEX  
Details of "A" part  
2.00 +00..1255  
(Mounting height)  
.079 +..000160  
0.25(.010)  
"A"  
1
10  
1.27(.050)  
0~8˚  
0.47±0.08  
(.019±.003)  
M
0.13(.005)  
0.50±0.20  
(.020±.008)  
0.10 +00..0150  
.004 +..000024  
0.60±0.15  
(Stand off)  
(.024±.006)  
0.10(.004)  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2002 FUJITSU LIMITED F20003S-c-7-7  
27  
FUJITSU MICROELECTRONICS LIMITED  
Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku,  
Tokyo 163-0722, Japan  
Tel: +81-3-5322-3347 Fax: +81-3-5322-3387  
http://jp.fujitsu.com/fml/en/  
For further information please contact:  
North and South America  
Asia Pacific  
FUJITSU MICROELECTRONICS AMERICA, INC.  
1250 E. Arques Avenue, M/S 333  
Sunnyvale, CA 94085-5401, U.S.A.  
Tel: +1-408-737-5600 Fax: +1-408-737-5999  
http://www.fma.fujitsu.com/  
FUJITSU MICROELECTRONICS ASIA PTE LTD.  
151 Lorong Chuan, #05-08 New Tech Park,  
Singapore 556741  
Tel: +65-6281-0770 Fax: +65-6281-0220  
http://www.fujitsu.com/sg/services/micro/semiconductor/  
Europe  
FUJITSU MICROELECTRONICS SHANGHAI CO., LTD.  
Rm.3102, Bund Center, No.222 Yan An Road(E),  
Shanghai 200002, China  
FUJITSU MICROELECTRONICS EUROPE GmbH  
Pittlerstrasse 47, 63225 Langen,  
Germany  
Tel: +86-21-6335-1560 Fax: +86-21-6335-1605  
http://cn.fujitsu.com/fmc/  
Tel: +49-6103-690-0 Fax: +49-6103-690-122  
http://emea.fujitsu.com/microelectronics/  
FUJITSU MICROELECTRONICS PACIFIC ASIA LTD.  
10/F., World Commerce Centre, 11 Canton Road  
Tsimshatsui, Kowloon  
Korea  
FUJITSU MICROELECTRONICS KOREA LTD.  
206 KOSMO TOWER, 1002 Daechi-Dong,  
Kangnam-Gu,Seoul 135-280  
Korea  
Hong Kong  
Tel: +852-2377-0226 Fax: +852-2376-3269  
http://cn.fujitsu.com/fmc/tw  
Tel: +82-2-3484-7100 Fax: +82-2-3484-7111  
http://www.fmk.fujitsu.com/  
All Rights Reserved.  
The contents of this document are subject to change without notice.  
Customers are advised to consult with sales representatives before ordering.  
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose  
of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS  
does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporat-  
ing the device based on such information, you must assume any responsibility arising out of such use of the information.  
FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.  
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use  
or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS  
or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or  
other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual  
property rights or other rights of third parties which would result from the use of information contained herein.  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without  
limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured  
as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect  
to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in  
nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in  
weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).  
Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising  
in connection with above-mentioned uses of the products.  
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by  
incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current  
levels and other abnormal operating conditions.  
Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of  
the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.  
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.  
Edited Strategic Business Development Dept.  

相关型号:

MB3782_1

ASSP Power Supplies BIPOLAR Switching Regulator Controller
FUJITSU

MB3785

Switching Regulator Controller (4 Channels plus High-Precision, High-Frequency Capabilities)
FUJITSU

MB3785A

Switching Regulator Controller (4 Channels plus High-Precision, High-Frequency Capabilities)
FUJITSU

MB3785APFV

Switching Regulator Controller (4 Channels plus High-Precision, High-Frequency Capabilities)
FUJITSU

MB3785A_03

Switching Regulator Controller (4 Channels plus High-Precision, High-Frequency Capabilities)
FUJITSU

MB3788

SWITCHING REGULATOR CONTROLLER
FUJITSU

MB3788PFV

Dual Switching Controller, Voltage-mode, 0.03A, 1000kHz Switching Freq-Max, BIPolar, PDSO24, PLASTIC, SSOP-24
FUJITSU

MB3789

Switching Regulator Controller (Supporting External Synchronization)
FUJITSU

MB3789APFV-XXXE1

Switching Regulator
CYPRESS

MB3789APFV-XXXE1

Switching Regulator, 200kHz Switching Freq-Max, BIPolar, PDSO16, 4.40 X 5 MM, 1.45 MM HEIGHT, 0.65 MM PITCH, ROHS COMPLIANT, PLASTIC, SSOP-16
FUJITSU

MB3789APFV-XXXE1

Switching Regulator
SPANSION

MB3789PFV

Switching Regulator Controller (Supporting External Synchronization)
FUJITSU