MB3785APFV [FUJITSU]

Switching Regulator Controller (4 Channels plus High-Precision, High-Frequency Capabilities); 开关稳压器控制器( 4通道和高精度,高频能力)
MB3785APFV
型号: MB3785APFV
厂家: FUJITSU    FUJITSU
描述:

Switching Regulator Controller (4 Channels plus High-Precision, High-Frequency Capabilities)
开关稳压器控制器( 4通道和高精度,高频能力)

稳压器 开关式稳压器或控制器 电源电路 开关式控制器
文件: 总29页 (文件大小:284K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS04-27208-1E  
ASSP  
BIPOLAR  
Switching Regulator Controller  
(4 Channels plus High-Precision, High-Frequency Capabilities)  
MB3785A  
DESCRIPTION  
The MB3785A is a PWM-based 4-channel switching regulator controller featuring high-precision, high-frequency  
capabilities. All of the four channels of circuits allow their outputs to be set in three modes: step-down, step-up, and  
inverted. The third and fourth channels are suited for DC motor speed control.  
The triangular-wave oscillation circuit accepts a ceramic resonator, in addition to the standard method of oscillation  
using an RC network.  
FEATURES  
• Wide range of operating power supply voltages: 4.5 V to 18 V  
• Low current consumption: 6 mA [TYP] when operating10 µA or less during standby  
• Built-in high-precision reference voltage generator: 2.50 V±1%  
• Oscillation circuit  
- Capable of high-frequency oscillation: 100 kHz to 1 MHz  
- Also accepts a ceramic resonator.  
• Wide input range of error amplifier: –0.2 V to VCC–1.8 V  
• Built-in timer/latch-actuated short-circuiting detection circuit  
(Continued)  
PACKAGE  
48-pin, Plastic LQFP  
(FPT-48P-M05)  
MB3785A  
(Continued)  
• Output circuit  
- The drive output for PNP transistors is the totem-pole type allowing the on-current and off-current values to  
be set independently.  
• Adjustable dead time over the entire duty ratio range  
• Built-in standby and output control functions  
• High-density mounting possible: 48-pin LQFP package  
PIN ASSIGNMENT  
(TOP VIEW)  
48 47 46 45 44 43 42 41 40 39 38 37  
Ca1  
Cb2  
1
2
36  
35  
Ca4  
Cb3  
Ca2  
34  
3
4
Ca3  
DTC1  
FB1  
33  
32  
DTC4  
5
6
FB4  
–IN1 (E)  
+IN1 (E)  
–IN1 (C)  
DTC2  
31  
30  
29  
28  
27  
26  
25  
–IN4 (E)  
7
8
9
+IN4 (E)  
–IN4 (C)  
DTC3  
FB2  
10  
11  
12  
FB3  
–IN2 (E)  
+IN2 (E)  
–IN3 (E)  
+IN3 (E)  
13 14 15 16 17 18 19 20 21 22 23 24  
(FPT-48P-M05)  
Each alphabet in parentheses following the pin symbol indicates the input pin of the next circuit.  
(C) denotes a comparator.  
(E) denotes an error amplifier.  
2
MB3785A  
PIN DESCRIPTION  
Pin No.  
Symbol  
Ca1  
I/O  
I
Description  
1
CH1 output transistor OFF-current setting pin. Insert a capacitor between  
the Ca1 and the Cb1 pins, then set the output transistor OFF-current.  
48  
7
Cb1  
+IN1(E)  
–IN1(E)  
FB1  
CH1 error amp non-inverted input pin.  
CH1 error amp inverted input pin.  
CH1 error amp output pin.  
6
I
CH1  
5
O
I
8
–IN1(C)  
DTC1  
VE1  
CH1 comparator inverted input pin.  
CH1 dead time control pin.  
4
I
47  
46  
3
I
CH1 output current setting pin.  
CH1 totem-pole output pin.  
OUT1  
Ca2  
O
I
CH2 output transistor OFF-current setting pin. Insert a capacitor between  
the Ca2 and the Cb2 pins, then set the output transistor OFF-current.  
2
Cb2  
12  
11  
10  
13  
9
+IN2(E)  
–IN2(E)  
FB2  
CH2 error amp non-inverted input pin.  
CH2 error amp inverted input pin.  
CH2 error amp output pin.  
I
CH2  
O
I
–IN2(C)  
DTC2  
VE2  
CH2 comparator inverted input pin.  
CH2 dead time control pin.  
I
43  
44  
34  
35  
25  
26  
27  
24  
28  
41  
40  
36  
37  
30  
31  
32  
29  
I
CH2 output current setting pin.  
CH2 totem-pole output pin.  
OUT2  
Ca3  
O
I
CH3 output transistor OFF-current setting pin. Insert a capacitor between  
the Ca3 and the Cb3 pins, then set the output transistor OFF-current.  
Cb3  
+IN3(E)  
–IN3(E)  
FB3  
CH3 error amp non-inverted input pin.  
CH3 error amp inverted input pin.  
CH3 error amp output pin.  
I
CH3  
O
I
–IN3(C)  
DTC3  
VE3  
CH3 comparator inverted input pin.  
CH3 dead time control pin.  
I
I
CH3 output current setting pin.  
CH3 totem-pole output pin.  
OUT3  
Ca4  
O
I
CH4 output transistor OFF-current setting pin. Insert a capacitor between  
the Ca4 and the Cb4 pins, then set the output transistor OFF-current.  
Cb4  
+IN4(E)  
–IN4(E)  
FB4  
CH4 error amp non-inverted input pin.  
CH4 error inverted input pin.  
CH4  
I
O
I
CH4 error amp output pin.  
–IN4(C)  
CH4 comparator inverted input pin.  
(Continued)  
3
MB3785A  
(Continued)  
Pin No.  
33  
Symbol  
I/O  
I
Description  
DTC4  
VE4  
CH4 dead time control pin.  
CH4 output current setting pin.  
CH4 totem-pole output pin.  
CH4  
38  
39  
14  
I
OUT4  
OSCIN  
O
This pin connects a ceramic resonator.  
15  
16  
17  
OSCOUT  
RT  
This pin connects to a resistor for setting the triangular-wave frequency.  
This pin connects to a capacitor for setting the triangular-wave frequency.  
CT  
18  
45  
42  
19  
VCC1  
VCC2  
GND  
VREF  
O
Power supply pin for the reference power supply control circuit.  
Power supply pin for the output circuit.  
GND pin.  
Reference voltage output pin.  
23  
20  
SCP  
I
This pin connects to a capacitor for the short-circuit protection circuit.  
Power supply circuit and first-channel control pin.  
CTL1  
When this pin is High, the power supply circuit and first channel are in  
active state.  
When this pin is Low, the power supply circuit and first channel are in  
standby state.  
21  
22  
CTL2  
CTL3  
I
I
Second-channel control pin.  
While the CTL1 pin is High  
When this pin is High, the second channel is in active state.  
When this pin is Low, the second channel is in the inactive state.  
Third and fourth-channel control pin.  
While the CTL1 pin is High  
When this pin is High, the third and fourth channels are in active state.  
When this pin is Low, the third and fourth channels are in the inactive  
state.  
4
MB3785A  
BLOCK DIAGRAM  
Ca1  
1
CH 1  
Cb1  
48  
Error Amp 1  
PWM comparator 1  
VCC2  
45  
46  
47  
+
+IN1 (E)  
7
OFF Current  
Setting  
+
+
–IN1 (E)  
FB1  
6
5
OUT1  
V
REF  
VREF  
Comparator 1  
+
DTC  
2 V  
Comparator 1  
8
4
–IN1 (C)  
DTC1  
2.5 V  
VE1  
3
2
CH 2  
Ca2  
Cb2  
Error Amp 2  
PWM comparator 2  
OFF Current  
Setting  
+
+IN2 (E) 12  
+
+
–IN2 (E) 11  
FB2 10  
44 OUT2  
VREF  
Comparator 2  
V
REF  
+
2 V  
DTC  
13  
–IN2 (C)  
Comparator 2  
43  
2.5 V  
VE2  
9
DTC2  
34  
CH 3  
Ca3  
Error Amp 3  
33  
PWM comparator 3  
Cb3  
+
25  
+IN3 (E)  
OFF Current  
Setting  
+
+
–IN3 (E)  
FB3  
26  
27  
40  
OUT3  
Comparator 3  
100 Ω  
+
0.6 V  
CH 4  
24  
–IN3 (C)  
41  
2.5 V  
VE3  
Ca4  
36  
DTC3 28  
Error Amp 4  
37  
PWM comparator 4  
Cb4  
+
+IN4 (E) 30  
OFF Current  
Setting  
+
+
–IN4 (E)  
31  
FB4 32  
39  
OUT4  
Comparator 4  
100 Ω  
+
0.6 V  
29  
–IN4 (C)  
38  
2.5 V  
33  
DTC4  
VE4  
SCP  
Comparator  
21  
CTL2  
+
22  
CTL3  
2.1 V  
+
–1.9 V  
–1.3 V  
DTC  
Comparator 3  
1 µA  
1.2 V  
SCP  
18  
VCC1  
23  
VREF  
Under Voltage  
Lock-out  
Protection Circuit  
Ref.  
Power Supply  
S
R
Triangular-Wave  
Oscillator Circuit  
20  
CTL1  
Vol. Circuit & Channel  
Circuit  
SR Latch  
Control  
42  
2.5 V  
14  
15  
16  
17  
19  
OSCIN  
RT CT  
V
REF  
GND  
OSCOUT  
Ceramic Resonator  
5
MB3785A  
FUNCTIONAL DESCRIPTION  
1. Switching Regulator Function  
(1) Reference voltage circuit  
The reference voltage circuit generates a temperature-compensated reference voltage ( 2.50 V) using the voltage  
supplied from the power supply terminal (pin 18). This voltage is used as the operating power supply for the internal  
circuits of the IC. The reference voltage can also be supplied to an external device from the VREF terminal (pin 19).  
(2) Triangular-wave oscillator circuit  
By connecting a timing capacitor and a resistor to the CT (pin 17) and the RT (pin 16) terminals, it is possible to  
generate any desired triangular oscillation waveform. The oscillation can also be obtained by using a ceramic  
resonator connected to pins 14 and 15.  
This waveform has an amplitude of 1.3 V to 1.9 V and is input to the internal PWM comparator of the IC. At the  
same time, it can also be supplied to an external device from the CT terminal (pin 17).  
(3) Error amplifier  
This amplifier detects the output voltage of the switching regulator and outputs a PWM control signal accordingly.  
It has a wide common-mode input voltage range from –0.2 V to VCC –1.8 V and allows easy setting from an external  
power supply, making the system suitable for DC motor speed control.  
By connecting a feedback resistor and capacitor from the error amplifier output pin to the inverted input pin, you  
can form any desired loop gain, for stable phase compensation.  
(4) PWM comparator  
• CH1 & CH2  
The PWM comparators in these channels are a voltage comparator with two inverted input and one non-inverted  
input, that is, a voltage-pulse width converter to control the output pulse on-time according to the input voltage. It  
turns on the output transistor when the triangular wave from the oscillator is higher than both the error amplifier  
output and the DTC-pin voltages.  
• CH3 & CH4  
The PWM comparators in these channels are a voltage comparator with one inverted input and two non-inverted  
inputs, that is, a voltage-pulse width converter to control the output pulse on-time according to the input voltage. It  
turns on the output transistor when the triangular wave from the oscillator is lower than both the error amplifier  
output and the DTC-pin voltages.  
These four channels can be provided with a soft start function by using the DTC pin.  
(5) Output circuit  
The output circuit is comprised of a totem-pole configuration and can drive a PNP transistor (30 mA max.)  
6
MB3785A  
2. Channel Control Function  
The MB3785A allows the four channels of power supply circuits to be controlled independently. Set the voltage  
levels on the CTL1 (pin 20), CTL2 (pin 21), and CTL3 (pin 22) terminals to turn the circuit of each channel “ON” or  
“OFF”, as listed below.  
Table 1 Channel by Channel On/Off Setting Conditions.  
CTL pin voltage level  
On/Off state of channel  
First channel Second channel  
Power supply  
circuit  
3rd and 4th chan-  
nels  
CTL1  
CTL2  
CTL3  
H
L
ON  
OFF  
ON  
H
ON  
H
L
ON  
H
L
L
OFF  
OFF  
X
Standby state*  
* : The power supply current value during standby is 10 µA or less.  
3. Protective Functions  
(1) Timer/latch-actuated short-circuiting protection circuit  
The SCP comparator checks the output voltage of each comparator which is used to detect the short-circuiting of  
output. When any of these comparators have an output voltage greater than or equal to 2.1 V, the timer circuit is  
activated and a protection enable capacitor externally fitted to the SCP terminal (pin 23) begins to charge.  
If the comparator’s output voltage is not restored to normal voltage level by the time the capacitor voltage has risen  
to the base-emitter junction voltage of the transistor, i.e., VBE ( 0.65 V), the latch circuit is activated to turn off the  
output transistor while at the same time setting the duty (OFF) = 100 %.  
When actuated, this protection circuit can be reset by turning on the power supply again.  
(2) Under voltage lockout protection circuit  
A transient state at power-on or a momentary drop of the power supply voltage causes the control IC to malfunction,  
resulting in system breakdown or deterioration. By detecting the internal reference voltage with respect to the power  
supply voltage, this protection circuit resets the latch circuit to turn off the output transistor and set the duty (OFF)  
= 100 %, while at the same time holding the SCP terminal (pin 23) at the “L”. The reset is cleared when the power  
supply voltage becomes greater than or equal to the threshold voltage level of this protection circuit.  
7
MB3785A  
ABSOLUTE MAXIMUM RAGINGS (See WARNING)  
(Ta = +25°C)  
Parameter  
Power supply voltage  
Control input voltage  
Power dissipation  
Symbol  
VCC  
Conditions  
Rating  
20  
Unit  
V
VICTL  
PD  
20  
V
Ta +25°C  
550*  
mW  
Operating ambient  
temperature  
TOP  
Tstg  
–30 to 85  
°C  
°C  
Storage temperature  
–55 to 125  
* : The packages are mounted on the epoxy board (4 cm × 4 cm).  
WARNING: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded.  
Functional operation should be restricted to the conditions as detailed in the operational sections of  
this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
RECOMMENDED OPERATING CONDITIONS  
(Ta = +25°C)  
Value  
Parameter  
Symbol  
Conditions  
Unit  
Min.  
4.5  
Typ.  
6.0  
Max.  
18  
Power supply voltage*  
Error amp. input voltage  
Comparator input voltage  
Control input voltage  
Output current  
VCC  
VI  
V
V
–0.2  
–0.2  
–0.2  
3.0  
VCC –0.8  
VCC  
VI  
V
VICTL  
IO  
18  
V
30  
mA  
pF  
kΩ  
kHz  
Timing capacitance  
Timing resistance  
CT  
68  
1500  
100  
RT  
5.1  
Oscillation frequency  
fOSC  
100  
500  
1000  
Operating ambient  
temperature  
TOP  
–30  
25  
85  
°C  
* : The minimum value of the recommended supply voltage is 3.6 V except when the device operates with constant  
output sink current.  
8
MB3785A  
ELECTRICAL CHARACTERISTICS  
(VCC = +6 V, Ta = +25°C)  
Value  
Unit  
Parameter  
Symbol  
Conditions  
IOR = –1 mA  
Ta = 30°C to +85°C  
Min.  
Typ.  
Max.  
Reference voltage  
VREF  
2.475  
2.500 2.525  
V
Rate of changed in output  
voltage vs. Temperature  
VREF  
/VREF  
–2  
±0.2  
2
%
Input stability  
Line VCC = 3.6 V to 18 V  
–10  
–10  
–25  
–2  
–3  
10  
10  
–3  
mV  
mV  
mA  
V
Load stability  
Load IOR = –0.1 mA to –1 mA  
Sort-circuit output current  
IOS  
VtH  
VREF = 2 V  
–8  
2.72  
2.60  
120  
Threshold voltage  
Hysteresis width  
VtL  
V
VHYS  
80  
mV  
Reset voltage (VCC)  
VR  
1.5  
1.9  
V
Input threshold voltage  
Input bias current  
Vth  
IIB  
2.45  
2.50  
2.55  
V
VI = 0 V  
VI = 0 V  
–200  
–100  
nA  
Input voltage range  
VI  
–0.2  
VCC  
V
Input offset voltage  
Input bias current  
VIO  
IIB  
0.58  
0.65  
0.72  
V
–200  
–100  
nA  
Common mode input  
voltage range  
VICM  
–0.2  
VCC–1.8  
V
Threshold voltage  
Input standby voltage  
Input latch voltage  
VtPC  
VSTB  
VI  
0.60  
0.65  
50  
0.70  
100  
100  
V
mV  
mV  
50  
Input source current  
Ilbpc  
–1.4  
–1.0  
–0.6  
µA  
Oscillation frequency  
fOSC  
CT = 300 pF, RT = 6.2 kΩ  
450  
500  
±1  
550  
kHz  
%
Frequency stability (VCC)  
f/fdv VCC = 3.6 V to 18 V  
Frequency stability (Ta)  
f/fdT Ta = 30°C to +85°C  
–4  
4
%
(Continued)  
9
MB3785A  
(Continued)  
(VCC = +6 V, Ta = +25°C)  
Value  
Unit  
Parameter  
Symbol  
Conditions  
Min.  
–10  
Typ.  
Max.  
Input offset voltage  
Input bias current  
VIO  
IIB  
VFB = 1.6 V  
VFB = 1.6 V  
10  
mV  
nA  
–200  
–100  
Common mode input  
voltage range  
VICM  
–0.2  
VCC–1.8  
V
Voltage gain  
AV  
BW  
Vt0  
60  
100  
800  
1.9  
dB  
kHz  
V
Frequency bandwidth  
AV = 0 dB  
Duty cycle = 0 %  
Duty cycle = 100 %  
Vdt = 2.3 V  
2.25  
Input threshold voltage  
Vt100  
IIbdt  
IIdt  
1.05  
1.3  
V
Input bias current  
0.1  
0.5  
–80  
µA  
µA  
Latch mode source current  
Vdt = 1.5 V  
–500  
VREF–  
0.3  
Latch input voltage  
VIdt  
Idt = –40 µA  
2.4  
V
Vt0  
Vt100  
IIbdt  
IIdt  
Duty cycle = 0 %  
Duty cycle = 100 %  
Vdt = 2.3 V  
1.05  
1.3  
1.9  
0.1  
500  
0.2  
1.4  
100  
2.25  
0.5  
V
V
Input threshold voltage  
Input bias current  
µA  
µA  
V
Latch mode source current  
Latch input voltage  
Threshold voltage  
Vdt = 1.5 V  
80  
VIdt  
Vth  
IIH  
Idt = +40 µA  
0.3  
2.1  
200  
0.7  
V
VCTL = 5 V  
µA  
Input current  
IIL  
VCTL = 0 V  
–10  
10  
µA  
Source current  
Sink current  
IO  
IO  
–40  
30  
mA  
mA  
RE = 82 Ω  
18  
42  
Output leakage current  
Standby current  
ILO  
VO = 18 V  
0
20  
10  
µA  
µA  
ICC0  
Supply current when output  
off  
ICC  
6
8.6  
mA  
10  
MB3785A  
TYPICAL CHARACTERISTIC CURVES  
1. Supply current vs. Supply voltage  
2. Reference voltage vs. Supply voltage  
10  
8
5
4
3
Ta = +25°C  
Ta = +25°C  
CTL1 = 6 V  
6
CTL1, 2 = 6 V,  
CTL1, 2, 3 = 6 V  
4
2
2
1
0
0
0
4
8
12  
Supply voltage VCC (V)  
4. Reference voltage vs. Ambient temperature  
16  
20  
0
4
8
12  
16  
20  
Supply voltage VCC (V)  
3. Reference voltage and Output current setting  
pin voltage vs. Supply voltage  
2.56  
2.54  
2.52  
V
CC = 6 V  
5
4
5
Ta = +25°C  
V
CTL1, 2,3 = 6 V  
I
OR = –1 mA  
4
VREF  
3
2
1
3
2
1
2.50  
2.48  
2.46  
2.44  
V
E
0
1
2
3
4
5
–60 –40 –20  
0
20  
40  
60  
(°C)  
80  
100  
Supply voltage VCC (V)  
Ambient temperature T  
a
5. Reference voltage vs. Control voltage  
6. Control current vs. Control voltage  
V
CC = 6 V  
V
CC = 6 V  
3.0  
2.8  
2.6  
500  
400  
300  
Ta = +25°C  
Ta = +25°C  
2.4  
2.2  
200  
100  
0
2.0  
0
1
2
3
4
5
0
4
8
12  
16  
20  
Control voltage VCTL1 (V)  
Control voltage VCTL1 (V)  
(Continued)  
11  
MB3785A  
(Continued)  
8. Triangular wave frequency  
vs. Timing resistance  
7. Triangular wave maximum amplitude voltage  
vs. Timing capacitance  
5 M  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
V
CC = 6 V  
V
CC = 6 V  
Ta = +25°C  
RT = 10 k  
Ta = +25°C  
1 M  
500 K  
100 K  
50 K  
CT  
= 68 pF  
1.0  
0
C
T
= 150 pF  
10 K  
5 K  
CT = 300 pF  
50 102  
5 × 102 103  
5 × 103104  
(pF)  
5 × 104105  
Timing capacitance C  
T
CT = 15000 pF  
CT = 1500 pF  
1 K  
5 K10 K 50 K100 K 500 K1 M  
Timing resistance R ()  
T
9. Triangular wave cycle vs. Timing capacitance  
100  
50  
10. Duty vs. Triangular wave frequency  
VCC = 6 V  
100  
80  
60  
40  
20  
0
R
T
= 10 kΩ  
V
CC = 6 V  
CH 1  
Ta = +25°C  
VDT = 1.60 V  
10  
5
Ta = +25°C  
1
0.5  
0.2  
5 K 10 K  
50 K 100 K  
500 K 1 M  
102 5 × 102 103  
5 × 103 104  
(pF)  
5 × 104  
10  
Triangular wave frequency (Hz)  
Timing capacitance C  
T
12. Rate of change in triangular wave frequency vs.  
Ambient temperature  
11. Rate of change in triangular wave frequency vs.  
Ambient temperature  
(Using ceramic resonator)  
(Not using ceramic resonator)  
10  
10  
5
V
f
CC = 6 V  
OSC = 450 kHz  
(R = 8.5 k, C = 250 pF)  
V
f
CC = 6 V  
OSC = 460 kHz  
(R = 6.8 k, C = 280 pF)  
T
T
5
0
T
T
0
–5  
–5  
–10  
–40 –20  
0
20  
40  
60  
80 100  
–10  
–40 –20  
0
20  
40  
60  
80  
100  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
(Continued)  
12  
MB3785A  
(Continued)  
13. Gain vs. Frequency and Phase vs. Frequency  
14. Error amp maximum output voltage vs. Frequency  
Ta = +25°C  
3.0  
2.0  
40  
20  
180  
90  
VCC = 6V  
CH 1  
Ta = +25°C  
Aϑ  
0
0
φ
1.0  
0
–20  
–40  
–90  
–180  
100  
500 1 K  
5 K10 K  
50 K 100 K 500 K 1 M  
1 K  
10 K  
100 K  
1 M  
10 M  
Triangular wave frequency fOSC (Hz)  
Frequency f (Hz)  
[Measuring Circuit]  
2.5 V 2.5 V  
240 kΩ  
4.7 kΩ  
4.7 kΩ  
+
OUT  
10 µF  
+
IN  
Error amp  
4.7 kΩ  
4.7 kΩ  
15. Power dissipation vs. Ambient temperature  
1000  
800  
600  
550  
LQFP  
400  
200  
0
–30 –20  
0
20  
40  
60  
80  
100  
Ambient temperature Ta (°C)  
13  
MB3785A  
METHODS OF SETTING THE OUTPUT VOLTAGE  
1. Method of Connecting Channels 1 and 2: When Output Voltage (VO) is Positive  
VREF  
+
OUT  
V
V
REF  
+
=
R
R
R
1
VO  
(R1  
+ R )  
2
2 × R  
2
+
R2  
RNF  
2. Method of Connecting Channels 1 and 2: When Output Voltage (VO) is Negative  
VREF  
V
REF  
VO  
= –  
(R1  
+ R ) + VREF  
2
2 × R  
1
R
R
R
1
+
R2  
RNF  
OUT  
V
14  
MB3785A  
3. Method of Connecting Channels 3 and 4: When Output Voltage (VO) is Positive  
V
REF  
V
OUT  
V
REF  
+
=
R
R
R
1
V
O
(R1  
+ R )  
2
2 × R  
2
+
R
2
RNF  
4. Method of Connecting Channels 3 and 4: When Output Voltage (VO) is Negative  
V
REF  
V
REF  
= –  
V
O
(R1  
+ R ) + VREF  
2
2 × R  
1
R
R
R
1
+
R2  
RNF  
OUT  
V
15  
MB3785A  
METHOD OF SETTING THE OUTPUT CURRENT  
The output circuit is comprised of a totem-pole configuration. Its output current waveform is such that the ON-current  
value is set by constant current and the OFF-current value is set by a time constant as shown in Figure 2. These  
output currents are set using the equations below.  
• ON-current = 2.5/RE [A]  
(Voltage on output current-setting pin VE = 2.5 V)  
• OFF-current time constant = proportional to the value of CB  
Figure 1. CH1 to CH4 Output Circuit  
Figure 2. Output Current Waveform  
Drive transistor  
CB  
ON-current  
OFF-current  
OFF-current  
setting block  
0
OFF-current  
ON-current  
RE  
VE  
t
Figure 3. Voltage and Current Waveforms  
on Output Pin (CH1)  
Figure 4. Measuring Circuit Diagram  
V
CC = 10 V  
10  
1000 pF  
VCC  
8 pin  
22 µH  
1
48  
0
40  
(5 V)  
45  
8.2  
k
10 µF  
IO  
V
O
MB3785A  
2.7  
k
46570 pF  
20  
0
47  
7 pin  
82 Ω  
–20  
–40  
0
0.4  
0.8  
1.2  
1.6  
2.0  
t (µS)  
16  
MB3785A  
METHOD OF SETTING TIME CONSTANT FOR TIMER/LATCH-ACTUATED SHORT-  
CIRCUTING PROTECTION CIRCUIT  
Figure 5 schematically shows the protection latch circuit.  
The outputs from the output-shorting detection comparators 1 to 4 are respectively connected to the inverted inputs  
of the SCP comparator. These inputs are always compared with the reference voltage of approximately 2.1 V which  
is fed to the non-inverted input of the SCP comparator.  
While the switching regulator load conditions are stable, there are no changes in the outputs of the comparators 1  
to 4 so that short-circuit protection control keeps equilibrium state. At this time, the voltage on the SCP terminal  
(pin 23) is held at approximately 50 mV.  
When load conditions change rapidly due to a short-circuiting of load, for example, the output voltage of the  
comparator for the relevant channel goes “H” (2.1 V or more). Consequently, the SCP comparator outputs a “L”,  
causing the transistor Q1 to turn off, and the short-circuit protection capacitor CPE (externally fitted to the SCP  
terminal) begins to charge.  
VPE = 50 mV + tPE × 10–6/CPE  
0.65 = 50 mV + tPE × 10–6/CPE  
CPE = tPE/0.6 (sec)  
When the external capacitor CPE is charged to approximately 0.65 V, the SR latch is set and the output drive transistor  
is turned off. Simultaneously, the dead time is extended to 100% and the output voltage on the SCP terminal (pin  
23) is held “L”. As a result, the S-R latch input is closed and CPE is discharged.  
Figure 5. Protection Latch Circuit  
2.5 V  
1 µA  
23  
S
R
+
Comparator 1  
Comparator 2  
Comparator 3  
Comparator 4  
OUT  
PWM  
comparator  
Q
2
Latch  
U.V.L.O  
Q
1
C
PE  
2.1 V  
17  
MB3785A  
TREATMENT WHEN NOT USING SCP  
When you do not use the timer/latch-actuated short-circuiting protection circuit, connect the SCP terminal (pin 23)  
to GND with the shortest distance possible. Also, connect the comparator’s input terminal for each channel to the  
VCC1 terminal (pin 18).  
Figure 6. Treatment When Not Using SCP  
18  
V
CC1  
–IN1 (C)  
8
13 –IN2 (C)  
–IN3 (C)  
24  
29 –IN4 (C)  
23  
18  
MB3785A  
METHOD OF SETTING THE TRIANGULAR-WAVE OSCILLATOR CIRCUIT  
1. When Not Using Ceramic Resonator  
Connect the OSCIN terminal (pin 14) to GND and leave the OSCOUT terminal (pin 15) open. This makes it possible  
to set the oscillation frequency with only CT and RT.  
Figure 7. When Not Using Ceramic Resonator  
OSCIN  
14  
OSCOUT  
R
T
C
T
15  
16  
17  
CT  
RT  
Open  
2. When Using Ceramic Resonator  
By connecting a ceramic resonator between OSCIN and OSCOUT as shown below, you can set the oscillation  
frequency. In this case, too, CT and RT are required. Determine the values of CT and RT so that the oscillation  
frequency of this RC network is about 5-10% lower than that of the ceramic resonator.  
Figure 8. When Using Ceramic Resonator  
OSCIN OSCOUT  
RT  
CT  
14  
15  
16  
17  
Ceramic resonator  
CT  
RT  
C1  
C2  
19  
MB3785A  
<Precautions>  
When the oscillation rise time at power switch-on is compared between a ceramic and a crystal resonator, it is  
known that the crystal resonator is about 10 to 100 times slower to rise than the ceramic resonator. Therefore, when  
a crystal resonator is used, system operation as a switching regulator at power switch-on becomes unstable. To  
avoid this problem, it is recommended that you use a ceramic oscillator because it has a short rise time and, hence,  
ensures stable operation.  
• Crystal Resonator Turn-on Characteristic  
2.0  
1.5  
1.0  
0
1
2
3
4
5
t (msec)  
• Ceramic Resonator Turn-on Characteristic  
2.0  
1.5  
1.0  
0
1
2
3
4
5
t (msec)  
20  
MB3785A  
METHOD OF SETTING THE DEAD TIME AND SOFT START  
1. Dead Time  
When the device is set for step-up inverted output based on the flyback method, the output transistor is fixed to a  
full-on state (ON-duty = 100 %) at power switch-on. To prevent this problem, you may determine the voltages on  
the DTC terminals (pins 4, 9, 28, and 33) from the VREF voltage so you can easily set the output transistor’s dead  
time (maximum ON-duty) independently for each channel as shown below.  
(1) CH1 and CH2 Channels  
When the voltage on the DTC terminals (pins 4 and 9) is higher than the triangular-wave output voltage from the  
oscillator, the output transistor turns off. The dead time calculation formula assuming that triangular-wave amplitude  
0.6 V and triangular-wave minimum voltage 1.3 V is given below.  
Vdt – 1.3  
0.6  
R2  
Duty (OFF) =  
× 100 [%], Vdt =  
× VREF  
R1 + R2  
When you do not use these DTC terminals, connect them to GND.  
Figure 9. When Using DTC to Set Dead Time  
Figure 10. When Not Using DTC  
19  
V
REF  
R1  
DTC1  
DTC1  
(DTC2)  
(DTC2)  
Vdt  
R2  
(2) CH3 and CH4 Channels  
When the voltage on the DTC terminals (pins 28 and 33) is lower than the triangular-wave output voltage from the  
oscillator, the output transistor turns off. The dead time calculation formula assuming that traingular-wave amplitude  
0.6 V and triangular-wave maximum voltage 1.9 V is given below.  
1.9 –Vdt  
0.6  
R2  
Duty (OFF)  
× 100 [%], Vdt =  
× VREF  
R1 + R2  
When you do not use these DTC terminals, connect them to VREF.  
21  
MB3785A  
Figure 11. When Using DTC to Set Dead  
Time  
Figure 12. When Not Using DTC  
19  
V
REF  
19  
V
REF  
R1  
DTC3  
(DTC4)  
DTC3  
(DTC4)  
Vdt  
R2  
<Precautions>  
When you use a ceramic resonator, pay attention when setting the dead time because the triangular-wave amplitude  
is determined by the values of CT and RT.  
2. Soft Start  
To prevent inrush current at power switch-on, the device can be set for soft start by using the DTC terminals (pins  
4, 9, 28, and 33). The diagrams below show how to set.  
Figure 13. Setting Soft Start for CH1 and  
CH2  
Figure 14. Setting Soft Start for CH3 and  
CH4  
V
REF  
19  
19  
V
REF  
Rdt  
Cdt  
Cdt  
Rdt  
DTC3  
(DTC4)  
DTC1  
(DTC2)  
22  
MB3785A  
Itis also possible to set softstartsimultaneously with the dead time byconfiguringthe DTC terminals asshown below.  
Figure 15. Setting Dead Time and Soft Start  
for CH1 and CH2  
Figure 16. Setting Dead Time and Soft Start  
for CH3 and CH4  
19  
VREF  
V
REF  
19  
R1  
Cdt  
R1  
DTC3  
(DTC4)  
DTC1  
(DTC2)  
Cdt  
R2  
R2  
23  
MB3785A  
EQUIVALENT SERIES RESISTOR AND STABILITY OF SMOOTHING CAPACITOR  
The equivalent series resistance (ESR) of a smoothing capacitor in a DC/DC converter greatly affects the phase  
characteristics of the loop depending on its value.  
System stability is improved by ESR because it causes the phase to lead that of the ideal capacitor in high-frequency  
regions. (See Figures 17 and 19.) Conversely, if a low-ESR smoothing capacitor is used, system stability deterio-  
rates. Therefore, use of a low-ESR semiconductor electrolytic capacitors (OS – CON) or tantalum capacitors calls  
for careful attention.  
Figure 17. Basic Circuit of Stepdown DC/DC Converter  
L
Tr  
RC  
V
IN  
D
RL  
C
Figure 18. Gain-Frequency Characteristic  
Figure 19. Phase-Frequency Characteristic  
20  
0
0
(2)  
–90  
–20  
(2)  
(1) : R  
C
C
= 0 Ω  
–40  
(1)  
(1) : R  
C
C
= 0 Ω  
(2) : R  
= 31 mΩ  
(1)  
(2) : R  
= 31 mΩ  
–180  
–60  
10  
100  
1 k  
10 k  
100 k  
10  
100  
1 k  
10 k  
100 k  
Frequency f (Hz)  
Frequency f (Hz)  
24  
MB3785A  
(Reference Data)  
The phase margin is halved by changing the smoothing capacitor from an aluminum electrolytic capacitor (RC =  
1.0 ) to a small-ESR semiconductor electrolytic capacitor (OS – CON; RC = 0.2 ). (See Figure 21 and 22.)  
Figure 20. DC/DC Converter AV-φ Characteristic Measuring Circuit  
VOUT  
+
O
V
CNF  
AV–ø characteristic  
between this interval  
–IN  
+IN  
+
VIN  
FB  
R2  
R1  
VREF/2  
Error amp  
Figure 21. Gain-Frequency Characteristic  
Gain - frequency and phase frequency characteristics of Al electrolytic capacitor (DC/DC converter +5 V output)  
60  
VCC = 10 V  
R
L
= 25 Ω  
= 0.1 µF  
40  
20  
180  
90  
AV  
CP  
+
O
V
ϕ
+ Al electrolytic capacitor  
62°  
220 µF (16 V)  
0
0
RC  
1.0 Ω : FOSC = 1 kHz  
–20  
–40  
–90  
GND  
–180  
10  
100  
1 k  
Frequency f (Hz)  
10 k  
100 k  
Figure 22. Phase-Frequency Characteristic  
Gain - frequency and phase frequency characteristics of OS – CON (DC/DC converter +5 V output)  
60  
VCC = 10 V  
RL = 25 Ω  
AV  
40  
20  
180  
90  
+
CP = 0.1 µF  
VO  
OS – CON  
22 µF (16 V)  
+
ϕ
27°  
0
0
RC 0.2 Ω : fOSC = 1 kHz  
–20  
–40  
–90  
GND  
–180  
10  
100  
1 k  
10 k  
100 k  
Frequency f (Hz)  
25  
MB3785A  
EXAMPLE OF APPLICATION CIRCUIT  
33 µF  
V
CC  
10 µH  
33 µF  
1000 pF  
1
B
48  
45  
22 µH  
10 µF  
5 V  
V
CC  
A
+IN  
7
8.2 kΩ  
4.7 kΩ  
–IN  
FB  
6
5
CHI  
2.7 kΩ  
OUT  
46  
47  
150 kΩ  
4.7 kΩ  
RFB  
1000 pF  
10 mA  
B
A
8
4
33 kΩ  
DTC  
250 Ω  
1000 pF  
3
2
24 V  
27 kΩ  
1 µF  
C
+IN  
12  
4.7 kΩ  
D 15 V  
–IN  
FB  
11  
10  
CH2  
OUT  
150 kΩ  
4.7 kRFB  
44  
43  
20 kΩ  
15  
µF  
1000 pF  
10 mA  
1.8 kΩ  
D
13  
9
C
27 kΩ  
DTC  
250 Ω  
1000 pF  
34  
35  
F
Motor  
Control  
Signal  
33 kΩ  
DC motor  
1 µF  
22 µH  
10 µF  
+IN  
25  
8.2 kΩ  
2.7 kΩ  
E
–IN  
FB  
26  
27  
CH3  
OUT  
150 kΩ  
40  
41  
RFB  
1000 pF  
10 mA  
F
E
24  
28  
DTC  
250 Ω  
1000 pF  
10 kΩ  
H
36  
37  
Motor  
Control  
Signal  
DC motor  
22 µH  
10 µF  
+IN  
30  
8.2 kΩ  
2.7 kΩ  
G
–IN  
FB  
31  
32  
OUT  
150 kΩ  
39  
38  
CH4  
RFB  
1000 pF  
10 mA  
H
G
29  
33  
DTC  
250 Ω  
10 kΩ  
V
CC  
18  
42  
V
REF  
19  
23  
GND  
SCP  
14  
15  
16  
20  
21  
22  
17  
0.1 µF  
CT  
6.2 k  
300 pF  
CTL1 CTL2 CTL3  
RT  
Ceramic Resonator  
Output Control Signals  
26  
MB3785A  
PRECAUTIONS ON USING THE DEVICE  
1. Do not input voltages greater than the maximum rating.  
Inputting voltages greater than the maximum rating may damage the device.  
2. Always use the device under recommended operating conditions.  
Ifa voltage greaterthan the maximum value is inputto the device, its electrical characteristics may not be guaranteed.  
Similarly, inputting a voltage below the minimum value may cause device operation to become unstable.  
3. For grounding the printed circuit board, use as wide ground lines as possible to prevent  
high-frequency noise.  
Because the device uses high frequencies, it tends to generate high-frequency noise.  
4. Take the following measures for protection against static charge:  
• For containing semiconductor devices, use an antistatic or conductive container.  
• When storing or transporting device-mounted circuit boards, use a conductive bag or container.  
• Ground the workbenches, tools, and measuring equipment to earth.  
• Make sure that operators wear wrist straps or other appropriate fittings grounded to earth via a resistance of  
250 k to 1 M ohms placed in series between the human body and earth.  
ORDERING INFORMATION  
Part number  
MB3785APFV  
Package  
Remarks  
48-pin plastic LQFP  
(FPT-48P-M05)  
27  
MB3785A  
PACKAGE DIMENSION  
48-pin Plastic LQFP  
(FPT-48P-M05)  
9.00±0.20(.354±.008)SQ  
7.00±0.10(.276±.004)SQ  
1.50 +0.01.020  
.059 +.0.00408  
(MOUNTING HEIGHT)  
36  
25  
37  
24  
5.50  
(.217)  
REF  
8.00  
(.315)  
NOM  
INDEX  
Details of "A" part  
48  
13  
1
12  
LEAD No.  
"A"  
0.18 +0.00.308  
.007 +.0.00103  
0.127 +0.00.205  
.005 +.0.00102  
0.10±0.10  
(.004±.004)  
0.50±0.08  
(.0197±.0031)  
(STAND OFF)  
0.50±0.20  
(.020±.008)  
0
10˚  
0.10(.004)  
C
1995 FUJITSU LIMITED F48013S-2C-5  
Dimensions in: mm (inches)  
28  
MB3785A  
FUJITSU LIMITED  
For further information please contact:  
Japan  
FUJITSU LIMITED  
Corporate Global Business Support Division  
Electronic Devices  
KAWASAKI PLANT, 4-1-1, Kamikodanaka  
Nakahara-ku, Kawasaki-shi  
Kanagawa 211-8588, Japan  
Tel: (044) 754-3763  
All Rights Reserved.  
The contents of this document are subject to change without  
notice. Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
Fax: (044) 754-3329  
http://www.fujitsu.co.jp/  
The information and circuit diagrams in this document presented  
as examples of semiconductor device applications, and are not  
intended to be incorporated in devices for actual use. Also,  
FUJITSU is unable to assume responsibility for infringement of  
any patent rights or other rights of third parties arising from the  
use of this information or circuit diagrams.  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
Semiconductor Division  
3545 North First Street  
San Jose, CA 95134-1804, USA  
Tel: (408) 922-9000  
Fax: (408) 922-9179  
FUJITSU semiconductor devices are intended for use in  
standard applications (computers, office automation and other  
office equipment, industrial, communications, and measurement  
equipment, personal or household devices, etc.).  
CAUTION:  
Customers considering the use of our products in special  
applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage,  
or where extremely high levels of reliability are demanded (such  
as aerospace systems, atomic energy controls, sea floor  
repeaters, vehicle operating controls, medical devices for life  
support, etc.) are requested to consult with FUJITSU sales  
representatives before such use. The company will not be  
responsible for damages arising from such use without prior  
approval.  
Customer Response Center  
Mon. - Fri.: 7 am - 5 pm (PST)  
Tel: (800) 866-8608  
Fax: (408) 922-9179  
http://www.fujitsumicro.com/  
Europe  
FUJITSU MIKROELEKTRONIK GmbH  
Am Siebenstein 6-10  
D-63303 Dreieich-Buchschlag  
Germany  
Tel: (06103) 690-0  
Fax: (06103) 690-122  
Any semiconductor devices have inherently a certain rate of  
failure. You must protect against injury, damage or loss from  
such failures by incorporating safety design measures into your  
facility and equipment such as redundancy, fire protection, and  
prevention of over-current levels and other abnormal operating  
conditions.  
http://www.fujitsu-ede.com/  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE LTD  
#05-08, 151 Lorong Chuan  
New Tech Park  
Singapore 556741  
Tel: (65) 281-0770  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Control Law of Japan, the  
prior authorization by Japanese government should be required  
for export of those products from Japan.  
Fax: (65) 281-0220  
http://www.fmap.com.sg/  
F9803  
FUJITSU LIMITED Printed in Japan  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY