MB3782_1 [FUJITSU]

ASSP Power Supplies BIPOLAR Switching Regulator Controller; ASSP电源双极型开关稳压器控制器
MB3782_1
型号: MB3782_1
厂家: FUJITSU    FUJITSU
描述:

ASSP Power Supplies BIPOLAR Switching Regulator Controller
ASSP电源双极型开关稳压器控制器

稳压器 开关 控制器
文件: 总27页 (文件大小:227K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS04-27205-5E  
ASSP Power Supplies  
BIPOLAR  
Switching Regulator Controller  
MB3782  
DESCRIPTION  
The FUJITSU MB3782 is a PWM-type switching regulator controller, designed with open-collector output for  
connection to external drive transistors and coils, providing a selection of three types of output voltage: step-up,  
step-down or inverting (inverting output is available on one circuit only).  
The MB3782 features identical oscillator output waveforms to enable completely synchronous operation and  
prevent the occurrence of low-frequency beat between channels.  
Also, the MB3782 features low power dissipation (2.1 mA Typ) and a built-in standby mode (10 µA), making  
possible the configuration of a wide variety of high-efficiency, stable power supplies, even with the use of battery  
power. The MB3782 is an ideal power supply for high-performance portable devices such as video camcorders  
and cameras.  
FEATURES  
• Wide voltage range (3.6 V to 18 V)  
• Low power dissipation (operating mode: 2.1 mA (Typ), standby mode: 10 µA (Max)  
• Wide range of oscillator frequencies, high-frequency capability (1 to 500 kHz)  
• On-chip timer-latch type short detection circuit  
• On-chip undervoltage lockout circuit  
• On-chip 2.50 V reference voltage circuit (1.25 V output available at RT pin)  
• Dead time adjustment over full duty cycle range  
• On-chip standby mode (power on/off function)  
PACKAGE  
Plastic DIP, 20 pin  
Plastic SOP, 20 pin  
(FPT-20P-M01)  
(DIP-20P-M01)  
MB3782  
PIN ASSIGNMENT  
TOP VIEW  
VREF  
CT  
1
2
20  
VCC  
19  
18  
17  
16  
15  
14  
13  
12  
11  
CTL  
RT  
3
– IN3  
FB3  
+ IN1  
– IN1  
FB1  
4
5
DTC3  
OUT3  
SCP  
– IN2  
FB2  
6
DTC1  
PUT1  
GND  
OUT2  
7
8
9
10  
DTC2  
(DIP-20P-M01)  
(FPT-20P-M01)  
PIN DESCRIPTION  
Pin No.  
Pin Name  
I/O  
Description  
2.50 V (typ) voltage output: provides load current up to 3 mA,  
for use as error amplifier reference input and for dead time  
setting.  
1
VREF  
O
Oscillator timing capacity connection: should be used in the  
capacity range 150 to 15000 pF.  
2
3
CT  
Oscillator timing resistor connection: should be used in the  
resistance range 5.1 to 100 k. This pin can also provide  
output at voltage level VREF/2, for use as error amplifier  
reference input.  
RT  
4
5
+IN1  
–IN1  
I
I
Error amplifier 1 non-inverting input pin.  
Error amplifier 1 inverting input pin.  
Error amplifier 1 output pin: connect resistor and capacitor  
between this pin and the –IN1 pin to set gain and adjust  
frequency characteristics.  
6
7
FB1  
O
I
OUT1 dead time setting pin: VREF voltage is divided by an  
external resistor and applied to set dead time. Also, a capacitor  
may be connected between this pin and the GND pin to perform  
soft start operations.  
DTC1*1  
(Continued)  
2
MB3782  
(Continued)  
Pin No.  
Pin Name  
I/O  
Description  
Open collector type output pin with an emitter connected to  
GND.  
8
VOUT1  
O
Output current may be up to 50 mA.  
9
GND  
O
Ground pin  
Open collector type output pin with an emitter connected to  
GND. Output current may be up to 50 mA.  
10  
OUT2  
Used to set OUT2 pin dead time. VREF voltage is divided by an  
external resistor and applied to set dead time. Also, a capacitor  
may be connected between this pin and the GND pin to perform  
soft start operations.  
11  
DTC2*1  
I
Error amplifier 2 output pin: connect resistor and capacitor  
between this pin and the –IN2 pin to set gain and adjust  
frequency characteristics.  
12  
13  
FB2  
O
I
–IN2  
Error amplifier 2 inverting input pin.  
Time constant setting capacitor connection for timer-latch  
type short prevention circuit: a capacitor should be connected  
between this pin and the GND pin. For details, see “Setting  
the Time Constant for the Timer-Latch Type Short Prevention  
Circuit.”  
SCP*2  
14  
Open collector type output pin for emitter connected to GND.  
Output current may be up to 50 mA.  
15  
16  
OUT3  
O
I
Used to set OUT3 pin dead time. VREF voltage is divided by an  
external resistor and applied to set dead time. Also, a capacitor  
may be connected between this pin and the GND pin to perform  
soft start operations.  
DTC3*1  
Error amplifier 3 output pin: connect resistor and capacitor  
between this pin and the –IN3 pin to set gain and adjust  
frequency characteristics.  
17  
18  
19  
20  
FB3  
–IN3  
CTL  
VCC  
O
I
Error amplifier 3 inverting input pin.  
Power supply control pin: low level places the IC in standby  
mode and reduces power consumption to 10 µA or lower. Input  
level may be driven by TTL or CMOS.  
I
Power supply pin: voltage range is 3.6 to 18 V.  
*1: DTC = Dead Time Control  
*2: SCP = Short Circuit Protection  
3
MB3782  
BLOCK DIAGRAM  
RT  
3
CT  
2
VREF  
1
VCC  
20  
CLT  
19  
1.25 V  
2.5 V  
Reference  
Power on/off  
control  
Triangular wave  
oscillator  
9
GND  
voltage  
source  
circuit  
Error Amp.1  
PWM Comp.  
Ch.1  
+
4
+ IN1  
– IN1  
8
OUT1  
+
+
5
FB1  
6
7
DTC1  
Error Amp.2  
PWM Comp.  
Ch.2  
+
13  
– IN2  
10  
OUT2  
+
+
1.25 V  
12  
11  
FB2  
DTC2  
Error Amp.3  
PWM Comp.  
Ch.3  
– IN3 18  
15  
OUT3  
+
+
+
1.25 V  
17  
FB3  
16  
DTC3  
SCP Comp.  
+
2.1 V  
VREF  
1 µA  
14  
SCP  
S
R
Latch  
U.V.L.O.  
4
MB3782  
FUNCTIONAL DESCRIPTIONS  
1. Reference Voltage Source  
The reference voltage source uses the voltage provided at the power supply pin (pin 20) to generate a temper-  
ature-compensated reference voltage ( 2.50 V), which is used as the operating power supply for the internal  
circuits of the IC. The reference voltage source can be output through the VREF pin (pin 1).  
2. Triangular Wave Oscillator  
By connecting a timing capacitor and resistor respectively to the CT pin (pin 2) and RT pin (pin 3), the oscillator  
can provide a triangular waveform at any desired frequency.  
The waveform has an amplitude of 1.3 V to 1.9 V, and can be connected to the non-inverting input of the on-  
chip PWM comparator and also output through the CT pin.  
3. Error Amps  
The error amps are amplifiers that detect the output voltage of the switching regulator and send the PWM control  
signal. The common-mode input voltage range is 1.05 V to 1.45 V, so that the voltage applied to the non-inverting  
input pin as a reference voltage should be either the voltage obtained by dividing the IC reference voltage output  
(recommended value: VREF/2) or the voltage obtained from the RT pin (1.25 V). The non-inverting input for the  
error amps 1 and 2 is internally connected to VREF/2 voltage.  
Also, a feedback transistor and capacitor can be connected between the error amp output pin and inverting input  
pin to provide any desired level of loop gain, enabling stable phase compensation.  
4. Timer Latch (S-R Latch) Type Short Prevention Circuit  
The timer-latch type short prevention circuit detects the output levels from each of the error amps. Whenever  
one or more error amps produces an output level of 2.1 V or higher, the timer circuit is activated starting the  
charging of the external protection enabler capacitor.  
If the error amp output voltage does not return to normal range before the voltage in this capacitor reaches the  
transistor’s base-emitter junction voltage (VBE ( 0.65 V)), the latch circuit will operate to turn the output transistor  
off and at the same time set the dead time to 100%.  
Once the prevention circuit is activated, the power must be switched on again to resume normal operation.  
5. Low Input Voltage Fault Prevention Circuit (Under Voltage Lock-Out (UVLO) function)  
When power is switched on, excess power or momentary drops in power line current can cause operating faults  
in the controller IC, which can in turn lead to damage or deterioration in systems.  
The low input voltage fault prevention circuit detects the internal reference voltage level with respect to the power  
supply voltage level and acts to reset the latch circuit, thereby turning the output transistor off and at the same  
time setting the dead time to 100% and holding the SCP pin (pin 14) at “low.” Operation returns to normal when  
the power supply voltage reaches or exceeds the UVLO threshold voltage level.  
6. PWM Comparator  
The PWM comparator is a voltage comparator with one inverting and two non-inverting inputs, which acts as a  
voltage to pulse width converter controlling the on-time of the output pulse according to the input voltage level.  
When the triangular waveform produced by the oscillator is lower than either the error amp output or the DTC  
pin voltage, the output transistor is switched on.  
It is also possible to use the DTC terminal to provide a soft start function.  
7. Output Transistor  
The output is open-collector type, with the emitter of the output transistor connected to the GND pin. The power  
transistor for external switching can carry a base current of up to 50 mA.  
8. Power Supply Control  
Power supply on/off control is enabled through the CTL pin (pin 19). (In standby mode, power supply current is  
10 µA or less.)  
5
MB3782  
SETTING THE TIME CONSTANT FOR THE TIMER-LATCH TYPE SHORT PREVENTION  
CIRCUIT  
Figure 1 shows the configuration of the protection latch circuit.  
The output lines from the error amps are each connected to the inverting input lines of the short protection  
comparator, which constantly compares them with the reference voltage of approximately 2.1 V connected to  
the non-inverting input.  
When load conditions in the switching regulator are stabilized, there is no variation in the output from the error  
amps, and therefore the short prevention controls are held in equilibrium. In this situation, voltage at the SCP  
pin (pin 14) is held at approximately 50 mV.  
When load conditions change rapidly, as in the case of a load short, high potential signal (greater than 2.1V)  
fromtheerrorampsisinputtotheinvertingsignalinputoftheshortprotectioncomparator, andtheshortprotection  
comparator outputs a “low” level signal. The transistor Q1 is consequently switched off, so that short protection  
capacitor CPE externally connected to the SCP pin voltage is then charged according to the following formulas.  
VPE = 50 mV + tPE × 10–6/CPE  
0.65 = 50 mV + tPE × 10–6/CPE  
CPE = tPE/0.6 (µF)  
When the short protection capacitor is charged to a level of approximately 0.65 V, the SR latch is set and the  
low input voltage fault prevention circuit is enabled, turning the output drive transistor off. At the same time, the  
dead time is set to 100% and the SCP pin (pin 14) is held “low.” This closes the S-R latch input and then  
discharges the capacitor CPE  
2.50 V  
1 µA  
S.C.P.Comp.  
Out  
14  
PWM  
Comp.  
+
Error Amp.1  
Error Amp.2  
Error Amp.3  
S
R
CPE  
U.V.L.O.  
Latch  
Q1  
Q3  
2.1 V  
Figure 1 Protection Latch Circuit  
6
MB3782  
SETTING OUTPUT VOLTAGE  
The following diagrams show the connections used to set the output voltage.  
Because the power supply to the error amps is provided by the same reference voltage circuit used for the other  
internal circuits, the common-mode input voltage range is set at 1.05 V to 1.45 V.  
The reference voltage input to the +IN and -IN pins should be set at 1.25 V (VREF/2). The method of connection  
for channel 1 is different from channel 2 and channel 3. In addition, channel 1 is capable of picking up both  
positive and negative voltages, while channel 2 and channel 3 can pick up only positive output voltages.  
VREF  
VREF  
+
+ =  
V0  
· (R1 + R2)  
V0  
2·R2  
R
R1  
+
pin 6  
R
R2  
RNF  
Figure 2 Error amp (channel 1) connection: Output voltage VO positive  
VREF  
VREF  
= –  
· (R1 + R2) + VREF  
V0  
2·R2  
R
R1  
+
pin 6  
R
R2  
RNF  
V0  
Figure 3 Error amp (channel 1) connection: Output voltage VO positive  
7
MB3782  
1.25  
R2  
+
+ =  
· (R1 + R2)  
V0  
V0  
R1  
+
pin 12,17  
R2  
RNF  
1.25 V  
Figure 4 Error amp (channel 2, channel 3) connection  
The non-inverting input to the error amps on channel 2 and channel 3 is internally connected to VREF/2, and  
therefore cannot be configured for inverting output.  
ch-1  
ch-2  
ch-3  
Step up  
Step down  
Inverting  
×
×
8
MB3782  
USING THE RT PIN  
The triangular waves, as shown in Figure 5, act to set the oscillator frequency by charging and discharging the  
capacitor connected to the CT pin using the current value of the resistor connected to the RT pin.  
In addition, when voltage level VREF/2 is output to external circuits from the RT pin, care must be taken in making  
the external circuit connections to adjust for the fact that I1 is increased by the value of the current I2 to the  
external circuits in determining the oscillator frequency (see Figure 6).  
ICT = IRT  
Triangular wave oscillator  
VREF  
=
2RT  
VREF  
2
2
1
IRT  
RT  
ICT  
CT  
Figure 5 No VREF/2 connection to external circuits from RT pin  
ICT = IRT  
Triangular wave generator  
= I1 + I2  
VREF  
2RT  
=
+ I2  
VREF  
2
2
1
IRT  
I1  
ICT  
To external circuits  
IRT  
CT  
RT  
Figure 6 VREF/2 connection to external circuits from RT pin  
9
MB3782  
TREATMENT OF UNUSED ERROR AMPS  
Any error amps that are not used should be handled as follows.  
Note that failure to apply proper treatment to error amps will cause the SCP circuit to activate and disable the  
switching regulator output.  
1. Error Amp (channel 1) Not In Use  
1
VREF  
3
RT  
4
5
+ IN1  
– IN1  
7
9
DTC1  
GND  
Note: Pin 6 and pin 8 shoud be left open.  
2. Error Amp (channel 2) Not In Use  
1
VREF  
13  
11  
– IN2  
GND  
DTC2  
9
Note: Pin 10 and pin 12 shoud be left open.  
3. Error Amp (channel 3) Not In Use  
1
VREF  
– IN3  
DTC3  
18  
16  
9
GND  
Note: Pin 15 and pin 17 shoud be left open.  
10  
MB3782  
TREATMENT OF UNUSED SCP PIN  
When the timer latch short protection circuit is not used, the SCP pin should be connected to the GND by the  
shortest possible path.  
SCP  
14  
11  
MB3782  
ABSOLUTE MAXIMUM RATINGS  
(Ta = +25°C)  
Rating  
Parameter  
Symbol  
Condition  
Unit  
Min  
Max  
20  
Power supply voltage  
VCC  
VIN  
V
V
Error amp input voltage  
Dead time control input voltage  
Control input voltage  
–0.3  
–0.3  
–0.3  
+10  
+2.8  
+20  
20  
Vdt  
V
VCTL  
VOUT  
IOUT  
V
Collector output voltage  
Collector output current  
V
75  
mA  
740*2  
1110  
+85  
+125  
SOP Version  
DIP Version  
Allowable loss  
PD*1  
Ta +25°C  
mW  
Operating temperature  
Storage temperature  
Top  
–30  
–55  
°C  
°C  
Tstg  
*1: For operation in conditions where Ta > +25°C, the SOP version should be derated by 7.4 mW/°C, and the DIP  
version should be derated by 11.1 mW/°C.  
*2: When mounted on a 4 cm-square dual-sided epoxy board.  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
RECOMMENDED OPERATING CONDITIONS  
Value  
Parameter  
Symbol  
Condition  
Unit  
Min  
3.6  
1.05  
0
Typ  
6.0  
Max  
18.0  
1.45  
18  
Power supply voltage  
Error amp input voltage  
Control input voltage  
Collector output voltage  
Collector output current  
Reference voltage output current  
Timing capacitance  
VCC  
VIN  
V
V
VCTL  
VOUT  
IOUT  
IREF  
CT  
V
18  
V
0.3  
–3  
50  
mA  
mA  
pF  
kΩ  
kHz  
°C  
–1  
0
150  
5.1  
1
15000  
100  
500  
85  
Timing resistance  
RT  
Oscillator frequency  
fOSC  
Top  
Operating temperature  
–30  
+25  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device’s electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representatives beforehand.  
12  
MB3782  
ELECTRICAL CHARACTERISTICS  
(VCC = 6 V, Ta = +25°C)  
Value  
Unit  
Parameter  
Output voltage  
Symbol  
Conditions  
IOR = –1 mA  
Min  
Typ  
Max  
VREF  
VRTC  
2.45  
2.50  
2.55  
V
Output voltage  
temperature variation  
Ta = 30°C to +85°C  
–2  
±0.2  
2
%
Input stability  
Line  
Load  
IOS  
VCC = 3.6 V to 18 V  
IOR = –0.1 mA to –1 mA  
VREF = 2 V  
2
10  
7.5  
–3  
mV  
mV  
mA  
V
Load stability  
1
Short output current  
–30  
–10  
2.72  
2.60  
120  
VtH  
IOR = –0.1 mA  
Threshold voltage  
Hysteresis width  
VtL  
IOR = –0.1 mA  
V
VHYS  
IOR = –0.1 mA  
80  
mV  
Reset voltage (VCC)  
VR  
1.5  
1.9  
V
Input threshold voltage  
Input standby voltage  
Input latch voltage  
VtPC  
VSTB  
VIN  
No pull-up  
No pull-up  
0.60  
0.65  
50  
0.70  
100  
100  
–0.6  
V
mV  
mV  
µA  
50  
Input source current  
Ibpc  
–1.4  
–1.0  
Comparator threshold  
voltage  
VtC  
Pin 6, pin 12, pin 17  
2.1  
V
Oscillator frequency  
fOSC  
fdev  
fdV  
CT = 330 pF, RT = 15 kΩ  
CT = 330 pF, RT = 15 kΩ  
VCC = 3.6 V to 18 V  
160  
200  
±5  
240  
kHz  
%
Frequency deviation  
Frequency deviation (VCC)  
±1  
%
Frequency deviation (Ta)  
Input threshold voltage  
fdT  
Ta = 30°C to +85°C  
–4  
+4  
%
Vt0  
Vt100  
Dtr  
Duty cycle = 0 %  
Duty cycle = 100 %  
Vdt = VR/1.45 V  
1.05  
1.3  
1.9  
65  
2.25  
75  
V
V
ON duty cycle  
55  
%
µA  
µA  
V
Input bias current  
Latch mode sink current  
Latch input voltage  
Ibdt  
Idt  
0.2  
500  
1
Vdt = 2.5 V  
150  
Vdt  
Idt = 100 µA  
0.3  
(Continued)  
13  
MB3782  
(Continued)  
(VCC = 6 V, Ta = +25°C)  
Value  
Unit  
Parameter  
Symbol  
Conditions  
VOUT = 1.6 V  
Min  
–6  
Typ  
Max  
Input offset voltage  
Input offset current  
Input bias current  
VIO  
IIO  
IB  
6
mV  
nA  
nA  
VOUT = 1.6 V  
VOUT = 1.6 V  
–100  
100  
–500 –100  
Common mode input  
voltage range  
VICR  
VCC = 3.6 V to 18 V  
1.05  
1.45  
V
Voltage gain  
Av  
70  
80  
dB  
Frequency bandwidth  
BW  
Av = 0 dB  
0.8  
MHz  
Common mode rejection  
ratio  
CMRR  
VOM+  
60  
80  
dB  
V
VREF  
–0.3  
Maximum output voltage  
range  
VOM-  
IOM+  
IOM-  
Vt0  
VOUT = 1.6 V  
VOUT = 1.6 V  
Duty cycle = 0 %  
Duty cycle = 100 %  
Pin 6, pin 12, pin 17  
Pin 6, pin 12, pin 17  
0.7  
1.0  
–60  
1.3  
1.9  
1.0  
–60  
0.9  
V
mA  
µA  
V
Output sink current  
Output source current  
1.05  
Input threshold voltage  
Vt100  
IIN+  
2.25  
V
Input sink current  
mA  
µA  
V
Input source current  
Input OFF conditions  
Input ON conditions  
Control pin current  
Output leak current  
IIN-  
VOFF  
VON  
ICTL  
0.7  
2.1  
V
VCTL = 10 V  
200  
400  
10  
µA  
µA  
Leak  
VOUT = 18 V  
Output saturation voltage  
Standby current  
VSAT  
ICCS  
ICCa  
IOUT = 50 mA  
1.1  
1.4  
10  
V
VCTL = 0 V  
µA  
mA  
Average feed current  
VCTL = VCC, no output load  
2.1  
3.2  
Notes : Voltage control on channel 1 may be positive or negative.  
The non-inverting input to the error amps on channel 2 and channel 3 is internally connected to VREF/2,  
and therefore voltage control is positive only.  
VREF/2 output can be obtained from the RT pin.  
14  
MB3782  
TEST CIRCUIT  
OUTPUT  
4.7 kΩ  
OUTPUT  
4.7 kΩ  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VCC  
330 pF  
CTL  
150 kΩ  
4.7 kΩ  
TEST  
INPUT  
TEST  
INPUT  
OUTPUT  
CPF  
TEST  
INPUT  
15  
MB3782  
TIMING CHART (INTERMAL WAVEFORMS)  
16  
MB3782  
EXAMPLE OF APPLICATION  
17  
MB3782  
TYPICAL CHARACTERISTICS CURVES  
Power supply voltage vs.reference voltage  
Power supply voltage vs.average feed current  
Ta = +25˚C  
5.0  
3.0  
Ta = +25˚C  
2.5  
1.5  
0
0
0
0
4
8
12  
16  
20  
4
8
12  
16  
20  
Power supply voltage VCC (V)  
Power supply voltage VCC (V)  
Ambient temperature vs.reference voltage  
2.51  
2.50  
2.49  
2.48  
2.47  
2.46  
Timing capacity vs.triangular wave maximum amplitude voltage  
2.2  
V
CC = VCTL = 6 V  
= -1 mA  
I
OR  
V
CC = 6 V  
R = 15 kΩ  
Ta = +25˚C  
T
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
2.45  
2
10  
3
4
10  
-
40  
-
20  
0
20  
40  
60  
80  
100  
10  
Timihg capacitance C  
Ambient temperature Ta (˚C)  
T
(pF)  
Sink current vs.collector saturation voltage  
2.0  
VCC = 6 V  
Ta = +25˚C  
Frequency vs.error amp maximum output voltage amplitude  
1.5  
3.0  
V
CC = 6 V  
Ta = +25˚C  
2.0  
1.0  
0
1.0  
0.5  
0
100  
500 1 k  
5 k 10 k  
50 k 100 k  
500 k  
0
10  
20  
30  
40  
50  
Fequency f (Hz)  
Sink current IOL (mA)  
(Continued)  
18  
MB3782  
Timing resistance vs.oscillator frequency  
V
CC = 6 V  
Ta = +25˚C  
Power supply voltage vs. triangular wave period  
100  
10  
V
CC = 6 V  
T
R = 15 kΩ  
Ta = +25˚C  
1 M  
100 k  
10 k  
C = 150 pF  
T
CT  
= 1500 pF  
1
2
10  
3
10  
4
10  
5
10  
CT  
= 15000 pF  
Timing capacitance C  
T
(pF)  
1 k  
1 k  
5 k 10 k 50 k  
100 k  
500 k  
Timing resistance R  
T
( )  
Ambient temperature vs.oscillator frequency  
Oscillator frequency vs.duty cycle  
10  
100  
VCC = 6 V  
V
C
R
CC = 6 V  
T
T
= 1330 pF  
= 15 kΩ  
C
T
= 330 pF  
= 15 kΩ  
80  
RT  
Ta = +25˚C  
60  
40  
20  
0
0
Ð 10  
5 k 10 k  
50 k 100 k  
500 k 1 M  
-
40  
-
20  
0
20  
40  
60  
80 100 120  
Oscillator frequency (Hz)  
Ambient temperature Ta (˚C)  
Control voltage vs.reference voltage  
Control input current  
V
C
CC = 6 V  
V
C
CC = 6 V  
5.0  
500  
250  
T
= +25˚C  
T
= +25˚C  
2.5  
0
0
0
4
8
12  
16  
20  
0
1
2
3
4
5
Control voltage VCTL (V)  
Control voltage VCTL (V)  
(Continued)  
19  
MB3782  
Frequenncy vs.gain and phase  
CNF = open  
Frequenncy vs.gain and phase  
CNF = 0.047 pF  
40  
20  
180  
90  
40  
20  
180  
90  
AV  
AV  
0
0
0
0
φ
φ
-20  
-40  
-90  
-180  
-20  
-40  
-90  
-180  
10  
100  
1 k  
Frequenncy f (Hz)  
Frequenncy vs.gain and phase  
CNF = 470 pF  
10 k  
100 k  
1 M  
10  
100  
1 k  
Frequenncy f (Hz)  
Frequenncy vs.gain and phase  
CNF = 4700 pF  
10 k  
100 k  
1 M  
40  
180  
90  
40  
20  
180  
90  
AV  
20  
0
AV  
0
0
0
φ
φ
-20  
-40  
-90  
-180  
-20  
-40  
-90  
-180  
10  
100  
1 k  
10 k  
100 k  
1 M  
10  
100  
1 k  
10 k  
100 k  
1 M  
Frequenncy f (Hz)  
Test Circuit  
Frequenncy f (Hz)  
VREF  
VREF  
CNF  
4.7 k4.7 kΩ  
240 kΩ  
4
5
-
10 µF  
-
OUT  
6
+
+
IN  
4.7 k4.7 kΩ  
Error amp  
(Continued)  
20  
MB3782  
(Continued)  
Ambient temperature vs.allowable loss  
DIP version  
1200  
1110  
1000  
800  
740  
SOP version  
600  
400  
200  
0
-30 -20 -10  
0
10 20 30 40 50 60 70 8085  
Ambient temperature Ta (˚C)  
21  
MB3782  
APPLICATIONS  
• Concerning Equivalent Series Resistance and Stability of Smoothing Capacitors  
In DC/DC converters, the equivalent series resistance value (ESR) of smoothing capacitors has a major influence  
on loop phase characteristics.  
The ESR is a means by which phase characteristics approximate phase relationships to ideal capacitors in high-  
frequencybands(seeGraph1), thusimprovingsystemstability. Atthesametime, theuseofsmoothingcapacitors  
with low ESR reduces system stability, so that care must be taken when using semiconductor electrolytic ca-  
pacitors (OS capacitors) or tantalum capacitors with low ESR.  
L
Tr  
Rc  
VIN  
D
RL  
C
Figure 7 Basic circuit for step-down voltage DC/DC converter  
Frequency vs.phase  
Frequency vs.Gain  
0
20  
0
2
– 90  
– 20  
– 40  
– 60  
2
: Rc = 0 Ω  
1
2
1
: Rc = 0 Ω  
1
: Rc = 31 mΩ  
1
– 180  
2 : Rc = 31 mΩ  
10  
100  
1 k  
Frequency f (Hz)  
10 k  
100 k  
10  
100  
1 k  
10 k  
100 k  
Frequency f (Hz)  
Graph 1 Frequency vs. gain and phase  
22  
MB3782  
• Reference data  
Changing the smoothing capacitor from an aluminum electrolytic capacitor (RC 1.0) to a lower-ESR semi-  
conductor electrolytic capacitor (OS capacitor: RC 0.2 ) decreases the phase margin (see Graphs 2, 3).  
V out  
+
V0  
CNF  
AV and phase characteristics  
measured between these points  
– IN  
VIN  
FB  
+ IN  
R1  
R2  
+
VREF/2  
Error amp  
Figure 8 Measurement of DC/DC Capacitor AV and Phase (Ψ) Characteristics  
DC/DC converter + 5 V output frequency vs.gain and phase  
Graph 2  
60  
Vcc = 10 v  
RL = 25 Ω  
40  
20  
0
180  
90  
0
Cp = 0.1 µF  
Av  
+
V0  
φ
Aluminum electrolytic  
capacitor  
220 µF (16 V)  
RC 1.0 Ω  
+
62°  
: fosc = 1 kHz  
– 20  
– 40  
– 90  
– 180  
100 k  
10  
100  
1 k  
Frequency f (Hz)  
10 k  
Graph 3  
DC/DC converter + 5 V output frequency vs.gain and phase  
Vcc = 10 v  
60  
Av  
RL = 25 Ω  
180  
90  
0
40  
20  
0
Cp = 0.1 µF  
OS capacitor  
22 µF (16 V)  
RC 0.2 Ω  
+
φ
27°  
: fosc = 1 kHz  
– 90  
– 20  
– 40  
– 180  
100  
1 k  
10 k  
100 k  
10  
Frequency f (Hz)  
23  
MB3782  
NOTES ON USE  
Take account of common impedance when designing the earth line on a printed wiring board.  
Take measures against static electricity.  
- For semiconductors, use antistatic or conductive containers.  
- When storing or carrying a printed circuit board after chip mounting, put it in a conductive bag or container.  
- The work table, tools and measuring instruments must be grounded.  
- The worker must put on a grounding device containing 250 kto 1 Mresistors in series.  
• Do not apply a negative voltage  
- Applying a negative voltage of 0.3 V or less to an LSI may generate a parasitic transistor, resulting in  
malfunction.  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
Plastic DIP, 20 pin  
(DIP-20P-M01)  
MB3782P  
Plastic SOP, 20 pin  
(FPT-20P-M01)  
MB3782PF  
24  
MB3782  
PACKAGE DIMENSIONS  
Plastic DIP, 20 pin  
(DIP-20P-M01)  
+0.20  
–0.30  
24.64  
.970 +..001028  
INDEX-1  
INDEX-2  
6.60±0.25  
(.260±.010)  
0.51(.020)MIN  
4.36(.172)MAX  
0.25±0.05  
(.010±.002)  
3.00(.118)MIN  
0.46±0.08  
(.018±.003)  
+0.30  
–0  
+0.30  
15°MAX  
0.86  
1.27  
–0  
7.62(.300)  
TYP  
.034 +0.012  
.050 +0.012  
1.27(.050)  
MAX  
2.54(.100)  
TYP  
C
1994 FUJITSU LIMITED D20005S-3C-3  
Dimensions in mm (inches) .  
Note : The values in parentheses are reference values.  
(Continued)  
25  
MB3782  
(Continued)  
Note 1) *1 : These dimensions include resin protrusion.  
Note 2) *2 : These dimensions do not include resin protrusion.  
Note 3) Pins width and pins thickness include plating thickness.  
Note 4) Pins width do not include tie bar cutting remainder.  
Plastic SOP 20 pin  
(FPT-20P-M01)  
*112.70 +00..2205 .500 +..000180  
0.17 +00..0043  
.007 +..000021  
20  
11  
*2 5.30±0.30 7.80±0.40  
(.209±.012) (.307±.016)  
INDEX  
Details of "A" part  
2.00 +00..1255  
(Mounting height)  
.079 +..000160  
0.25(.010)  
0~8˚  
"A"  
1
10  
1.27(.050)  
0.47±0.08  
(.019±.003)  
M
0.13(.005)  
0.50±0.20  
(.020±.008)  
0.10 +00..0150  
.004 +..000024  
0.60±0.15  
(Stand off)  
(.024±.006)  
0.10(.004)  
C
2002 FUJITSU LIMITED F20003S-c-7-7  
Dimensions in mm (inches) .  
Note : The values in parentheses are reference values.  
26  
MB3782  
FUJITSU LIMITED  
All Rights Reserved.  
The contents of this document are subject to change without notice.  
Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
The information, such as descriptions of function and application  
circuit examples, in this document are presented solely for the  
purpose of reference to show examples of operations and uses of  
Fujitsu semiconductor device; Fujitsu does not warrant proper  
operation of the device with respect to use based on such  
information. When you develop equipment incorporating the  
device based on such information, you must assume any  
responsibility arising out of such use of the information. Fujitsu  
assumes no liability for any damages whatsoever arising out of  
the use of the information.  
Any information in this document, including descriptions of  
function and schematic diagrams, shall not be construed as license  
of the use or exercise of any intellectual property right, such as  
patent right or copyright, or any other right of Fujitsu or any third  
party or does Fujitsu warrant non-infringement of any third-party’s  
intellectual property right or other right by using such information.  
Fujitsu assumes no liability for any infringement of the intellectual  
property rights or other rights of third parties which would result  
from the use of information contained herein.  
The products described in this document are designed, developed  
and manufactured as contemplated for general use, including  
without limitation, ordinary industrial use, general office use,  
personal use, and household use, but are not designed, developed  
and manufactured as contemplated (1) for use accompanying fatal  
risks or dangers that, unless extremely high safety is secured, could  
have a serious effect to the public, and could lead directly to death,  
personal injury, severe physical damage or other loss (i.e., nuclear  
reaction control in nuclear facility, aircraft flight control, air traffic  
control, mass transport control, medical life support system, missile  
launch control in weapon system), or (2) for use requiring  
extremely high reliability (i.e., submersible repeater and artificial  
satellite).  
Please note that Fujitsu will not be liable against you and/or any  
third party for any claims or damages arising in connection with  
above-mentioned uses of the products.  
Any semiconductor devices have an inherent chance of failure. You  
must protect against injury, damage or loss from such failures by  
incorporating safety design measures into your facility and  
equipment such as redundancy, fire protection, and prevention of  
over-current levels and other abnormal operating conditions.  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Law of Japan, the prior  
authorization by Japanese government will be required for export  
of those products from Japan.  
F0309  
FUJITSU LIMITED Printed in Japan  

相关型号:

MB3785

Switching Regulator Controller (4 Channels plus High-Precision, High-Frequency Capabilities)
FUJITSU

MB3785A

Switching Regulator Controller (4 Channels plus High-Precision, High-Frequency Capabilities)
FUJITSU

MB3785APFV

Switching Regulator Controller (4 Channels plus High-Precision, High-Frequency Capabilities)
FUJITSU

MB3785A_03

Switching Regulator Controller (4 Channels plus High-Precision, High-Frequency Capabilities)
FUJITSU

MB3788

SWITCHING REGULATOR CONTROLLER
FUJITSU

MB3788PFV

Dual Switching Controller, Voltage-mode, 0.03A, 1000kHz Switching Freq-Max, BIPolar, PDSO24, PLASTIC, SSOP-24
FUJITSU

MB3789

Switching Regulator Controller (Supporting External Synchronization)
FUJITSU

MB3789APFV-XXXE1

Switching Regulator
CYPRESS

MB3789APFV-XXXE1

Switching Regulator, 200kHz Switching Freq-Max, BIPolar, PDSO16, 4.40 X 5 MM, 1.45 MM HEIGHT, 0.65 MM PITCH, ROHS COMPLIANT, PLASTIC, SSOP-16
FUJITSU

MB3789APFV-XXXE1

Switching Regulator
SPANSION

MB3789PFV

Switching Regulator Controller (Supporting External Synchronization)
FUJITSU

MB3790

Battery Backup IC
FUJITSU