MB3789 [FUJITSU]

Switching Regulator Controller (Supporting External Synchronization); 开关稳压器控制器(支持外部同步)
MB3789
型号: MB3789
厂家: FUJITSU    FUJITSU
描述:

Switching Regulator Controller (Supporting External Synchronization)
开关稳压器控制器(支持外部同步)

稳压器 开关 控制器
文件: 总28页 (文件大小:205K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS04-27211-3E  
ASSP For Power Supply Applications  
BIPOLAR  
Switching Regulator Controller  
(Supporting External Synchronization)  
MB3789  
DESCRIPTION  
The MB3789 is a PWM (pulse width modulation) switching regulator controller supporting an external sync signal.  
The MB3789 incorporates two error amplifiers which can be used respectively for voltage control and current  
control, allowing the IC to serve as a DC/DC converter with current regulating functions.  
The MB3789 is the ideal IC for supplying power to the back-lighting fluorescent tube for a liquid crystal display  
(LCD) device such as a camera-integrated VTR.  
FEATURES  
• Wide range of operating power supply voltages: 3 V to 18 V  
• Low current consumption: 1.5 mA (Typ.)  
• Wide input voltage range of error amplifier: –0.2 V to VCC – 1.8 V  
• Built-in two error amplifier  
• Oscillator capable of operating with an external sync signal  
• Built-in timer latch short protection circuit  
• Variable dead time provides control over total operating range  
• Output supporting a power MOSFET  
• 16-pin SSOP package mountable at high density  
PACKAGE  
16-pin Plastic SSOP  
(FPT-16P-M05)  
MB3789  
PIN ASSIGNMENT  
(TOP VIEW)  
VCC1  
VREF  
C T  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
OUT  
VCC2  
CB  
SYNC  
SCP  
DTC  
FB1*1  
FB2 *2  
IN2*2  
+IN2*2  
IN1*1  
+IN1*1  
(FPT-16P-M05)  
*1: Pins on error amplifier 1  
*2: Pins on error amplifier 2  
2
MB3789  
PIN DESCRIPTION  
Pin no.  
Pin symbol  
I/O  
Function  
Error amplifier 1 inverting input pin  
7
8
–IN1  
+IN1  
FB1  
I
I
Error amplifier 1 noninverting input pin  
Error amplifier 1 output pin  
6
O
I
10  
9
–IN2  
+IN2  
FB2  
Error amplifier 2 inverting input pin  
Error amplifier 2 noninverting input pin  
Error amplifier 2 output pin  
I
11  
O
Output bootstrap pin.  
Connect a capacitor between the CB and OUT pins to bootstrap the  
output transistor.  
13  
CB  
5
SCP  
DTC  
OUT  
I
Capacitor connection pin for short-circuit protection circuit  
Dead time control pin  
12  
15  
O
Totem-pole output pin  
Sawtooth waveform frequency setting capacitor/resistor connection  
pin  
3
4
CT  
I
SYNC  
External sync signal input pin  
1
14  
2
VCC1  
VCC2  
VREF  
O
Reference power supply, control circuit power-supply pin  
Output circuit power-supply pin  
Reference voltage output pin  
16  
GND  
Ground pin  
3
MB3789  
BLOCK DIAGRAM  
CB  
13  
14  
Error amp. 1  
PWM comparator  
+IN1  
IN1  
FB1  
8
7
6
VCC2  
OUT  
15  
Error amp. 2  
10 kΩ  
+IN2  
IN2  
9
10  
FB2 11  
12  
DTC  
0.9 V  
0.3 V  
8 µA  
4 µA  
SCP comparator 1  
1.25 V  
SCP comparator 3  
1.25 V  
2 µA  
VREF  
SCP comparator 2  
1
2
VCC1  
1.1 V  
1.8 V  
Under voltage  
Lock-out  
protection  
circuit  
Reference Power  
Sawtooth  
wave  
oscillator  
SR latch  
voltage  
supply  
ON/OFF  
circuit  
VREF  
16  
5
4
3
GND  
SCP  
SYNC  
CT  
External sync signal  
4
MB3789  
FUNCTIONAL DESCRIPTION  
1. Switching Regulator Functions  
(1) Reference voltage generator  
The reference voltage generator uses the voltage supplied from the power supply pin (pin 1) to generate a  
temperature-compensated, referencevoltage(about2.50V)asthereferencesupplyvoltagefortheIC’sinternal  
circuitry.  
The reference voltage can be output, up to 50 µA, to an external device through the VREF pin (pin 2).  
This regulated reference voltage can be used as the reference voltage for the switching regulator and also  
used for setting the dead time.  
(2) Sawtooth waveform oscillator  
With a timing capacitor and a timing resistor connected to the CT pin (pin 3), the sawtooth waveform oscillator  
generates a sawtooth wave which remains stable even with supply voltage variations or temperature changes.  
The sawtooth wave is input to the PWM comparator. The amplitude of oscillating waveform is 0.3 V to 0.9 V.  
In addition, the oscillator can be used for external synchronization, where it generates a sawtooth waveform  
synchronous to the input signal from the SYNC pin (pin 4).  
(3) Error amplifiers  
The error amplifiers detect the output voltage from the switching regulator and outputs the PWM control signal.  
Since they support a wide range of in-phase input voltages from –0.2 V to “VCC – 1.8 V”, they can be set easily  
from an external power supply.  
An arbitrary loop gain can be set by connecting a feedback resistor and capacitor from the error amplifier output  
pin to the inverting input pin, enabling stable phase compensation to the system.  
The MB3789 can make a current-regulated DC/DC converter using the two internal error amplifiers respectively  
for voltage control and current control.  
(4) PWM comparator  
The PWM comparator is a voltage comparator with one inverting input and three noninverting inputs, serving  
as a voltage-pulse width converter for controlling the output duty depending on the input voltage.  
The PWM comparator turns on the output transistor during the interval in which the sawtooth wave voltage  
level is lower than the voltage levels at all of the error amplifier output pins, the SCP pin (pin 5), and at the  
DTC pin (pin 12).  
(5) Output circuit  
The output circuit is a power MOSFET driven, output circuit in a totem-pole configuration. It can drive the gate  
voltage up to near the supply voltage with a bootstrap capacitor connected between the OUT pin (pin 15) and  
CB pin (pin 13). (See “SETTING THE BOOTSTRAP CAPACITOR (CBS).”)  
2. Protection Functions  
(1) Timer-latch short-circuit protection circuit  
SCP comparator 1 detects the output voltage levels of error amplifiers 1 and 2. When the output voltage level  
of either (or both) of the two error amplifiers reaches 1.25 V, the timer circuit is actuated to start charging the  
external protection-enable capacitor connected to the SCP pin (pin 5).  
If the error amplifier output is not restored to the normal voltage level before the capacitor voltage reaches  
1.8 V, the latch circuit is actuated to turn off the output transistor while making the dead time 100%.  
To reset the actuated protection circuit, turn the power supply on back. (See “SETTING THE SOFT START/  
SHORT-CIRCUIT DETECTION TIME.”)  
5
MB3789  
(2) Low input voltage malfunction preventive circuit  
The transient state or a momentary decrease in supply voltage, which occurs when the power supply is turned  
on, may cause errors in the control IC, resulting in breakdown or degradation of the system. The low input  
voltagemalfunctionpreventivecircuitdetectstheinternalreferencevoltagelevelaccordingtothesupplyvoltage  
level and, if the input voltage is low, turn off the output transistor and maintains the SCP pin (pin 5) at 0 V while  
making the dead time 100%.  
The circuit restores voltage supply when the supply voltage reaches its threshold voltage.  
6
MB3789  
ABSOLUTE MAXIMUM RATINGS  
(Ta = +25°C)  
Rating  
Parameter  
Symbol  
Condition  
Unit  
Min.  
Max.  
20  
Power supply voltage  
Power dissipation  
VCC  
PD  
V
mW  
°C  
440*  
+85  
Ta +25°C  
Operating temperature  
Storage temperature  
Top  
Tstg  
–30  
–55  
+125  
°C  
* : When mounted on a 10 cm-square double-side epoxy board.  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
RECOMMENDED OPERATING CONDITIONS  
(Ta = +25°C)  
Value  
Typ.  
5.0  
Parameter  
Symbol  
Condition  
Unit  
Min.  
3.0  
Max.  
18  
VCC1  
VCC2  
V
V
Power supply voltage  
6.0  
18  
Reference voltage output  
current  
IOR  
–50  
–30  
µA  
Error amp. input voltage  
VI  
–0.2  
–70  
VCC – 1.8  
V
IO+  
–40  
mA  
CB = 4700 pF, t 2 µs  
Output current  
IO–  
RT  
10  
40  
39  
70  
200  
6800  
200  
+85  
mA  
kΩ  
pF  
CB = 4700 pF, t 2 µs  
Timing resistance  
Timing capacitance  
Oscillation frequency  
Operating temperature  
CT  
470  
1
1000  
20  
fOSC  
TOP  
kHz  
°C  
–30  
+25  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device’s electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representatives beforehand.  
7
MB3789  
ELECTRICAL CHARACTERISTICS  
(VCC1 = 5 V, VCC2 = 6 V, Ta = +25°C)  
Value  
Unit  
Parameter  
Symbol  
Condition  
IOR = 0 µA  
Min.  
Typ.  
Max.  
Output voltage  
VREF  
2.400  
2.500  
2.600  
V
Output voltage  
temperature  
variation  
VREF/VREF Ta = 30°C to +85°C*  
0.2  
2
%
Reference  
voltage block  
Input stability  
Line  
Load  
IOS  
VCC = 3.0 V to 18 V  
1
10  
10  
mV  
mV  
µA  
V
Load stability  
IOR = 0 µA to –50 µA  
2
Short output current  
VREF = 0 V  
–700  
–450  
2.15  
1.90  
250  
1.4  
–300  
2.62  
VTH  
VTL  
Under  
Threshold voltage  
voltage  
lockout  
protection  
circuit  
1.62  
80  
V
Hysteresis width  
Reset voltage (VCC)  
Charge current  
VHYS  
VR  
mV  
V
1.0  
ICHG  
VT0  
VSCP 0.9 V  
Duty cycle = 0%  
Duty cycle = 100%  
–2.8  
0.2  
–2.0  
0.3  
–1.2  
0.4  
1.0  
1.90  
µA  
V
Soft start  
block  
Threshold voltage  
Threshold voltage  
VT100  
VTH  
0.8  
0.9  
V
1.70  
1.80  
V
Input standby  
voltage  
Short circuit  
detection  
block  
VSTB  
1.15  
1.25  
1.35  
mV  
Input latch voltage  
Input source current  
VI  
II  
50  
100  
mV  
VSCP = 1.5 V  
–8.4  
–6.0  
–3.6  
µA  
CT = 1000 pF,  
RT = 39 kΩ  
Oscillator frequency  
fOSC  
17  
20  
1
23  
10  
kHz  
%
Frequency voltage  
variation  
f/fdv  
VCC = 3 V to 18 V  
Triangular  
waveform  
oscillator  
block  
Frequency  
temperature  
variation  
f/fdT  
Ta = 30°C to +85°C*  
3
%
Synchronous pin  
input current  
ISYNC  
VTHSY = 5 V  
0.9  
1.3  
2.2  
mA  
V
Synchronous pin  
threshold voltage  
VTHSY  
0.65  
0.75  
0.85  
* : Standard design value  
(Continued)  
8
MB3789  
(Continued)  
(VCC1 = 5 V, VCC2 = 6 V, Ta = +25°C)  
Value  
Unit  
Parameter  
Symbol  
Condition  
VFB = 0.6 V  
Min.  
Typ.  
Max.  
10  
Input offset voltage  
Input offset current  
Input bias current  
VIO  
IIO  
IB  
mV  
nA  
nA  
VFB = 0.6 V  
VFB = 0.6 V  
100  
–200  
–30  
Common mode  
input voltage range  
VCM  
–0.2  
VCC – 0.8  
V
Common mode  
rejection ratio  
CMRR  
AV  
60  
60  
100  
100  
800  
dB  
dB  
Error  
amplifier  
Voltage gain  
Frequency  
bandwidth  
BW  
AV = 0 dB*  
kHz  
VOM+  
VOM–  
IOM+  
VREF – 0.3  
2.4  
0.05  
60  
0.3  
V
V
Maximum output  
voltage range  
Output sink current  
VFB = 0.6 V  
30  
µA  
Output source  
current  
IOM–  
VFB = 0.6 V  
–2  
–0.6  
mA  
VT0  
VT100  
Dtr  
Duty cycle = 0%  
Duty cycle = 100%  
Vdt = VREF/4.2  
0.2  
0.8  
45  
0.3  
0.9  
55  
0.4  
1.0  
65  
V
V
Threshold voltage  
Dead time  
control block  
ON duty cycle  
%
Input bias current  
IIbdt  
–500  
0.2  
0.8  
30  
–100  
0.3  
0.9  
60  
nA  
V
VT0  
Duty cycle = 0%  
Duty cycle = 100%  
0.4  
1.0  
Threshold voltage  
PWM  
comparator  
block  
VT100  
IIN+  
V
Input sink current  
µA  
mA  
Input source current  
IIN–  
–2  
–0.6  
CL = 2000 pF,  
CB = 4700 pF  
VOH  
VOL  
5.5  
6.0  
1.1  
V
V
Output block Output voltage  
Power supply  
CL = 2000 pF,  
CB = 4700 pF  
1.4  
ICC1  
ICC2  
1.15  
350  
1.65  
500  
mA  
General  
current when output  
off  
µA  
* : Standard design value  
9
MB3789  
TYPICAL CHARACTERISTICS  
Power supply current vs.  
power supply voltage characteristics  
2.4  
Output power supply current vs.  
power supply voltage characteristics  
500  
400  
300  
200  
100  
0
VCC1 = 5 V  
VCC2 = 6 V  
Ta = +25°C  
2.0  
Ta = +25°C  
1.6  
1.2  
0.8  
0.4  
0
0
4
8
12  
16  
20  
0
4
8
12  
16  
20  
Power supply voltage VCC1 (V)  
Power supply voltage VCC2 (V)  
Reference voltage vs.  
power supply voltage characteristics  
Reference voltage vs.  
ambient temperature characteristics  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
5.0  
4.0  
3.0  
2.0  
1.0  
0
VCC1 = 5 V  
VCC2 = 6 V  
IOR = 0 µA  
VCC2 = 6 V  
IOR = 0 µA  
Ta = +25°C  
0
4
8
12  
16  
20  
40 20  
0
20  
40  
60  
80  
100  
Power supply voltage VCC1 (V)  
Ambient temperature Ta (°C)  
Sawtooth waveform maximum amplitude voltage vs.  
timing capacitance characteristics  
Sawtooth wave frequency vs.  
timing resistance characteristics  
(With CT/RT oscillation)  
(With CT/RT oscillation)  
500 k  
1.4  
VCC1 = 5 V  
VCC2 = 6 V  
VCC1 = 5 V  
VCC2 = 6 V  
SYNC = GND  
Ta = +25°C  
1.2  
RT = 39 kΩ  
100 k  
50 k  
SYNC = GND  
Ta = +25°C  
1.0  
0.8  
0.6  
0.4  
0.2  
0
10 k  
5 k  
CT = 470 pF  
1 k  
CT = 1500 pF  
CT = 4700 pF  
500  
CT = 6800 pF  
100  
2 k  
102  
5 × 102 103 5 × 103 104  
5 × 104  
5 k 10 k  
50 k 100 k  
500 k 1 M  
Timing capacitance CT (pF)  
Timing resistance RT ()  
(Continued)  
10  
MB3789  
Sawtooth waveform period vs.  
timing capacitance characteristics  
(With CT/RT oscillation)  
Duty vs. sawtooth wave  
frequency characteristics  
(With CT/RT oscillation)  
100  
500  
VCC1 = 5 V  
VCC2 = 6 V  
VDT = 0.6 V  
CT = Variable  
RT = 39 kΩ  
SYNC = GND  
Ta = 25°C  
80  
60  
40  
20  
VCC1 = 5 V  
VCC2 = 6 V  
RT = 39 kΩ  
SYNC = GND  
Ta = +25°C  
100  
50  
10  
5
2
0
2 × 10 5 × 10 102 5 × 102 103  
5 × 103 104  
5 × 104  
200 500 1 k  
5 k 10 k  
50 k 100 k  
500 k  
Timing capacitance CT (pF)  
Sawtooth wave frequency f (Hz)  
Sawtooth wave frequency vs.  
ambient temperature characteristics  
(With CT/RT oscillation)  
Sawtooth wave frequency vs.  
ambient temperature characteristics  
(In external synchronization)  
VCC1 = 5 V  
VCC2 = 6 V  
CT = 1500pF  
RT = 39 kΩ  
VCC1 = 5 V  
VCC2 = 6 V  
CT = 1500pF  
RT = 43 kΩ  
+10  
+5  
0
+10  
+5  
0
SYNC = GND  
fSYNC = 15.0 kHz  
5  
10  
5  
10  
40  
20  
0
20  
40  
60  
80  
100  
40 20  
0
20  
40  
60  
80  
100  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
Gain vs. frequency and phase vs.  
frequency characteristics  
Measurement circuit for gain-frequency  
characteristics and phase-frequency characteristics  
2.5 V 2.5 V  
VCC1 = 5 V  
VCC2 = 6 V  
Ta = +25°C  
40  
20  
180  
90  
240 kΩ  
Av  
4.7 kΩ  
4.7 kΩ  
0
0
OUT  
10 µF  
φ
Error amp.  
IN  
20  
40  
90  
180  
4.7 kΩ  
4.7 kΩ  
1 k  
10 k  
100 k  
1 M  
10 M  
Frequency f (Hz)  
(Continued)  
11  
MB3789  
(Continued)  
Duty vs. DTC pin voltage characteristics  
Output pin (OUT) voltage and current waveforms  
VCC1 = 5 V,  
VCC2 = 6 V  
100  
80  
60  
40  
20  
0
VCC1 = 5 V  
VCC2 = 6 V  
CT = 1500 pF  
RT = 39 kΩ  
SYNC = GND  
6
4
2
100  
0
50  
0
50  
100  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1  
DTC pin voltage Vdt (V)  
0
4
8
12  
16  
20  
Time t (µs)  
Power comsumption vs.  
ambient temperature characteristics  
500  
440  
400  
300  
200  
100  
0
30 20  
0
20  
40  
60  
80  
100  
Ambient temperature Ta (°C)  
12  
MB3789  
SETTING THE OUTPUT VOLTAGE  
Set the output voltage by connecting the input pins (+IN, –IN) and output pin (FB) of error amplifiers 1 and 2 as  
shown in Figures 1 and 2.  
VREF  
+
VOUT  
VREF  
+
VOUT  
=
(R1 + R2)  
R
R
R1  
R2  
2 × R2  
RNF  
Figure 1 Setting the output voltage (positive output voltage (VOUT))  
VREF  
VREF  
R1  
R2  
R
R
VOUT = −  
(R1 + R2) + VREF  
2 × R1  
RNF  
VOUT  
Figure 2 Setting the output voltage (negative output voltage (VOUT))  
13  
MB3789  
CONNECTION FOR OUTPUT CONTROL WITH ONE ERROR AMPLIFIER  
The MB3789 can make up a system using only one of the two error amplifiers. In this case, connect the +IN and  
–IN pins of the unused error amplifier to the VREF and GND pins, respectively, and leave the FB pin open.  
When VCC – 1.8 V < VREF, divide the VREF voltage using a resistor and apply the voltage to the +IN pin.  
VREF  
2
+IN1  
8
IN1  
7
FB1  
6
“Open”  
Figure 1 Connection without using error amplifier 1  
VREF  
2
+IN2  
9
IN2  
10  
FB2  
11  
“Open”  
Figure 2 Connection without using error amplifier 2  
14  
MB3789  
CONNECTING THE SAWTOOTH WAVEFORM OSCILLATOR  
1. Connection for internal oscillation  
For internal oscillation, connect the frequency setting capacitor (CT) and resistor (RT) to the CT pin (pin 3) and  
leave the SYNC pin (pin 4) open or connect it to GND.  
The oscillation frequency can be set with the CT and RT constants.  
CT  
SYNC  
4
3
CT  
RT  
Leave “open” or connect to GND  
Figure 5 Connection for internal oscillation  
2. Connection for external synchronous oscillation  
For external synchronous oscillation, connect the frequency setting capacitor (CT) and resistor (RT) to the CT pin  
(pin 3) and connect the external sync signal to the SYNC pin (pin 4).  
In this case, select the CT and RT conditions so that the oscillation frequency is 5% to 10% lower than the  
frequency of the external sync signal excluding the setting error of the oscillation frequency.  
CT  
SYNC  
4
3
External sync signal  
CT  
RT  
Figure 6 Connection for external synchronous oscillation  
15  
MB3789  
SETTING THE DEAD TIME  
When the device is set for step-up inverting output based on the flyback method, the output transistor is fixed  
to a full-ON state (ON duty = 100%) when the power supply is turned on. To prevent this problem, you may  
determine the voltage at the DTC pin (pin 12) from the VREF voltage so you can set the output transistor’s dead  
time (maximum ON-duty period) as shown in Figure 7 below.  
1. Setting the dead time  
When setting the dead time, use resistors as shown in Figure 7 to connect the VREF and DTC pins to GND. When  
the voltage at the DTC pin (pin 12) is lower than the sawtooth wave output voltage from the oscillator, the output  
transistor is turned off.  
To set the dead time, see “Duty vs. DTC pin voltage” (in “STANDARD CHARACTERISTIC CURVES”).  
R2  
R1 + R2  
Vdt =  
× VREF  
2. Connection without setting the dead time  
If you do not set the dead time, connect the VREF and DTC pins as shown in Figure 8.  
VREF  
DTC  
2
R1  
R2  
12  
Vdt  
Figure 7 Connection for setting the dead time  
VREF  
DTC  
2
12  
Figure 8 Connection without setting the dead time  
16  
MB3789  
SETTING THE SOFT START/SHORT-CIRCUIT DETECTION TIME  
Connecting capacitor CPE to the SCP pin (pin 5) as shown in Figure 9 enables a soft start and short-circuit  
protection.  
8 µA  
4 µA  
SCP comparator 1  
1.25 V  
Output OFF  
SCP comparator 3  
1.25 V  
SCP comparator 2  
2 µA  
VREF  
1.1 V  
1.8 V  
Low input  
voltage  
protection  
circuit  
SR latch  
5
SCP  
CPE  
Figure 9 Soft start/short-circuit detection circuit  
2
1
0
1.8 V  
1.25 V  
Output short-circuit  
tPE  
Output short-circuit  
100%  
50%  
ts  
0%  
Soft start  
Time t (s)  
Figure 10 SCP pin operating waveform  
17  
MB3789  
1. Soft Start  
To prevent surge currents when the IC is turned on, you can set a soft start by connecting capacitor CPE to the  
SCP pin (pin 5).  
~
• Softstart time(ts): Time required up to duty cycle 50% with output on  
~
tS (s) 0.15 × CPE (µF)  
2. Protection from short circuit  
SCP comparator 1 always compares the output voltage levels at error amplifiers 1 and 2 with the 1.25 V  
reference voltage.  
When the load conditions for the switching regulator are stable, the outputs from error amplifiers 1 and 2 do  
not vary and thus short-circuit protection control remains balanced. In this case, the SCP pin (pin 5) is held at  
the soft start end voltage (about 1.25 V).  
If the load conditions change rapidly and the output voltage of error amplifier 1 or 2 reaches 1.25 V, for example,  
because of a short-circuit of a load, capacitor CPE is charged further. When capacitor CPE is charged up to about  
1.8 V, the SR latch is set and the output drive transistor is turned off. At this time, the dead time is set to 100%,  
~
capacitor CPE is discharged, and the SCP pin becomes 50 mV.  
• Short-circuit detection time (tPE)  
~
tPE (s) 0.09 × CPE (µF)  
3. Connection without using short-circuit protection  
Add a clamp circuit as shown in Figure 11 so that the clamp voltage (VCRP) falls within the following range when  
a short-circuit is detected: 1.0 V < VCRP < 1.7 V  
Clamp circuit  
5
SCP  
VCRP  
CPE  
Figure 11 Connection without using short-circuit protection  
18  
MB3789  
SETTING THE BOOTSTRAP CAPACITOR  
When a bootstrap capacitor is connected, it raises the output-ON voltage (at the OUT pin (pin 15) when the  
~
external MOS FET is turned “ON”) to the VCC2 level. It can therefore drive the MOS FET at a higher threshold  
voltage (Vth).  
1. Connecting the bootstrap capacitor  
Connect the bootstrap capacitor between the CB pin (pin 13) and OUT pin (pin 15).  
VCC2  
VCBS  
id  
CB  
13  
14  
VCC2  
VCC1  
CBS  
iC  
External  
MOS FET  
I
15  
OUT  
10 kΩ  
VOUT  
: Charge current ic  
: Discharge current id  
Figure 12 Circuit with a bootstrap capacitor connected and current flow  
• Calculation of bootstrap capacitance  
500 × 106  
VCC2 – 2.6  
CBS  
× tON (max) [pF]  
tON (max): Maximum ON duty time  
19  
MB3789  
2. Connection with no bootstrap capacitor  
Connect the CB pin (pin 13) and VCC2 pin (pin 14) as shown in Figure 13.  
VCC2  
CB  
13  
14  
15  
VCC2  
External  
MOS FET  
OUT  
Note: Under a condition of “VCC2 Vth < 1.1 V”, bootstrap capacitor CBS should be connected because  
the external MOS FET cannot be driven sufficiently.  
Vth: External MOS FET threshold voltage  
Figure 13 Connection with no bootstrap capacitor connected  
20  
MB3789  
3. Operation of the Bootstrap Capacitor  
When voltage VOUT at the OUT pin (pin 15) is “L” level, the voltages (VC1) at both ends of the bootstrap capacitor  
CBS is charged up to the VCC2 voltage level by charge current (iC).  
~
When VOUT changes from “L” level to “H” level, the CB pin (pin 13) voltage VCBS rises to 2 × VCC2 and VOUT  
reaches almost the VCC2 level.  
The charge accumulated at CBS at this time is released by discharge current id (output unit supply current).  
See Figure 12 for circuit operation.  
(VCC1 = 5 V, VCC2 = 6 V, CBS = 4700 pF)  
2 V  
12  
*2  
10  
8
*1  
VCBS  
6
4
2
0
6
4
2
0
VOUT  
2 V  
10 µs  
0
20  
40  
60  
80  
100  
tON  
tOFF  
Time t (µs)  
*1: Use the device with a setting of VCBS 18 V.  
*2: The slant of VCBS is determined by the value of discharge current id (output unit supply current).  
Figure 14 Bootstrap operating waveform  
21  
MB3789  
EQUIVALENT SERIES RESISTANCE OF SMOOTHING CAPACITOR AND SYSTEM  
STABILITY  
The equivalent series resistance (ESR) value of a smoothing capacitor for the DC/DC converter largely affects  
the loop phase characteristic.  
Depending on the ESR value, the phase characteristic causes the ideal capacitor in a high-frequency domain  
advance the loop phase (as shown in Figures 16 and 17) and thus the system is improved in stability. In contrast,  
using a smoothing capacitor with low ESR lowers system stability. Use meticulous care when a semiconductor  
electrolytic capacitor with low ESR (such as an OS capacitor) or a tantalum capacitor is used. (The next page  
gives an example of reduction in phase margin when an OS capacitor is used.)  
L
Tr  
RC  
VIN  
D
RL  
C
Figure 15 Basic circuit of step-down DC/DC converter  
20  
0
0
(2)  
90  
20  
40  
60  
(2)  
(1) : RC = 0 Ω  
(1)  
(1) : RC = 0 Ω  
(2) : RC = 31 mΩ  
(2) : RC = 31 mΩ  
(1)  
180  
10  
100  
1 k  
Frequency f (Hz)  
10 k  
100 k  
10  
100  
1 k  
Frequency f (Hz)  
10 k  
100 k  
Figure 16 Gain vs. frequency  
Figure 17 Phase vs. frequency  
22  
MB3789  
(Reference data)  
Changing the smoothing capacitor from an aluminum electrolytic capacitor (RC 1.0 ) to a low-ESR  
~
~
semiconductor electrolytic capacitor (OS capacitor: RC 0.2 ) halves the phase margin. (See Figures 19 and  
20.)  
VOUT  
+
VO  
CNF  
AV-phase characteristic  
in this range  
IN  
VIN  
FB  
+IN  
R2  
R1  
VREF/2  
Error amplifier  
Figure 18 DC/DC converter Av vs. phase measurement diagram  
AI electrolytic capacitor gain vs. frequency, phase vs. Frequency (DC/DC converter +5 V output)  
60  
VCC = 10 V  
RL = 25 Ω  
CP = 0.1 µF  
40  
20  
180  
90  
AV  
+
VO  
φ
AI electrolytic capacit  
220 µF (16 V)  
RC 1.0 : fOSC = 1 kHz  
62°  
0
0
90  
180  
20  
40  
GND  
10  
100  
1 k  
Frequency f (Hz)  
10 k  
100 k  
Figure 19 Gain vs. frequency  
23  
MB3789  
OS capacitor gain vs. frequency, phase vs. frequency (DC/DC converter +5 V output)  
60  
VCC = 10 V  
RL = 25 Ω  
AV  
40  
20  
180  
90  
CP = 0.1 µF  
+
VO  
OS capacitor  
22 µF (16 V)  
φ
0
0
RC 0.2 : fOSC = 1 kHz  
27°  
90  
180  
20  
40  
GND  
10  
100  
1 k  
10 k  
100 k  
Frequency f (Hz)  
Figure 20 Phase vs. frequency characteristic curves  
24  
MB3789  
APPLICATION EXAMPLE  
10 µH  
10 µF  
VCC  
(5 V)  
2
1
VREF  
VCC1  
VCC2  
100 kΩ  
100 kΩ  
14  
13  
8
+IN1  
18 kΩ  
CB  
7
6
IN1  
2.7 kΩ  
100 kΩ  
FB1  
4700 pF  
150 kΩ  
100 kΩ  
+IN2  
9
MB3789  
Back  
light  
15  
OUT  
10  
11  
12  
IN2  
10 kΩ  
100 kΩ  
FB2  
150 kΩ  
100 kΩ  
10 µF  
GND 16  
DTC  
SYNC  
CT  
3
SCP  
5
4
1 µF  
39 Ω  
22 kΩ  
33 pF  
4.7 kΩ  
1500 pF  
4.7 µF  
33 kΩ  
Synchronous signal  
25  
MB3789  
USAGE PRECAUTIONS  
1. Do not input voltages greater than the maximum rating.  
Inputting voltages greater than the maximum rating may damage the device.  
2. Always use the device under recommended operating conditions.  
If a voltage greater than the maximum value is input to the device, its electrical characteristics may not be  
guaranteed. Similarly, inputting a voltage below the minimum value may cause device operation to become  
unstable.  
3. For grounding the printed circuit board, use as wide ground lines as possible to prevent  
high-frequency noise.  
Because the device uses high frequencies, it tends to generate high-frequency noise.  
4. Take the following measures for protection against static charge:  
• For containing semiconductor devices, use an antistatic or conductive container.  
• When storing or transporting device-mounted circuit boards, use a conductive bag or container.  
• Ground the workbenches, tools, and measuring equipment to earth.  
• Make sure that operators wear wrist straps or other appropriate fittings grounded to earth via a resistance of  
250 k to 1 Mplaced in series between the human body and earth.  
ORDERING INFORMATION  
Part number  
MB3789PFV  
Package  
Remarks  
16-pin Plastic SSOP  
(FPT-16P-M05)  
26  
MB3789  
PACKAGE DIMENSION  
16-pin Plastic SSOP  
(FPT-16P-M05)  
*: These dimensions do not include resin protrusion.  
1.25+00..1200  
*
5.00±0.10(.197±.004)  
(Mounting height)  
.049+..000048  
0.10(.004)  
INDEX  
*
4.40±0.10  
6.40±0.20  
5.40(.213)  
NOM  
(.173±.004) (.252±.008)  
"A"  
0.22+00..0150  
.009+..000024  
0.15+00..0025  
Details of "A" part  
0.65±0.12  
(.0256±.0047)  
.006+..000012  
0.10±0.10(.004±.004)  
(STAND OFF)  
0
10°  
0.50±0.20  
(.020±.008)  
4.55(.179)REF  
Dimensions in mm (inches)  
C
1994 FUJITSU LIMITED F16013S-2C-4  
27  
MB3789  
FUJITSU LIMITED  
For further information please contact:  
Japan  
FUJITSU LIMITED  
Corporate Global Business Support Division  
Electronic Devices  
KAWASAKI PLANT, 4-1-1, Kamikodanaka  
Nakahara-ku, Kawasaki-shi  
Kanagawa 211-8588, Japan  
Tel: 81(44) 754-3763  
All Rights Reserved.  
The contents of this document are subject to change without  
notice. Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
Fax: 81(44) 754-3329  
http://www.fujitsu.co.jp/  
The information and circuit diagrams in this document are  
presented as examples of semiconductor device applications,  
and are not intended to be incorporated in devices for actual use.  
Also, FUJITSU is unable to assume responsibility for  
infringement of any patent rights or other rights of third parties  
arising from the use of this information or circuit diagrams.  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
Semiconductor Division  
3545 North First Street  
San Jose, CA 95134-1804, USA  
Tel: (408) 922-9000  
FUJITSU semiconductor devices are intended for use in  
standard applications (computers, office automation and other  
office equipment, industrial, communications, and  
measurement equipment, personal or household devices, etc.).  
CAUTION:  
Customers considering the use of our products in special  
applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage,  
or where extremely high levels of reliability are demanded (such  
as aerospace systems, atomic energy controls, sea floor  
repeaters, vehicle operating controls, medical devices for life  
support, etc.) are requested to consult with FUJITSU sales  
representatives before such use. The company will not be  
responsible for damages arising from such use without prior  
approval.  
Fax: (408) 922-9179  
Customer Response Center  
Mon. - Fri.: 7 am - 5 pm (PST)  
Tel: (800) 866-8608  
Fax: (408) 922-9179  
http://www.fujitsumicro.com/  
Europe  
FUJITSU MIKROELEKTRONIK GmbH  
Am Siebenstein 6-10  
D-63303 Dreieich-Buchschlag  
Germany  
Tel: (06103) 690-0  
Fax: (06103) 690-122  
Any semiconductor devices have an inherent chance of  
failure. You must protect against injury, damage or loss from  
such failures by incorporating safety design measures into your  
facility and equipment such as redundancy, fire protection, and  
prevention of over-current levels and other abnormal operating  
conditions.  
http://www.fujitsu-ede.com/  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE LTD  
#05-08, 151 Lorong Chuan  
New Tech Park  
Singapore 556741  
Tel: (65) 281-0770  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Law of Japan, the prior  
authorization by Japanese government will be required for  
export of those products from Japan.  
Fax: (65) 281-0220  
http://www.fmap.com.sg/  
F9906  
FUJITSU LIMITED Printed in Japan  

相关型号:

MB3789APFV-XXXE1

Switching Regulator
CYPRESS

MB3789APFV-XXXE1

Switching Regulator, 200kHz Switching Freq-Max, BIPolar, PDSO16, 4.40 X 5 MM, 1.45 MM HEIGHT, 0.65 MM PITCH, ROHS COMPLIANT, PLASTIC, SSOP-16
FUJITSU

MB3789APFV-XXXE1

Switching Regulator
SPANSION

MB3789PFV

Switching Regulator Controller (Supporting External Synchronization)
FUJITSU

MB3790

Battery Backup IC
FUJITSU

MB3790PF

Battery Backup IC
FUJITSU

MB3790PFT

Battery Backup IC
FUJITSU

MB3793

POWER-VOLTAGE MONITORING IC WITH WATCHDOG TIMER
FUJITSU

MB3793-27A

Power Voltage Monitoring IC with Watchdog Timer
FUJITSU

MB3793-27AP

Power Voltage Monitoring IC with Watchdog Timer
FUJITSU

MB3793-27APF

Power Voltage Monitoring IC with Watchdog Timer
FUJITSU

MB3793-27APF-XXX

Power Supply Management Circuit, Fixed, 1 Channel, BIPolar, PDSO8, 5.30 X 6.35 MM, 2.25 MM HEIGHT, 1.27 MM PITCH, PLASTIC, SOP-8
FUJITSU