MB3788PFV [FUJITSU]

Dual Switching Controller, Voltage-mode, 0.03A, 1000kHz Switching Freq-Max, BIPolar, PDSO24, PLASTIC, SSOP-24;
MB3788PFV
型号: MB3788PFV
厂家: FUJITSU    FUJITSU
描述:

Dual Switching Controller, Voltage-mode, 0.03A, 1000kHz Switching Freq-Max, BIPolar, PDSO24, PLASTIC, SSOP-24

稳压器 开关 控制器
文件: 总21页 (文件大小:738K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS04-27209-1E  
ASSP  
SWITCHING REGULATOR  
CONTROLLER  
MB3788  
24-PIN PLASTIC SSOP  
DESCRIPTION  
The MB3788 is a dual-channel PWM-type switching regulator controller; it in-  
corporates a reference voltage.  
The MB3788 has a PWM circuit and an output circuit as well as a reference  
voltage power supply with a voltage accuracy of ±1%. The maximum operating  
frequency is 1 MHz. It is designed for a voltage-drop output switching regulator  
suitable for a logic power supply or speed control of a DC motor.  
The MB3788 is compatible with all master ICs producing triangular waves, saw-  
tooth waves and sine waves with an amplitude of 1.3 to 1.9 V.  
It can be used in high-performance portable equipment such as a video cam-  
corder or notebook personal computer (word processor).  
FEATURES  
- Wide operating power supply voltage range: 3.6 to 18 V  
- Low power dissipation  
- Operating: 1.9 mA (standard)  
Standby: 10 µA max.  
- High-frequency operation: 100 kHz to 1 MHz  
- On-chip timer and latch-type short-circuit detection circuit  
- Wide error amplifier input voltage range: -0.2 V to VCC - 1.8 V  
- On-chip high-accuracy reference voltage circuit: 2.50 V ±1%  
- Output circuit  
(FPT-24P-M03)  
PNP transistor drive output pin: Push-pull type  
ON/OFF current values set independently  
- On-chip standby function and output control function  
- High-density packaging: SSOP-24P  
This device contains circuitry to protect the inputs against  
damage due to high static voltages or electric fields. However,  
it is advised that normal precautions be taken to avoid appli-  
cation of any voltage higher than maximum rated voltages to  
this high impedance circuit.  
1
MB3788  
PIN ASSIGNMENT  
(TOP VIEW)  
VCC(out)  
OUT1  
VE1  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
GND  
OUT2  
VE2  
3
Cb1  
4
Cb2  
Ca1  
5
Ca2  
FB1  
6
FB2  
-IN1(E)  
+IN1(E)  
-IN1(C)  
-IN(PWN)  
VCC  
7
-IN2(E)  
+IN2(E)  
-IN2(C)  
SCP  
8
9
10  
11  
12  
CTL2  
CTL1  
VREF  
(FPT-24P-M03)  
2
MB3788  
PIN DESCRIPTION  
Pin No.  
Pin name  
I/O  
O
I
Descriptions  
Channel 1 push-pull type output  
Channel 1 output current setting  
2
3
OUT1  
VE1  
4
Ca1  
O
I
Channel 1 output transistor OFF current setting: Output transistor OFF  
The current is set by connecting a capacitor between pins Ca1 and Cb1.  
5
Cb1  
Channel  
1
Channel 1 error amplifier output  
6
FB1  
Channel 1 error amplifier inversion input  
Channel 1 error amplifier non-inversion input  
Channel 1 comparator inversion input  
Channel 2 comparator inversion input  
Channel 2 error amplifier non-inversion input  
Channel 2 error amplifier inversion input  
Channel 2 error amplifier output  
7
-IN1(E)  
+IN1(E)  
-IN1(C)  
-IN2(C)  
+IN2(E)  
-IN2(E)  
FB2  
8
9
I
I
16  
17  
18  
19  
20  
21  
22  
23  
I
I
O
I
Channel  
2
Ca2  
Channel 2 output transistor OFF current setting: Output transistor OFF  
The current is set by connecting a capacitor between pins Ca2 and Cb2.  
Cb2  
VE2  
Channel 2 output current setting  
Channel 2 push-pull type output  
OUT2  
O
Power and channel 1 control pin  
H level: Power and channel 1 operating  
L level: Standby  
13  
14  
CTL1  
I
I
Channel 2 control pin  
Control  
circuit  
When CTL1 pin = H level,  
H level: Channel 2 operating  
L level: Channel 2 OFF  
CTL2  
SCP  
15  
1
I
Short-circuit protection circuit capacitor connection  
Output circuit power pin  
2
VCC  
10  
11  
12  
24  
-IN(PWM)  
VCC1  
Master oscillating waveform input  
Reference power and control circuit power  
Reference voltage output  
Power  
circuit  
O
VREF  
GND  
Ground  
Note: The alphabetic characters in parenthesis above indicate the following input pins.  
(C): Comparator  
(E): Error amplifier  
3
MB3788  
BLOCK DIAGRAM  
Cb1  
Channel 1  
4
5
Ca1  
Error amplifier 1  
OFF current setting  
+
-
1
2
3
VCC(out)  
+IN1 (E)  
-IN1 (E)  
FB1  
8
7
6
PWM comparator 1  
+
-
OUT1  
VE1  
Comparator 1  
+
-
0.6 V  
1.5 V  
9
-IN1 (C)  
Ca2  
Cb2  
Channel 2  
20  
21  
Error amplifier 2  
OFF current setting  
+
-
+IN2 (E) 17  
PWM comparator 2  
+
-
18  
-IN2 (E)  
OUT2  
VE2  
23  
22  
19  
FB2  
Comparator 2  
+
-
0.6 V  
1.5 V  
16  
-IN2 (C)  
SCP comparator  
CTL2  
14  
-
-
+
1.9 V  
1.3 V  
Timer circuit  
1 µA  
2.1 V  
VCC  
11  
SCP  
VREF  
15  
Low input  
Power/channel  
ON/OFF  
Reference  
voltage  
power (2.5 V)  
SR latch  
circuit  
voltage  
protection  
circuit  
13 CTL1  
circuit  
10  
12  
24  
-IN(PWM)  
VREF  
GND  
4
MB3788  
FUNCTIONAL DESCRIPTION  
1. Major Functions  
(1) Reference voltage power circuit  
The reference voltage power supply produces a reference voltage (2.50 V) which is temperature-compensated by the voltage  
supplied from the power pin (pin 11); it is used as the IC internal circuit operating power supply.  
The reference voltage can also be output externally at 1 mA from VREF pin (pin12).  
(2) Error amplifier  
The error amplifier detects the switching regulator output voltage and outputs a PWM control signal. It has a wide in-phase input  
voltage range of -0.2 V to VCC - 1.8 V to make setting from an external power supply easy.  
Connecting the output pin and inversion input pin of the error amplifier through a feedback resistor and capacitor allows setting  
of any loop gain to provide stable phase compensation.  
(3) PWM comparator  
The PWM comparator controls the output pulse ON time according to the input voltage.  
The voltage input to the -IN pin (PWM) turns the output transistor on when it is lower than the output voltage of the error amplifier.  
(4) Output circuit  
The output circuit is configured in a push-pull form and uses a PNP transistor drive system to drive a transistor of up to 30 mA.  
(See How to Set Output Current.)  
2. Channel Control Function  
Channels can be set ON/OFF by combining the voltage levels at pin CTL1 (pin 13) and pin CTL2 (pin 14).  
Channel ON/OFF Setting Conditions  
Voltage level at CTL pin  
Channel ON/OFF status  
Power circuit Channel 1 Channel  
Stand by state*  
CTL1  
CTL2  
L
×
H
L
H
ON  
ON  
OFF  
*The power current in the standby state is 10 µA max.  
5
MB3788  
3. Protection Functions  
(1) Timer and latch-type short-circuit protection circuit  
The SCP comparator detects the output voltage levels of two comparators to detect an output short circuit. If the output voltage  
of one comparator increases to 2.1 V, the transistor of the timer circuit is turned off and the short circuit protection capacitor  
connected externally to the SCP pin (pin 15) starts charging.  
The latch circuit turns off the output transistor and simultaneously clears the duty cycle to 0 when the output voltage level of the  
comparator does not return to the normal voltage level until the capacitor voltage rises to the base-emitter junction voltage VBE  
(0.65 V) of the transistor. (See How to Set Time Constant for Timer & Latch-Type Short-Circuit Protection Circuit.)  
When the protection circuit operates, recycle the power to reset the circuit.  
(2) Low input voltage malfunction fail-safe circuit  
A transient at power-on, or an instantaneous supply voltage drop can cause a control IC malfunction, which may damage the  
system. The low input voltage malfunction fail-safe circuit detects the internal reference voltage level based on the supply voltage  
level, resets the latch circuit, turns off the output transistor, clears the duty cycle to 0 and holds the SCP pin (pin 15) at Low level.  
All circuits are recovered when the supply voltage is greater than the threshold voltage of the fail-safe circuit.  
6
MB3788  
ABSOLUTE MAXIMUM RATINGS  
(TA = +25°C)  
Parameter  
Supply voltage  
Symbol  
Conditions  
Ratings  
20  
Unit  
V
VCC  
VICTL  
PD  
Control input voltage  
Allowable loss  
20  
V
Ta +25°C  
500*  
mW  
°C  
°C  
Operating ambient temperature  
Storage temprature  
TOP  
Tstg  
-30 to +85  
-55 to +125  
* Value obtained when mounted on 4 cm × 4 cm double-sided epoxy substrate  
RECOMMENDED OPERATING CONDITIONS  
(TA = +25°C)  
Values  
Parameter  
Supply voltage  
Symbol Conditions  
Unit  
Min.  
3.6  
Typical  
6.0  
Max.  
18  
VCC  
IOR  
VI  
V
Reference voltage output curren  
Error amplifier input voltage  
Error amplifier input voltage  
Control input voltage  
-1  
0
mA  
-0.2  
-0.2  
-0.2  
3.0  
VCC - 1.8  
VCC  
18  
V
V
VI  
VICTL  
IO  
V
Output current  
30  
mA  
kHz  
°C  
Operating frequency  
fosc  
Top  
100  
-30  
300  
25  
1000  
85  
Operating ambient temperature  
7
MB3788  
ELECTICAL CHARACTERISTICS  
(VCC =6V, TA = +25°C)  
Value  
Parameter  
Symbol  
Conditions  
IOR = -1 mA  
Unit  
Min.  
Typical  
Max.  
Reference voltage  
VREF  
2.475  
2.500  
2.525  
V
Output voltage temperature  
variation  
VREF/  
VREF  
TA = -30° to +85°C  
-2  
±0.2  
2
%
Reference  
voltage  
Input stability  
Line  
Load  
IOS  
VCC = 3.6 V to 18 V  
2
10  
10  
mV  
mV  
mA  
V
Load stability  
IOR = -0.1 mA to 1 mA  
3
Short-circuit output current  
VREF = 2 V  
-20  
-8  
-3  
VtH  
2.65  
2.45  
200  
1.9  
0.65  
-100  
Threshold voltage  
Low voltage  
malfunction  
fail-safe  
VtL  
V
Hysteresis width  
VHYS  
VR  
80  
mV  
V
circuit  
Reset voltage  
1.5  
0.58  
-200  
-0.2  
0.60  
Input offset voltage  
Input bias current  
VIO  
0.72  
V
Short-circuit  
detection  
comparator  
IIB  
VI = 0 V  
nA  
V
In-phase input voltage range  
Threshold voltage  
VICM  
VtPC  
VSTB  
VI  
VCC-1.8  
0.70  
100  
100  
-0.6  
10  
0.65  
50  
V
Input standby voltage  
Input latch voltage  
Input source current  
Input offset voltage  
Input offset current  
Input bias current  
mV  
mV  
µA  
mV  
nA  
nA  
V
Short-circuit  
detector  
50  
IIbpc  
VIO  
-1.4  
-10  
-100  
-200  
-0.2  
60  
-1.0  
VFB = 1.6 V  
VFB = 1.6 V  
VFB = 1.6 V  
IIO  
100  
IIB  
-60  
In-phase input voltage range  
Voltage gain  
VICM  
AV  
VCC-1.8  
100  
800  
80  
dB  
kHz  
dB  
V
Error  
amplifier  
Frequency bandwidth  
In-phase signal rejection ratio  
BW  
CMRR  
VOM+  
VOM-  
IOM+  
IOM-  
AV = 0 dB  
60  
VREF-0.3  
2.4  
0.05  
120  
-2  
Maximum output voltage width  
0.5  
V
Output sink current  
VFB = 1.6 V  
VFB = 1.6 V  
µA  
mA  
Output source current  
8
MB3788  
Values  
Min. Typical Max.  
Unit  
Parameter  
Symbol  
Conditions  
Vt0  
Duty cycle = 0 %  
1.05  
1.3  
1.9  
120  
-2  
2.25  
V
Threshold voltage  
Vt100  
IIM+  
IIM-  
IIB  
Duty cycle = 100 %  
V
PWM  
comparator  
Input sink current  
Input source current  
Input bias current  
Threshold voltage  
µA  
mA  
µA  
V
VI = 0 V  
-1.0  
0.7  
-0.5  
1.4  
100  
Vth  
IIH  
2.1  
200  
10  
VCTL = 5 V  
VCTL = 0 V  
µA  
µA  
mA  
mA  
µA  
µA  
mA  
Control  
Input current  
IIL  
-10  
Source current  
IO  
-40  
30  
Output  
Sink curren  
IO  
RB = 50 Ω  
VO = 18 V  
18  
42  
Output leak current  
Standby current  
ILO  
ICCO  
ICC  
20  
0
10  
All devices  
Power current at output OFF  
1.9  
2.7  
9
MB3788  
STANDARD CHARACTERISTIC CURVES  
1. Power current - supply voltage characteristic  
2. Reference voltage - supply voltage characteristic  
TA = +25°C  
TA = +25°C  
2.5  
2.0  
1.5  
CTL1 = 6 V  
5
4
3
2
1
0
CTL1, 2 = 6 V  
Reference  
voltage  
VREF (V)  
Power  
current  
lCC (mA)  
1.0  
0.5  
0
0
4
8
12 16 20  
0
4
8
12 16 20  
Supply voltage VCC (V)  
Supply voltage VCC (V)  
3.Reference voltage, output current setting pin voltage  
- supply voltage characteristic  
4. Reference voltage - ambient temperature characteristic  
2.56  
TA = +25°C  
VCC = 6 V  
VCTL1, 2 = 6 V  
IOR = -1 mA  
5
4
3
2
1
0
5
4
Reference  
voltage  
VREF (V)  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
VREF  
Reference  
voltage  
VREF (V)  
3
2
1
0
Output  
current  
setting  
pin voltage  
VE (V)  
VE  
-60 -40 -20  
0
20 40 60 80 100  
Ambient temperature TA (°C)  
0
1
2
3
4
5
Supply voltage VCC (V)  
5. Reference voltage - control voltage characteristic  
VCC = 6 V  
6. Control current - control voltage characteristic  
VCC = 6 V  
TA = +25°C  
500  
400  
300  
200  
100  
0
TA = +25°C  
3.0  
2.8  
Reference  
Control  
current  
voltage  
VREF (V)  
2.6  
2.4  
2.2  
2.0  
lCTL1 (µA)  
0
1
2
3
4
5
0
4
8
12 16  
20  
Control voltage VCTL1 (V)  
Control voltage VCTL1 (V)  
10  
MB3788  
8.Gain - frequency characteristic and phase - frequency  
characteristic  
7. Duty - input oscillating frequency characteristic  
100  
80  
Input waveform  
VCC = 6 V  
VFB = 1.6 V  
TA = +25°C  
TA = +25°C  
180  
90  
40  
20  
1.9V  
1.3V  
60  
Duty  
Dtr (%)  
Gain  
(dB)  
Phase  
φ (deg)  
0
40  
20  
0
0
-90  
-20  
-40  
-180  
05 K10 K50 K100 K500 K1 M  
Input oscillating frequency (Hz)  
1 K 10 K100 K1 M5 M10 M  
f (Hz)  
9. Power dissipation - ambient temperature characteristic  
1000  
Circuit for measuring gain - frequency characteristic and  
phase - frequency characteristic  
VCC = 6 V  
2.5 V  
2.5 V  
240 kΩ  
800  
600  
4.7 k4.7 kΩ  
10 µF  
Power  
dissipation  
PD (mW)  
-
out  
+
-
400  
+
in  
Error amplifier  
200  
0
4.7 kΩ  
4.7 kΩ  
-20 020 406080 100  
Ambient temperature TA (°C)  
11  
MB3788  
HOW TO SET OUTPUT VOLTAGE  
VREF  
VOUT  
VREF  
2 × R2  
VOUT =  
(R1 + R2)  
R
R1  
+
-
R
R2  
RNF  
Note: Set the output voltage in the positive range (VOUT > 0).  
12  
MB3788  
HOW TO SET OUTPUT CURRENT  
The output circuit is configured in a push-pull type as shown in Figure 1. The ON current value of the output current waveform shown in Figure  
2 is a constant current and the OFF value set by RE is set by a time constant. Each output current can be calculated from the following expression:  
ON current = 1.5/RE (A) (Output current setting pin voltage: VE 1.5 V)  
The OFF current time constant is proportional to the value of CB.  
Drive Tr  
ON current  
CB  
OFF  
current  
OFF current  
setting part  
Output  
0
current  
ON current  
OFF current  
RE  
VE  
t
Fig.1 Output Circuit Diagram  
Fig.2 Output Current Waveform  
1000 pF  
VCC  
Iout  
-IN1 (C)  
(5 V)  
4
5
22 µH  
10 µF  
1
8.2 k  
2.7 k  
Vout  
2
MB3788  
1000 pF  
-IN1 (E)  
3
150 Ω  
Fig.3 Output Pin Voltage and Current Waveforms (Channel 1)  
Fig.4 Measurement Circuit Diagram  
13  
MB3788  
HOW TO SET TIME CONSTANT FOR TIMER & LATCH-TYPE SHORT-CIRCUIT  
PROTECTION CIRCUIT  
If the load conditions of the switching regulator are stable, the outputs of comparators 1 and 2 do not change, so the SP comparator outputs a  
High level. At this time, the SCP pin (pin 15) is held at about 50 mV.  
If the load conditions change suddenly due to a load short-circuit, for example, the output voltage of the comparator of the channel becomes a  
High-level signal (more than 2.1 V). Then, the SVP comparator outputs a Low level and transistor Q1 is turned off. The short-circuit protection  
capacitor CPE externally connected to the SCP pin starts to charge.  
VPE = 50 mV + tPE × 10-6/CPE  
0.65 = 50 mV + tPE × 10-6/CPE  
CPE = tPE /0.6 (s)  
Once the capacitor CPE is charged to about 0.65 V, the SR latch is set and the output drive transistor is turned off. At this time, the duty cycle  
is made low and the output voltage of the SCP pin (pin 15) is held at Low level. This closes the SR latch input to discharge CPE.  
2.5 V  
1 µA  
15  
S
R
Low  
input  
voltage  
protection  
circuit  
PWM  
comparator  
OUT  
-
-
+
Comparator 1  
Comparator 2  
SR latch-type  
circuit  
Q2  
CPE  
Q1  
2.1 V  
Fig. 5 Latch-Type Short-Circuit Protection Circuit  
14  
MB3788  
PROCESSING WITHOUT USING SCP PIN  
If the timer and latch-type short-circuit protection circuit is not used, connect the SCP pin (pin 15) to GND as close as possible. Also, connect  
the input pin of each channel comparator to the VCC pin (pin 11).  
11  
VCC  
9
-IN1 (C)  
16  
-IN2 (C)  
GND  
SCP  
15  
24  
Fig. 6 Processing without using SCP Pin  
15  
MB3788  
EQUIVALENT SERIES RESISTANCE OF SMOOTHING CAPACITOR AND STABILITY OF  
DC/DC CONVERTER  
The equivalent series resistance (ESR) of the smoothing capacity in a DC/DC converter has a great effect on the loop phase characteristics.  
The ESR causes a small delay at the capacitor with a series resistance of 0 (Figures 8 and 9), thus improving system stability. On the other  
hand, usingasmoothingcapacitorwithalowESRreducessystemstability. Therefore, attentionshouldbepaidtousingsemiconductorelectrolytic  
capacitors (such as OS capacitors) or tantalum capacitors with a low ESP. (Phase margin reduction by using an OS capacitor is explained on  
the next page.)  
L
Tr  
RC  
VIN  
D
RL  
C
Fig. 7 Basic Voltage-Drop Type DC/DC Converter Circuit  
20  
0
0
(2)  
Phase  
(deg)  
-90  
Gain  
(dB)  
-20  
-40  
-60  
(2)  
(1)  
(1): RC = 0 Ω  
(1): RC = 0 Ω  
(2): RC = 31 mΩ  
(2): RC = 31 mΩ  
(1)  
-180  
101001 k 10 k100 k  
Frequency f (Hz)  
101001 k 10 k100 k  
Frequency f (Hz)  
Fig.8 Gain - Frequency Characteristic  
Fig.9 Phase - Frequency Charecteristic  
16  
MB3788  
(Reference Data)  
The phase margin is halved by changing the smoothing capacitor from an aluminum electrolytic capacitor (Rc = 1.0 ) to a semiconductor  
electrolytic capacitor (OS capacitor: Rc = 0.2 ) with a low ESR (Figures 11 and 12).  
VOUT  
VO+  
CNF  
AV - φ characteristic between VOUT and VIN  
R2  
-IN  
+IN  
+
-
VIN  
FB  
R1  
VREF/2  
Error amplifier  
Fig. 10 DC/DC Converter AV - φ Characteristic Measurement Diagram  
Aluminum electrolytic capacitor gain - frequency and phase - frequency characteristics (DC/DC converter +5 V output)  
60  
VCC = 10 V  
RL = 25 Ω  
180  
90  
CP = 0.1 µF  
40  
20  
AV  
ϕ
VO+  
Gain  
(dB)  
+
-
62°  
Phase  
0
0
(deg)  
GND  
-90  
-20  
-40  
Aluminum electrolytic capacitor  
220 µF (16 V)  
-180  
Rc 1.0 : fOSC = 1 kHz  
101001 k 10 k 100 k  
Frequency f (Hz)  
Fig. 11 Gain - Frequency Characteristic  
OS capacitor gain - frequency and phase - frequency characteristics (DC/DC converter +5 V output)  
VCC = 10 V  
60  
40  
20  
AV  
RL = 25 Ω  
CP = 0.1 µF  
180  
90  
VO+  
ϕ
Gain  
(dB)  
+
-
Phase  
(deg)  
0
0
27°  
GND  
-20  
-40  
-90  
OS capacitor  
22 µF (16 V)  
-180  
Rc 1.2 : fOSC = 1 kHz  
101001 k 10 k 100 k  
Frequency f (Hz)  
Fig.12 Phase - Frequency Characteristic Curves  
17  
MB3788  
APPLICATION CIRCUIT  
10 µH  
VCC  
+
-
+
-
33 µF  
33 µF  
11  
13  
14  
VCC  
CTL2  
CTL1  
4.7 kΩ  
8
<Logic power supply>  
(a)  
Cb1  
Ca1  
4
5
1
2
3
+IN1 (E)  
1000 pF  
4.7 kΩ  
8.2 kΩ  
(a)  
Channel 1  
(dB)  
7
-IN1 (E)  
22 µH  
5 V  
VCC(out)  
OUT1  
VE1  
100 kΩ  
0.22 µF  
2.7 kΩ  
+
-
6
10 µF  
FB1  
150 Ω  
(15 mA)  
9
-IN1 (C)  
<Logic power supply>  
(b)  
4.7 kΩ  
4.7 kΩ  
+IN2 (E)  
-IN2 (E)  
17  
18  
20  
21  
23  
22  
Ca2  
Cb2  
1000 pF  
3.8 kΩ  
2.7 kΩ  
22 µH  
3 V  
(b)  
Channel 2  
(deg)  
+
-
100 kΩ  
0.22 µF  
OUT2  
VE2  
10 µF  
FB2  
19  
150Ω  
-IN2 (C)  
16  
VREF SCP  
-IN(PWM)  
GND  
24  
10  
15  
12  
0.1 µF  
Triangular wave signal  
1.9 V  
1.3 V  
CT  
<Analog power supply>  
+15 V  
+24 V  
<Sensor power supply>  
<DC motor speed control>  
<DC motor speed control>  
<MB3785A-used DC/DC converter>  
DC motor 1  
DC motor 2  
18  
MB3788  
PRECAUTIONS  
1. Do not apply any voltage greater than the maximum rating, or the LSI may be damaged.  
2. Use the MB3788 under the recommended operating conditions.  
If a voltage greater than the maximum voltage is applied, the electrical characteristics are not guaranteed; if a voltage smaller than the  
minimum voltage is applied, the LSI operation will become unstable.  
3. To ground the PC board, use the thickest cable possible because high frequencies are used which can easily produce high-frequency noise.  
4. Connecting unused channel pin  
For unused channels, the output voltage of the comparator for detecting a short-circuit must be fixed at the Low level.  
5. Take measures against static electricity.  
Carry semiconductors in a conductive container or anti-static case.  
Carry the PC board in a conductive bag or container if it is stored or transported after packaging.  
Ground the workbench, and all tools and measuring instruments.  
Workers should be grounded through a resistance of 250 kto 1 M.  
19  
MB3788  
PACKAGE DIMENSION  
24-pin plastic SSOP  
(FPT-24P-M03)  
1.25 +00..1200  
*
7.75±0.10(.305±.004)  
(Mounting height)  
.049 +..000048  
0.10(.004)  
*
5.60±0.10  
7.60±0.20  
6.60(.260)  
NOM  
(.220±.004) (.299±.008)  
INDEX  
"A"  
0.22 +00..0150  
0.15 +00..0025  
Details of "A" part  
0.10±0.10(.004±.004)  
0.65±0.12(.0256±.0047)  
.009 +..000024  
.006 +..000012  
(STAND OFF)  
7.15(.281)REF  
0
10°  
0.50±0.20  
(.020±.008)  
C
1994 FUJITSU LIMITED F24018S-2C-2  
Dimensions in mm (inches).  
20  
MB3788  
FUJITSU LIMITED  
For further information please contact:  
Japan  
FUJITSU MEDIA DEVICES LIMITED  
Marketing and Technical Support Dept.  
SUN HAMADA BLDG 2F  
1-19-20, Shin-yokohama  
kouhoku-ku Yokohama-shi  
Kanagawa 222-0033, Japan  
Tel: 81(45) 471-0061  
All Rights Reserved.  
The contents of this document are subject to change without  
notice. Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
Fax: 81(45) 471-0076  
The information and circuit diagrams in this document are  
presented as examples of semiconductor device applications,  
and are not intended to be incorporated in devices for actual use.  
Also, FUJITSU is unable to assume responsibility for  
infringement of any patent rights or other rights of third parties  
arising from the use of this information or circuit diagrams.  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
Semiconductor Division  
3545 North First Street  
San Jose, CA 95134-1804, USA  
Tel: (408) 922-9000  
FUJITSU semiconductor devices are intended for use in  
standard applications (computers, office automation and other  
office equipment, industrial, communications, and  
measurement equipment, personal or household devices, etc.).  
CAUTION:  
Customers considering the use of our products in special  
applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage,  
or where extremely high levels of reliability are demanded (such  
as aerospace systems, atomic energy controls, sea floor  
repeaters, vehicle operating controls, medical devices for life  
support, etc.) are requested to consult with FUJITSU sales  
representatives before such use. The company will not be  
responsible for damages arising from such use without prior  
approval.  
Fax: (408) 922-9179  
Customer Response Center  
Mon. - Fri.: 7 am - 5 pm (PST)  
Tel: (800) 866-8608  
Fax: (408) 922-9179  
http://www.fujitsumicro.com/  
Europe  
FUJITSU MIKROELEKTRONIK GmbH  
Am Siebenstein 6-10  
D-63303 Dreieich-Buchschlag  
Germany  
Tel: (06103) 690-0  
Fax: (06103) 690-122  
Any semiconductor devices have an inherent chance of  
failure. You must protect against injury, damage or loss from  
such failures by incorporating safety design measures into your  
facility and equipment such as redundancy, fire protection, and  
prevention of over-current levels and other abnormal operating  
conditions.  
http://www.fujitsu-ede.com/  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE LTD  
#05-08, 151 Lorong Chuan  
New Tech Park  
Singapore 556741  
Tel: (65) 281-0770  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Law of Japan, the prior  
authorization by Japanese government will be required for  
export of those products from Japan.  
Fax: (65) 281-0220  
http://www.fmap.com.sg/  
F9902  
FUJITSU LIMITED Printed in Japan  

相关型号:

MB3789

Switching Regulator Controller (Supporting External Synchronization)
FUJITSU

MB3789APFV-XXXE1

Switching Regulator
CYPRESS

MB3789APFV-XXXE1

Switching Regulator, 200kHz Switching Freq-Max, BIPolar, PDSO16, 4.40 X 5 MM, 1.45 MM HEIGHT, 0.65 MM PITCH, ROHS COMPLIANT, PLASTIC, SSOP-16
FUJITSU

MB3789APFV-XXXE1

Switching Regulator
SPANSION

MB3789PFV

Switching Regulator Controller (Supporting External Synchronization)
FUJITSU

MB3790

Battery Backup IC
FUJITSU

MB3790PF

Battery Backup IC
FUJITSU

MB3790PFT

Battery Backup IC
FUJITSU

MB3793

POWER-VOLTAGE MONITORING IC WITH WATCHDOG TIMER
FUJITSU

MB3793-27A

Power Voltage Monitoring IC with Watchdog Timer
FUJITSU

MB3793-27AP

Power Voltage Monitoring IC with Watchdog Timer
FUJITSU

MB3793-27APF

Power Voltage Monitoring IC with Watchdog Timer
FUJITSU