AN-9737 [FAIRCHILD]

Design Guideline for Single-Stage Flyback AC-DC Converter Using FL6961 for LED Lighting; 设计指南单级反激式AC- DC转换器采用FL6961 LED照明
AN-9737
型号: AN-9737
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Design Guideline for Single-Stage Flyback AC-DC Converter Using FL6961 for LED Lighting
设计指南单级反激式AC- DC转换器采用FL6961 LED照明

转换器
文件: 总11页 (文件大小:390K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
www.fairchildsemi.com  
ANꢀ9737  
Design Guideline for SingleꢀStage Flyback ACꢀDC  
Converter Using FL6961 for LED Lighting  
Summary  
Basic Operation: High Power Factor  
Flyback Converter  
This application note presents singleꢀstage Power Factor  
Correction (PFC) and focuses on how to select and design  
the flyback transformer for 16.8W (24V/0.7A) solution for  
universal input for LED lighting applications using FL6961.  
The flyback converter using FL6961 operates in Critical  
Conduction Mode (CRM) and has functions such as CC/CV  
feedback circuit, softꢀstarting, and the cycleꢀbyꢀcycle current  
limit for LED lighting applications.  
The basic idea of achieving high power factor (PF) flyback  
converter is to use a Critical Conduction Mode (CRM) PFC  
controller. The conventional PFC IC, such as FL6961, has  
constant onꢀtime and variable offꢀtime control method,  
which means the input average current always follows the  
input voltage shape.  
Figure 1 shows the typical application schematic of singleꢀ  
stage PFC topology. The main difference of normal CRM  
boost converter is that singleꢀstage PFC doesn’t use a large  
electrolytic capacitor after the full rectification diode.  
Normally, the singleꢀstage PFC method uses a small  
capacitor (C1 in Figure 1) to act as a noise filter to attenuate  
highꢀfrequency components and doesn’t use the INV pin for  
output voltage regulation.  
Introduction  
These days, engineers use various types of LEDs for general  
lighting systems because of their long life, excellent  
efficacy, price, environmental benefits, and requirements  
from end users. At the same time, high power factor (PF),  
isolation for safety, and constant current control (CC) for  
constant LED color are becoming requirements.  
Conventional regulation is the minimum power factor  
correction for input power base above 25W, but many want  
to reduce power ratings and the new EnergyꢀStar directive  
for solidꢀstate lighting requires a power factor greater than  
0.9 for commercial applications. Expect PF regulations to  
become more stringent.  
T1  
BR  
D3  
C4  
R5  
R8  
D2  
R1  
D1  
C5  
U101  
R2  
VCC  
OUT  
INV  
1
2
8
7
Fuse  
COMP  
MOT  
C1  
R6  
GND  
ZCD  
Q1  
R3  
3
4
6
5
R7  
C2  
CS  
EMI filter  
C3  
R4  
R8  
Feedback  
Figure 1. Simplified Schematic of HighꢀPower Factor Flyback Converter with FLS6961  
© 2011 Fairchild Semiconductor Corporation  
Rev. 1.0.0 • 4/13/11  
www.fairchildsemi.com  
ANꢀ9737  
APPLICATION NOTE  
Figure 2 shows typical waveforms of the simplified circuit  
of a flyback converter with CRM. When the MOSFET (Q1)  
turns on, the primary current in primary side linearly  
increases and is clamped at a certain internal level because  
the FL6961 doesn’t have cycleꢀbyꢀcycle current limit like a  
conventional current mode control IC (such as FAN7527B).  
Its peak level is determined by the primary magnetizing  
inductance value and the fixed onꢀtime. Instead of the cycleꢀ  
byꢀcycle primary current limit, the FL6961 has an overꢀ  
current protection (OCP) function. If the current sensing  
signal is larger than internal detection level, the FL6961  
doesn’t get output signal for operating the MOSFET (Q1).  
(NS) and naturally decreases to zero. The average current of  
the secondary side is:  
1 NP  
IAVG(DIODE)  
=
IPKtoff  
(3)  
2 NS  
Since the diode forwardꢀvoltage drop decreases as current  
decreases, the output voltage reflects the primary winding  
and adds additional voltage due to overshoot made by  
resonance between the leakage inductance on primaryꢀside  
winding and parasitic capacitance on the MOSFET (Q1). As  
a result, a superimposed voltage occurs on the MOSFET  
during offꢀtime as:  
MOSFET DrainꢀtoꢀSource Current)  
DS  
I
(
)
VMOSFET (off ) = VIN +VR +VOS  
(4)  
PK ( MOSFET  
)
I
where VR is the reflected voltage and VOS is the voltage  
overshoot term.  
AVG (MOSFET  
I
)
The reflected voltage, VR, is affected by the turns ratio  
between the primary and secondary side of the transformer  
and the output voltage, calculated as:  
time  
)
(Diode Current  
D
I
PK ( DIODE  
)
I
NP  
VR =  
VO  
(5)  
AVG (DIODE  
I
)
NS  
Figure 3 shows the ideal waveforms of the primaryꢀside  
current at MOSFET (Q1) and the secondaryꢀside current at  
the diode. The input peak and average current on the  
primary side follows input voltage instantaneously.  
Normally, secondaryꢀside current on the diode is larger than  
the primary side because of the turns ratio.  
time  
DS  
V
(MOSFET Voltage)  
OS  
V
R
V
IN  
V
time  
OFF  
t
ON  
t
S
t
Figure 2. Key Waveforms of Flyback Converter on  
CRM  
The FL6961 has a constant onꢀtime across the whole range.  
The input average current always follows the peak input  
current, as shown in the equation:  
1
IAVG(MOSFET )  
=
IPKtON  
(1)  
2
This is also proportional to the instantaneous input voltage.  
This means the input current shape is always the same as the  
input voltage shape. The reverse diode voltage is linearly  
increased and is equal to:  
Figure 3. Ideal Waveforms  
NS  
VPK (DIODE) = VO +VIN  
(2)  
NP  
During the MOSFET offꢀtime, which is also the diode onꢀ  
time; the input current instantly drops to zero, the diode in  
the secondary side conducts, and the diode current linearly  
decreases. The peak current of the secondary side is the  
same as the multiplication of the primary peak current and  
turns ratio between the primary side (NP) and secondary side  
© 2011 Fairchild Semiconductor Corporation  
Rev. 1.0.0 • 4/13/11  
www.fairchildsemi.com  
2
ANꢀ9737  
APPLICATION NOTE  
As a result, designers should consider two conditions before  
component selection: voltage and current capacity on  
primaryꢀside MOSFET(Q1) and secondaryꢀside diode (D3)  
to make a stable system with margin.  
Figure 4 shows a guide to deciding two components on the  
boundary condition of flyback converter topology.  
Figure 4. Boundary Conditions of Flyback Converter  
Topology (Refer to AN-8025)  
Design Example  
A. Transformer Design  
[W]  
P = Io (Vo +Vd ) = 0.7(24+1) =17.5  
A design guideline of 16.8W singleꢀstage flyback ACꢀDC  
converter using FL6961 is presented. The applied system  
parameters are shown in Table 1.  
Step 4. Calculate the maximum input current, Imax  
:
P
17.5  
o
[A]  
Iin(max)  
=
=
= 0.168  
Vminη  
( 2 ×90)(0.82)  
Table 1. System Parameters  
Step 5. Calculate the MOSFET voltage drop, Vvd:  
[V]  
Parameter  
Value  
Vvd = Iin(max) RMOS = 0.168  
Step 6. Calculate the primary voltage on transformer, Vp:  
90V~265V  
24V  
Main Input Voltage Range, VAC(main)  
Output Voltage, VOUT  
0.7A  
50kHz  
1V  
[V]  
VP = Vmin V vd= 127 0.168 127  
Vp=126.83 use 127  
Output Current, IOUT  
Minimum Switching Frequency at VAC(min)_pk  
Diode Voltage Drop, Vd  
Step 7. Calculate the primary peak current, Ippk  
2TP  
2(20×106 )(17.5)  
Vpton(max) 0.82(127)(7×106  
:
1ꢁ  
MOSFET On Resistance, RMOS  
Window Utilization  
[A]  
I ppk  
=
=
= 0.96  
0.4  
η
)
0.82  
0.35  
0.35  
Target System Efficiency  
Step 8. Calculate the primary rms current, Iprms  
:
Maximum Duty at Vac(min)_pk  
Operating Maximum Flux Density  
(7×106 )  
ton  
[A]  
I prms = I ppk  
= 0.96  
= 0.32  
3T  
3(20×106 )  
0.5%  
Regulation, α  
Note:  
Step 9. Calculate the required minimum inductance, L:  
1. Regulation is strongly related with the copper loss and  
0.5% regulation means 0.084W loss on transformer.  
127(7×106 )  
Vpton(max)  
[mH]  
L =  
=
= 0.926  
I ppk  
0.96  
There are many ways to decide core and coil size and turns,  
such as using AL value and following common practices. In  
this note, use the Kg value related with the core geometry to  
find optimum core and coil information.  
L=0.926[  
m
H] use 1[mH]  
Step 10. Calculate the energyꢀhanding capability in wattꢀ  
seconds, wꢀs:  
Step 1. Calculate the total period, T:  
1
LI p2pk  
(1×103 )(0.962 )  
[wꢀs]  
[s]  
ENG =  
=
= 0.0004608  
T = = 20  
2
2
f
Step 2. Calculate the maximum onꢀtime at MOSFET in  
primary side.  
Step11. Calculate the electrical conditions, Ke:  
Ke = 0.145PBm2 ×104 = 0.145(17.5)(0.352 )×104 = 0.00003108  
Step 12. Calculate the core geometry, Kg:  
ton = TDmax = (20×106 )(0.35) = 7  
[s]  
Step 3. Calculate the output power:  
© 2011 Fairchild Semiconductor Corporation  
Rev. 1.0.0 • 4/13/11  
www.fairchildsemi.com  
3
ANꢀ9737  
APPLICATION NOTE  
(ENG)2  
(0.0004608)2  
[A/cm2]  
Wa Ku  
Nnew  
0.4283×0.4  
[cm5]  
AW (B)  
=
=
= 0.002315  
Kg =  
=
= 0.0136  
74  
Keα  
0.00003108(0.5)  
Step 23. Calculate the skin depth at expected operating  
frequency at low input voltage. The skin depth is the radius  
of the wire.  
Step 13. See Table 2 for core size.  
To prevent core saturation, select a little big core after  
comparing two Kg values: calculate value at Step 12 vs. the  
existing value in Table 2.  
6.62  
6.62  
50×103  
[cm]  
γ
=
=
= 0.02960  
f
The PQꢀ42016 has a little bit big Kg value (0.01327) in  
Table 2 with 2500 permeability (ꢁi).  
Step 24.Calculate the required wire area under considering  
skin depth :  
Step 14. Calculate the current density, J.:  
[cm2]  
2
WireA =  
π
(r ) = 0.0027535  
4
4
[A/cm2]  
2( ENG ) × 10  
2(0.0004608 ) × 10  
0.35 (0.2484 )( 0 .4)  
J =  
=
= 265  
Bm AP K u  
Step 25. Select a wire size with the required area from Table  
4. If the area is not within 10% of the required area, then go  
to the next smallest size.  
Step 15. Calculate the required wire area. AW(B)  
:
[cm2]  
I rms  
J
0.32  
265  
AW  
=
=
= 0 .001207  
AWG=#23  
AW(B)=0.00259[cm2]  
( B )  
Step 16. Calculate the number of turns, N:  
ꢁꢂ/cm=666  
W a K u  
Aw ( B )  
0.4283 × 0.4  
0.001207  
[T]  
N =  
=
= 141 .93  
Step 26. Calculate the required number of primary strands,  
Snp:  
N=141.93; use 142 turns.  
Step 17. Calculate the required gap, lg:  
Aw(B)  
0.002315  
0.00259  
Snp  
=
=
= 0.8938  
WireA  
0.4π  
(N)(I)×104 0.4  
π
(142)(0.96)×104  
[cm]  
lg =  
=
= 0.0489  
This means that the selected wire from the Step 25, AWG23,  
is enough or has enough margins for supplying the primaryꢀ  
side current on the flyback converter.  
Bm  
0.35  
Step 18. Calculate the new turns using a gap from Step 15.  
Step 27. Calculate the secondary and auxiliary turns, Ns  
MPL  
i  
(Ac )  
3.74  
1×103 (0.0489 +  
)(108 )  
L(lg  
+
)
Naux  
:
[T]  
2500  
0.4π (0.58)  
N =  
=
= 83.153  
0.4  
π
N p (Vo +Vd )(1Dmax  
)
74(24 +1)(10.35)  
( 2 ×90)(0.35)  
Ns =  
=
= 27.05  
=17.31  
(Vp Dmax  
)
N=83.153; use 83[T].  
Ns=27.05; use 27.  
N p (Vo +Vd )(1Dmax  
where i is permeability of selected core material and  
MPL is Magnetic Path Length of selected core.  
)
74(15 +1)(10.35)  
Naux  
=
=
(Vp Dmax  
)
Step 19. Calculate the fringing flux, F:  
( 2 ×90)(0.35)  
lg  
2G  
0.0489 2(1.001)  
ln ) = 1.238  
Naux=17.31; use 17.  
Step 28. Calculate the secondary peak current, Ispk  
F = (1+  
ln  
) = (1+  
lg  
0.0489  
Ac  
0.58  
:
where G is window height of selected core.  
2Io  
2(0.7)  
[A]  
Ispk  
=
=
= 2.153  
(1Dmax  
)
10.35  
Step 20. Calculate the new turns, Nnew  
:
0.0489×1×105  
(0.4 )(0.58)(1.238)  
Step 29. Calculate the secondary rms current, Isrms  
:
lg L  
)(Ac )F(108  
[T]  
N =  
=
= 73.6  
(0.4π  
)
π
(1Dmax  
)
(10.35)  
[A]  
:
Isrms = Ispk  
= 2.153  
=1.0021  
3
3
Nnew=73.6; use 74.  
Step 30. Calculate the secondary wire area, Asw(B)  
Step 21. Calculate the AC flux density in Tesla, BAC  
:
IPK  
0.96  
Irms 1.0021  
(0.4π  
)N(  
)F(104  
)
(0.4π  
)(74)(  
)(1.238)(104  
)
[cm2]  
ASW (B)  
=
=
= 0.003781  
= 0.113 [T]  
2
lg  
2
Bac  
=
=
J
265  
0.0489  
Step 31. Select a wire size with the required area from Table  
4. If the area is not within 10% of the required area, go to  
the next smallest size.  
Step 22. Calculate the new wire size, AW(B)  
:
© 2011 Fairchild Semiconductor Corporation  
Rev. 1.0.0 • 4/13/11  
www.fairchildsemi.com  
4
ANꢀ9737  
APPLICATION NOTE  
AWG=#22  
C. Sensing Resistor  
AW(B) =0.003243[cm2]  
ꢁꢂ/cm=531.4  
The CS pin of FL6961 has overꢀcurrent protection (OCP)  
over the whole operating period and its internal clamping  
level, VLIMIT, is 0.8V.  
Step 32. Calculate the required number of primary strands,  
Snp:  
Asw(B)  
0.003243  
0.00259  
Snp  
=
=
=1.2521  
WireA  
This requires the AWG21 wire with two strands for  
secondaryꢀside winding on the flyback converter.  
Adapted Core Size  
PQꢀ42614  
AWG  
23  
Primary  
74  
27  
Turns  
Secondary  
Auxiliary  
22/ 2 Strands  
17  
Estimated gap[mm]  
0.489  
Figure 5. Switching Current Limit  
B. MOSFET and Diode Selection  
Normally, it is reasonable to set the OCP level to 1.5 times  
higher than the peak current at primary side.  
Step 33. Calculate the maximum voltage of MOSFET drain  
voltage at primary side:  
3TP  
N
VMOSFET(off ) =VIN +VR +VOS =VIN + P VO +VOS = 490.54  
[V]  
ILIMIT = 1.5IPPK  
=
= 1.44  
η
Vpton(max)  
NS  
where VOS is assumed ~50V and its peak can degrade  
external snubber circuit performance. This means a 600V  
MOSFET can be used with some margin. Minimum  
requirements of the MOSFET are summarized below.  
Calculate the sensing resistor as:  
0.8  
[
Ω ]  
Rsensin g  
= 0.55  
ILIMIT  
D. Voltage and Current Feedback for CC/CV  
Function  
Current Rating [A]  
Calculation +20% Margin Calculation  
0.96 1.152 490.54  
Voltage Rating [V]  
+20% Margin  
588.65  
The constant voltage and current output is adapted by  
measuring the actual output voltage and current with  
external passive components and an op amp in the  
evaluation board. Because the output loads, the High  
Bright LED (HB LED) and passive components are  
effected by ambient temperature. Use the feedback path  
for stable operation.  
Step 34. Calculate the maximum voltage of diode at  
secondary side:  
NS  
NP  
27  
74  
[V]  
VPK (DIODE ) = VO +VIN  
= 24 + 265 2  
= 160.74  
This means a 200V diode can be used with some margin.  
The minimum requirement of the secondary diode as  
summarized below.  
Current rating [A]  
Calculation +20% Margin Calculation  
2.153 2.584 160.74  
Voltage rating [V]  
+20% Margin  
192.88  
Figure 6. Feedback Circuit for CC/CV Operation  
© 2011 Fairchild Semiconductor Corporation  
Rev. 1.0.0 • 4/13/11  
www.fairchildsemi.com  
5
ANꢀ9737  
APPLICATION NOTE  
E. SoftꢀStart / Overshoot Prevention Function  
Normally, the CC block is dominate over the CV block in  
steady state and the CV block acts as the OverꢀVoltage  
Protection (OVP) at transient or abnormal mode, such as noꢀ  
load condition.  
Normally, the High Bright (HB) LED has a forwardꢀcurrent  
limitation to prevent the LED burnꢀout due to overꢀpower  
dissipation. Thererfore, the output overshoot function is  
needed through the whole operating period. Though there  
are CC/CV blocks for output regulation, those blocks do not  
operate in transient modes, because they block have a long  
response time and cannot act instantly. Figure 7 shows the  
output voltage overshoot compression method using diode  
and resistor. The current flows through resistor, R9, and  
diode, D204, at startup, which is the period before activating  
the CC/CV block, and then decrease at steady state. The  
quantity of byꢀpassing current goes into the feedback block  
on the control IC, FL6961, and controls the output power  
gradually.  
The output signal of CC block is determined as:  
Vsensin g _ CC Vref  
Vsensin g _ CC Vref  
1
VO _ cc = R4 (  
) +  
(
)dt  
R2  
R3  
C1  
R2  
R3  
where the Vsensing_CC means the sensing voltage from the  
sensing resistor (R1) and its values is as:  
Vsensin g _ CC = Io × R  
1
The output signal of CV block is determined as:  
R6  
R
R6  
VO _CV = (  
)Vsensin g _CV  
+
8 [(  
)
R5 + R6  
R7 R5 + R6  
1 1  
R6  
Vsensin g _CV Vref ]+  
(
Vsensin g _CV Vref )dt  
C2 R7 R5 + R6  
where the Vsensing_CV means the output voltage on this  
circuit and this voltage is divided by two resistors, R5 and  
R6, and connected to nonꢀinverted pin at the op amp.  
R6  
Normally, set this divided voltage,  
, to  
)Vsensin g _ CV  
(
R5 + R6  
Vref  
or a little bit smaller value in steady state condition  
because the main role of this block is overꢀvoltage  
protection. There are more highꢀvoltage transfers to the  
output stage at transient or an abnormal case such as overꢀ  
voltage output condition than in the steady state.  
Figure 7. SoftꢀStart / Overshoot Prevention Method  
© 2011 Fairchild Semiconductor Corporation  
Rev. 1.0.0 • 4/13/11  
www.fairchildsemi.com  
6
ANꢀ9737  
APPLICATION NOTE  
Table 2. Various Core Types and Size  
MLT  
[cm]  
MPL  
[cm]  
Wa  
Ap  
Kg  
Part #  
G[cm] AC [cm]  
Perm  
AL  
Manufacturer  
[cm2]  
[cm4]  
[cm5]  
RMꢀ42316  
PQꢀ42610  
PQꢀ42614  
PQꢀ42016  
EPCꢀ25  
4.17  
5.54  
5.54  
4.34  
4.930  
7.77  
4.78  
3.80  
2.94  
3.33  
3.74  
5.92  
5.19  
5.69  
1.074  
0.239  
0.671  
1.001  
1.800  
0.356  
1.86  
0.640  
1.05  
0.454  
0.2900  
0.017820  
0.00937  
0.01200  
0.01327  
0.01438  
0.018416  
0.01917  
2500  
2500  
2500  
2500  
2300  
2500  
1800  
2200  
6310  
4585  
2930  
1560  
4103  
1800  
Magnetics  
Magnetics  
Magnetics  
Magnetics  
Magnetics  
Magnetics  
Philips  
0.1177 0.1235  
0.3304 0.2343  
0.4283 0.2484  
0.8235 0.3810  
0.3613 0.3595  
0.6789 0.3944  
0.709  
0.580  
0.4640  
0.9950  
0.5810  
EIꢀ44008  
EFDꢀ25  
Table 3. PQꢀ42016 Core Dimensions  
(Magnetics: http://www.magꢀinc.com/home/AdvancedꢀSearchꢀResults?pn=42016  
Table 4. Wire Table  
Bare Wire Area  
Heavy Insulation  
AWG  
ꢁꢂ/cm  
Cm2  
CIRꢀMIL  
1024.0  
812.30  
640.10  
510.80  
404.0  
Cm2  
Turns/cm  
11.37  
12.75  
14.25  
15.82  
17.63  
19.8  
Turns/cm2  
98.93  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
0.005188  
0.004116  
0.003243  
0.002588  
0.002047  
0.001623  
0.001280  
0.001021  
0.008048  
0.0006470  
332.3  
418.9  
0.006065  
0.004837  
0.003857  
0.003135  
0.002514  
0.002002  
0.001603  
0.001313  
0.0010515  
0.0008548  
124.0  
531.4  
155.5  
666.0  
191.3  
842.1  
238.6  
320.40  
252.80  
201.60  
158.80  
127.70  
1062.0  
1345.0  
1687.6  
2142.7  
2664.3  
299.7  
22.12  
24.44  
27.32  
30.27  
374.2  
456.9  
570.6  
701.9  
© 2011 Fairchild Semiconductor Corporation  
Rev. 1.0.0 • 4/13/11  
www.fairchildsemi.com  
7
ANꢀ9737  
APPLICATION NOTE  
Schematic  
FL6961  
Figure 8. Schematic  
© 2011 Fairchild Semiconductor Corporation  
Rev. 1.0.0 • 4/13/11  
www.fairchildsemi.com  
8
ANꢀ9737  
APPLICATION NOTE  
Bill Of Materials  
Item  
Part  
Value  
Quantity  
Description (Manufacturer)  
Number Reference  
1
2
3
4
5
6
7
8
9
U101  
U102  
FL6961  
FOD817  
1
1
1
1
1
1
1
1
2
CRM PFC Controller (Fairchild Semiconductor)  
OptoꢀCoupler (Fairchild Semiconductor)  
U201  
KA431  
Shunt Regulator (Fairchild Semiconductor)  
U202  
KA358A(LM2904)  
FQPF3N80C  
DF04  
Dual Op Amp (Fairchild Semiconductor)  
Q101  
800V/3A MOSFET (Fairchild Semiconductor)  
D101  
1.5A SMD BridgeꢀDiode (Fairchild Semiconductor)  
1000V/1A UltraꢀFast Recovery Diode (Fairchild Semiconductor)  
400V/1A Fast Recovery Diode (Fairchild Semiconductor)  
200V/3A UltraꢀFast Recovery Diode (Fairchild Semiconductor)  
D102  
RS1M  
D103  
RS1G  
D201,D204  
EGP30D  
D202,D203,  
D205,D206  
10  
11  
LL4148  
82Kꢁ  
3
3
GeneralꢀPurpose Diode (Fairchild Semiconductor)  
SMD Resistor1206  
R101,R102,  
R103  
12  
13  
14  
15  
16  
17  
18  
19  
20  
R104  
R105  
120kꢁ  
10Kꢁ  
20Kꢁ  
9.1kꢁ  
47ꢁ  
1
1
1
1
1
1
1
1
2
SMD Resistor1206  
SMD Resistor1206  
SMD Resistor1206  
SMD Resistor1206  
SMD Resistor 1206  
SMD Resistor 1206  
2W  
R106  
R107  
R108  
R109  
10ꢁ  
R110  
220Kꢁ  
30Kꢁ  
1ꢁ  
R111  
SMD Resistor 1206  
SMD Resistor 1206  
R112,R113  
R201,R202,  
R203  
21  
1ꢁ  
3
SMD Resistor 1206  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
R204  
R205  
R206  
R207  
R208  
R209  
R210  
R211  
R212  
R213  
R214  
2.2ꢁ  
4.3Kꢁ  
1.5Kꢁ  
30Kꢁ  
51Kꢁ  
33Kꢁ  
3.9Kꢁ  
120Kꢁ  
47Kꢁ  
4.7Kꢁ  
47Kꢁ  
1
1
1
1
1
1
1
1
1
1
1
SMD Resistor 0806  
SMD Resistor 0806  
SMD Resistor 0806  
SMD Resistor 0806  
SMD Resistor 0806  
SMD Resistor 0806  
SMD Resistor 0806  
SMD Resistor 0806  
SMD Resistor 0806  
SMD Resistor 0806  
SMD Resistor 0806  
© 2011 Fairchild Semiconductor Corporation  
Rev. 1.0.0 • 4/13/11  
www.fairchildsemi.com  
9
ANꢀ9737  
APPLICATION NOTE  
Bill Of Materials (Continued)  
Item Number  
Part Reference  
Value  
Quantity  
Description (Manufacturer)  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
C101  
C102  
100nF/250V  
47nF/250V  
100nF/630V  
33µF/35V  
2.2nF/1kV  
2.2µF  
1
1
1
1
1
1
1
1
2
1
1
1
2
1
1
1
1
1
X – Capacitor  
X – Capacitor  
C103  
Film Capacitor  
Electrolytic Capacitor  
YꢀCapacitor  
C104  
C105  
C106  
SMD Capacitor 0805  
SMD Capacitor 0805  
SMD Capacitor 0805  
Electrolytic capacitor  
SMD Capacitor 0805  
SMD Capacitor 0805  
Electrolytic Capacitor  
Line Filter  
C107  
30pF  
C108  
100nF  
C201,C202  
C203  
470µF/35V  
1µF  
C204  
470nF  
C205  
10µF/35V  
80mH  
LF101,LF102  
L101  
27µH  
Line Filter  
L102  
6.8µH  
Line Filter  
L201  
5µH  
Output Inductor  
Fuse  
F101  
1A/250V  
PQꢀ42016  
T1  
1mH  
© 2011 Fairchild Semiconductor Corporation  
Rev. 1.0.0 • 4/13/11  
www.fairchildsemi.com  
10  
ANꢀ9737  
APPLICATION NOTE  
Related Datasheets  
FL6961 — SingleꢁStage Flyback and Boundary Mode PFC Controller for Lighting  
ANꢁ8025 — Design Guideline of SingleꢁStage Flyback ACꢁDC Converter Using FAN7530 for LED Lighting  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS  
HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE  
APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS  
PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS  
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or systems which,  
(a) are intended for surgical implant into the body, or (b)  
support or sustain life, or (c) whose failure to perform when  
properly used in accordance with instructions for use provided  
in the labeling, can be reasonably expected to result in  
significant injury to the user.  
2. A critical component is any component of a life support device  
or system whose failure to perform can be reasonably  
expected to cause the failure of the life support device or  
system, or to affect its safety or effectiveness.  
© 2011 Fairchild Semiconductor Corporation  
Rev. 1.0.0 • 4/13/11  
www.fairchildsemi.com  
11  

相关型号:

AN-9738

Design Guideline on 150W Power Supply for LED Street Lighting Design Using FL7930B and FAN7621S
FAIRCHILD

AN-9741

Design Guideline for LED Lamp Control Using Primary-Side Regulated Flyback Converter, FL103M
FAIRCHILD

AN-9744

Smart LED Lamp Driver IC with PFC Function
FAIRCHILD

AN-9745

Design Guide for TRIAC Dimmable LED Driver Using FL7730
FAIRCHILD

AN-9750

High-Power Factor Flyback Converter for LED Driver with
FAIRCHILD

AN-994-1

MAXIMIZING THE EFFECTIVENESS OF YOUR SMD ASSEMBLIES
INFINEON

AN-995A

Electronic Ballasts Using the Cost-Saving IR215X Drivers(153.99 k)
ETC

AN-996

Using the Fairchild FST Bus Switch as a 5V to 3V Translator
FAIRCHILD

AN-CC1002

Design Considerations for ISD1700 Family
WINBOND

AN-E-2266A

VACUUM FLUORESCENT DISPLAY MODULE
ETC

AN-GSMQB-MMCX

GSM Antenna Quad Band
RFSOLUTIONS

AN-TL494

PULSE-WIDTH-MODULATION CONTROL CIRCUITS
TI