IMISSTV850DT [CYPRESS]

PLL Based Clock Driver, 10 True Output(s), 0 Inverted Output(s), PDSO48, TSSOP-48;
IMISSTV850DT
型号: IMISSTV850DT
厂家: CYPRESS    CYPRESS
描述:

PLL Based Clock Driver, 10 True Output(s), 0 Inverted Output(s), PDSO48, TSSOP-48

驱动 光电二极管 逻辑集成电路
文件: 总9页 (文件大小:78K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
50  
PRELIMINARY  
SSTV850  
Differential Clock Buffer/Driver  
Features  
Description  
• Phase-Lock Loop Clock Distribution for Double Data  
Rate Synchronous DRAM Applications  
This PLL clock buffer is designed for 2.5 VDD and 2.5AVDD  
operation and differential data input and output levels.  
• Input to Ten Differential Outputs  
• ExternalFeedbackPins(FBINT, FBINC)areusedtoSyn-  
chronize the Outputs to the Clock Input  
• SSCG: Spread Aware for EMI Reduction  
• 48 Pin TSSOP Package  
This device is a zero delay buffer that distributes a differential  
clock input pair (CLKINT, CLKINC) to ten differential pair of  
clock outputs (YT[0:9], YC[0:9]) and one differential pair feed-  
back clock output (FBOUTT, FBOUTC). The clock outputs are  
individually controlled by the serial inputs SCLK and SDATA.  
• Conforms to JEDEC JC40 & JC42.5 DDR Specifications  
The two line serial bus can set each output clock pair (YT[0:9],  
YC[0:9]) to the Hi-Z state. When AVDD is grounded, the PLL  
is turned off and bypassed for the test purposes.  
The PLL in this device uses the input clocks (CLKINT,CLKINC)  
and the feedback clocks (FBINT,FBINC) to provide high-per-  
formance, low skew, low jitter output differential clocks.  
Block Diagram  
Pin Configuration  
10  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VSS  
VSS  
YC0  
YT0  
YC0  
2
YC5  
YT1  
YC1  
3
YT5  
YT0  
4
VDDQ  
YT6  
VDDQ  
YT1  
5
YT2  
YC2  
6
YC6  
YC1  
7
VSS  
VSS  
YT3  
YC3  
8
VSS  
VSS  
SCLK  
Serial  
Interface  
Logic  
9
YC7  
YC2  
YT4  
YC4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
YT7  
SDATA  
YT2  
VDDQ  
SDATA  
FBINT  
FBINC  
VDDQ  
VDD  
YT5  
YC5  
SCLK  
CLKINT  
CLKINC  
VDDI  
AVDD  
AVSS  
VSS  
YT6  
YC6  
CLKINT  
CLKINC  
YT7  
YC7  
FBOUTC  
FBOUTT  
PLL  
YT8  
YC8  
VSS  
YC8  
YT8  
FBINT  
FBINC  
YC3  
YT3  
YT9  
YC9  
VDDQ  
YT9  
VDDQ  
YT4  
AVDD  
YC9  
VSS  
YC4  
FBOUTT  
FBOUTC  
VSS  
Cypress Semiconductor Corporation  
Document #: 38-07215 Rev. *A  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
Revised December 3, 2001  
PRELIMINARY  
SSTV850  
Pin Description[1, 2]  
Pin  
13  
14  
35  
Name  
CLKINT  
CLKINC  
FBINC  
I/O  
Description  
Electrical Characteristics  
I
I
I
Complementary Clock Input.  
Complementary Clock Input.  
LV Differential Input  
FeedbackClockInput.Connectto Differential Input  
FBOUTC for accessing the PLL.  
36  
FBINT  
YT(0:9)  
YC(0:9)  
FBOUTT  
I
FeedbackClockInput.Connectto  
FBOUTT for accessing the PLL.  
3, 5, 10, 20, 22  
46, 44, 39, 29,27  
O
O
O
Clock Outputs  
Differential Outputs  
2, 6, 9, 19, 23  
47, 43, 40,30,26  
Clock Outputs  
32  
Feedback Clock Output. Connect Differential Outputs  
to FBINT for normal operation. A  
bypass delay capacitor at this out-  
put will control Input Reference/  
Output Clocks phase relation-  
ships.  
33  
FBOUTC  
O
Feedback Clock Output. Connect  
to FBINC for normal operation. A  
bypass delay capacitor at this out-  
put will control Input Reference/  
Output Clocks phase relation-  
ships.  
12  
37  
SCLK  
I, PU  
Serial Clock Input. Clocks data at DataInputforthetwo-lineserial  
SDATA into the internal register. bus  
SDATA  
I/O, PU  
Serial Data Input. Input data is  
Data Input and Output for the  
clocked to the internal register to two-line serial bus  
enable/disableindividualoutputs.  
This provides flexibility in power  
management.  
11  
VDD  
2.5V power Supply for Logic  
2.5V Nominal  
2.5V Nominal  
4, 21, 28, 34, 38, 45  
VDDQ  
2.5V Power Supply for Output  
Clock Buffers.  
16  
15  
AVDD  
VDDI  
2.5V Power Supply for PLL  
2.5V Nominal  
Power Supply for two line serial  
Interface  
2.5V or 3.3V Nominal  
1, 7, 8, 18, 24, 25, 31,  
41, 42, 48  
VSS  
Common Ground  
0.0V Ground  
17  
AVSS  
Analog Ground  
0.0V Analog Ground  
Notes:  
1. PU= Internal Pull-Up  
2. A bypass capacitor (0.1 µF) should be placed as close as possible to each positive power pin (<0.2). If these bypass capacitors are not close to the pins their  
high-frequency filtering characteristic will be cancelled by the lead inductance of the traces  
Document #: 38-07215 Rev. *A  
Page 2 of 9  
PRELIMINARY  
SSTV850  
This device contains circuitry to protect the inputs against  
damage due to high static voltages or electric fields; however,  
precautions should be taken to avoid application of any volt-  
age higher than the maximum rated voltages to this circuit. For  
proper operation, Vin and Vout should be constrained to the  
range:  
Maximum Ratings  
Input Voltage Relative to VSS:...............................VSS 0.3V  
Input Voltage Relative to VDDQ or AVDD: ............. VDD + 0.3V  
Storage Temperature: .................................65°C to +150°C  
Operating Temperature:....................................0°C to +85°C  
Maximum Power Supply: ................................................3.5V  
VSS < (Vin or Vout) < VDD  
Unused inputs must always be tied to an appropriate logic volt-  
age level (either VSS or VDD).  
DC Parameters[3] (VDDA = VDDQ = 2.5V ± 5%, VDDI = 3.3V ± 5%, TA = 0°C to +85°C)  
Parameter  
Description  
Input Low Voltage  
Input High Voltage  
Conditions  
SDATA, SCLK  
Min.  
Typ.  
Max.  
Unit  
V
VIL  
VIH  
VID  
1.0  
2.2  
V
Differential Input  
Voltage[4]  
CLKINT, FBINT  
CLKTIN, FBINT  
0.35  
VDDQ + 0.6  
(VDDQ/2) + 0.2  
10  
V
VIX  
IIN  
Differential Input  
(VDDQ/2) –  
VDDQ/2  
V
Crossing Voltage[5]  
0.2  
Input Current  
VIN =0VorVIN =VDDQ, CLKINT,  
FBINT  
10  
µA  
IOL  
IOH  
Output Low Current  
Output High Current  
Output Low Voltage  
Output High Voltage  
Output Voltage Swing[6}  
VDDQ = 2.375V, VOUT = 1.2V  
VDDQ = 2.375V, VOUT = 1V  
VDDQ = 2.375V, IOL = 12 mA  
VDDQ = 2.375V, IOH = 12 mA  
26  
35  
mA  
mA  
V
18  
32  
VOL  
VOH  
VOUT  
VOC  
0.6  
1.7  
1.1  
V
VDDQ-0.4  
V
Output Crossing  
Voltage[7]  
(VDDQ/2) –  
VDDQ/2  
(VDDQ/2) + 0.2  
V
0.2  
IOZ  
High-ImpedanceOutput VO = GND or VO = VDDQ  
Current  
10  
10  
µA  
IDDQ  
Dynamic Supply  
Current[8]  
All VDDQ and VDDI  
FO = 170 MHz  
,
235  
300  
mA  
IDD  
Cin  
PLL Supply Current  
VDDA only  
9
3
12  
mA  
pF  
Input Pin Capacitance  
2.5  
3.5  
Notes:  
3. Unused inputs must be held HIGH or LOW to prevent them from floating.  
4. Differential input signal voltage specifies the differential voltage |VTR VCP| required for switching, where VTR is the true input level and VCP is the complementary  
input level.  
5. Differential cross-point input voltage is expected to track VDDQ and is the voltage at which the differential signals must be crossing.  
6. For load conditions see Figure 7.  
7. The value of VOC is expected to be |VTR + VCP|/2. In case of each clock directly terminated by a 120resistor. See Figure 7.  
8. All outputs switching loaded with 16 pF in 60environment. See Figure 7.  
Document #: 38-07215 Rev. *A  
Page 3 of 9  
PRELIMINARY  
SSTV850  
AC Parameters[9, 10] (VDD = VDDQ = 2.5V±5%, VDDI = 3.3V±5%, TA = 0°C to +85°C)  
Parameter  
fCLK  
Description  
Operating Clock Frequency  
Input Clock Duty Cycle[11]  
Maximum PLL lock Time  
Output Clocks Slew Rate  
Output Enable Time[12]  
(all outputs)  
Output Disable Time[12]  
(all outputs)  
Conditions  
Min.  
60  
Typ. Max.  
Unit  
MHz  
%
AVDD, VDD = 2.5V ± 0.2V  
170  
60  
tDC  
40  
tlock  
100  
2
µs  
tR/tF  
20% to 80% of VOD  
1
V/ns  
ns  
tpZL, tpZH  
3
3
tpLZ, tpHZ  
ns  
tCCJ  
Cycle to Cycle Jitter  
Half-period jitter [14]  
f > 66MHz  
f > 66MHz  
100  
100  
100  
100  
6
ps  
ps  
ns  
tjit(h-per)  
tPLH  
Low-to-High Propagation Delay,  
CLKINT to YT[0:9]  
1.5  
1.5  
3.5  
3.5  
tPHL  
High-to-Low Propagation Delay,  
CLKINT to YT[0:9]  
6
ns  
tSKEW  
Any Output to Any Output Skew[13]  
Phase Error[13]  
100  
150  
50  
ps  
ps  
ps  
tPHASE  
tPHASEJ  
150  
50  
Phase Error Jitter  
f > 66MHz  
Zero Delay Buffer  
When used as a zero delay buffer the SSTV850 will likely be  
in a nested clock tree application. For these applications the  
SSTV850 offers a differential clock input pair as a PLL refer-  
ence. The SSTV850 then can lock onto the reference and  
translate with near zero delay to low skew outputs. For normal  
operation, the external feedback input, FBINT, is connected to  
the feedback output, FBOUTT. By connecting the feedback  
output to the feedback input the propagation delay through the  
device is eliminated. The PLL works to align the output edge  
with the input reference edge thus producing a near zero de-  
lay. The reference frequency affects the static phase offset of  
the PLL and thus the relative delay between the inputs and  
outputs.  
When VDDA is strapped low, the PLL is turned off and by-  
passed for test purposes.  
Function Table  
Inputs  
Outputs  
PLL  
VDDA  
GND  
GND  
2.5V  
CLKINT  
CLKINC  
YT(0:9)[15] YC(0:9)[15]  
FBOUTT  
FBOUTC  
L
H
L
H
L
L
H
L
H
L
L
H
L
H
L
BYPASSED/OFF  
BYPASSED/OFF  
H
L
H
L
H
L
On  
On  
2.5V  
H
H
H
Nom  
Design  
Nom  
Design  
< 20MHz <30MHZ < 20MHz < 30MHz  
2.5V  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Off  
Note:  
9. Parameters are guaranteed by design and characterization. Not 100% tested in production.  
10. PLL is capable of meeting the specified parameters while supporting SSC synthesizers with modulation frequency between 30 kHz and 33.3 kHz with a down  
spread of 0.5%.  
11. While the pulse skew is almost constant over frequency, the duty cycle error increases at higher frequencies. This is due to the formula: duty cycle = tWH/tC,  
where the cycle time (tC) decreases as the frequency goes up  
12. Refers to transition of non-inverting output  
13. All differential input and output terminals are terminated with 120/16 pF as shown in Figure 7.  
14. Period Jitter and Half-Period Jitter specifications are separate specifications that must be met independently of each other.  
15. Each output pair can be Three-stated via the two-line serial interface.  
Document #: 38-07215 Rev. *A  
Page 4 of 9  
PRELIMINARY  
SSTV850  
Power Management  
Serial Control Registers  
The individual output enable/disable control of the SSTV850  
allows the user to implement unique power management  
schemes into the design. Outputs are three-stated when dis-  
abled through the two-line interface as individual bits are set  
low in Byte0 and Byte1 registers. The feedback output pair  
(FBOUTT, FBOUTC) cannot be disabled via two line serial  
bus. The enabling and disabling of individual outputs is done  
in such a manner as to eliminate the possibility of partial runt”  
clocks.  
Following the acknowledge of the Address Byte, two additional  
bytes must be sent:  
Command Codebyte, and  
Byte Countbyte.  
Byte0: Output Register (1 = Enable, 0 = Disable)  
Bit  
7
@Pup  
Pin#  
3, 2  
Description  
YT0, YC0  
YT1, YC1  
YT2, YC2  
YT3, YC3  
YT4, YC4  
YT5, YC5  
YT6, YC6  
YT7, YC7  
1
1
1
1
1
1
1
1
6
5, 6  
5
10, 9  
20, 19  
22, 23  
46, 47  
44, 43  
39, 40  
4
3
2
1
0
Byte1: Output Register (1 = Enable, 0 = Disable)  
Bit  
7
@Pup  
Pin#  
29, 30  
27, 26  
Description  
YT8, YC8  
YT9, YC9  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1
1
0
0
0
0
0
0
6
5
4
3
2
1
0
Differential Parameter Measurement Information  
CLKINT  
CLKINC  
FBINT  
FBINC  
t(  
)n+1  
t(  
)n  
=
Σn1=N  
t( )n  
(N is large number of samples)  
t(  
)n  
Figure 1. Static Phase Offset  
Document #: 38-07215 Rev. *A  
Page 5 of 9  
PRELIMINARY  
SSTV850  
CLKINT  
CLKINC  
FBINT  
FBINC  
t
(
)
t
(
)
t
d(  
t
d(  
)
)
t
t
d(  
d( )  
)
Figure 2. Dynamic Phase Offset  
YT[0:9], FBOUTT  
YC[0:9], FBOUTC  
YT[0:9], FBOUTT  
YC[0:9], FBOUTC  
tsk(o)  
Figure 3. Output Skew  
YT[0:9], FBOUTT  
YC[0:9], FBOUTC  
t
c(n)  
YT[0:9], FBOUTT  
CYC[0:9], FBOUTC  
1
f(o)  
t
= t  
c(n)  
- 1  
fo  
jit(hper)  
Figure 4. Period Jitter  
Document #: 38-07215 Rev. *A  
Page 6 of 9  
PRELIMINARY  
SSTV850  
YT[0:9], FBOUTT  
YC[0:9], FBOUTC  
t
t
(hper_N+1)  
(hper_n)  
1
f(o)  
t
= t  
- 1  
2x fo  
jit(hper)  
hper(n)  
Figure 5. Half-Period Jitter  
YT[0:9], FBOUTT  
YC[0:9], FBOUTC  
t c(n)  
t c(n)  
tj  
= t -t  
c(n) c(n+1)  
it(cc)  
Figure 6. Cycle-to-Cycle Jitter  
VDD  
VDD  
VDD/2  
16pF  
VTR  
60 O hm  
C LKT  
C LKC  
RT = 120 O hm  
VCP  
60 O hm  
Receiver  
16pF  
VDD/2  
Figure 7. Differential Signal Using Direct Termination Resistor  
Document #: 38-07215 Rev. *A  
Page 7 of 9  
PRELIMINARY  
SSTV850  
Ordering Information  
Part Number  
IMISSTV850DT  
IMISSTV850DTT  
Package Type  
Product Flow  
48-Pin TSSOP  
Commercial, 0° to 85°C  
Commercial, 0° to 85°C  
48-Pin TSSOP - Tape and Reel  
Package Drawing and Dimensions  
48 Pin TSSOP Outline Dimensions  
Inches  
Millimeters  
C
Symbol  
Min.  
-
Nom.  
Max.  
0.047  
0.006  
Min. Nom. Max.  
L
A
A1  
A2  
B
-
-
-
-
1.20  
0.15  
1.05  
0.27  
0.20  
H
E
0.002  
0.05  
0.80  
0.17  
0.09  
-
0.031 0.039 0.041  
1.00  
D
0.007  
0.004  
-
-
0.011  
0.008  
-
-
A2  
A
C
D
E
a
A1  
0.488 0.492 0.496 12.40 12.50 12.60  
B
e
0.236 0.240 0.244  
0.02 BSC  
6.00  
6.10  
0.50 BSC  
8.10  
6.20  
e
H
L
0.315 0.319 0.323  
0.018 0.024 0.030  
8.00  
0.45  
0°  
8.20  
0.75  
8°  
0.60  
a
0°  
-
8°  
-
Document #: 38-07215 Rev. *A  
Page 8 of 9  
© Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
PRELIMINARY  
SSTV850  
Revision History  
Document Title: SSTV850 Differential Clock Buffer/Driver  
Document Number: 38-07215  
Issue  
Date  
Orig. of  
Change  
REV.  
**  
ECN NO.  
110402  
112824  
Description of Change  
12/07/01  
04/03/02  
DMG  
BSS  
New data sheet  
Obsolete Part. Data sheet is being deleted.  
*A  
Document #: 38-07215 Rev. *A  
Page 9 of 9  

相关型号:

IMISSTV850DTT

PLL Based Clock Driver, 10 True Output(s), 0 Inverted Output(s), PDSO48, TSSOP-48
CYPRESS

IMIXF652AYB

Processor Specific Clock Generator, 83.3MHz, CMOS, PDSO48, SSOP-48
CYPRESS

IMIXG571CTB

66.6 MHz, PROC SPECIFIC CLOCK GENERATOR, PDSO48, TSSOP-48
ROCHESTER

IMIZ9104DAB

PLL Based Clock Driver, 6 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1 MM HEIGHT, PLASTIC, TQFP-32
CYPRESS

IMIZ9104DABT

PLL Based Clock Driver, 6 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1 MM HEIGHT, PLASTIC, TQFP-32
CYPRESS

IMIZ9951

Clocks and Buffers
ETC

IMIZ9952

Clocks and Buffers
ETC

IMIZ9960

Clocks and Buffers
ETC

IMIZ9960AL

2.5V/3.3V, 200 MHz Multi-Output Zero Delay Buffer
CYPRESS

IMIZ9960ALT

2.5V/3.3V, 200 MHz Multi-Output Zero Delay Buffer
CYPRESS

IMIZ9972

3.3V, 125-MHz, Multi-Output Zero Delay Buffer
CYPRESS

IMIZ9972BA

3.3V, 125-MHz, Multi-Output Zero Delay Buffer
CYPRESS