IMIC9835CT [CYPRESS]

Low-EMI Clock Generator for Intel Mobile 133-MHz/3 SO-DIMM Chipset Systems; 低EMI时钟发生器,用于Intel移动133兆赫/ 3 SO -DIMM芯片组的系统
IMIC9835CT
型号: IMIC9835CT
厂家: CYPRESS    CYPRESS
描述:

Low-EMI Clock Generator for Intel Mobile 133-MHz/3 SO-DIMM Chipset Systems
低EMI时钟发生器,用于Intel移动133兆赫/ 3 SO -DIMM芯片组的系统

晶体 时钟发生器 微控制器和处理器 外围集成电路 光电二极管
文件: 总18页 (文件大小:345K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
C9835  
Low-EMI Clock Generator for Intel®  
Mobile 133-MHz/3 SO-DIMM Chipset Systems  
• Three 3V66 clocks (66.6 MHz, 3.3V) ICH, HUBLINK, and  
AGP memory  
Features  
• Meets Intel’s Mobile 133.3MHz Chipset  
• One selectable frequency for VCH video channel clock  
(48-MHz non-SSCG, 66.6-MHz CPU-SSCG, 3.3V)  
• Power management using power-down, CPU stop, and  
PCI stop pins  
• Three function select pins (include test-mode select)  
• Cypress Spread Spectrum for best electromagnetic  
interference (EMI) reduction  
• Three CPU Clocks (66.6/100/133.3 MHz, 2.5V)  
• Six SDRAM Clocks, 1-DCLK (100/133.3 MHz, 3.3V)  
• Seven PCI Clocks (33MHz, 3.3V), one free running  
• Two IOAPIC clocks, synchronous to CPU clock (33.3  
MHz, 2.5V)  
• One REF Clock  
• Two 48-MHz fixed non-SSCG clocks (USB and DOT)  
• SMBUS support with readback  
• 56-pin SSOP and TSSOP packages  
Table 1. Function Table[1]  
SDRAM(0:5)  
TEST#  
SEL1  
SEL0  
CPU(0:2)  
3V66(0:2)  
PCIF(1:6) 48M(0:1)  
REF  
IOAPIC(0:10)  
DCLK  
0
0
1
1
1
1
X
X
0
0
1
1
0
1
0
1
0
1
Hi-Z  
TCLK/2  
66.6  
Hi-Z  
Hi-Z  
TCLK/3  
66.6  
Hi-Z  
TCLK/6  
33.3  
Hi-Z  
TCLK/2  
48  
Hi-Z  
Hi-Z  
TCLK/6  
33.3  
TCLK/2  
100.0[2]  
100.0[2]  
133.3  
TCLK  
14.318  
14.318  
14.318  
14.318  
100.0  
133.3  
133.3  
66.6  
33.3  
48  
33.3  
66.6  
33.3  
48  
33.3  
100.0[2]  
66.6  
33.3  
48  
33.3  
Note:  
1. These are the frequencies that are selectable after power up using the SEL1 and SEL0 hardware pins. Other frequencies may be chosen using the devices  
SMBUS interface. See the expanded frequency for a complete listing of all of the availible frequencies.  
2. Will be set to 133MHz, when SMBUS Byte3, Bit 0 is set to logic 1.  
Pin Configuration  
Block Diagram  
56  
REF  
VDD  
XIN  
XOUT  
VSS  
VSS  
1
2
3
4
5
6
7
8
VSS  
X IN  
IOAPIC0  
IOAPIC1  
VDDI  
CPU0  
VDDC  
CPU1  
CPU2  
VSS  
VSS  
SDRAM0  
SDRAM1  
VDDS  
SDRAM2  
SDRAM3  
VSS  
SDRAM4  
SDRAM5  
DCLK  
VDDS  
VCH_CLK  
VDD  
CPU_STP#  
TEST#  
PD#  
55  
54  
53  
52  
51  
50  
49  
3 6 p F  
3 6 p F  
X O U T  
V D D  
R E F  
1
1
V D D  
3V66_0  
3V66_1  
3V66_2(AGP)  
VDD  
V C H _ C L K  
V D D I  
9
48  
47  
46  
45  
IO A P IC (0 ,1 )  
C P U (0 :2 )  
IO A P IC  
C P U  
2
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
PCI_STP#  
PCI_F  
PCI1  
V D D C  
V D D S  
C
9
8
3
5
3
44  
43  
42  
41  
R in  
VSS  
PCI2  
PCI3  
VDDP  
PCI4  
PCI5  
PCI6  
VSS  
AVDD  
AVSS  
T E S T #  
S E L 0 ,1  
S D R A M ( 0 :5 )  
tris ta te  
s 0  
S D R A M  
3 V 6 6  
6
3
V D D  
40  
39  
38  
37  
36  
35  
34  
33  
P D #  
3 V 6 6 (0 :2 )  
P C I_ F  
V D D P  
V D D P  
V D D  
P C I_ S T P #  
C P U _ S T P #  
i2 c -c lk  
i2 c -d a ta  
P C I(1 :6 )  
P C I  
6
2
1
P L L 1  
R in  
4 8 M (0 ,1 )  
D C L K  
4 8  
VSS  
48M0(USB)  
48M1(DOT)  
VDD  
24  
25  
26  
27  
V D D S  
P D #  
S C L K  
32  
31  
30  
P D #  
SCLK  
SDATA  
i2 c -c lk  
i2 c -d a ta  
S D A T A  
SEL0  
28  
SEL1  
29  
P L L 2  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
Document #: 38-07303 Rev. **  
Revised April 5, 2002  
C9835  
Pin Description[3]  
Pin  
Name  
PWR  
Description  
1
3
REF  
XIN  
VDD 3.3V 14.318 MHz clock output  
VDD Oscillator buffer input. Connect to a crystal or to an external clock.  
Oscillator buffer output. Connect to a crystal. Do not connect when an external  
clock is applied at XIN.  
4
XOUT  
VDD  
49, 50, 52  
7, 8, 9  
CPU(0:2)  
3V66(0:2)  
VDDC 2.5V Host bus clock outputs  
VDD 3.3V Fixed 66.6 MHz clock outputs  
3.3V PCI clock output. This clock continues to run when PCI_STP# is at a logic  
low level.  
12  
PCI_F  
VDDP  
3.3V PCI clock outputs. These clocks synchronously stop in a low state when  
VDDP PCI_STP# is brought to a logic low level. They synchronously resume running  
when PCI_STP# is brought to a logic high state.  
13, 15, 16, 18,  
19, 20  
PCI (1:6)  
25, 26  
36  
48M(0,1)  
VDD 3.3V Fixed 48 MHz clock outputs  
3.3V selectable 66.6 MHz or 48 MHz clock output to VCH. Spread spectrum  
VCH_CLK  
VDD  
applies only when 66.6 MHz is selected. Select via SMBUS, byte 4 bit7.  
CPU0 stop clock control input. Stops only CPU0 in a low state when asserted  
VDD low. Using this pin to start and stop CPU0 clock insures synchronous (no short or  
long clocks) transitioning of this clock.  
34  
CPU_STP#  
PCI stop clock control input. When this signal is at a logic low level (0), all PCI  
clocks (except PCI_F) stop at a logic low level. Using this pin to start and stop PCI  
clocks insures synchronous (no short or long clocks) transitioning of these clocks.  
This pin has no effect on the PCI_F clock.  
11  
PCI_STP#  
SEL(0,1)  
SDATA  
VDD  
3.3V LVTTL inputs for logic selection. These pins have Internal pull-ups,  
typically 250k (range 200k to 800k).  
28, 29  
30  
VDD  
Serial data input pin. Conforms to the SMBUS specification of a Slave  
Receive/Transmit device. This pin is an input when receiving data. It is an open  
drain output when acknowledging or transmitting data. See 2-Wire SMBUS  
VDD  
Control Interface on page 7.  
Serial clock input pin. Conforms to the SMBUS specification. See 2-Wire  
SMBUS Control Interface on page 7.  
31  
32  
SCLK  
PD#  
VDD  
3.3V LVTTL-compatible input. When held LOW, the device enters a power down  
VDD mode. This pin has an Internal Pull-Up. See Power Management Functions on  
page 3.  
33  
38  
TEST#  
DCLK  
VDD 3.3V LVTTL compatible input for selecting test mode. See Table 1.  
3.3V SDRAM feedback clock output. See Table 1 for frequency selection. See  
VDDS  
Figure 4 for timing relationship.  
39, 40, 42, 43,  
45, 46  
SDRAM(0:5)  
VDDS 3.3V SDRAM clock outputs  
54, 55  
37, 44  
17  
IOAPIC(0,1)  
VDDS  
VDDI 2.5V IOAPIC clock outputs. See Figure 4 for timing relationships.  
3.3V Power for SDRAM and DCLK clock output buffers  
3.3V Power for PCI clock output buffers  
2.5V Power for IOAPIC clock output buffers  
2.5V Power for CPU clock output buffers  
3.3V Common power supply  
VDDP  
53  
VDDI  
51  
VDDC  
2, 10, 27, 35 VDD  
22  
23  
AVDD  
AVSS  
Analog power  
Analog ground  
5,6,14,21,24,  
41, 47, 48, 56  
VSS  
Common ground pins  
Note:  
3. A bypass capacitor (0.1µF) should be placed as close as possible to each positive power pin. If these bypass capacitors are not close to the pins their  
high-frequency filtering characteristic will be cancelled by the lead inductance of the traces.  
Document #: 38-07303 Rev. **  
Page 2 of 18  
C9835  
Table 2. Expanded Frequency Selection (MHz)[4, 5, 6]  
SDRAM(0:5),  
DCLK  
PCI_F,  
3V66(0:2) PCI(1:6)  
TEST# ESEL ESEL  
SEL  
SEL CPU(0:2)  
Notes  
0% extension  
(Default)  
1
0
0
0
0
66.7  
100[6]  
66.6  
33  
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
100  
133.3  
133.3  
70  
100[6]  
133.3  
100[6]  
105[6]  
105[6]  
140  
105[6]  
110[6]  
110[6]  
146.7  
110[6]  
120[6]  
120[6]  
160  
66.6  
66.6  
66.6  
70  
33  
33  
33  
35  
5% extension  
10% extension  
20% extension  
105  
70  
35  
140  
70  
35  
140  
70  
35  
73.3  
110  
73.3  
73.3  
73.3  
73.3  
80  
36.6  
36.6  
36.6  
36.6  
40  
146.7  
146.7  
80  
120  
80  
40  
160  
80  
40  
160  
120[6]  
80  
40  
Power Management Functions  
Power management on this device is controlled by the PD#,  
CPU_STP# and PCI_STP# pins. When PD# is high (default)  
the device is in normal running mode and all signals are active.  
in a low state on their next high-to-low transition. The REF and  
USB clocks are stopped in a low state as soon as possible.  
When in power down (and before power is removed), all  
outputs are synchronously stopped in a low state (see  
Figure 1), all PLLs are shut off, and the crystal oscillator is  
disabled. When the device is shutdown, the I²C function is  
also disabled.  
The PD# signal is used to bring all clocks to a low level in an  
orderly fashion prior to power (all except AVDD) being  
removed from the part. When PD# is asserted (forced) low, the  
device transitions to a shutdown (power down) mode and all  
power supplies (3.3V and 2.5V except for AVDD) may then be  
removed. When PD# is sampled low by two consecutive rising  
edges of the CPU clock, then all affected clocks are stopped  
At power-up, using the PD# select pin, all clocks are started in  
such a manner as to guarantee a glitch-free operation, no  
partial clock pulses.  
Notes:  
4. Extended frequencies are only available via SMBUS interface. They are accessable via SMBUS Byte 5 bits 0,1.  
5. 48M(0,1) clocks are constant at 48 MHz and REF is constant at 14.31818 MHz for all table selections.  
6. Will be set to 133 MHz and boosted accordingly, when Byte3,Bit 0 is set to logic 1.  
Document #: 38-07303 Rev. **  
Page 3 of 18  
C9835  
Power Management Timing  
0ns  
10ns  
20ns  
30ns  
40ns  
50ns  
60ns  
CPU 100 MHz  
3V66 66 MHz  
PCI 33 MHz  
IOAPIC 33 MHz  
PD#  
SDRAM 100 MHz  
REF 14.3 MHz  
VCH_CLK , 48M (0,1)  
Figure 1.  
Table 3. Power Management Current  
Maximum 2.5V Current Consumption  
(VDDC = VDDI = 2.625)  
Maximum 3.3V Current Consumption  
(VDD = AVDD = VDDS = 3.465V)  
Conditions  
Power-down (PD# = LOW)  
CPU = 66 MHz @ max loads  
CPU = 100 MHz @ max loads  
CPU = 133 MHz @ max loads  
≤ 1mA  
60 mA  
75 mA  
90 mA  
≤ 1mA  
295 mA  
295 mA  
295 mA  
When exiting the power-down mode, the application must  
supply power to the VDD pins a minimum of 200 ms before  
releasing the PD# pin high to insure that an orderly startup will  
occur and that the initial clocks that the device produces are  
full and correctly compliant with data sheet specified phase  
relationships.  
started in such a manner as to guarantee that the high pulse  
width is a full pulse. Only one rising edge of PCI_F occurs after  
the clock control logic is switched for the CPU0 output to  
become enabled/disabled.  
PCI_STP# Timing  
PCI_STP# is an input to the clock generator and is made  
synchronous to the clock driver PCI_F output. It is used to turn  
off the PCI clocks for low power operation. PCI clocks are  
stopped in a low state and started such that a full high pulse  
width is guaranteed. ONLY one rising edge of PCI_F occurs  
after the clock control logic switched for the PCI outputs to  
become enabled/disabled.  
CPU_STP# Timing  
CPU_STP# is an input to the clock generator. CPU_STP# is  
asserted asynchronously by the external clock control logic  
and is internally synchronized to the external PCI_F output. All  
other clocks will continue to run while the CPU0 clock is  
disabled. The CPU0 is always stopped in a low state and  
Note:  
7. All internal timing is referenced to the CPU clock.  
8. CPU_STP# signal is an input signal that is made synchronous to free-running PCI_F.  
9. Diagrams shown with respect to 133 MHz. Similar operation when CPU is 100 MHz.  
Document #: 38-07303 Rev. **  
Page 4 of 18  
C9835  
CPU(1,2)  
PCI_F  
Tsu  
Tsu  
CPU_STP#  
CPU0  
PCI_STP#  
(High)  
(High)  
PWR_DWN#  
Figure 2. CPU_STP Timing Diagram  
PCI_F  
Tsu  
Tsu  
PCI_STP#  
PCI(1:6)  
CPU_STP#  
PD#  
(High)  
(High)  
Figure 3. PCI_STP# Timing Diagram[[10,11,12,13,14]  
Note:  
10. All the internal timing is referenced to the CPU clock  
11. PCI_STP# signal is an input signal that must be made synchronous to PCI_F output.  
12. All other clocks continue to run undisturbed.  
13. PD# is understood to in a high state.  
14. Diagrams shown with respect to 133 MHz. Similar operation when CPU is 100 MHz  
Document #: 38-07303 Rev. **  
Page 5 of 18  
C9835  
Clock Phase  
0ns  
10ns  
20ns  
30ns  
40ns  
Sync  
CPU CLOCK 66MHz  
100MHz  
133MHz  
CPU CLOCK  
CPU CLOCK  
2.5ns  
5ns  
0ns  
5ns  
7.5ns  
3.75ns  
DCLK/SDRAM CLOCK 100MHz  
DCLK/SDRAM CLOCK 133MHz  
0ns  
0ns  
0nS  
3V66 CLOCK  
PCI CLOCK  
66MHz  
33MHz  
3.75ns  
1.5ns~3.5  
IOAPIC CLOCK  
33MHz  
Figure 4.  
Table 4. Group Timing Relationships and Tolerances  
CPU = 66.6 MHz, SDRAM = 100 MHz  
Offset (ns)  
Tolerance (ps)  
Conditions  
CPU to SDRAM/DCLK  
CPU to 3V66  
2.5  
7.5  
500  
500  
500  
500  
1000  
N/A  
180 degrees phase shift  
When rising edges line up  
3V66 leads  
SDRAM/DCLK to 3V66  
3V66 to PCI  
0
1.53.5  
0
PCI to IOAPIC  
48M (0,1)  
Async  
CPU = 100 MHz, SDRAM = 100 MHz  
Offset (ns)  
Tolerance (ps)  
Conditions  
CPU to SDRAM/DCLK  
CPU to 3V66  
5
500  
500  
500  
500  
1000  
N/A  
180 degrees phase shift  
CPU leads  
5
0
SDRAM/DCLK to 3V66  
3V66 to PCI  
When rising edges line up  
3V66 leads  
1.53.5  
0
PCI to IOAPIC  
48M (0,1)  
Async  
CPU = 133.3 MHz, SDRAM = 100 MHz  
Offset(ns)  
Tolerance(ps)  
Conditions  
CPU to SDRAM/DCLK  
CPU to 3V66  
0
500  
500  
500  
500  
1000  
N/A  
When rising edges line up  
0
0
SDRAM/DCLK to 3V66  
3V66 to PCI  
When rising edges line up  
3V66 leads  
1.53.5  
0
PCI to IOAPIC  
48M (0,1)  
Async  
Document #: 38-07303 Rev. **  
Page 6 of 18  
C9835  
Table 4. Group Timing Relationships and Tolerances (continued)  
CPU = 66.6 MHz, SDRAM = 100 MHz  
CPU = 133.3MHz, SDRAM = 133.3MHz  
Offset(ns)  
3.75  
Tolerance(ps)  
Conditions  
CPU to SDRAM/DCLK  
CPU to 3V66  
500  
500  
500  
500  
1000  
N/A  
180 degrees phase shift  
0
SDRAM/DCLK to 3V66  
3V66 to PCI  
3.75  
1.53.5  
0
3V66 leads  
PCI to IOAPIC  
48M (0,1)  
Async  
is high indicates the end of a data transfer cycle. Data is  
always sent as complete 8-bit bytes, after which an  
acknowledge is generated. The first byte of a transfer cycle is  
an 8-bit address. The LSB address Byte = 0 in write mode.  
2-Wire SMBUS Control Interface  
The 2-wire control interface implements a read/write slave  
only interface according to SMBus specification. (SeeFigure 5  
below). The device can be read back by using standard  
SMBUS command bytes. Sub addressing is not supported,  
thus all preceding bytes must be sent in order to change one  
of the control bytes. The 2-wire control interface allows each  
clock output to be individually enabled or disabled. 100 Kbits/s  
(standard mode) data transfer is supported.  
The device will respond to transfers of 10 bytes (max) of data.  
The device will generate an acknowledge (low) signal on  
SDATA following reception of each byte. Data is transferred  
MSB first at a max rate of 100kbits/s. This device will also  
respond to a D3 address which sets it in a read mode. It will  
not respond to any other control interface conditions, and  
previously set control registers are retained.  
During normal data transfer, the SDATA signal only changes  
when the SCLK signal is low, and is stable when SCLK is high.  
There are two exceptions to this. A high to low transition on  
SDATA while SCLK is high is used to indicate the start of a data  
transfer cycle. A low to high transition on SDATA while SCLK  
When a clock driver is placed in power down mode, the  
SMBUS signals SDATA and SCLK must be tri-stated. In power  
down, the device retains all SMBUS programming information.  
Transmit  
ACK  
ACK  
ACK  
ACK  
ACK  
Receive  
COMMAND BYTE  
BYTE COUNT  
BYTE 0  
(Valid)  
BYTE N  
(Valid)  
1
1
0
1
0
0
1
0
(Dont Care)  
(Dont Care)  
DATA  
MSB  
LSB  
8
8
8
8
CLK  
START CONDITION  
STOP CONDITION  
Figure 5a (WRITE Cycle)  
Transmit  
ACK BYTE COUNT  
BYTE 0  
BYTE1  
(Valid)  
BYTE N  
(Valid)  
Receiv  
ACK  
ACK  
ACK  
ACK  
1
1
0
1
0
1
0
1
(Valid)  
(Valid)  
DATA  
MSB  
LSB  
8
8
8
8
CLK  
START CONDITION  
STOP CONDITION  
Figure 5b (READ Cycle)  
Figure 5. SMBus Communications Waveforms  
Document #: 38-07303 Rev. **  
Page 7 of 18  
C9835  
Although the data (bits) in these two bytes are considered  
dont care,they must be sent and will be acknowledged. After  
the Command Code and the Byte Count have been acknowl-  
edged, the sequence (Byte 0, Byte 1, and Byte 2) described  
below will be valid and acknowledged.  
Serial Control Registers  
Following the acknowledge of the Address Byte, two additional  
bytes must be sent:  
1) Command Code byte  
2) Byte Countbyte.  
Byte 0: CPU Clock Register (1 = Enable, 0 = Disable)  
Bit  
7
@Pup[15]  
Pin#[16]  
Description  
Description  
Description  
1
1
1
1
0
1
1
0
36  
49  
50  
52  
VCH_CLK  
6
CPU2  
5
CPU1  
4
CPU0  
3
Spread Spectrum ( 1 = enabled)  
48M1(DOT)  
48M0(USB)  
Reserved. Set to 0  
2
26  
25  
1
0
Byte 1: SDRAM Clock Register (1 = Enable, 0 = Disable)  
Bit  
7
@Pup[15]  
Pin#[16]  
0
Reserved. Set to 0  
Reserved. Set to 0  
SDRAM5  
0
1
1
6
39  
40  
5
SDRAM4  
4
3
1
1
42  
43  
SDRAM3  
SDRAM2  
2
1
1
45  
46  
SDRAM1  
SDRAM0  
1
0
Byte 2: 3C66 Clock Register (1 = Enable, 0 = Disable)  
Bit  
7
@Pup[15]  
Pin#[16]  
1
9
3V66_2 (AGP)  
3V66_1  
1
1
8
7
6
3V66_0  
5
4
0
0
Reserved. Set to 0  
Reserved. Set to 0  
3
0
0
0
Reserved. Set to 0  
Reserved. Set to 0  
Reserved. Set to 0  
2
1
0
Byte 3: PCI Register (1 = Enable, 0 = Disable)  
Bit  
7
@Pup[17]  
Pin#[18]  
Description  
0
Reserved. Set to 0  
1
1
1
1
20  
19  
18  
16  
PCI6  
PCI5  
PCI4  
PCI3  
6
5
4
3
2
1
1
15  
13  
PCI2  
PCI1  
1
0
SDRAM 133- MHz Mode Enable. Default is disabled = 0,enabled = 1”  
0
Notes:  
15. The @Pup column gives the default state at power-up.  
16. The Pin# column lists the relevant pin number where applicable.  
Document #: 38-07303 Rev. **  
Page 8 of 18  
C9835  
Byte 4: VCH Clock Register (1 = Enable, 0 = Disable)  
Bit  
@Pup[17]  
Pin#[18]  
Description  
VCH_CLK SSC Mode Enable  
0= 48 MHZ (non-SSCG)  
7
0
36  
1= 66.6 MHz (SSCG applicable when Byte 0,Bit3 = 1)  
6
5
4
3
2
1
0
0
0
0
0
0
0
0
Reserved. Set to 0  
Reserved. Set to 0  
Reserved. Set to 0  
Reserved. Set to 0  
Reserved. Set to 0  
Reserved. Set to 0  
Reserved. Set to 0  
Byte 5: SSCG Control Register (1 = Enable, 0 = Disable)  
Bit  
7
@Pup[17]  
Pin#[18]  
Description  
0
0
Spread Mode (0 = down, 1 = center)  
Selects spread bandwidth. See Table 5.  
6
5
0
0
Selects spread bandwidth. See Table 5.  
Reserved. Set to 0  
4
0
0
0
0
Reserved. Set to 0  
Reserved. Set to 0  
3
2
ESEL1 Expanded Freq. Selection MSB, See Table 2.  
ESEL0 Expanded Freq. Selection LSB, See Table 2.  
1
0
SMBus Test Circuitry  
+ 5V  
2.2 K  
Device under  
DATAIN  
SDATA  
SCLK  
+ 5V  
2.2 K  
+ 5V  
DATAOU  
2.2 K  
CLOCK  
Figure 6. SMBUS Test Circuitry[19]  
power up keeps the Spread Spectrum disabled, it is therefore,  
important to have SMBUS accessibility to turn-on the Spread  
Spectrum function. Once the Spread Spectrum is enabled, the  
spread bandwidth option is selected by SST(0:2) in SMBUS  
Byte 5, bits 5, 6, and 7 . See Table 7 below.  
Spread Spectrum Clock Generation (SSCG)  
Spread Spectrum is a modulation technique applied here for  
maximum efficiency in minimizing EMI radiation generated by  
repetitive digital signals, mainly clocks. A clock accumulates  
EM energy at the center frequency it is generating. Spread  
Spectrum distributes this energy over a small frequency  
bandwidth therefore distributing an even amount of energy  
over a wider spectrum. This technique is achieved by  
modulating the clock either down or around the center (see  
Figure 7 below) of its resting frequency by a certain  
percentage (which also determines the energy distribution  
bandwidth). In this device, Spread Spectrum is enabled by  
In Down Spread mode the center frequency is shifted down  
from its rested (non-spread) value by ½ of the total spread %  
(e.g., assuming the center frequency is 100 MHz in  
non-spread mode; when down spread of 0.5% is enabled,  
the center frequency shifts to 99.75 MHz.). In Center Spread  
Mode, the center frequency remains the same as in  
non-spread mode.  
setting SMBUS Byte0,Bit3 = 1. The default of the device at  
Notes:  
17. The @Pup column gives the default state at power-up  
18. The Pin# column lists the relevant pin number where applicable.  
Document #: 38-07303 Rev. **  
Page 9 of 18  
C9835  
Downspread  
Center Spread  
Figure 7. Spread Spectrum  
Spread Spectrum Selection Tables  
Table 5. (I²C BYTE 5 Bit 7=0), Down Spread  
I²C Byte 5  
Table 6. (I²C BYTE 5 Bit 7=0), Center Spread  
I²C Byte 5  
Bit  
Bit  
Spread %  
Spread %  
6
0
0
1
1
5
0
1
0
1
6
0
0
1
1
5
0
1
0
1
0.5  
0.7  
1.0  
1.5  
±0.25  
±0.35  
±0.5  
±0.75  
Note:  
19. Buffer is 7407 with VCC@ 5.0V.  
Document #: 38-07303 Rev. **  
Page 10 of 18  
C9835  
Maximum Ratings  
Maximum Input Voltage Relative to VSS: ............ VSS 0.3V  
Maximum Input Voltage Relative to VDD:.............VDD + 0.3V  
Storage Temperature: ................................65°C to + 150°C  
Operating Temperature:....................................0°C to +85°C  
Maximum ESD Protection.............................................. 2 KV  
Maximum Power Supply: ................................................5.5V  
This device contains circuitry that protects the inputs against  
damage due to high static voltages or electric field; however,  
precautions should be taken to avoid application of any  
voltage higher than the maximum rated voltages to this circuit.  
For proper operation, VIN and VOUT should be constrained to  
the range:  
VSS < (VIN or VOUT) < VDD  
.
Unused inputs must always be tied to an appropriate logic  
voltage level (either VSS or VDD).  
DC Parameters VDD = VDDS = 3.3V ± 5%, VDDC = VDDI = 2.5V ± 5%, TA = 0°C to +70°C[20]  
Parameter  
VIL1  
Description  
Input Low Voltage  
Conditions  
Min.  
Typ.  
Max.  
Units  
V
Note 21  
1.0  
VIH1  
Input High Voltage  
2.0  
V
VIL2  
Input Low Voltage  
Note 22  
1.0  
V
VIH2  
Input High Voltage  
2.2  
V
IIL1  
Input Low Current (@VIL = VSS  
)
For internal pull-up resistors[23]  
20  
20  
10  
295  
60  
75  
90  
1
µA  
µA  
µA  
mA  
mA  
mA  
mA  
mA  
mA  
pF  
pF  
nH  
pF  
V
IIH1  
Input High Current (@VIH =VDD  
Three-state leakage Current  
Dynamic Supply Current  
)
Ioz  
Idd3.3V  
Idd2.5V  
CPU @ 66 MHz  
CPU @ 100 MHz  
CPU @ 133 MHz  
PD# = 0”  
Dynamic Supply Current  
Ipd3.3V  
Ipd2.5V  
Cin  
Power Down Supply Current  
Power Down Supply Current  
Input pin capacitance  
Output pin capacitance  
Pin inductance  
PD# = 0”  
1
5
Cout  
6
Lpin  
7
Cxtal  
VBIAS  
Txs  
Crystal pin capacitance  
Crystal DC Bias Voltage  
Crystal Startup time  
Measured from Pin to Ground[24]  
From stable 3.3V power supply.  
34  
36  
38  
0.7VDD  
40  
0.3VDD  
VDD/2  
µs  
Table 7. Maximum Output Load  
Clock Name  
Max Load (in pF)  
CPU(0:2), IOAPIC(0:1), REF, 48M0 (USB), VCH_CLK  
PCI(0:6), SDRAM(0:5), DCLK, 3V66(0:2)  
48M1 (DOT)  
20  
30  
15  
Notes:  
20. All outputs loaded per Table 7.  
21. Applicable to input signals : SEL(0:1), PD# (pull-up).  
22. Applicable to SDATA and SCLK.  
23. Internal pull-up and pull-down resistors affect this current.  
24. See Applications data that is presented later in this datasheet on crystal interfacing.  
Document #: 38-07303 Rev. **  
Page 11 of 18  
C9835  
AC Parameters  
133 MHz Host  
100 MHz Host  
66 MHz Host  
Parameter  
Description  
Units  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
CPU  
TPeriod  
THIGH  
TLOW  
Tr / Tf  
CPU(0:2) period[25,26]  
CPU(0:2) high time[30]  
CPU(0:2) low time[31]  
CPU(0:2) rise and fall times[27]  
CPU0 to any CPU Skew[26,29]  
CPU(0:2) Cycle to Cycle Jitter[26,29]  
7.5  
1.87  
1.67  
0.4  
8.0  
10.0  
3.0  
10.5  
15.0  
5.2  
15.5  
ns  
ns  
ns  
ns  
ps  
ps  
2.8  
5.0  
1.6  
150  
250  
0.4  
1.6  
150  
250  
0.4  
1.6  
150  
250  
TSKEW  
TCCJ  
SDRAM  
TPeriod  
SDRAM(0:5) 100 MHz and DCLK  
period[25,26]  
10.0  
3.0  
10.5  
10.0  
3.0  
10.5  
10.0  
3.0  
10.5  
ns  
ns  
ns  
ns  
ps  
ps  
THIGH  
TLOW  
Tr / Tf  
SDRAM(0:5) 100 MHz and DCLK high  
time[30]  
SDRAM(0:5) 100 MHz and DCLK low  
time[31]  
2.8  
2.8  
2.8  
SDRAM(0:5) 100 MHz and DCLK rise and  
fall times[27]  
0.4  
1.6  
250  
250  
0.4  
1.6  
250  
250  
0.4  
1.6  
250  
250  
TSKEW  
TCCJ  
SDRAM(0:5) 100 MHzand DCLK  
Skew[26,29]  
SDRAM(0:5) 100 MHz, DCLK Cycle to  
Cycle Jitter[26,29]  
IOAPIC  
TPeriod  
IOAPIC(0,1) period[25,26]  
30.0  
12.0  
12.0  
0.4  
30.0  
12.0  
12.0  
0.4  
30.0  
12.0  
12.0  
0.4  
ns  
ns  
ns  
ns  
ps  
ps  
THIGH  
TLOW  
Tr / Tf  
IOAPIC(0,1) high time[30]  
IOAPIC(0,1) low time[31]  
IOAPIC(0,1) rise and fall times[27]  
IOAPIC(0,1) Skew[26,29]  
IOAPIC(0,1) Cycle to Cycle Jitter[26,29]  
N/S  
1.6  
1.6  
250  
500  
1.6  
250  
500  
TSKEW  
TCCJ  
250  
500  
3V66  
TPeriod  
3V66-(0:2) period[25,26]  
15.0  
5.25  
5.05  
0.5  
16.0  
15.0  
5.25  
5.05  
0.5  
16.0  
15.0  
5.25  
5.05  
0.5  
16.0  
ns  
ns  
ns  
ns  
ps  
ps  
THIGH  
TLOW  
Tr / Tf  
3V66-(0:2) high time[30]  
3V66-(0:2) low time[31]  
3V66-(0:2) rise and fall times[28]  
(Any 3V66) to (any 3V66) Skew[26,29]  
3V66-(0:2) Cycle to Cycle Jitter[26,29]  
2.0  
175  
500  
2.0  
175  
500  
2.0  
175  
500  
TSKEW  
TCCJ  
PCI_F  
TPeriod  
PCI(_F,1:6) period[25,26]  
PCI(_F, 1:6) high time[30]  
30.0  
12.0  
30.0  
12.0  
30.0  
12.0  
ns  
ns  
THIGH  
Notes:  
25. This parameter is measured as an average over 1us duration, with a crystal center frequency of 14.31818 MHz.  
26. All outputs loaded per Table 6. Probes are placed on the pins and taken at 1.5V levels for 3.3V signals and at 1.25V for 2.5V signals (see Figure 8).  
27. Probes are placed on the pins, and measurements are acquired between 0.4V and 2.4V for 3.3V signals and between 0.4V and 2.0V for 2.5V signals (see  
Figure 8).  
28. Measured from when both SEL1 and SEL0 are switched to high (enable).  
29. This measurement is applicable with Spread ON or Spread OFF.  
30. Probes are placed on the pins, and measurements are acquired at 2.4V for 3.3V signals and at 2.0V for 2.5V signals (see Figure 8).  
31. Probes are placed on the pins, and measurements are acquired at 0.4V.  
Document #: 38-07303 Rev. **  
Page 12 of 18  
C9835  
AC Parameters (continued)  
133 MHz Host  
100 MHz Host  
66 MHz Host  
Parameter  
Description  
Units  
Min.  
12.0  
0.5  
Max.  
Min.  
12.0  
0.5  
Max.  
Min.  
12.0  
0.5  
Max.  
TLOW  
Tr / Tf  
PCI(_F, 1:6) low time[31]  
ns  
ns  
ps  
ps  
PCI(_F, 1:6) rise and fall times[27]  
(Any PCI) to (Any PCI) Skew[26,29]  
PCI(_F, 1:6) Cycle to Cycle Jitter[26,29]  
2.0  
500  
500  
2.0  
500  
500  
2.0  
500  
500  
TSKEW  
TCCJ  
DOT and USB  
TPeriod  
DOT and USB (48M[0,1]) period  
20.8299 20.8333 20.8299 20.8333 20.829 20.833  
ns  
(conforms to +167 ppm max) [25,26]  
DOT and USB rise and fall times[27]  
DOT and USB Cycle to Cycle Jitter[26,29]  
VCH_CLK Cycle to Cycle Jitter[26]  
Tr / Tf  
TCCJ  
TCCJ  
1.0  
4.0  
500  
250  
1.0  
4.0  
500  
250  
1.0  
4.0  
500  
250  
ns  
ps  
ps  
REF  
TPeriod  
REF period[25,26]  
69.8413  
1.0  
71.0  
4.0  
69.8413  
1.0  
71.0  
4.0  
69.8413  
1.0  
71.0  
4.0  
ns  
ns  
ps  
Tr / Tf  
TCCJ  
REF rise and fall times[27]  
REF Cycle to Cycle Jitter[26]  
1000  
1000  
1000  
tpZL, tpZH Output enable delay (all outputs)[28]  
tpLZ, tpHZ Output disable delay (all outputs)[33]  
1.0  
1.0  
10.0  
10.0  
3
1.0  
1.0  
10.0  
10.0  
3
1.0  
1.0  
10.0  
10.0  
3
ns  
ns  
ms  
%
tstable  
Tduty  
All clock stabilization from power-up[32]  
Duty cycle for all outputs[34]  
45  
55  
45  
55  
45  
55  
Notes:  
32. The time specified is measured from when all VDDs reach their respective supply rail (3.3V and 2.5V) till the frequency output is stable and operating within the  
specifications.  
33. Measured from when both SEL1 and SEL0 are switched to low (disable).  
34. Device designed for Typical Duty Cycle of 50%.  
Document #: 38-07303 Rev. **  
Page 13 of 18  
C9835  
Output Buffer Characteristics  
Table 8. CPU, IOAPIC  
Parameter  
IOH1  
IOH2  
IOL1  
Description  
Pull-up Current  
Conditions  
Vout =VDDC - 0.5V (or VDDI 0.5V)  
Vout = 1.2V  
Min.  
15  
26  
12  
Typ.  
31  
58  
24  
Max.  
51  
101  
40  
Units  
mA  
mA  
mA  
mA  
Pull-up Current  
Pull-down Current  
Pull-down Current  
Output Impedance  
Vout = 0.4V  
IOL2  
Vout = 1.2V  
27  
56  
93  
Z0  
13.5  
45  
Table 9. PCI, 3V66, VCH  
Parameter  
Description  
Conditions  
Vout =VDD 0.5V  
Vout = 1. 5V  
Min.  
20  
30  
9.4  
28  
Typ.  
25  
54  
18  
Max.  
33  
184  
38  
Units  
mA  
mA  
mA  
mA  
IOH1  
IOH2  
IOL1  
IOL2  
Z0  
Pull-up Current  
Pull-up Current  
Pull-down Current  
Pull-down Current  
Output Impedance  
Vout = 0.4V  
Vout = 1.5V  
55  
148  
55  
12  
Table 10. 48M0(USB), 481(DOT), REF  
Parameter  
IOH1  
IOH2  
IOL1  
Description  
Pull-up Current  
Conditions  
Vout =VDD 0.5V  
Vout = 1. 5V  
Min.  
12  
27  
9
Typ.  
16  
43  
13  
Max.  
28  
92  
27  
Units  
mA  
mA  
mA  
mA  
Pull-up Current  
Pull-down Current  
Pull-down Current  
Output Impedance  
Vout = 0.4V  
IOL2  
Vout = 1.5V  
26  
39  
79  
Z0  
20  
60  
Table 11. SDRAM (VDD = VDDS = 3.3V ± 5%, VDDC = VDDI = 2.5V ± 5%, TA = 0°C to 70°C)  
Parameter  
IOH1  
IOH2  
IOL1  
Description  
Pull-up Current  
Conditions  
Vout =VDD 0.5V  
Min.  
28  
67  
23  
Typ.  
40  
107  
34  
Max.  
60  
184  
53  
Units  
mA  
mA  
mA  
mA  
Pull-up Current  
Vout = 1. 5V  
Vout = 0.4V  
Vout = 1.5V  
Pull-down Current  
Pull-down Current  
Output Impedance  
IOL2  
64  
98  
159  
24  
Z0  
10  
Document #: 38-07303 Rev. **  
Page 14 of 18  
C9835  
Test Measurement Condition  
Output under Test  
Probe  
Load Cap  
3.3V signals  
2.5V signals  
tDC  
tDC  
-
-
-
-
3.3V  
2.5V  
2.4V  
1.5V  
2.0V  
1.25V  
0.4V  
0.4V  
0V  
0V  
Tr  
Tf  
Tr  
Tf  
Figure 8.  
Table 12. Suggested Oscillator Crystal Parameters  
Parameter Description  
Fo  
Conditions  
Min.  
Typ.  
Max.  
Units  
Frequency  
Tolerance  
14.17  
14.31818  
14.46  
MHz  
TC  
TS  
Note 35  
±100  
±100  
PPM  
PPM  
Frequency Stability  
Stability (TA 10 to +60C)[35]  
Parallel Resonant[35]  
The crystals rated load[35]  
Note 36  
Operating Mode  
CXTAL  
RESR  
Load Capacitance  
20  
40  
pF  
Effective Series Resistance (ESR)  
Ohms  
To obtain the maximum accuracy, the total circuit loading  
capacitance should be equal to CXTAL. This loading capaci-  
tance is the effective capacitance across the crystal pins and  
includes the clock generating device pin capacitance (CFTG),  
any circuit trace capacitance (CPCB) and any onboard discrete  
load capacitance (CDISC).  
Where:  
CXTAL = the load rating of the crystal.  
CXOUTFTG ....= the clock generators XIN pin effective device  
internal capacitance to ground.  
CXOUTFTG = the clock generators XOUT pin effective device  
internal capacitance to ground.  
The following formula and schematic illustrates the application  
of the loading specification of a crystal (CXTAL) for a design.  
CXINPCB = the effective capacitance to ground of the crystal  
to device PCB trace.  
CL = (CXINPCB + CXINFTG + CXINDISC) X (CXOUTPCB + CXOUTFTG + CXOUTDISC  
)
CXOUTPCB = the effective capacitance to ground of the crystal  
to device PCB trace.  
As an example and using a formula for this datasheets device,  
a design that has no disrete loading capacitors (CDISC) and  
each of the crystal to device PCB traces has a capacitance  
(CPCB) to ground of 4pF (typical value) would calculate as:  
CXINDISC = any discrete capacitance that is placed between  
the XIN pin and ground.  
CXOUTDISC= any discrete capacitance that is placed between  
the XOUT pin and ground.  
Notes:  
35. For best performance and accurate frequencies from this device, it is recommended but not mandatory that the chosen crystal meets or exceeds these  
specifications.  
36. Larger values may cause this device to to exhibit oscillator startup problems.  
Document #: 38-07303 Rev. **  
Page 15 of 18  
C9835  
XIN  
CXINPCB  
CXINDISC  
CXINFTG  
CXOUTPCB  
CXOUTDISC  
CXOUTFTG  
XOUT  
Clock Generator  
Figure 9.  
Therefore, to obtain output frequencies that are as close to this  
datasheets specified values as possible, in this design  
Ordering Information  
example, you should specify a parallel cut crystal that is  
designed to work into a load of 20pF.  
Part Number  
IMIC9835CY  
Package Type  
56-pin Shrunk Small Outlie package (SSOP)  
Product Flow  
Commercial, 0° to 70°C  
Commercial, 0° to 70°C  
Commercial, 0° to 70°C  
IMIC9835CYT  
IMIC9835CT  
IMIC9835CTT  
56-pin Shrunk Small Outlie package (SSOP)Tape and Reel  
56-pin Thin Shrunk Small Outlie package (TSSOP)  
56-pin Thin Shrunk Small Outlie package (TSSOP)Tape and Reel Commercial, 0° to 70°C  
Package Diagrams  
56-lead Thin Shrunk Small Outline Package, Type II (6 mm x 12 mm) Z56  
51-85060-B  
Document #: 38-07303 Rev. **  
Page 16 of 18  
C9835  
Package Diagrams (continued)  
56-lead Shrunk Small Outline Package O56  
51-85062-C  
Purchase of I2C components from Cypress, or one of its sublicensed Associated Companies, conveys a license under the Philips  
I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification  
as defined by Philips.  
Intelis aregistered trademark of Intel Corporation. All product and company names mentioned in this document are thetrademarks  
of their respective holders.  
Document #: 38-07303 Rev. **  
Page 17 of 18  
© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
C9835  
Document Title: C9835 Low-EMI Clock Generator for Intel® Mobile 133-MHz/3 SO-DIMM Chipset Systems  
Document Number: 38-07373  
Issue  
Date  
Orig. of  
Change  
REV.  
ECN NO.  
Description of Change  
**  
113556  
05/28/02  
DMG  
New Data Sheet (converted from IMI format)  
Document #: 38-07303 Rev. **  
Page 18 of 18  

相关型号:

IMIC9835CTT

Low-EMI Clock Generator for Intel Mobile 133-MHz/3 SO-DIMM Chipset Systems
CYPRESS

IMIC9835CY

Low-EMI Clock Generator for Intel Mobile 133-MHz/3 SO-DIMM Chipset Systems
CYPRESS

IMIC9835CYT

Low-EMI Clock Generator for Intel Mobile 133-MHz/3 SO-DIMM Chipset Systems
CYPRESS

IMIC9850A

Clocks and Buffers
ETC

IMIC9870G

Clocks and Buffers
ETC

IMIC9914BT

Processor Specific Clock Generator, CMOS, PDSO28, TSSOP-28
CYPRESS

IMIC9914BY

Processor Specific Clock Generator, CMOS, PDSO28, SSOP-28
CYPRESS

IMIC9915AY

Processor Specific Clock Generator, 133.3MHz, CMOS, PDSO48, SSOP-48
CYPRESS

IMIC9915AYT

Processor Specific Clock Generator, 133.3MHz, CMOS, PDSO48, SSOP-48
CYPRESS

IMIC9950

Clocks and Buffers
ETC

IMICB660ETB

Processor Specific Clock Generator, CMOS, PDSO28, TSSOP-28
CYPRESS

IMICB660EYB

Processor Specific Clock Generator, CMOS, PDSO28, SSOP-28
CYPRESS