IMIC9915AYT [CYPRESS]

Processor Specific Clock Generator, 133.3MHz, CMOS, PDSO48, SSOP-48;
IMIC9915AYT
型号: IMIC9915AYT
厂家: CYPRESS    CYPRESS
描述:

Processor Specific Clock Generator, 133.3MHz, CMOS, PDSO48, SSOP-48

时钟 光电二极管 外围集成电路 晶体
文件: 总18页 (文件大小:158K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
C9915  
®
Low EMI Clock Generator for Intel 133-MHz/2-DIMM Chipset Systems  
Features  
• Meets Intel 133-MHz/SDRAM chipset specification  
• Three copies of CPU clock (CPU[0:1] and CPU2_ITP)  
• Nine copies of SDRAM clock (SDRAM[0:7] and DCLK)  
• Seven copies of PCI clock  
• One REF clock  
• One USB clock (non-SSC)  
• One DOT clock (non-SSC)  
• Cypress Spread Spectrum for best electromagnetic  
interference (EMI) reduction  
• Three copies of 3V66 clock  
• SMBus support with read back  
• 56-pin SSOP/TSSOP package  
• Two copies of IOAPIC clock  
Table 1. Frequency Table (MHz) [1]  
SEL2  
SEL1  
SEL0  
CPU  
SDRAM  
X
PCI  
0
X
X
0
0
1
1
0
0
1
1
1
1
0
1
0
1
0
1
Three-State  
Test Mode  
66.6 MHz  
100 MHz  
X
0
100 MHz[2]  
100 MHz[2]  
133.3 MHz  
100 MHz[2]  
33.3  
33.3  
33.3  
33.3  
133.3 MHz  
133.3 MHz  
Pin Configuration  
Block Diagram  
XIN  
56  
REF/SEL2  
VDD  
1
2
3
4
5
6
7
8
VSS  
36pF  
36pF  
IOAPIC0  
IOAPIC1  
VDDI  
CPU0  
VDDC  
CPU1  
CPU2(ITP)  
VSS  
55  
54  
53  
52  
51  
50  
49  
300K  
XIN  
XOUT  
VSS  
XOUT  
VDD  
REF / SEL2  
IOAPIC(0:1)  
1
VSS  
3V66_0  
3V66_1  
3V66_2(AGP)  
VDD  
VDDI  
9
48  
47  
46  
45  
s2  
apic  
cpu  
2
3
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
VSS  
I
M
I
C
9
9
1
5
VDD  
PCI0(ICH)  
PCI1  
SDRAM0  
SDRAM1  
VDDS  
SDRAM2  
SDRAM3  
VSS  
SDRAM4  
SDRAM5  
VDDS  
SDRAM6  
SDRAM7  
VSS  
VDDC  
CPU(0:2)  
44  
43  
42  
41  
Rin  
VSS  
PCI2  
PCI3  
VSS  
PCI4  
PCI5  
PCI6  
VDD  
VDDA  
VSSA  
VSS  
USB  
DOT  
VDD  
SEL0  
SCLK  
SDATA  
i2c-clk  
i2c-data  
VDDS  
VDD  
SEL1  
SEL0  
SDRAM(0:7), DCLK  
3V66(0:2)  
s1  
s0  
sdram  
3V66  
pci  
9
2
40  
39  
38  
37  
36  
pwr_dwn#  
PWRGD/  
PWRDN#  
VDD  
VDD  
VDD  
35  
34  
33  
PCI(0:6)  
DOT  
8
1
1
DCLK  
VDD  
PWRGD/PWRDN#  
SCLK  
SDATA  
PLL1  
Rin  
24  
25  
26  
27  
32  
31  
30  
48  
PD#  
USB  
28  
SEL1  
29  
i2c-clk  
i2c-data  
PLL2  
Notes:  
1. The following clocks remain fixed frequencies except in Test Mode: 3V66 = 66.6 MHz, USB/DOT = 48 MHz, REF = 14.318 MHz, and IOAPIC = 33.3 MHz.  
2. SMBus programmable to 133 MHz, Byte 3, Bit 0.  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
Document #: 38-07123 Rev. *B  
Revised December 14, 2002  
C9915  
Pin Description[3]  
Pin  
Name  
PWR  
VDD  
I/O  
Description  
1
SEL2/REF  
I/O This is a bidirectional pin. At power-up, it is an input pin Sel2 for selecting  
the CPU/SDRAM frequencies (see Table 1). When the power reaches the  
rail, the state of Sel2 is latched, and this pin becomes REF, a buffer output  
of the signal applied at Xin, typically 14.318 MHz. This pin has an Internal  
pull-down. Typical 50 K(range 20 Kto 70 K).  
3
4
XIN  
VDD  
VDD  
VDD  
I
On-chip Reference Oscillator Input Pin. Requires either an external  
parallel resonant crystal (nominally 14.318 MHz) or externally generated  
reference signal  
XOUT  
PCI0_ICH  
O
O
On-chip Reference Oscillator Pin. Drives an external parallel resonant  
crystal. When an externally generated reference signal is used at Xin, this  
pin remains unconnected.  
12,13,15,  
16,18,19, 20 PCI(1..6)  
3.3V PCI Clock Outputs. They are synchronous to CPU clocks. See  
Figure 11).  
7, 8, 9  
25  
3V66(0:2)  
USB  
VDD  
VDD  
VDD  
VDD  
O
O
O
I
3.3V Fixed 66.6 MHz Clock Outputs. See Figure 11.  
3.3V Fixed 48 MHz clock outputs.  
26  
DOT  
3.3V Fixed 48 MHz clock outputs.  
28, 29  
SEL(0,1)  
3.3V LVTTL Inputs for Logic Selection. This pin has an internal pull-up.  
Typical 250 K(range 200 Kto 500 K)  
30  
SDATA  
VDD  
I/O Serial Data Input Pin. Conforms to the SMBus specification of a Slave  
Receive/Transmit device. This pin is an input when receiving data. It is an  
open drain output when acknowledging or transmitting data. See SMBus  
function description.  
31  
32  
SCLK  
VDD  
I
I
Serial Clock Input Pin. Conforms to the SMBus specification.  
PWRGD/PWR VDD  
DN#  
This is a Dual Function Pin. During power-up, it serves as a power-down  
control. After PWRGD has gone HIGH once, whenever pin 32 goes LOW,  
the device will go into power-down mode.  
34  
DCLK  
VDD  
O
O
O
O
3.3V SDRAM Feedback Clock. See Table 1 for frequency selection. See  
Figure 11 for timing relationship.  
36,37,39,40, SDRAM(7..0) VDDS  
42,43,45, 46  
3.3V SDRAM DIMM Clocks. See Table 1 for frequency selection. See  
Figure 11 for timing relationship.  
49, 50, 52  
CPU(2)_ITP,C VDDC  
PU(1,0)  
2.5V Host Clock Outputs. See Table 1 for frequency selection.  
54, 55  
IOAPIC(1,0)  
VDD  
VDDI  
2.5V IOAPIC Clock Outputs. See Figure 11 for timing relationship.  
2,10, 11, 21,  
27, 33  
3.3V Common Power Supply  
22  
VDDA  
Analog Circuitry 3.3V Power Supply  
Analog Circuitry Power Supply Ground Pins  
2.5V Power Supply  
23  
VSSA  
51, 53  
VDDC, VDDI  
5, 6,14, 17, 24, VSS  
35, 41, 47, 48,  
56  
Common Ground Pins  
38, 44  
VDDS  
3.3V Power Support for SDRAM Clock Output Drivers  
Note:  
3. A bypass capacitor (0.1µF) should be placed as close as possible to each positive power pin. If these bypass capacitors are not close to the pins their high  
frequency filtering characteristic will be cancelled by the lead inductance of the traces.  
Document #: 38-07123 Rev. *B  
Page 2 of 18  
C9915  
SDATA while SCLK is HIGH is used to indicate the start of a  
data transfer cycle. A LOW-to-HIGH transition on SDATA while  
SCLK is HIGH indicates the end of a data transfer cycle. Data  
is always sent as complete eight-bit bytes, after which an  
acknowledge is generated. The first byte of a transfer cycle is  
an eight-bit address. The LSB address Byte = 0 in write mode.  
Two-Wire SMBus Control Interface  
The two-wire control interface implements a Read/Write  
slave-only interface, according to SMBus specification. (See  
Figure 1 and Figure 2, below). The device can be read back  
by using standard SMBus command bytes. Subaddressing is  
not supported, thus all preceding bytes must be sent in order  
to change one of the control bytes. The two-wire control  
interface allows each clock output to be individually enabled  
or disabled. 100 Kbits/second (standard mode) data transfer  
is supported.  
The device will respond to transfers of 10 bytes (max) of data.  
The device will generate an acknowledge (LOW) signal on the  
SDATA wire following reception of each byte. Data is trans-  
ferred MSB first at a max. rate of 100kbits/S. This device will  
also respond to a D3 address which sets it in a read mode. It  
will not respond to any other control interface conditions, and  
previously set control registers are retained.  
During normal data transfer, the SDATA signal only changes  
when the SCLK signal is low, and is stable when SCLK is high.  
There are two exceptions to this. A HIGH-to-LOW transition on  
Transmit  
ACK  
ACK  
ACK  
ACK  
ACK  
Receive  
COMMAND BYTE  
BYTE COUNT  
BYTE 0  
(Valid)  
BYTE N  
(Valid)  
1
1
0
1
0
0
1
0
(Dont Care)  
(Dont Care)  
SDATA  
MSB  
LSB  
8
8
8
8
SCLK  
START CONDITION  
STOP CONDITION  
Figure 1. SMBus Communication Waveform (Write)  
Transmit  
ACK BYTE COUNT  
BYTE 0  
BYTE1  
BYTE N  
Receiv  
ACK  
ACK  
ACK  
ACK  
1
1
0
1
0
1
0
1
(Valid)  
(Valid)  
(Valid)  
(Valid)  
SDATA  
MSB  
LSB  
8
8
8
8
SCLK  
START CONDITION  
STOP CONDITION  
Figure 2. SMBus Communication Waveform (Read)  
Serial Control Registers  
Byte 4: CPU Clock Register  
Bit  
7
@Pup  
H/W Setting  
H/W Setting  
H/W Setting  
H/W Setting  
0
Pin#  
14  
4
Name  
FS3  
FS2  
FS1  
FS0  
Description  
For selecting frequencies in Table 1  
For selecting frequencies in Table 1  
For selecting frequencies in Table 1  
For selecting frequencies in Table 1  
0 = HW, 1 = SW Frequency Selection  
For selecting frequencies in Table 1  
6
5
3
4
2
3
2
H/W Setting  
1
15  
FS4  
1
SSCG  
Spread Spectrum Enable. 0 = Spread Off, 1 = Spread On  
This is a Read and Write control bit.  
0
0
0 = running; 1= three-state all outputs  
Byte 5: CPU Clock Register (All bits are Read-only)  
Bit @Pup  
Pin#  
Name  
Description  
7
6
5
4
0
Reserved  
Reserved  
0
X
X
26  
15  
MULTO  
FS4  
MULT0 (pin 26) value. This bit is Read-only.  
FS4 read back. This bit is Read-only.  
Document #: 38-07123 Rev. *B  
Page 3 of 18  
C9915  
Byte 5: CPU Clock Register (All bits are Read-only) (continued)  
Bit @Pup  
Pin#  
14  
Name  
FS3  
Description  
FS3 read back. This bit is Read-only.  
3
2
1
0
X
X
X
X
4
3
2
FS2  
FS1  
FS0  
FS2 read back. This bit is Read-only.  
FS1 read back. This bit is Read-only.  
FS0 read back. This bit is Read-only.  
Byte 6: CPU Clock Register  
Bit @Pup  
Pin#  
Name  
Description  
7
6
5
0
0
0
Function Test Bit, always program to 0.  
Reserved.  
14  
15  
PCI_F0  
PCI_F1  
PCI_STP# control of PCI_F0. 0 = Free Running, 1 = Stopped when PCI_STP# is  
LOW.  
4
3
0
1
PCI_STP# control of PCI_F1. 0 = Free Running, 1 = Stopped when PCI_STP# is  
LOW.  
40,39  
CPU0T/C  
Controls CPU0T and CPU0C functionality when CPU_STP# is asserted LOW  
0 = Free Running, 1 + Stopped with CPU_STP# asserted LOW. This is a Read- and  
Write-Control bit.  
2
0
44,43  
CPU1T/C  
Controls CPU1T and CPU1C functionality when CPU_STP# is asserted LOW  
0 = Free Running, 1 Stopped with CPU_STP# asserted LOW. This and Read- and  
Write-control Bit.  
1
0
1
1
40,39  
44,43  
CPU0T/C  
CPU1T/C  
CPU0T, CPU0C Output Control, 1= enabled, 0 = disabled. This is a Read- and  
Write-control bit.  
CPU1T, CPU1C Output Control, 1= enabled, 0 = disabled. This is a Read- and  
Write-control bit.  
Byte 7: PCI Clock Register (All bits are Read and Write functional)  
Bit @Pup  
Pin#  
15  
Name  
PCI_F0  
PCI_F1  
PCI5  
Description  
PCI_F0 Output Control 1 = enabled, 0 = forced LOW  
PCI_F1 Output Control 1 = enabled, 0 = forced LOW  
PCI5 Output Control 1 = enabled, 0 = forced LOW  
PCI4 Output Control 1 = enabled, 0 = forced LOW  
PCI3 Output Control 1 = enabled, 0 = forced LOW  
PCI2 Output Control 1 = enabled, 0 = forced LOW  
PCI1 Output Control 1 = enabled, 0 = forced LOW  
PCI0 Output Control 1 = enabled, 0 = forced LOW  
7
6
5
4
3
2
1
0
1
1
1
1
1
1
1
1
14  
23  
22  
PCI4  
21  
PCI3  
20  
PCI2  
17  
PCI1  
16  
PCI0  
Byte 8: Silicon Signature Register  
Bit  
7
@Pup  
Description  
1
0
0
0
0
0
0
0
Vendor ID  
1000 = Cypress  
6
5
4
3
Revision ID  
2
1
0
Document #: 38-07123 Rev. *B  
Page 4 of 18  
C9915  
Byte 9: Peripheral Control Register (All bits are Read-only)  
Bit  
7
@Pup  
Pin#  
Name  
Description  
PD# Enable. 0 = enable, 1 = disable  
1
0
33  
PD#  
6
0 = when PD# asserted LOW, CPU(0:1)T stop in a high state, CPU(0:1)C stop in a  
low state. 1 = when PD# asserted LOW, CPU(0:1)T and CPU(0:1)C stop in H-Z.  
5
4
3
2
1
0
1
1
1
0
0
0
27  
26  
26  
48M  
48M Output Control 1 = enabled, 0 = forced LOW  
48M_24M 48M_24M Output Control 1 = enabled, 0 = forced LOW  
48M_24M 48M_24M, 0 = pin28 output is 24 MHz, 1= pin28 output is 48 MHz.  
SS2 Spread Spectrum control bit (0 = down spread, 1= Center spread)  
SS1 Spread Spectrum control bit. See Table 6.  
SS0 Spread Spectrum control bit. See Table 6.  
Byte 10: Peripheral Control Register (All bits are Read-only)  
Bit  
7
@Pup  
Pin#  
47  
4
Name  
SDCLK  
REF2  
Description  
SDCLK Output Enable 1 = enabled, 0 = disabled  
REF2 Output Control 1 = enabled, 0 = forced LOW  
REF1 Output Control 1 = enabled, 0 = forced LOW  
REF0 Output Control 1 = enabled, 0 = forced LOW  
ZCLK1 Output Enable 1 = enabled, 0 = disabled  
ZCLK0 Output Enabled 1 = enabled, 0 = disabled  
AGP1 Output Enabled 1 = enabled, 0 = disabled  
AGP0 Output Enabled 1 = enabled, 0 = disabled  
1
1
1
1
1
1
1
1
6
5
3
REF1  
4
2
REF0  
3
10  
9
ZCLK1  
ZCLK0  
AGP1  
AGP0  
2
1
30  
31  
0
Byte 11: Dial-a-Skewand Dial-a-RatioControl Register  
Bit  
7
@Pup  
Name  
Description  
0
0
0
0
0
0
0
0
DARSD2  
DARSD1  
DARSD0  
DARAG2  
DARAG1  
DARAG0  
DASSD1  
DASSD0  
Programming these bits allow modifying the frequency ratio of the SDCLK clock  
relative to the VCO. See Table 2.  
6
5
4
Programming these bits allow modifying the frequency ratio of the AGP(1:0),  
PCI(5:0) and PCIF(0:1) clocks relative to the VCO. See Table 3.  
3
2
1
Programming these bits allow shifting skew between CPU and SDCLK signals. See  
Table 4.  
0
Table 2. Dial-a-Ratio SDCLK  
DARSD (2:0)  
000  
VC0/SDCLK Ratio  
Frequency Selection Default  
001  
2
3
4
5
6
8
9
010  
011  
100  
101  
110  
111  
Document #: 38-07123 Rev. *B  
Page 5 of 18  
C9915  
Table 3. Dial-a-Ratio AGP(0:1)[4]  
DARAG (2:0)  
VC0/AGP ratio  
000  
001  
010  
011  
100  
101  
110  
111  
Frequency Selection Default  
6
7
8
9
10  
10  
10  
Table 4. Dial-a-Skew SDCLK CPU  
DASSD (1:0)  
SDCLK-CPU Skew  
0 ps (Default)[5]  
00  
01  
10  
11  
+150 ps (CPU lag)*  
+300 ps (CPU lag)*  
+450 ps (CPU lag)*  
Byte 12: Watchdog Time Stamp Register  
Bit  
@Pup  
Name  
Description  
7
1
SRESET#/PCI_STP#. 1 = Pin 12 is the input pin as PCI_STP# signal. 0 = Pin 12 is the output pin  
as SRESET# signal.  
6
0
Frequency Revert. This bit allows setting the Revert Frequency once the system is rebooted due  
to Watchdog time out only.0 = selects frequency of existing H/W setting1 = selects frequency of the  
second to last S/W setting. (the software setting prior to the one that caused a system reboot).  
5
4
0
0
WDTEST. For WD-Test, ALWAYS program to 0.”  
WD Alarm. This bit is set to 1when the Watchdog times out. It is reset to 0when the system  
clears the WD time stamps (WD3:0).  
3
2
1
0
0
0
0
0
WD3  
WD2  
WD1  
WD0  
This bits selects the Watchdog Time Stamp Value. See Table 5.  
Table 5. Watchdog Time Stamp Table  
WD(3:0)  
0000  
0001  
0010  
0011  
FUNCTION  
Off  
1 second  
2 seconds  
3 seconds  
4 seconds  
5 seconds  
6 seconds  
7 seconds  
0100  
0101  
0110  
0111  
Notes:  
4. The ratio of AGP to PCI is retained at 2:1.  
5. See Figure 10 for CPU measurement point. See Figure 11 for SDCLK measurement point.  
Document #: 38-07123 Rev. *B  
Page 6 of 18  
C9915  
Table 5. Watchdog Time Stamp Table (continued)  
WD(3:0)  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
FUNCTION  
8 seconds  
9 seconds  
10 seconds  
11 seconds  
12 seconds  
13 seconds  
14 seconds  
15 seconds  
1111  
Byte 13: Dial-a-FrequencyControl Register N (All bits are Read and Write functional)[6]  
Bit  
7
@Pup  
Description  
0
0
0
0
0
0
0
0
Reserved  
N6, MSB  
N5  
6
5
4
N4  
3
N3  
2
N2  
1
N3  
0
N0, LSB  
Byte 14: Dial-a-Frequency Control Register R (All bits are Read and Write functional)[6]  
Bit  
7
@Pup  
Description  
0
0
0
0
0
0
0
0
Reserved  
R5 MSB  
R4  
6
5
4
R3  
3
R2  
2
R1  
1
R0, LSB  
0
R and N register load gate 0 = gate closed (data is latched), 1 = gate open (data  
is loading from SMBus registers into R and N.)#  
Note:  
6. Byte 13 and Byte 14 should be Write together in every case.  
Document #: 38-07123 Rev. *B  
Page 7 of 18  
C9915  
Dial-a-Frequency Feature  
System Self Recovery Clock Management  
SMBus Dial-a-Frequency feature is available in this device via  
Byte13 and Byte14. P is a large value PLL constant that  
depends on the frequency selection achieved through the  
hardware selectors (FS4, FS0). P value may be determined  
from the following table.  
This feature is designed to allow the system designer to  
change frequency while the system is running and reboot the  
operation of the system in case of a hang up due to the  
frequency change.  
When the system sends an SMBus command requesting a  
frequency change through Byte 4 or through bytes 13 and 14,  
it must have previously sent a command to byte 12, for  
selecting which time out stamp the Watchdog must perform,  
otherwise the System Self Recovery feature will not be appli-  
cable. Consequently, this device will change frequency and  
then the Watchdog timer starts timing. Meanwhile, the system  
BIOS is running its operation with the new frequency. If this  
device receives a new SMBus command to clear the bits origi-  
nally programmed in Byte 12, bits (3:0) (reprogram to 0000),  
before the Watchdog times out, then this device will keep  
operating in its normal condition with the new selected  
frequency. If the Watchdog times out the first time before the  
new SMBus reprograms Byte 12, bits (3:0) to (0000), then this  
device will send a low system reset pulse, on SRESET# (see  
byte12, bit7), and changes WD alarm (Byte12, Bit4) status to  
1then restarts the Watchdog timer again. If the Watchdog  
times out a second time, then this device will send another low  
pulse on SRESET#, will relatch original hardware strapping  
frequency (or second to last software selected frequency, see  
byte12, bit6) selection, set WD alarm bit (Byte12, bit4) to 1,”  
then start WD timer again. The above-described sequence will  
keep repeating until the BIOS clears the SMBus byte12 bits  
(3:0). Once the BIOS sets Byte 12 bits (3:0) = 0000, then the  
Watchdog timer is turned off and the WD alarm bit (Byte 12,  
bit4) is reset to 0.”  
FS(4:0)  
P
00110, 01000, 01010, 01100, 11001, 11011,  
01101  
32005333  
00100, 00101, 10000, 10001, 10101, 10111,  
11000, 11010, 11100, 11101, 11110, 11111  
38406400  
48008000  
64010667  
00000, 00001, 00010, 00111, 01001, 01011,  
01110, 01111, 10010, 10100, 10110  
00011, 10011  
Spread Spectrum Clock Generation (SSCG)  
Spread Spectrum is a modulation technique used to  
minimizing EMI radiation generated by repetitive digital  
signals. A clock presents the greatest EMI energy at the center  
frequency it is generating. Spread Spectrum distributes this  
energy over a specific and controlled frequency bandwidth  
therefore causing the average energy at any one point in this  
band to decrease in value. This technique is achieved by  
modulating the clock away from its resting frequency by a  
certain percentage (which also determines the amount of EMI  
reduction). In this device, Spread Spectrum is enabled by  
setting specific register bits in the SMBus control Bytes. See  
the SMBus register section of this data sheet for the exact bit  
and byte functionally. Table 6 is a listing of the modes and  
percentages of Spread Spectrum modulation that this device  
incorporates.  
Table 6. Spread Spectrum  
SS2  
0
SS1  
0
SS0  
0
Spread Mode  
Spread %  
0, -0.50  
Down  
Down  
Down  
Down  
Center  
Center  
Center  
Center  
0
0
1
+0.12, -0.62  
+0.25, -0.75  
+0.50, -1.00  
+0.25, -0.25  
+0.37, -0.37  
+0.50, -0.50  
+0.75, -0.75  
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Document #: 38-07123 Rev. *B  
Page 8 of 18  
C9915  
S y s t e m r u n n in g w it h  
o rig in a lly s e le c te d  
f re q u e n c y v ia  
h a r d w a r e s t r a p p in g .  
N o  
F re q u e n c y w ill c h a n g e b u t S y s t e m S e lf  
R e c e iv e F r e q u e n c y  
C h a n g e R e q u e s t v ia  
R e c o v e r y n o t a p p lic a b le (n o t im  
e
s t a m  
p
Y e s  
s e le c t e d a n d b y t e 1 2 , b it (3 :0 ) is s t ill  
" 0 0 0 0 "  
=
S M B u s B y t e 4 o r V ia D ia l-  
a -f r e q u e n c y ?  
C h a n g e t o  
a n e w  
f re q u e n c y  
N o  
I s S M B u s B y t e 9 , t im  
e o u t  
s t a m  
p
e n a b le d  
(3 : 0 )  
- ( b y t e 1 2 , b it  
0 0 0 0 ) ?  
Y e s  
1 ) S e n d a n o t h e r 3 m  
S lo w p u ls e o n S R E S E T  
2 ) R e la t c h o r ig in a l h a r d w a r e s t r a p p in g s e le c t io n  
f o r r e tu rn to o r ig in a l f re q u e n c y s e t t in g s .  
S t a r t in t e r n a l w a t c h d o g t im e r .  
3 ) S e t  
W
D
A la rm b it (b y t e 1 2 , B it4 ) t o " 1 "  
D t im e r  
4 ) S t a r t  
W
Y e s  
1 ) S e n d S R E S E T  
p u ls e  
Y e s  
W
a tc h D o g t im e o u t?  
2 ) S e t  
( b y te 1 2 , b it 4 ) t o 1 ’  
3 ) S t a r t tim e r  
W D b it  
W
a t c h D o g t im e o u t ?  
W
D
N o  
N o  
S M B u s b y te 1 2 t im  
e
o u t s t a m d is a b le d ?  
p
N o  
S M B u s b y t e  
s t a m d is a b le d , B y t e  
1 2 , b it (3 : 0 ) (0 0 0 0 ) ?  
9 t im e o u t  
Y e s  
p
Y e s  
N o  
=
T u r n o ff w a tc h d o g tim e r.  
K e e p n e w f re q u e n c y s e t t in g . S e t  
b it ( b y te 1 2 , b it 4 ) t o ’’0 ’  
W
D a la rm  
CPU_STP# Clarification  
synchronous manner. Synchronous manner meaning that no  
short or stretched clock pulses will be produce when the clock  
resumes. The maximum latency from the de-Assertion to  
active outputs is no more than 2 CPU clock cycles.  
The CPU_STP# signal is an active LOW input used for  
synchronous stopping and starting the CPU output clocks  
while the rest of the clock generator continues to function.  
PCI_STP# Assertion  
CPU_STP# Assertion  
The PCI_STP# signal is an active LOW input used for  
synchronous stopping and starting the PCI outputs while the  
rest of the clock generator continues to function. The set-up  
time for capturing PCI_STP# going LOW is 10 ns (tsetup). (See  
Figure 5.) The PCI_F (0:2) clocks will not be affected by this  
pin if their control bits in the SMBus register are set to allow  
them to be free running.  
When CPU_STP# pin is asserted, all CPU outputs that are set  
with the SMBus configuration to be stoppable via assertion of  
CPU_STP# will be stopped after being sampled by two falling  
CPU clock edges. The final state of the stopped CPU signals  
is CPU = HIGH and CPU0# = LOW. There is no change to the  
output drive current values during the stopped state. The CPU  
is driven HIGH with a current value equal to (Mult 0 select) x  
(Iref), and the CPU# signal will not be driven. Due to external  
pull-down circuitry CPU# will be LOW during this stopped  
state.  
PCI_STP# Deassertion  
The deassertion of the PCI_STP# signal will cause all PCI(0:6)  
and stoppable PCI_F(0:2) clocks to resume running in a  
synchronous manner within 2 PCI clock periods after  
PCI_STP# transitions to a HIGH level.  
CPU_STP# Deassertion  
The de-assertion of the CPU_STP# signal will cause all CPU  
outputs that were stopped to resume normal operation in a  
Document #: 38-07123 Rev. *B  
Page 9 of 18  
C9915  
CPU_STP#  
CPUT  
CPUC  
CPUT  
CPUC  
Figure 3. Deassertion CPU_STP# Waveform  
CPU_STP#  
CPUT  
CPUC  
Figure 4. Assertion CPU_STP# Waveform  
t setup  
PCI_STP#  
PCI_F(0:2) 33M  
PCI(0:6) 33M  
Figure 5. Assertion PCI_STP# Waveform  
t setup  
PCI_STP#  
PCI_F(0:2)  
PCI(0:6)  
Figure 6. Deassertion PCI_STP# Waveform[7]  
Note:  
7. The PCI STOP function is controlled by two inputs. One is the device PCI_STP# pin number 34 and the other is SMBus Byte 0,Bit 3. These two inputs are  
logically ANDed. If either the external pin or the internal SMBus register bit is set LOW, the stoppable PCI clocks will be stopped in a logic LOW state. Reading  
SMBus Byte 0,Bit 3 will return a 0 value if either of these control bits are set LOW, thereby indicating that the devices stoppable PCI clocks are not running.  
Document #: 38-07123 Rev. *B  
Page 10 of 18  
C9915  
PD# (Power-down) Clarification  
The PD# pin is used to shut off ALL clocks prior to shutting off  
power to the device. PD# is an asynchronous active LOW  
input. This signal is synchronized internally to the device  
powering down the clock synthesizer. PD# is an asynchronous  
function for powering up the system. When PD# is LOW, all  
clocks are driven to a LOW value and held there; the VCO and  
PLLs are also powered down. All clocks are shut down in a  
synchronous manner so has not to cause glitches while transi-  
tioning to the LOW stoppedstate.  
be held LOW on their next HIGH-to-LOW transition. CPUT  
clocks must be hold with CPUT clock pin driven high with a  
value of 2× Iref and CPUC undriven.  
Due to the state of internal logic, stopping and holding the REF  
clock outputs in the LOW state may require more than one  
clock cycle to complete.  
PD# Deassertion (Transition from Logic 0to Logic 1)  
The power-up latency between PD# rising to a valid logic 1”  
level and the starting of all clocks is less than 3.0 ms.  
PD# Assertion (Transition from Logic 1to Logic 0)  
When PD# is sampled LOW by two consecutive rising edges  
of CPUC clock, all clock outputs (except CPUT) clocks must  
CPU_STP#  
CPU(0:1)T  
CPU(0:1)C  
CPU Internal  
CPU# Internal  
Figure 7. Power-down Assertion/Deassertion Timing Waveforms Nonbuffered Mode  
VID (0:3),  
SEL (0,1)  
VTTPWRGD  
PWRGD  
0.2-0.3mS  
Delay  
Wait for  
VTT_GD#  
Sample Sels  
VDD Clock Gen  
Clock State  
State 0  
Off  
State 1  
State 2  
State 3  
(Note A)  
On  
Clock Outputs  
Clock VCO  
On  
Off  
Figure 8. VTTPWRGD Timing Diagram[8]  
Note:  
8. Device is not affected, VTTPWRGD is ignored.  
Document #: 38-07123 Rev. *B  
Page 11 of 18  
C9915  
S1  
S2  
W ait for  
1.146m s  
Sam ple  
Inputs  
FS(3:0)  
Enable  
Outputes  
Delay 0.25m S  
VDDA = 2.0V  
S0  
S3  
Norm al  
Operation  
Power Off  
VDD3.3 = Off  
Figure 9. Clock Generator Power Up/Run State Diagram  
Document #: 38-07123 Rev. *B  
Page 12 of 18  
C9915  
Maximum Ratings[9.]  
Input Voltage Relative to VSS:...............................VSS 0.3V  
Input Voltage Relative to VDDQ or AVDD: ............. VDD + 0.3V  
Storage Temperature: ................................65°C to + 150°C  
Operating Temperature: ................................... 0°C to +70°C  
Maximum Power Supply:................................................ 3.5V  
DC Characteristics  
Current Accuracy[10]  
Parameter  
Iout  
Description  
Conditions  
Min.  
Max.  
Load  
VDD = nominal (3.30V) M0 = 0 or 1 and Rr shown in table 7% Inom +7% Inom Nominal test load for  
given configuration  
Iout  
VDD = 3.30 ±5%  
All combinations of M0 or 1 and Rr 12% Inom +12% Inom Nominal test load for  
shown in table given configuration  
DC Component Parameters (VDD = 3.3V±5%, TA = 0°C to 70°C)  
Symbol  
Idd3.3V  
Description  
Dynamic Supply Current  
Power-down Supply Current  
Input Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
Conditions  
All frequencies at maximum values[11]  
PD# Asserted  
Min.  
Typ.  
Max.  
Unit  
mA  
280  
Ipd3.3V  
Cin  
See Note 11 mA  
5
6
pF  
pF  
nH  
pF  
Cout  
Lpin  
7
Cxtal  
Crystal Pin Capacitance  
Measured from the XIN or XOUT pin to  
Ground  
30  
36  
42  
Table 7. Maximum Lumped Capacitive Output Loads  
Clock  
PCI(0:5), PCI_F(0:1)  
AGP (0:1), SDCLK  
ZCLK (0:1)  
Max. Load  
Unit  
30  
30  
30  
20  
30  
2
pF  
pF  
pF  
pF  
pF  
pF  
48M_24, 48M Clock  
REF (0:2)  
CPU(0:1)T  
CPU(0:1) C  
Notes:  
9. Multiple Supplies The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.  
10. Inom refers to the expected current based on the configuration of the device.  
11. Absolute value = (Programmed CPU Iref 97) +10 mA.  
Document #: 38-07123 Rev. *B  
Page 13 of 18  
C9915  
AC Parameters[12]  
100 MHz  
133 MHz  
Parameters  
Crystal  
Description  
Min.  
Max.  
Min.  
Max.  
Unit  
Notes  
TDC  
X
IN Duty Cycle  
XIN Period  
XIN HIGH Voltage  
IN LOW Voltage  
47.5  
69.841  
0.7VDD  
0
52.5  
71.0  
47.5  
69.841  
0.7VDD  
0
52.5  
71.0  
%
ns  
V
13,21  
TPeriod  
VHIGH  
VLOW  
Tr/Tf  
13,14,16,21  
VDD  
VDD  
X
0.3VDD  
10.0  
0.3VDD  
10.0  
V
XIN Rise and Fall Times  
XIN Cycle-to-Cycle Jitter  
ns  
ps  
TCCJ  
500  
500  
14,17,21  
CPU at 0.7V Timing  
TSKEW  
Any CPU to CPU Clock Skew  
CPU Cycle-to-Cycle Jitter  
CPU and CPUC Duty Cycle  
150  
150  
55  
150  
150  
55  
ps  
ps  
%
17, 24, 28  
17, 24, 28  
17, 24, 28  
17, 24, 28  
17, 18  
TCCJ  
TDC  
45  
9
45  
TPeriod  
Tr / Tf  
CPU and CPUC Period  
CPU and CPUC Rise and Fall Times  
Rise/Fall Matching  
10.2  
700  
20%  
125  
125  
430  
7.35  
175  
7.65  
700  
20%  
125  
125  
430  
ns  
ps  
175  
18, 27, 28  
18, 28  
DeltaTr  
DeltaTf  
Vcross  
Rise Time Variation  
ps  
ps  
Fall Time Variation  
18, 28  
Crossing Point Voltage at 0.7V Swing  
280  
280  
mV  
18, 24, 28  
AGP  
TDC  
AGP Duty Cycle  
45  
55  
15.3  
45  
55  
%
ns  
ns  
ns  
ns  
ps  
14, 16  
14, 16  
25  
TPeriod  
THIGH  
TLOW  
Tr / Tf  
AGP Period  
15.0  
5.25  
5.05  
0.5  
15.0  
5.25  
5.05  
0.5  
15.3  
AGP HIGH Time  
AGP LOW Time  
26  
AGP Rise and Fall Times  
Any AGP to Any AGP Clock Skew  
1.6  
175  
1.6  
14, 15  
14, 16  
Tskew  
175  
Unbuffered  
TCCJ  
AGP Cycle-to-Cycle Jitter  
250  
250  
ps  
14, 16  
ZCLK  
TDC  
ZCLK(0:1) Duty Cycle  
45  
55  
1.6  
45  
55  
%
ns  
ps  
ps  
14, 16  
14, 15  
14, 16  
14,16  
Tr / Tf  
ZCLK(0:1) Rise and Fall Times  
Any ZCLK(0:1) to Any ZCLK(0:1) Skew  
ZCLK(0:1)Cycle-to-Cycle Jitter  
0.5  
0.5  
1.6  
175  
250  
TSKEW  
TCCJ  
175  
250  
PCI  
TDC  
PCI_F(0:1) PCI (0:5) Duty Cycle  
PCI_F(0:1) PCI (0:5) Period  
45  
55  
45  
55  
%
14, 16  
13,14,16  
25  
TPeriod  
THIGH  
TLOW  
Tr / Tf  
30.0  
12.0  
12.0  
0.5  
30.0  
12.0  
12.0  
0.5  
nS  
nS  
nS  
nS  
pS  
ps  
PCI_F(0:1) PCI (0:5) HIGH Time  
PCI_F(0:1) PCI (0:5) LOW Time  
PCI_F(0:1) PCI (0:5) Rise and Fall Times  
Any PCI Clock to Any PCI Clock Skew  
PCI_F(0:1) PCI (0:5) Cycle-to-Cycle Jitter  
26  
2.0  
500  
250  
2.0  
500  
250  
14, 15  
14, 16  
14, 16  
TSKEW  
TCCJ  
SDCLK  
TDC  
SDCLK Duty Cycle  
SDCLK Period  
45  
7.4  
3.0  
55  
15  
45  
7.4  
55  
15  
%
ns  
ns  
14, 16  
14, 16  
25  
TPeriod  
THIGH  
SDCLK HIGH Time  
1.87  
Document #: 38-07123 Rev. *B  
Page 14 of 18  
C9915  
AC Parameters[12] (continued)  
100 MHz  
133 MHz  
Parameters  
Description  
SDCLK LOW Time  
Min.  
Max.  
Min.  
Max.  
Unit  
ns  
Notes  
26  
TLOW  
Tr / Tf  
TCCJ  
2.8  
0.4  
-
1.67  
0.4  
-
SDCLK Rise and Fall Times  
SDCLK Cycle-to-Cycle Jitter  
1.6  
1.6  
ns  
14, 15  
14, 15  
250  
250  
ps  
48M  
TDC  
48M Duty Cycle  
45  
55  
45  
55  
%
ns  
ns  
ps  
14, 16  
14, 16  
14, 15  
14, 16  
TPeriod  
Tr / Tf  
TCCJ  
48M Period  
20.829 20.834 20.829 20.834  
48M Rise and Fall Times  
48M Cycle-to-Cycle Jitter  
1.0  
2.0  
1.0  
2.0  
350  
350  
24M  
TDC  
24MHz Duty Cycle  
45  
41.66  
1.0  
55  
41.67  
4.0  
45  
41.66  
1.0  
55  
41.67  
4.0  
%
ns  
ns  
ps  
14, 16  
14, 16  
14, 15  
14, 16  
TPeriod  
Tr / Tf  
TCCJ  
24MHz Period  
24MHz Rise and Fall Times  
24MHz Cycle-to-Cycle Jitter  
500  
500  
REF  
TDC  
REF Duty Cycle  
45  
69.8413  
1.0  
55  
45  
55  
%
ns  
ns  
ps  
14, 16  
14, 16  
14, 15  
14, 16  
TPeriod  
Tr / Tf  
TCCJ  
REF Period  
71.0 69.8413 71.0  
REF Rise and Fall Times  
REF Cycle-to-Cycle Jitter  
4.0  
1.0  
4.0  
1000  
1000  
ENABLE/DISABLE and SETUP  
tpZL, tpZH  
tpLZ, tpZH  
tstable  
tss  
Output Enable Delay (all outputs)  
1.0  
1.0  
10.0  
10.0  
1.5  
1.0  
1.0  
10.0  
10.0  
1.5  
ns  
ns  
ms  
ns  
ns  
Output Disable Delay (all outputs)  
All Clock Stabilization from Power-up  
Stopclock Set-up Time  
19  
20  
10.0  
0
10.0  
0
tsh  
Stopclock Hold Time  
Notes:  
12. All outputs loaded as per maximum capacitive load table. See Table 7.  
13. This parameter is measured as an average over 1µs duration with a crystal center frequency of 14.318 MHz.  
14. All outputs loaded per Table 7, below.  
15. Probes are placed on the pins, and measurements are acquired between 0.4V and 2.4V for 3.3V signals (see test and measurement set-up section of this data  
sheet).  
16. Probes are placed on the pins, and measurements are acquired at 1.5V for 3.3V signals (see test and measurement set-up section of this data sheet).  
17. This measurement is applicable with Spread On or Spread OFF.  
18. Measured from VOL = 0.175 to VOH = 0.525V.  
19. The time specified is measured from when all VDDs reach their supply rail (3.3V) until the frequency output is stable and operating within the specifications.  
20. CPU_STP# and PCI_STP# set-up time with respect to any PCI_F clock to guarantee that the effected clock will stop or start at the next PCI_F clocks rising edge.  
21. When XIN is driven from an external clock source.  
22. When crystal meets minimum 40-ohm device series resistance specification.  
23. This is required for the duty cycle on the REF clock out to be as specified. The device will operate reliably with input duty cycles up to 30/70 but the REF clock  
duty cycle will not be within data sheet specifications.  
24. Measured at crossing point (Vx) or where subtraction of CLKCLK# crosses 0V.  
25. THIGH is measured at 2.4V for all non-host outputs.  
26. TLOW is measured at 0.4V for all non-host outputs.  
27. Determined as a fraction of 2*(Trise-Tfall)/ (Trise+Tfall).  
28. For CPU load. See Figure 10.  
Document #: 38-07123 Rev. *B  
Page 15 of 18  
C9915  
Test and Measurement Set-up  
For Differential CPU Output Signals  
The following diagram shows lumped test load configurations  
for the differential host clock outputs.  
TPCB  
33Ω  
Measurement Point  
Measurement Point  
CPUT  
49.9Ω  
2pF  
2pF  
MULTSEL  
CPUC  
IREF  
475Ω  
TPCB  
33Ω  
49.9Ω  
Figure 10. 0.7V Configuration  
O u tp u t u nd e r T e st  
P ro b e  
L o a d C a p  
3 .3 V s ig n a ls  
tD C  
-
-
3 .3 V  
2 .4V  
1 .5V  
0 .4V  
0 V  
T r  
T f  
Figure 11. Lumped LoadFor Single-Ended Output Signals (for AC Parameters Measurement)  
Table 8. CPU Clock Current Select Function  
Mult0  
Board Target Trace/Term Z  
50 ohms (not used)  
50 ohms  
Reference R, Iref Vdd (3*Rr)  
Rr = 221 1%, Iref = 5.00 mA  
Rr = 475 1%, Iref = 2.32 mA  
Output Current  
Ioh = 4*Iref  
V
OH @ Z  
0
1
1.0V @ 50  
0.7V @ 50  
Ioh = 6*Iref  
Table 9. Group Timing Relationship and Tolerances  
Tolerance (or  
Offset  
Range)  
Conditions  
CPU leads  
CPU leads  
CPU leads  
CPU leads  
Notes  
CPU to SDCLK  
CPU to AGP  
CPU to ZCLK  
TypicaL 0 ns  
TypicaL 2 ns  
TypicaL 2 ns  
Typical 2 ns  
±2 ns  
Note 29  
Note 29  
Note 29  
Note 29  
14 ns  
14 ns  
14 ns  
CPU to PCI  
Note:  
29. See Figure 10 for CPU clocks measurement point. SeeFigure 11 for SDCLK, AGP, ZCLK and PCI Outputs measurement point.  
Document #: 38-07123 Rev. *B  
Page 16 of 18  
C9915  
Ordering Information  
Part Number  
IMIC9915AY  
Package Type  
Product Flow  
48-Pin Shrunk Small Outline package (SSOP)  
48-Pin Shrunk Small Outline package (SSOP) Tape and Reel  
Commercial, 0° to 70°C  
Commercial, 0° to 70°C  
IMIC9915AYT  
Package Drawing and Dimensions  
48-lead Shrunk Small Outline Package O48  
51-85061-C  
Intel is a registered trademark of Intel Corporation. Dial-a-Skew, Dial-a-Frequency, and Dial-a-Ratio are trademarks of Cypress  
Semiconductor. All product and company names mentioned in this document may be the trademarks of their respective holders.  
Document #: 38-07123 Rev. *B  
Page 17 of 18  
© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
C9915  
Document Title: C9915 Low EMI Clock Generator for Intel® 133-MHz/2-DIMM Chipset Systems  
Document Number: 38-07123  
Issue  
Date  
Orig. of  
Change  
REV.  
**  
ECN NO.  
112009  
117409  
122792  
Description of Change  
New Data Sheet  
03/01/02  
08/20/02  
12/14/02  
DMG  
RGL  
RBI  
*A  
Corrected the Ordering Information to match the Dev Master  
Add Power up Requirements to Operating Conditions Information  
*B  
Document #: 38-07123 Rev. *B  
Page 18 of 18  

相关型号:

IMIC9950

Clocks and Buffers
ETC

IMICB660ETB

Processor Specific Clock Generator, CMOS, PDSO28, TSSOP-28
CYPRESS

IMICB660EYB

Processor Specific Clock Generator, CMOS, PDSO28, SSOP-28
CYPRESS

IMICB664ETB

Low Skew Clock Driver, B Series, 7 True Output(s), 0 Inverted Output(s), PDSO16
CYPRESS

IMICB664EYB

Low Skew Clock Driver, PDSO16
CYPRESS

IMICT266CZB

Analog Circuit, 1 Func, CMOS, PDSO8
CYPRESS

IMICT266DZB

Voltage-Controlled Oscillator
ETC

IMICT266XZB

Analog Circuit, PDSO8
CYPRESS

IMICT269XYB

PLL Frequency Synthesizer, CMOS, PDSO28
CYPRESS

IMICT270XYB

PLL Frequency Synthesizer, CMOS, PDSO28, SSOP-28
CYPRESS

IMIFS741BZB

68 MHz, OTHER CLOCK GENERATOR, PDSO8, 0.150 INCH, SOIC-8
ROCHESTER

IMIFS741BZB

Clock Generator, 68MHz, CMOS, PDSO8, 0.150 INCH, SOIC-8
CYPRESS