ACPL-P456-560E [AVAGO]

ACPL-P456 and ACPL-W456 Intelligent Power Module and Gate Drive Interface Optocouplers; ACPL- P456和ACPL- W456智能功率模块和门驱动接口光电耦合器
ACPL-P456-560E
型号: ACPL-P456-560E
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

ACPL-P456 and ACPL-W456 Intelligent Power Module and Gate Drive Interface Optocouplers
ACPL- P456和ACPL- W456智能功率模块和门驱动接口光电耦合器

光电 栅 驱动
文件: 总12页 (文件大小:328K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ACPL-P456 and ACPL-W456  
Intelligent Power Module and Gate Drive Interface Optocouplers  
Data Sheet  
Lead (Pb) Free  
RoHS 6 fully  
compliant  
RoHS 6 fully compliant options available;  
-xxxE denotes a lead-free product  
Description  
Features  
The ACPL-P456 and ACPL-W456 contain a GaAsP LED Performance Specified for Common IPM Applications  
optically coupled to an integrated high gain photo  
detector. Minimized propagation delay difference  
between devices make these optocouplers excellent  
solutions for improving inverter efficiency through  
reduced switching dead time. Specifications and perfor-  
mance plots are given for typical IPM applications.  
Over Industrial Temperature Range.  
Short Maximum Propagation Delays  
Minimized Pulse Width Distortion (PWD)  
Very High Common Mode Rejection (CMR)  
High CTR.  
Available in Stretched SO-6 package with 8 mm  
Functional Diagram  
creepage and clearance.  
Safety Approval:  
ANODE  
N.C.  
1
2
3
6
5
4
VCC  
UL Recognized with 3750 V  
Vrms for 1 minute for ACPL-W456 devices) per  
UL1577.  
for 1 minute (5000  
rms  
VO  
CATHODE  
Ground  
SHIELD  
CSA Approved.  
IEC/EN/DIN EN 60747-5-5 Approved with V  
=
IORM  
= 891 Vpeak  
Note: A 0.1 μF bypass capacitor must be connected between pins 4 and 6.  
1140 Vpeak (ACPL-W456) and V  
(ACPL-P456) for Option 060.  
IORM  
Truth Table  
Specifications  
Wide operating temperature range: –40°C to 100°C.  
Maximum propagation delay t = 400 ns, t = 490 ns  
LED  
ON  
V
O
LOW  
OFF  
HIGH  
PHL  
PLH  
Maximum Pulse Width Distortion (PWD) = 450 ns.  
15 kV/μs minimum common mode rejection (CMR) at  
V
CM  
= 1500 V.  
CTR > 44% at I = 10 mA  
F
Applications  
IPM Isolation  
Isolated IGBT/MOSFET Gate Drive  
AC and Brushless DC Motor Drives  
Industrial Inverters  
CAUTION: It is advised that normal static precautions be taken in handling and assembly  
of this component to prevent damage and/or degradation which may be induced by ESD.  
Ordering Information  
ACPL-P456 and ACPL-W456 are UL Recognized with 3750 Vrms (5000 Vrms for ACPL-W456) for 1 minute per UL1577  
and are approved under CSA Component Acceptance Notice #5, File CA 88324.  
Option  
Surface  
Mount  
Tape  
& Reel  
IEC/EN/DIN EN  
60747-5-5  
Part number  
RoHS Compliant  
-000E  
Package  
Quantity  
X
X
X
X
100 per tube  
1000 per reel  
100 per tube  
1000 per reel  
-500E  
X
X
ACPL-P456  
ACPL-W456  
Stretched  
SO-6  
-060E  
X
X
-560E  
To order, choose a part number from the part number column and combine with the desired option from the option  
column to form an order entry.  
Example 1:  
ACPL-P456-560E to order product of Stretched SO-6 package in Tape and Reel packaging with IEC/EN/DIN EN  
60747-5-5 Safety Approval in RoHS compliant.  
Example 2:  
ACPL-P456-000E to order product of Stretched SO-6 package in tube packaging and RoHS compliant.  
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.  
Package Outline Drawings  
ACPL-P456 Stretched SO-6 Package, 7 mm clearance  
+
0.254  
4.580  
0.180  
0
10.7  
0.421  
0.381 0.127  
0.015 0.005  
1.27 BSG  
0.050  
+0.010  
0.000  
0.76  
0.030  
-
1.27  
0.050  
2.16  
0.085  
7.62  
0.300  
3.180 0.127  
0.125 0.005  
6.81  
0.45  
0.268  
1.590 0.127  
0.063 0.005  
0.018  
45°  
7°  
7°  
7°  
7°  
NOM.  
0.20 0.10  
0.008 0.004  
0.254 0.050  
0.010 0.002  
Floating Lead Protusions max. 0.25 [0.01]  
5
1
0.250  
Dimensions in Millimeters [ Inches ]  
Lead Coplanarity= 0.1mm [0.004 Inches ]  
0.040 0.010  
9.7 0.250  
0.382 0.010  
2
ACPL-W456 Stretched SO-6 Package, 8 mm clearance  
+
0.254  
4.580  
1.27 BSG  
0.050  
0
0.760  
0.030  
0.381 0.127  
0.015 0.005  
12.650  
0.498  
+
0.010  
0.180  
-
0.000  
1
6
4
2
3
5
7.62  
[0.300]  
1.905  
0.075  
1.270  
0.050  
+
0
0.127  
6.807  
+
0.005  
0.268  
-
0.000  
1.590 0.127  
0.063 0.005  
3.180 0.127  
0.125 0.005  
45°  
0.45  
0.018  
0.20 0.10  
0.008 0.004  
0.254 0.050  
0.010 0.002  
0.750 0.250  
[0.0295 0.010]  
35° NOM.  
Floating Lead protusion max. 0.25[0.01]  
11.500 0.25  
0.453 0.010  
Dimensions in millimeters [Inches]  
Lead Coplanarity=0.1mm [0.004 Inches]  
Recommended Pb-Free IR Profile  
Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non-Halide Flux should be used.  
Regulatory Information  
The ACPL-P456 and ACPL-W456 are approved by the following organizations:  
IEC/EN/DIN EN 60747-5-5 (Option 060 only)  
Approved with Maximum Working Insulation Voltage  
UL  
Approval under UL 1577, component recognition  
program up to V = 3750 V  
W456). File E55361.  
V
= 1140 Vpeak (ACPL-W456) and V  
= 891 Vpeak  
(or 5000 V  
for ACPL-  
IORM  
(ACPL-P456).  
IORM  
ISO  
RMS  
RMS  
CSA  
Approval under CSA Component Acceptance Notice #5,  
File CA 88324.  
3
Table 1. IEC/EN/DIN EN 60747-5-5 Insulation Characteristics* (ACPL-P456/W456 Option 060)  
Description  
Symbol  
ACPL-W456  
ACPL-P456  
Unit  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage ≤ 150 Vrms  
for rated mains voltage ≤ 300 Vrms  
for rated mains voltage ≤ 450 Vrms  
for rated mains voltage ≤ 600 Vrms  
I – IV  
I – IV  
I – III  
I – III  
I – II  
I – IV  
I – IV  
I – III  
I – III  
for rated mains voltage ≤ 1000 Vrms  
Climatic Classification  
55/100/21  
55/100/21  
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
2
2
VIORM  
VPR  
1140  
891  
Vpeak  
Vpeak  
Input to Output Test Voltage, Method b*  
VIORM x 1.875=VPR, 100% Production Test with tm=1 sec,  
Partial discharge < 5 pC  
2138  
1671  
Input to Output Test Voltage, Method a*  
VIORM x 1.5=VPR, Type and Sample Test, tm=10 sec,  
Partial discharge < 5 pC  
VPR  
1824  
8000  
1425  
6000  
Vpeak  
Vpeak  
Highest Allowable Overvoltage  
VIOTM  
(Transient Overvoltage tini = 60 sec)  
Safety-limiting values – maximum values  
allowed in the event of a failure.  
Case Temperature  
Input Current  
Output Power  
TS  
175  
230  
600  
175  
230  
600  
°C  
mA  
mW  
IS, INPUT  
PS, OUTPUT  
Insulation Resistance at TS, VIO = 500 V  
RS  
>109  
>109  
*
Refer to the optocoupler section of the Isolation and Control Components Designer’s Catalog, under Product Safety Regulations section, (IEC/EN/  
DIN EN 60747-5-5) for a detailed description of Method a and Method b partial discharge test profiles.  
Table 2. Insulation and Safety Related Specifications  
Parameter  
Symbol ACPL-P456 ACPL-W456  
Units Conditions  
Minimum External Air Gap  
(External Clearance)  
L(101)  
7.0  
8.0  
mm  
mm  
mm  
Measured from input terminals to output  
terminals, shortest distance through air.  
Minimum External Tracking  
(External Creepage)  
L(102)  
8.0  
8.0  
Measured from input terminals to output  
terminals, shortest distance path along body.  
Minimum Internal Plastic Gap  
(Internal Clearance)  
0.08  
0.08  
Through insulation distance conductor to  
conductor, usually the straight line distance  
thickness between the emitter and detector.  
Minimum Internal Tracking  
(Internal Creepage)  
NA  
>175  
IIIa  
NA  
>175  
IIIa  
mm  
V
Measured from input terminals to output  
terminals, along internal cavity.  
Tracking Resistance  
(Comparative Tracking Index)  
CTI  
DIN IEC 112/VDE 0303 Part 1  
Isolation Group  
Material Group (DIN VDE 0110, 1/89, Table 1)  
4
Table 3. Absolute Maximum Ratings  
Parameter  
Symbol  
TS  
Min.  
-55  
-40  
Max.  
125  
100  
25  
Units  
°C  
Note  
Storage Temperature  
Operating Temperature  
Average Input Current  
TA  
°C  
IF(avg)  
IF(peak)  
mA  
mA  
1
2
Peak Input Current  
50  
(50% duty cycle, <1 ms pulse width)  
Peak Transient Input Current  
(<1 ꢀs pulse width, 300 pps)  
IF(tran)  
1.0  
A
Reverse Input Voltage (Pin 3-1)  
Average Output Current (Pin 5)  
Output Voltage (Pin 5-4)  
Supply Voltage (Pin 6-4)  
VR  
5
V
IO(avg)  
VO  
15  
30  
30  
100  
145  
mA  
-0.5  
-0.5  
VCC  
PO  
Output Power Dissipation  
Total Power Dissipation  
mW  
mW  
3
4
PT  
Infrared and Vapor Phase Reflow Tem-  
perature  
See Reflow Thermal Profile.  
Table 4. Recommended Operating Conditions  
Parameter  
Symbol  
Min.  
4.5  
0
Max.  
30  
Units  
Note  
Power Supply Voltage  
Output Voltage  
VCC  
VO  
V
30  
V
Input Current (ON)  
Input Voltage (OFF)  
Operating Temperature  
IF(on)  
VF(o)  
TA  
10  
-5  
20  
mA  
V
0.8  
100  
-40  
°C  
Table 5. Electrical Specifications  
Over recommended operating conditions unless otherwise specified: T = -40°C to +100°C, V = +4.5 V to 30 V, I  
=
A
CC  
F(on)  
10 mA to 20 mA, V  
) = -5 V to 0.8 V  
F(off  
Parameter  
Symbol  
CTR  
IOL  
Min.  
44  
Typ.* Max. Units  
Test Conditions  
Fig.  
Note  
Current Transfer Ratio  
90  
%
IF = 10 mA, VO = 0.6 V  
IF = 10 mA, VO = 0.6 V  
IO = 2.4 mA  
5
Low Level Output Current  
Low Level Output Voltage  
Input Threshold Current  
High Level Output Current  
High Level Supply Current  
Low Level Supply Current  
Input Forward Voltage  
4.4  
9.0  
0.3  
1.5  
5
mA  
V
1, 2  
VOL  
0.6  
5.0  
50  
ITH  
mA  
ꢀA  
mA  
mA  
V
VO = 0.8 V, IO = 0.75 mA  
VF = 0.8 V  
1
3
9
IOH  
ICCH  
ICCL  
0.6  
0.6  
1.5  
-1.6  
1.3  
1.3  
1.8  
VF = 0.8 V, VO = Open  
IF = 10 mA, VO = Open  
IF = 10 mA  
9
9
VF  
4
Temperature Coefficient  
of Forward Voltage  
ΔVF/ΔTA  
mV/°C IF = 10 mA  
Input Reverse Breakdown Voltage  
Input Capacitance  
BVR  
CIN  
5
V
IR = 10 ꢀA  
60  
pF  
f = 1 MHz, VF = 0 V  
*All typical values at 25°C, V = 15 V.  
CC  
5
Table 6. Switching Specifications (R = 20 kΩ)  
L
Over recommended operating conditions unless otherwise specified. T = -40°C to +100°C, V = +4.5 V to 30 V, I  
=
A
CC  
F(on)  
10 mA to 20 mA, V  
= -5 V to 0.8 V  
F(o)  
Parameter  
Symbol  
Min.  
Typ.  
Max. Units Test Conditions  
Fig.  
Note  
Propagation Delay Time  
to Low Output Level  
tPHL  
30  
200  
400  
ns  
CL = 100  
pF  
IF(on) = 10 mA,  
F(o) = 0.8 V,  
VCC = 15.0 V,  
THLH = 2.0 V,  
VTHHL = 1.5 V  
5, 7 -11  
8, 9  
V
100  
400  
ns  
ns  
CL = 10 pF  
V
Propagation Delay Time  
to High Output Level  
tPLH  
270  
550  
CL = 100  
pF  
130  
200  
ns  
ns  
CL = 10 pF  
Pulse Width Distortion  
PWD  
450  
450  
CL = 100  
pF  
13  
10  
11  
12  
Propagation Delay Difference  
Between Any 2 Parts  
tPLH-tPHL -150  
200  
30  
ns  
Output High Level Common  
Mode Transient Immunity  
|CMH|  
|CML|  
15  
15  
kV/ꢀs IF = 0 mA, VCC = 15.0 V,  
VO > 3.0 V CL = 100 pF,  
6
V
CM = 1500 VP-P  
,
Output Low Level Common  
Mode Transient Immunity  
30  
kV/ꢀs IF = 10 mA,  
O < 1.0 V  
TA = 25°C  
V
*All typical values at 25°C, V = 15 V.  
CC  
Table 7. Package Characteristics  
Parameter  
Symbol Min.  
Typ.  
Max. Units Test Conditions  
Fig.  
Note  
Input-Output Momentary  
Withstand Voltage  
VISO  
3750  
Vrms RH < 50%, t = 1 min,  
TA = 25°C  
6, 7  
5000 (For ACPL-W456)  
Input-Output Resistance  
Input-Output Capacitance  
RI-O  
CI-O  
1012  
0.6  
VI-O = 500 Vdc  
Freq=1 MHz  
6
6
pF  
Notes:  
1. Derate linearly above 90°C free-air temperature at a rate of 0.8 mA/°C.  
2. Derate linearly above 90°C free-air temperature at a rate of 1.6 mA/°C.  
3. Derate linearly above 90°C free-air temperature at a rate of 3.0 mW/°C.  
4. Derate linearly above 90°C free-air temperature at a rate of 4.2 mW/°C.  
5. CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current (I ) to the forward LED input current (I ) times 100.  
O
F
6. Device considered a two-terminal device: Pins 1 and 3 shorted together and Pins 4, 5 and 6 shorted together.  
7. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 4500 V  
for 1 second (leakage detection  
RMS  
current limit, I ≤ 5 ꢀA) ; each optocoupler under ACPL-W456 is proof tested by applying an insulation test voltage ≥ 6000 V  
for 1 second  
I-O  
RMS  
(leakage detection current limit, I ≤ 5 μA).  
I-O  
8. Pulse: f = 20 kHz, Duty Cycle = 10%.  
9. Use of a 0.1 ꢀF bypass capacitor connected between pins 4 and 6 can improve performance by filtering power supply line noise.  
10. The difference between t  
Specifications section.)  
and t  
between any two parts under the same test condition. (See IPM Dead Time and Propagation Delay  
PLH  
PHL  
11. Common mode transient immunity in a Logic High level is the maximum tolerable dV /dt of the common mode pulse, V , to assure that the  
CM  
CM  
output will remain in a Logic High state (i.e., V > 3.0 V).  
O
12. Common mode transient immunity in a Logic Low level is the maximum tolerable dV /dt of the common mode pulse, V , to assure that the  
CM  
CM  
output will remain in a Logic Low state (i.e., V < 1.0 V).  
O
13. Pulse Width Distortion (PWD) is defined as |t - t | for any given device.  
PHL PLH  
6
10  
8
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
6
4
IF = 10 mA  
VO = 0.6 V  
VO = 0.6 V  
2
0
100 C  
25 C  
-40 C  
0
5
10  
15  
20  
20  
TA – TEMPERATURE C  
-40  
-20  
0
40  
60  
80  
100  
IF – FORWARD CURRENT – mA  
Figure 1. Typical Transfer Characteristics.  
Figure 2. Normalized Output Current vs. Temperature.  
1000  
2.0  
TA = 25 C  
VF = 0.8 V  
IF  
V
CC = VO = 4.5 V OR 30 V  
100  
10  
+
1.5  
1.0  
0.5  
0
VF  
-
4.5 V  
30 V  
1.0  
0.1  
0.01  
0.001  
20  
TA – TEMPERATURE C  
-40  
-20  
0
40  
60  
80  
100  
1.10  
1.20  
1.30  
1.40  
1.50  
1.60  
VF – FORWARD VOLTAGE VOLTS  
Figure 3. High Level Output Current vs. Temperature.  
Figure 4. Input Current vs. Forward Voltage.  
IF(ON) = 10 mA  
1
2
3
6
I
f
20 kΩ  
VOUT  
0.1μF  
+
-
t
t
r
f
+
-
VCC = 15  
V
5
O
CL*  
90%  
10%  
90%  
10%  
4
SHIELD  
* TOTAL LOAD  
CAPACITANCE  
V
V
THHL  
THLH  
t
t
PLH  
PHL  
Figure 5. Propagation Delay Test Circuit.  
7
IF  
V
CM  
1
2
3
6
20 kΩ  
VOUT  
V
δV  
δt  
CM  
Δt  
0.1 μF  
5
=
+
-
VCC = 15  
B
A
100 pF *  
OV  
4
+
SHIELD  
Δt  
* 100 pF TOTAL  
CAPACITANCE  
VFF  
-
V
O
V
V
CC  
SWITCH AT A: I = 0 mA  
F
VCM = 1500V  
V
O
OL  
SWITCH AT B: I = 10 mA  
F
Figure 6. CMR Test Circuit and Waveforms.  
500  
800  
IF = 10 mA  
VCC = 15 V  
IF = 10 mA  
VCC = 15 V  
CL = 100 pF  
TA = 25 C  
CL = 100 pF  
RL = 20 kΩ (EXTERNAL)  
400  
300  
200  
100  
600  
400  
200  
tPLH  
tPHL  
tPLH  
tPHL  
20  
TA – TEMPERATURE C  
20  
RL LOAD RESISTANCE kΩ  
-40  
-20  
0
40  
60  
80  
100  
0
10  
30  
40  
50  
Figure 7. Propagation Delay with External 20 kΩ RL vs. Temperature.  
Figure 8. Propagation Delay vs. Load Resistance.  
1400  
1200  
1400  
IF = 10 mA  
CL = 100 pF  
RL = 20 kΩ  
TA = 25 C  
IF = 10 mA  
VCC = 15 V  
1200  
RL = 20 KΩ  
TA = 25 C  
1000  
800  
600  
400  
200  
0
1000  
tPLH  
tPHL  
800  
600  
400  
tPLH  
tPHL  
200  
0
5
10  
15  
20  
25  
30  
0
100  
200  
300  
400  
500  
V
CC SUPPLY VOLTAGE V  
CL LOAD CAPACITANCE pF  
Figure 9. Propagation Delay vs. Load Capacitance.  
Figure 10. Propagation Delay vs. Supply Voltage.  
8
Another cause of CMR failure for a shielded optocoupler  
is direct coupling to the optocoupler output pins through  
LEDO1  
500  
VCC = 15 V  
CL = 100 pF  
RL = 20 kΩ  
TA = 25 C  
tPLH  
tPHL  
C
in Figure 14. Many factors influence the effect and  
400  
300  
200  
100  
magnitude of the direct coupling including: the position  
of the LED current setting resistor and the value of the  
capacitor at the optocoupler output (C ).  
L
CLEDP  
1
2
3
6
5
4
CLED01  
CLEDN  
SHIELD  
0
5
10  
15  
20  
IF – FORWARD LED CURRENT – mA  
Figure 14. Optocoupler Input to Output Capacitance Model for Shielded  
Optocouplers.  
Figure 11. Propagation Delay vs. Input Current.  
CMR With The LED On (CMR )  
L
Applications Information  
A high CMR LED drive circuit must keep the LED on  
during common mode transients. This is achieved by  
overdriving the LED current beyond the input threshold  
so that it is not pulled below the threshold during a  
transient. The recommended minimum LED current of 10  
LED Drive Circuit Considerations For Ultra High CMR  
Performance  
Without a detector shield, the dominant cause of opto-  
coupler CMR failure is capacitive coupling from the input  
side of the optocoupler, through the package, to the  
detector IC as shown in Figure 13. The ACPL-P456/W456  
improve CMR performance by using a detector IC with  
an optically transparent Faraday shield, which diverts the  
capacitively coupled current away from the sensitive IC  
circuitry. However, this shield does not eliminate the ca-  
pacitive coupling between the LED and the optocoupler  
output pin and output ground as shown in Figure 14.  
This capacitive coupling causes perturbations in the LED  
current during common mode transients and becomes  
the major source of CMR failures for a shielded optocou-  
pler. The main design objective of a high CMR LED drive  
circuit becomes keeping the LED in the proper state (on  
or o) during common mode transients. For example,  
the recommended application circuit (Figure 12), can  
achieve 15 kV/μs CMR while minimizing component  
complexity. Note that a CMOS gate is recommended in  
Figure 12 to keep the LED off when the gate is in the high  
state.  
mA provides adequate margin over the maximum I of  
TH  
4.0 mA (see Figure 1) to achieve 15 kV/μs CMR.  
The placement of the LED current setting resistor effects  
the ability of the drive circuit to keep the LED on during  
transients and interacts with the direct coupling to the  
optocoupler output. For example, the LED resistor in  
Figure 15 is connected to the anode. Figure 16 shows  
the AC equivalent circuit for Figure 15 during common  
mode transients. During a +dV /dt in Figure 16, the  
CM  
current available at the LED anode (Itotal) is limited by  
the series resistor. The LED current (I ) is reduced from its  
F
DC value by an amount equal to the current that flows  
through C  
and C  
. The situation is made worse  
LEDO1  
LEDP  
because the current through C  
has the effect of  
LEDO1  
trying to pull the output high (toward a CMR failure) at  
the same time the LED current is being reduced. For this  
reason, the recommended LED drive circuit (Figure 12)  
places the current setting resistor in series with the LED  
cathode. Figure 17 is the AC equivalent circuit for Figure  
12 during common mode transients. In this case, the  
LED current is not reduced during a +dV /dt transient  
CM  
+5 V  
1
2
3
6
because the current flowing through the package capaci-  
20 kΩ  
VOUT  
0.1 μF  
tance is supplied by the power supply. During a -dV  
/
CM  
+
-
VCC = 15 V  
5
dt transient, however, the LED current is reduced by the  
amount of current flowing through C . But, better  
CL*  
310 Ω  
LEDN  
4
SHIELD  
CMR performance is achieved since the current flowing  
CMOS  
* 100 pF TOTAL  
CAPACITANCE  
in C  
during a negative transient acts to keep the  
LEDO1  
output low.  
Figure 12. Recommended LED Drive Circuit.  
+5 V  
1
2
3
6
310 Ω  
20 kΩ  
VOUT  
0.1 μF  
CLEDP  
1
6
+
-
VCC = 15 V  
5
CL*  
2
5
4
4
SHIELD  
CMOS  
* 100 pF TOTAL  
CAPACITANCE  
3
CLEDN  
Figure 15. LED Drive Circuit with Resistor Connected to LED Anode (Not  
Recommended).  
Figure 13. Optocoupler Input to Output Capacitance Model for Unshielded  
Optocouplers.  
9
ITOTAL  
*
Since the open collector drive circuit, shown in Figure 18,  
cannot keep the LED off during a +dV /dt transient, it is  
ICLEDP  
ICLED01  
1
2
3
6
5
4
CM  
IF  
300 Ω  
CLED01  
20 kΩ  
not desirable for applications requiring ultra high CMR  
H
VOUT  
performance. Figure 19 is the AC equivalent circuit for  
Figure 18 during common mode transients. Essentially  
100pF  
all the current flowing through C  
during a +dV /dt  
LEDN  
CM  
CLEDN  
SHIELD  
transient must be supplied by the LED. CMR failures can  
H
* THE ARROWS INDICATE THE DIRECTION  
OF CURRENT FLOW DURING + dVCM /dt  
occur at dv/dt rates where the current through the LED  
and C  
exceeds the input threshold. Figure 20 is an al-  
LEDN  
ternative drive circuit which does achieve ultra high CMR  
performance by shunting the LED in the off state.  
VCM  
Figure 16. AC Equivalent Circuit for Figure 15 during Common Mode Tran-  
sients.  
+5 V  
1
2
3
6
5
4
CLEDP  
1
2
3
6
5
4
CLED01  
20 kΩ  
VOUT  
+ V **-  
SHIELD  
R
Q1  
100pF  
CLEDN  
*
SHIELD  
ICLEDN  
300 Ω  
* THE ARROWS INDICATE THE DIRECTION OF CURRENT  
FLOW FOR + dVCM /dt TRANSIENTS.  
Figure 18. Not Recommended Open Collector LED Drive Circuit.  
** OPTIONAL CLAMPING DIODE FOR IMPROVED CMH  
PERFORMANCE. VR < VF (OFF)DURING + dVCM/dt  
CLEDP  
1
2
3
6
5
4
CLED01  
20kΩ  
VOUT  
VCM  
100pF  
Figure 17. AC Equivalent Circuit for Figure 12 during Common Mode Tran-  
sients.  
Q1  
CLEDN  
*
SHIELD  
ICLEDN  
300 Ω  
* THE ARROWS INDICATE THE DIRECTION OF CURRENT  
TRANSIENTS.  
FLOW FOR + dVCM /dt  
CMR With The LED Off (CMR )  
H
A high CMR LED drive circuit must keep the LED off (V  
F
VCM  
≤ V  
) during common mode transients. For example,  
F(OFF)  
during a +dV /dt transient in Figure 17, the current  
CM  
Figure 19. AC Equivalent Circuit for Figure 18 during Common Mode Tran-  
flowing through C  
is supplied by the parallel com-  
LEDN  
sients.  
bination of the LED and series resistor. As long as the  
voltage developed across the resistor is less than V  
+5 V  
F(OFF)  
the LED will remain off and no common mode failure  
will occur. Even if the LED momentarily turns on, the  
100 pF capacitor from pins 5-4 will keep the output from  
dipping below the threshold. The recommended LED  
drive circuit (Figure 12) provides about 10 V of margin  
between the lowest optocoupler output voltage and a  
1
2
3
6
5
4
SHIELD  
3 V IPM threshold during a 15kV/μs transient with V  
CM  
= 1500 V. Additional margin can be obtained by adding  
a diode in parallel with the resistor, as shown by the  
dashed line connection in Figure 17, to clamp the voltage  
Figure 20. Recommended LED Drive Circuit for Ultra High CMR.  
across the LED below V  
.
F(OFF)  
10  
IPM Dead Time and Propagation Delay Specifications  
off. Note that the propagation delays used to calculate  
PDD are taken at equal temperatures since the optocou-  
plers under consideration are typically mounted in close  
proximity to each other. (Specifically, previous equation  
The ACPL-P456/W456 includes a Propagation Delay  
Difference specification intended to help designers  
minimize “dead time” in their power inverter designs.  
Dead time is the time period during which both the high  
and low side power transistors (Q1 and Q2 in Figure 21)  
are off. Any overlap in Q1 and Q2 conduction will result  
in large currents flowing through the power devices  
between the high and low voltage motor rails.  
are not the same as the t  
max and t  
min, over the  
PLH  
PHL  
full operating temperature range, specified in the data  
sheet.) This delay is the maximum value for the propaga-  
tion delay difference specification which is specified at  
450 ns for the ACPL-P456/W456 over an operating tem-  
perature range of -40°C to 100°C.  
To minimize dead time the designer must consider  
the propagation delay characteristics of the optocou-  
pler as well as the characteristics of the IPM IGBT gate  
drive circuit. Considering only the delay characteristics  
of the optocoupler (the characteristics of the IPM IGBT  
gate drive circuit can be analyzed in the same way) it is  
important to know the minimum and maximum turn on  
(t ) and turn-off (t ) propagation delay specifications,  
Delaying the LED signal by the maximum propagation  
delay difference ensures that the minimum dead time is  
zero, but it does not tell a designer what the maximum  
dead time will be. The maximum dead time occurs in  
the highly unlikely case where one optocoupler with  
the fastest t  
and another with the slowest t  
are in  
PLH  
PHL  
PHL  
PLH  
the same inverter leg. The maximum dead time in this  
case becomes the sum of the spread in the t and t  
preferably over the desired operating temperature range.  
PLH  
PHL  
The limiting case of zero dead time occurs when the input  
to Q1 turns off at the same time that the input to Q2 turns  
on. This case determines the minimum delay between  
LED1 turn-off and LED2 turn-on, which is related to the  
worst case optocoupler propagation delay waveforms,  
as shown in Figure 22. A minimum dead time of zero is  
achieved in Figure 22 when the signal to turn on LED2  
propagation delays as shown in Figure 23. The maximum  
dead time is also equivalent to the difference between  
the maximum and minimum propagation delay differ-  
ence specifications. The maximum dead time (due to the  
optocouplers) for the ACPL-P456/W456 are 600 ns (= 450  
ns - (-150 ns)) over an operating temperature range of -  
40°C to 100°C.  
is delayed by (t  
max - t  
min) from the LED1 turn  
PHL  
PLH  
IPM  
ILED1  
+HV  
+5 V  
VCC1  
1
6
0.1 μF  
20 kΩ  
VOUT1  
2
5
4
310 Ω  
3
SHIELD  
SHIELD  
CMOS  
ILED2  
M
+5 V  
VCC2  
1
6
0.1 μF  
20 kΩ  
VOUT2  
2
5
310 Ω  
ACPL-P/W456  
ACPL-P/W456  
ACPL-P/W456  
ACPL-P/W456  
ACPL-P/W456  
3
4
CMOS  
-HV  
Figure 21. Typical Application Circuit.  
11  
I
I
LED1  
LED1  
Q1 OFF  
Q2 ON  
Q1 OFF  
Q2 ON  
Q1 ON  
V
V
OUT1  
OUT2  
Q1 ON  
V
V
OUT1  
OUT2  
Q2 OFF  
Q2 OFF  
I
LED2  
t
PLH  
I
LED2  
MIN.  
t
PLH MAX.  
t
PLH  
MAX.  
t
PHL  
MIN.  
t
PHL  
MIN.  
PDD*  
MAX.  
t
PDD* MAX. =  
(t  
PHL  
MAX.  
t
)
t
t
PLH- PHL MAX. = PLH MAX. - PHL MIN.  
MAX.  
DEAD TIME  
*PDD = PROPAGATION DELAY DIFFERENCE  
MAXIMUM DEAD TIME (DUE TO OPTOCOUPLER)  
NOTE: THE PROPAGATION DELAYS USED TO CALCULATE  
PDD ARE TAKEN AT EQUAL TEMPERATURES.  
= (t  
= (t  
t
) + (t  
t
)
PLH MAX. - PLH MIN.  
PLH MAX. - PHL MIN.  
PHL MAX. - PHL MIN.  
PLH MIN. - PHL MAX.  
t
) - (t  
t
)
= PDD* MAX. - PDD* MIN.  
Figure 22. Minimum LED Skew for Zero Dead Time.  
*PDD = PROPAGATION DELAY DIFFERENCE  
NOTE: THE PROPAGATION DELAYS USED TO CALCULATE THE MAXIMUM  
DEAD TIME ARE TAKEN AT EQUAL TEMPERATURES.  
Figure 23. Waveforms for Deadtime Calculation.  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2010 Avago Technologies. All rights reserved. Obsoletes AV01-0647EN  
AV02-1306EN - July 31, 2010  

相关型号:

ACPL-P480

High CMR Intelligent Power Module and Gate Drive Interface Optocoupler
BOARDCOM

ACPL-P480

Available in Stretched SO-6 package
AVAGO

ACPL-P480-500E

High CMR Intelligent Power Module and Gate Drive Interface Optocoupler
AVAGO

ACPL-P481

Inverted Logic, High CMR Optocoupler for Intelligent Power Modules and IGBT/MOSFET Gate Drive
AVAGO

ACPL-P481

Inverted Logic, High CMR Optocoupler for Intelligent Power Modules and IGBT/MOSFET Gate Drive
BOARDCOM

ACPL-P481-500E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, ROHS COMPLIANT, SOP-6
AVAGO

ACPL-P483

Inverted Logic High CMR Intelligent Power Module and Gate Drive Interface Optocoupler
BOARDCOM

ACPL-P483

Short Maximum Propagation Delays
AVAGO

ACPL-P484

Positive Logic High CMR Intelligent Power Module and Gate Drive Interface Optocoupler
BOARDCOM

ACPL-P484

Short Maximum Propagation Delays
AVAGO

ACPL-P611

Optocoupler Option 020 for 5000 V rms/1 Minute Requirement
BOARDCOM

ACPL-P611-020

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER
AVAGO