ACPL-P484 [AVAGO]

Short Maximum Propagation Delays;
ACPL-P484
型号: ACPL-P484
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

Short Maximum Propagation Delays

文件: 总12页 (文件大小:499K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ACPL-M484/P484/W484  
Positive Logic High CMR Intelligent Power Module  
and Gate Drive Interface Optocoupler  
Data Sheet  
Description  
Features  
The ACPL-M484/P484/W484 fast speed optocoupler con-  
tainsaAlGaAsLEDandphotodetectorwithbuilt-inSchmitt  
trigger to provide logic-compatible waveforms, elimi-  
nating the need for additional wave shaping. The totem  
pole output eliminates the need for a pull up resistor and  
allows for direct drive Intelligent Power Module or gate  
drive. Minimized propagation delay difference between  
devices makes these optocouplers excellent solutions for  
improving inverter efficiency through reduced switching  
dead time.  
•ꢀ Positive output type (totem pole output)  
•ꢀ Truth Table Guaranteed: Vcc from 4.5 V to 30 V  
•ꢀ Performance Specified for Common IPM Applications  
Over Industrial Temperature Range.  
•ꢀ Short Maximum Propagation Delays  
•ꢀ Minimized Pulse Width Distortion (PWD)  
•ꢀ Very High Common Mode Rejection (CMR)  
•ꢀ Hysteresis  
•ꢀ Available in SO-5 (ACPL-M484) and Stretched SO-6  
Applications  
package (ACPCL-P484/W484).  
•ꢀ IPM Interface Isolation  
•ꢀ Package Clearance/Creepage at 8 mm (ACPL-W484)  
•ꢀ Safety Approval:  
•ꢀ Isolated IGBT/MOSFET Gate Drive  
•ꢀ AC and Brushless DC Motor Drives  
•ꢀ Industrial Inverters  
– UL Recognized with 5000 V  
1 minute per UL1577.  
(ACPL-W484) for  
rms  
– CSA Approved.  
•ꢀ General Digital Isolation  
– IEC/EN/DIN EN 60747-5-5 Approved with V  
=
for  
IORM  
Functional Diagram  
567 V  
ACPL-P484 and V  
for ACPL-M484 and V  
= 891 V  
for ACPL-W484,  
peak  
IORM  
peak  
peak  
= 1140 V  
IORM  
ACPL-M484  
under option 060.  
Anode  
1
3
6
5
4
VCC  
Note: A 0.1 µF bypass  
capacitor must be con-  
nected between pins  
Vcc and Ground.  
Specifications  
VO  
Cathode  
Ground  
SHIELD  
•ꢀ Wide operating temperature range: -40° C to 105° C  
•ꢀ Maximum propagation delay t / t = 150/120 ns  
PHL PLH  
Truth Table  
(Positive Logic)  
•ꢀ Maximum Pulse Width Distortion (PWD) = 90 ns  
ACPL-P484 & ACPL-W484  
•ꢀ Propagation Delay Difference Min/Max = -130/130 ns  
Anode  
N.C.  
1
2
3
6
5
4
VCC  
LED  
ON  
V
O
HIGH  
•ꢀ Wide Operating V Range: 4.5 to 30 Volts  
CC  
VO  
•ꢀ 30 kV/µs minimum common mode rejection (CMR) at  
OFF  
LOW  
Cathode  
Ground  
SHIELD  
V
= 1000 V  
CM  
Truth Table Guaranteed:  
Vcc from 4.5 V to 30 V  
CAUTION: It is advised that normal static precautions be taken in handling and assembly  
of this component to prevent damage and/or degradation which may be induced by ESD.  
Ordering Information  
ACPL-M484/P484/W484 is UL recognized with 3750/3750/5000 Vrms/1 minute rating per UL 1577.  
Option  
IEC/EN/DIN  
Part number  
RoHS Compliant  
-000E  
Package  
Surface Mount  
Tape & Reel  
EN 60747-5-5  
Quantity  
ACPL-M484  
SO-5  
X
X
X
X
X
X
X
X
100 per tube  
1500 per reel  
100 per tube  
1500 per reel  
100 per tube  
1000 per reel  
100 per tube  
1000 per reel  
-500E  
X
X
X
X
-060E  
X
X
-560E  
ACPL-P484  
ACPL-W484  
-000E  
Stretched  
SO-6  
-500E  
-060E  
X
X
-560E  
To order, choose a part number from the part number column and combine with the desired option from the option  
column to form an order entry.  
Example 1:  
ACPL-P484-560E to order product of Stretched SO-6 Surface Mount package in Tape and Reel packaging with IEC/EN/  
DIN EN 60747-5-5 Safety Approval in RoHS compliant.  
Example 2:  
ACPL-P484-000E to order product of Stretched SO-6 Surface Mount package in Tube packaging and RoHS compliant.  
Example 3:  
ACPL-M484-000E to order product of SO-5 Surface Mount package in Tube packaging and RoHS compliant.  
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.  
2
Package Outline Drawings  
ACPL-M484 SO-5 Package, 5 mm Creepage & Clearance  
VCC  
6
5
4
ANODE  
1
3
MXXX  
XXX  
7.0 0.ꢀ  
VOUT  
4.4 0.1  
(0.ꢀ76 0.00ꢁ8  
(0.173 0.0048  
CATHODE  
GND  
TYPE NUMBER (LAST 3 DIGITS8  
DATE CODE  
0.4 0.05  
(0.016 0.00ꢀ8  
3.6 0.1ꢂ  
(0.14ꢀ 0.0048  
0.10ꢀ 0.10ꢀ  
0.15 0.0ꢀ5  
(0.006 0.0018  
ꢀ.5 0.1  
(0.004 0.0048  
(0.09ꢁ 0.0048  
7° MAX.  
0.71  
MIN  
1.ꢀ7  
BSC  
(0.0ꢀꢁ8  
(0.0508  
MAX. LEAD COPLANARITY  
= 0.10ꢀ (0.0048  
Dimensions in millimeters (inches).  
* Maximum Mold ꢀash on each side is 0.15 mm (0.006).  
Note: Foating Lead Protrusion is 0.15 mm (6 mils) max.  
Land Pattern Recommendation  
4.4  
(0.17)  
1.3  
(0.05)  
2.5  
(0.10)  
2.0  
(0.080)  
0.64  
(0.025)  
8.27  
(0.325)  
Dimension in millimeters (inches)  
3
ACPL-P484 Stretched SO-6 Package, 7 mm clearance  
Land Pattern Recommendation  
4.580 + 0.ꢀ54  
0
1.ꢀ7 (0.050ꢁ BSG  
0.381 0.1ꢀ7  
(0.015 0.005ꢁ  
0.180 + 0.010  
10.7 (0.4ꢀ1ꢁ  
(
)
0.76 (0.030ꢁ  
0.000  
1.ꢀ7 (0.050ꢁ  
ꢀ.16 (0.085ꢁ  
7.6ꢀ (0.300ꢁ  
6.81 (0.ꢀ68ꢁ  
1.590 0.1ꢀ7  
(0.063 0.005ꢁ  
3.180 0.1ꢀ7  
(0.1ꢀ5 0.005ꢁ  
0.45 (0.018ꢁ  
45°  
7°  
7°  
7°  
0.ꢀ54 0.050  
(0.010 0.00ꢀꢁ  
0.ꢀ0 0.10  
(0.008 0.004ꢁ  
7°  
1
0.ꢀ50  
NOM.  
Floating Lead Protusions max. 0.25 (0.01)  
Dimensions in Millimeters (Inches)  
(0.040 0.010ꢁ  
9.7 0.ꢀ50  
(0.38ꢀ 0.010ꢁ  
Lead Coplanarity = 0.1 mm (0.004 Inches)  
ACPL-W484 Stretched SO-6 Package, 8 mm clearance  
Land Pattern Recommendation (W-type)  
4.580 + 0.254  
0
0.180 + 0.010  
(
)
1.27 (0.050ꢀ BSG  
0.381 0.127  
0.000  
12.650 (0.498ꢀ  
0.760 (0.030ꢀ  
(0.015 0.005ꢀ  
1
2
3
6
5
4
7.62 (0.300ꢀ  
6.807 + 0.127  
1.905 (0.075ꢀ  
1.270 (0.050ꢀ  
0
0.268 + 0.005  
(
)
0.000  
1.590 0.127  
(0.063 0.005ꢀ  
3.180 0.127  
(0.125 0.005ꢀ  
45°  
0.45 (0.018ꢀ  
0.20 0.10  
7°  
(0.008 0.004ꢀ  
7°  
0.254 0.050  
(0.010 0.002ꢀ  
0.750 0.250  
(0.0295 0.010ꢀ  
35° NOM.  
Floating Lead Protusions max. 0.25 (0.01)  
Dimensions in Millimeters (Inches)  
11.500 0.25  
(0.453 0.010ꢀ  
Lead Coplanarity = 0.1 mm (0.004 Inches)  
4
Recommended Pb-Free IR Profile  
Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non-Halide Flux should be used.  
Regulatory Information  
The ACPL-M484/P484/W484 is approved by the following organizations:  
IEC/EN/DIN EN 60747-5-5 (Option 060 only)  
Approved with Maximum Working Insulation Voltage V  
= 567 V  
for ACPL-M484, V  
= 891 V  
for ACPL-P484  
IORM  
peak  
IORM  
peak  
and V  
= 1140 V  
for ACPL-W484  
IORM  
peak  
UL  
Approval under UL 1577, component recognition program up to V = 3750 V  
File E55361 for ACPL-M484 & ACPL-  
ISO  
RMS  
P484;  
Approval under UL 1577, component recognition program up to V = 5000 V  
File E55361 for ACPL-W484;  
ISO  
RMS  
CSA  
Approval under CSA Component Acceptance Notice #5, File CA 88324.  
Table 1. IEC/EN/DIN EN 60747-5-5 Insulation Characteristics* (ACPL-M484/P484/W484 Option 060)  
Description  
Symbol  
ACPL-M484  
ACPL-P484  
ACPL-W484  
Unit  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage ≤ 150 Vrms  
I – IV  
I – III  
I – II  
I – IV  
I – III  
I – II  
I – IV  
I – III  
I – II  
for rated mains voltage ≤ 300 Vrms  
for rated mains voltage ≤ 600 Vrms  
Climatic Classification  
55/105/21  
55/105/21  
55/105/21  
2
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
2
2
VIORM  
VPR  
567  
1063  
891  
1670  
1140  
2137  
Vpeak  
Vpeak  
Input to Output Test Voltage, Method b*  
VIORM x 1.875 = VPR, 100% Production Test with tm = 1 sec,  
Partial discharge < 5 pC  
Input to Output Test Voltage, Method a*  
VIORM x 1.6 = VPR, Type and Sample Test, tm = 10 sec,  
Partial discharge < 5 pC  
VPR  
907  
1426  
6000  
1824  
8000  
Vpeak  
Highest Allowable Overvoltage  
VIOTM  
6000  
Vpeak  
(Transient Overvoltage tini = 60 sec)  
Safety-limiting values – maximum values allowed in  
the event of a failure.  
TS  
IS, INPUT  
PS, OUTPUT 600  
175  
230  
175  
230  
600  
175  
230  
600  
°C  
mA  
mW  
Case Temperature  
Input Current  
Output Power  
Insulation Resistance at TS, VIO = 500 V  
RS  
>109  
>109  
>109  
*
Refer to the optocoupler section of the Isolation and Control Components Designer’s Catalog, under Product Safety Regulations section, (IEC/EN/  
DIN EN 60747-5-2) for a detailed description of Method a and Method b partial discharge test profiles.  
5
Table 2. Insulation and Safety Related Specifications  
Parameter  
Symbol  
ACPL-M484 ACPL-P484 ACPL-W484 Units  
Conditions  
Minimum External Air Gap  
(External Clearance)  
L(101)  
5.0  
7.0  
8.0  
mm  
mm  
mm  
Measured from input terminals to  
output terminals, shortest distance  
through air.  
Minimum External Tracking  
(External Creepage)  
L(102)  
5.0  
8.0  
8.0  
Measured from input terminals to  
output terminals, shortest distance  
path along body.  
Minimum Internal Plastic Gap  
(Internal Clearance)  
0.08  
0.08  
0.08  
Through insulation distance conductor  
to conductor, usually the straight line  
distance thickness between the  
emitter and detector.  
Tracking Resistance  
(Comparative Tracking Index)  
CTI  
>175  
IIIa  
>175  
IIIa  
>175  
IIIa  
V
DIN IEC 112/VDE 0303 Part 1  
Isolation Group  
Material Group (DIN VDE 0110, 1/89,  
Table 1)  
Table 3. Absolute Maximum Ratings  
Parameter  
Symbol  
Min.  
Max.  
125  
105  
10  
Units  
°C  
Note  
Storage Temperature  
Operating Temperature  
Average Input Current  
TS  
-55  
-40  
TA  
°C  
IF(avg)  
IF(tran)  
mA  
Peak Transient Input Current  
(<1 µs pulse width, 300 pps)  
(<200 µs pulse width, < 1% duty cycle)  
1.0  
40  
A
mA  
Reverse Input Voltage  
Average Output Current  
Supply Voltage  
VR  
IO  
5
V
50  
35  
35  
145  
210  
mA  
VCC  
VO  
PT  
0
Output Voltage  
-0.5  
Total Package Power Dissipation (ACPL-M484)  
Total Package Power Dissipation  
mW  
mW  
1
1
PT  
Solder Reflow Temperature Profile  
See Reflow Thermal Profile.  
Table 4. Recommended Operating Conditions  
Parameter  
Symbol  
VCC  
Min.  
4.5  
4
Max.  
30  
Units  
V
Note  
Power Supply Voltage (1)  
Forward Input Current (ON)  
Forward Input Voltage (OFF)  
Operating Temperature  
2
IF(ON)  
VF(OFF)  
TA  
7
mA  
V
0.8  
105  
-40  
°C  
Note:  
1. Truth Table guaranteed: 4.5 V to 30 V  
6
Table 5. Electrical Specifications  
Over recommended operating conditions T = -40° C to 105° C, V = +4.5 V to 30 V, I  
= 4 mA to 7 mA, V = 0 V to  
F(ON) F(OFF)  
A
CC  
0.8 V, unless otherwise specified. All typical values at T = 25° C.  
A
Parameter  
Logic Low Output Voltage  
Symbol  
Min.  
Typ.  
Max.  
0.3  
Units Test Conditions  
Fig.  
1, 3  
Note  
V
V
I
I
I
I
= 3.5 mA  
OL  
OL  
OL  
OH  
OH  
0.5  
= 6.5 mA  
Logic High Output Voltage  
Logic Low Supply Current  
Logic High Supply Current  
V
V
-0.3  
V
V
-0.04  
-0.07  
V
= -3.5 mA  
= -6.5 mA  
2, 3, 7  
OH  
CC  
CC  
CC  
Vcc -0.5  
I
I
I
1.5  
1.7  
1.5  
1.7  
0.8  
3.0  
3.0  
3.0  
3.0  
2.2  
mA  
mA  
mA  
mA  
mA  
V
V
V
V
= 5.5 V, V = 0 V, I = 0 mA  
F o  
CCL  
CCH  
FLH  
CC  
CC  
CC  
CC  
= 20 V, V = 0 V, I = 0 mA  
F
o
= 5.5 V, I = 7 mA, I = 0 mA  
F
o
= 30 V, I = 7 mA, I = 0 mA  
F
o
Threshold Input Current  
Low to High  
Threshold Input Voltage  
High to Low  
V
0.8  
V
I = 4 mA  
F
FHL  
OSL  
Logic Low Short Circuit  
Output Current  
I
I
125  
125  
200  
200  
mA  
mA  
mA  
mA  
V
V
V
V
V
= V = 5.5 V, V = 0 V  
3
3
O
CC  
F
= V = 30 V, V = 0 V  
O
CC  
F
Logic High Short Circuit  
Output Current  
-200  
-200  
1.5  
-125  
-125  
1.7  
= 5.5 V, I = 7 mA, V = GND  
F O  
OSH  
CC  
CC  
= 20 V, I = 7 mA, V = GND  
F
O
Input Forward Voltage  
V
1.3  
5
T
A
= 25° C, I = 4 mA  
4
F
F
1.85  
V
I = 4 mA  
F
Input Reverse Breakdown  
Voltage  
BV  
V
I
= 10 µA  
R
R
Input Diode Temperature  
Coefficient  
V /T  
1.7  
60  
mV/°C  
pF  
I
= 4 mA  
F
A
F
Input Capacitance  
C
IN  
f = 1 MHz, V = 0 V  
4
F
7
Table 6. Switching Specifications  
Over recommended operating conditions T = -40° C to 105° C, V = +4.5 V to 30 V, I  
= 4 mA to 7 mA, V  
= 0 V  
A
CC  
F(ON)  
F(OFF)  
to 0.8 V, unless otherwise specified. All typicals at T = 25° C.  
A
Parameter  
Symbol  
Min. Typ.  
Max. Units Test Conditions  
Fig.  
Note  
Propagation Delay Time  
to Logic Low Output Level  
tPHL  
95  
150  
150  
120  
120  
90  
ns  
ns  
ns  
ns  
CL = 100 pF, IF(ON) = 4 mA →ꢀVF = 0 V  
Loaded as per Fig. 5  
5, 6, 8  
6
Propagation Delay Time  
to Logic High Output Level  
tPLH  
85  
CL = 100 pF, VF = 0 V IF(ON) = 4 mA  
Loaded as per Fig. 5  
5, 6, 8  
6
Pulse Width Distortion  
|tPHL - tPLH  
= PWD  
|
CL = 100 pF  
9
90  
Loaded as per Fig. 5  
Propagation Delay  
Difference Between  
Any 2 Parts  
PDD  
-130  
-130  
130  
CL = 100 pF  
10  
130  
Loaded as per Fig. 5  
Output Rise Time (10-90%)  
Output Fall Time (90-10%)  
tr  
tf  
6
ns  
ns  
5
5
9
6
Logic High Common Mode |CMH|  
Transient Immunity  
30  
kV/µs |VCM| = 1000 V, IF = 4.0 mA,  
7
7
VCC = 5 V, TA = 25° C  
Logic Low Common Mode  
Transient Immunity  
|CML|  
30  
kV/µs |VCM| = 1000 V, VF = 0 V,  
9
VCC = 5 V, TA = 25° C  
Table 7. Package Characteristics  
Parameter  
Symbol  
Min.  
Typ.  
Max. Units  
Test Conditions  
Fig. Note  
Input-Output Momentary  
Withstand Voltage*  
VISO  
3750 (ACPL-M484/P484)  
5000 (ACPL-W484)  
Vrms  
RH < 50%, t = 1 min.  
TA = 25° C  
5, 8  
Input-Output Resistance  
Input-Output Capacitance  
RI-O  
CI-O  
1012  
0.6  
Ohm  
pF  
VI-O = 500 Vdc  
5
5
f = 1 MHz, VI-O = 0 Vdc  
*
The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous  
voltage rating. For the continuous voltage rating, refer to the IEC/EN/DIN EN 60747-5-5 Insulation Characteristics Table (if applicable).  
UVLO  
Figure 10a & b show typical output waveforms during Power-up and Power-down processes.  
Notes:  
1. Derate total package power dissipation, P , linearly above 70° C free-air temperature at a rate of 4.5mW/°C(ACPL-P484/W484) and linearly above  
T
85° C free-air temperature at a rate of 0.75mW/°C(ACPL-M484).  
2. Detector requires a Vcc of 4.5 V or higher for stable operation as output might be unstable if Vcc is lower than 4.5 V. Be sure to check the power  
ON/OFF operation other than the supply current.  
3. Duration of output short circuit time should not exceed 500 µs.  
4. Input capacitance is measured between pin 1 and pin 3.  
5. Device considered a two-terminal device: pins 1, 2 and 3 shorted together and pins 4, 5 and 6 shorted together.  
6. The t  
propagation delay is measured from the 50% point on the leading edge of the input pulse to the 1.3 V point on the leading edge of the  
PLH  
output pulse. The t  
propagation delay is measured from the 50% point on the trailing edge of the input pulse to the 1.3 V point on the trailing  
PHL  
edge of the output pulse.  
7. CM is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic high state, V > 2.0 V.  
H
O
CM is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic low state, V < 0.8 V. Note:  
L
O
Equal value split resistors (Rin/2) must be used at both ends of the LED.  
8. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 4500V  
for one second (leakage detection  
RMS  
current limit, I < = 5 µA). This test is performed before the 100% production test for partial discharge (Method b) shown in the IEC/EN/DIN EN  
I-O  
60747-5-5 Insulation Characteristics Table, if applicable.  
9. Pulse Width Distortion (PWD) is defined as |t  
- t  
| for any given device.  
PHL PLH  
10. The difference of t  
and t  
between any two devices under the same test condition.  
PLH  
PHL  
11. Use of a 0.1 µF bypass capacitor connected between pins Vcc and Ground is recommended.  
8
0.1  
0.08  
0.06  
0.04  
0.02  
0.045  
0.04  
IF = 4 mA  
VCC = 4.5 V  
VF = 0 V  
IO = -6.5 mA  
0.035  
0.03  
IO = 6.5 mA  
0.025  
0.02  
IO = -3.5 mA  
IO = 3.5 mA  
0.015  
0.01  
-40  
-10  
20  
50  
80  
110  
-40  
-10  
20  
50  
80  
110  
TA - TEMPERATURE - °C  
TA - TEMPERATURE - °C  
Figure 1. Typical Logic Low Output Voltage vs. Temperature  
Figure 2. Typical Logic High Output Current vs. Temperature  
100.00000  
5
4
3
2
1
0
TA = 25° C  
10.00000  
VCC = 4.5 V  
TA = 25° C  
1.00000  
0.10000  
0.01000  
0.00100  
0.00010  
0.00001  
0
0.5  
1
1.5  
2
2.5  
3
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
IF - INPUT CURRENT - mA  
VF - FORWARD VOLTAGE - V  
Figure 3. Typical Output Voltage vs. Forward Input Current  
Figure 4. Typical Input Diode Forward Characteristic  
PULSE GEN.  
tr = tf = 5 ns  
f = 100 kHz  
1% DUTY  
CYCLE  
THE PROBE AND JIG CAPACITANCES ARE  
INCLUDED IN C1.  
VCC  
Vo = 5 V  
R1  
1000  
560 Ω  
5 V  
Zo = 50  
IF(ON)  
4 mA  
7 mA  
OUTPUT Vo  
MONITORING  
NODE  
1
2
6
5
4
ALL DIODES ARE EITHER 1N916 OR 1N3064  
619 Ω  
*
IF(ON)  
D1  
50% IF(ON)  
INPUT IF  
0 mA  
D2  
D3  
D4  
INPUT  
MONITORING  
tPLH  
tPHL  
3
SHIELD  
NODE  
C1 =  
15 pF  
5 kΩ  
R1  
VOH  
1.3 V  
VOL (0 V)  
OUTPUT V  
*0.1 µF BYPASS – SEE NOTE 11  
Figure 5. Circuit for tPLH, tPHL, tr, tf  
9
35  
120  
100  
80  
IF = 4 mA  
30 TA = 25° C  
VCC = 4.5 V  
TPHL (IF = 4 mA)  
25  
20  
15  
10  
5
T
PHL (IF = 7 mA)  
TPLH (IF = 4 mA)  
TPLH (IF = 7 mA)  
60  
0
-40  
-10  
20  
50  
80  
110  
0
5
10  
15  
20  
25  
30  
35  
TA - Temperature - °C  
VCC - Supply Voltage - V  
Figure 6. Typical Propagation Delays vs. Temperature  
Figure 7. Typical Logic High Output Voltage vs. Supply Voltage  
120  
TA = 25° C  
TPHL (IF = 4 mA)  
100  
TPHL (IF = 7 mA)  
TPLH (IF = 4 mA)  
80  
60  
TPLH (IF = 7 mA)  
10  
0
5
15  
20  
25  
30  
35  
VCC - Supply Voltage - V  
Figure 8. Typical Propagation Delay vs. Supply Voltage  
VCC  
CMH  
CML  
RIN/2  
A
1
6
5
4
VCM  
|VCM  
|
B
(PEAK)  
0.1 µF  
+
0 V  
VOH  
VOL  
VFF  
2
OUTPUT Vo  
MONITORING  
NODE  
SWITCH AT A: IF = 4 mA  
Vo (MIN.)*  
3
SHIELD  
RIN/2  
OUTPUT Vo  
VCM  
SWITCH AT B: VF = 0 V  
+
Vo (MAX.)*  
* SEE NOTE 7  
Figure 9. Test Circuit for Common Mode Transient Immunity and Typical Waveforms  
10  
10 V  
Vcc = 2~4 V  
Vcc = 2~4 V  
Vcc  
Vcc = 1.8 V (typ)  
Vcc = 1.8 V (typ)  
0 V  
Output  
High  
Impedance  
state  
High  
Impedance  
state  
1 ms  
i. LED is ON  
Discharge delay,  
depending on the  
power supply slew rate  
Figure 10a. Vcc Ramp when LED is ON  
10V  
Vcc = 2~4 V  
Vcc = 2~4 V  
Vcc  
Vcc = 1.8 V (typ)  
Vcc = 1.8 V (typ)  
0 V  
High  
Impedance  
state  
High  
Impedance  
state  
Output  
1 ms  
ii. LED is OFF  
Discharge delay,  
depending on the  
power supply slew rate  
Figure 10b. Vcc Ramp when LED is OFF  
11  
Thermal Model for ACPL-M484  
SO5 Package Optocoupler  
Thermal Model for ACPL-P484/W484  
SO6 Package Optocoupler  
Definitions  
Definitions  
R
11  
R
12  
R
21  
R
22  
:
:
:
:
Junction to Ambient Thermal Resistance of LED due  
to heating of LED  
R
11  
R
12  
R
21  
R
22  
:
:
:
:
Junction to Ambient Thermal Resistance of LED due  
to heating of LED  
Junction to Ambient Thermal Resistance of LED due  
to heating of Detector (Output IC)  
Junction to Ambient Thermal Resistance of LED due  
to heating of Detector (Output IC)  
Junction to Ambient Thermal Resistance of Detector  
(Output IC) due to heating of LED.  
Junction to Ambient Thermal Resistance of Detector  
(Output IC) due to heating of LED.  
Junction to Ambient Thermal Resistance of Detector  
(Output IC) due to heating of Detector (Output IC).  
Junction to Ambient Thermal Resistance of Detector  
(Output IC) due to heating of Detector (Output IC).  
P : Power dissipation of LED (W).  
1
P : Power dissipation of LED (W).  
1
P : Power dissipation of Detector / Output IC (W).  
2
P : Power dissipation of Detector / Output IC (W).  
2
T : Junction temperature of LED (˚C).  
1
T : Junction temperature of LED (˚C).  
1
T : Junction temperature of Detector (˚C).  
2
T : Junction temperature of Detector (˚C).  
2
T : Ambient temperature.  
a
T : Ambient temperature.  
a
∆T : Temperature difference between LED junction and  
∆T : Temperature difference between LED junction and  
1
1
ambient (˚C).  
ambient (˚C).  
∆T : Temperature deference between Detector junction ∆T : Temperature deference between Detector junction  
2
2
and ambient.  
and ambient.  
Ambient Temperature: Junction to Ambient Thermal Re- Ambient Temperature: Junction to Ambient Thermal Re-  
sistances were measured approximately 1.25cm above sistances were measured approximately 1.25cm above  
optocoupler at ~23˚C in still air  
optocoupler at ~23˚C in still air  
Description  
Description  
This thermal model assumes that an 5-pin single-channel  
This thermal model assumes that an 6-pin single-channel  
plastic package optocoupler is soldered into a 7.62 cm x plastic package optocoupler is soldered into a 7.62 cm x  
7.62 cm printed circuit board (PCB). The temperature at  
the LED and Detector junctions of the optocoupler can be  
calculated using the equations below.  
7.62 cm printed circuit board (PCB). The temperature at  
the LED and Detector junctions of the optocoupler can be  
calculated using the equations below.  
T = (R * P + R * P ) + T -- (1)  
T = (R * P + R * P ) + T -- (1)  
1 11 1 12 2 a  
1
11  
1
12  
2
a
T = (R * P + R * P ) + T -- (2)  
T = (R * P + R * P ) + T -- (2)  
2
21  
1
22  
2
a
2
21  
1
22  
2
a
Jedec Specifications  
R
11  
R , R  
12 21  
R
22  
Jedec Specifications  
R
11  
R , R  
12 21  
R
22  
191  
126  
77, 91  
26, 35  
99  
51  
167  
117  
64, 81  
31, 39  
89  
54  
low K board  
low K board  
high K board  
Notes:  
high K board  
Notes:  
1. Maximum junction temperature for above parts: 125 °C.  
1. Maximum junction temperature for above parts: 125 °C.  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2013 Avago Technologies. All rights reserved.  
AV02-2947EN - September 23, 2013  

相关型号:

ACPL-P611

Optocoupler Option 020 for 5000 V rms/1 Minute Requirement
BOARDCOM

ACPL-P611-020

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER
AVAGO

ACPL-P611-060

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER
AVAGO

ACPL-P611-500

Logic IC Output Optocoupler, 1-Element
AVAGO

ACPL-SRDBULK

Audio/RCA Connector, 1 Pole(s), Male, Solder Lug Terminal, Locking, Plug
AMPHENOL

ACPL-SYL

Audio/RCA Connector, 1 Pole(s), Male, Solder Lug Terminal, Locking, Plug
AMPHENOL

ACPL-SYLBULK

Audio/RCA Connector, 1 Pole(s), Male, Solder Lug Terminal, Locking, Plug
AMPHENOL

ACPL-T350

2.5 Amp Output Current IGBT Gate Driver Optocoupler with Low ICC
AVAGO

ACPL-T350-000E

2.5 Amp Output Current IGBT Gate Driver Optocoupler with Low ICC
AVAGO

ACPL-T350-060E

2.5 Amp Output Current IGBT Gate Driver Optocoupler with Low ICC
AVAGO

ACPL-T350-300E

2.5 Amp Output Current IGBT Gate Driver Optocoupler with Low ICC
AVAGO

ACPL-T350-360E

2.5 Amp Output Current IGBT Gate Driver Optocoupler with Low ICC
AVAGO