ACPL-P454-500E [AVAGO]

High CMR High Speed Optocoupler Surface Mountable in 6-pin stretched SO6; 高CMR高速光电耦合器可表面安装的6针绷SO6
ACPL-P454-500E
型号: ACPL-P454-500E
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

High CMR High Speed Optocoupler Surface Mountable in 6-pin stretched SO6
高CMR高速光电耦合器可表面安装的6针绷SO6

光电 输出元件
文件: 总9页 (文件大小:195K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ACPL-P454 and ACPL-W454  
High CMR High Speed Optocoupler  
Data Sheet  
Lead (Pb) Free  
RoHS 6 fully  
compliant  
RoHS 6 fully compliant options available;  
-xxxE denotes a lead-free product  
Description  
Features  
Package Clearance/Creepage at 8mm (ACPL-W454)  
Function Compatible with HCPL-4504  
Surface Mountable in 6-pin stretched SO6  
Short Propagation Delays for TTL and IPM Applications  
Very High Common Mode Transient Immunity: Guaran-  
The ACPL-W454/P454 is similar to Avago Technologies  
other high speed transistor output optocouplers, but with  
shorter propagation delays and higher CTR. The ACPL-  
W454/P454 also has a guaranteed propagation delay  
difference (t  
- t ). These features make the ACPL-  
PLH  
PHL  
W454/P454 an excellent solution to IPM inverter dead time  
and other switching problems.  
teed 15 kV/s at V = 1500 V  
CM  
The ACPL-W454/P454 CTR, propagation delays, and CMR High CTR: >25% at 25°C  
are specified both for TTL load and drive conditions and for  
Guaranteed Specifications for Common IPM Applica-  
IPM (Intelligent Power Module) load and drive conditions.  
Specifications and typical performance plots for both TTL  
and IPM conditions are provided for ease of application.  
tions  
TTL Compatible  
Guaranteed AC and DC Performance Over Temperature:  
This diode-transistor optocoupler uses an insulating layer  
between the light emitting diode and an integrated photo  
detector to provide electrical insulation between input  
and output. Separate connections for the photodiode bias  
and output transistor collector increase the speed up to a  
hundred times over that of a conventional phototransistor  
coupler by reducing the base-collector capacitance.  
0°C to 70°C  
Open Collector Output  
Safety approval  
UL Recognized 3750 Vrms for 1 minute (5000 Vrms for  
1 minute under ACPL-W454 devices) per UL1577  
CSA Approved  
IEC/EN/DIN EN 60747-5-2 Approved with V  
= 1140  
IORM  
Functional Diagram  
Vpeak (ACPL-W454) and V  
for Option 060.  
= 891 Vpeak (ACPL-P454)  
IORM  
ANODE  
1
2
3
6
5
4
VCC  
VO  
TRUTH TABLE  
LED  
VO  
Applications  
ON  
OFF  
LOW  
HIGH  
NC  
Inverter Circuits and Intelligent Power Module (IPM) In-  
terfacing – Shorter propagation delays and guaranteed  
CATHODE  
GND  
(t  
- t ) specifications.  
PLH PHL  
High Speed Logic Ground Isolation  
- TTL/TTL, TTL/LTTL, TTL/CMOS, TTL/LSTTL  
A 0.1 μF bypass capacitor between pins 4 and 6 is recommended.  
Line Receivers  
Schematic  
- High common mode transient immunity (>15 kV/s  
for a TTL load/drive) and low input-output capacitance  
(0.6 pF).  
I
CC  
6
V
V
CC  
I
F
+
1
ANODE  
Replace Pulse Transformers  
V
F
I
O
5
4
- Save board space and weight  
Ð
3
O
CATHODE  
Analog Signal Ground Isolation  
- Integrated photo detector provides improved linearity  
over phototransistors  
SHIELD  
GND  
CAUTION: It is advised that normal static precautions be taken in handling and assembly  
of this component to prevent damage and/or degradation which may be induced by ESD.  
Ordering Information  
ACPL-P454 and ACPL-W454 are UL Recognized with 3750 Vrms (5000 Vrms under ACPL-W454) for 1 minute per UL1577  
and are approved under CSA Component Acceptance Notice #5, File CA 88324.  
Option  
RoHS  
Compliant  
Tape  
& Reel  
IEC/EN/DIN EN  
60747-5-2  
Part number  
Package  
Surface Mount  
Quantity  
-000E  
-500E  
-060E  
-560E  
X
X
X
X
100 per tube  
1000 per reel  
100 per tube  
1000 per reel  
X
X
ACPL-P454  
ACPL-W454  
Stretched  
SO-6  
X
X
To order, choose a part number from the part number column and combine with the desired option from the option  
column to form an order entry.  
Example 1:  
ACPL-P454-560E to order product of Stretched SO-6 package in Tape and Reel packaging with IEC/EN/DIN EN 60747-  
5-2 Safety Approval in RoHS compliant.  
Example 2:  
ACPL-P454-000E to order product of Stretched SO-6 package in tube packaging and RoHS compliant.  
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.  
Package Outline Drawings  
ACPL-W454 (Stretched SO6, 8mm Clearance)  
+0.254  
0
4.580  
+.010  
- .000  
1.27 [.050ꢀ BSG  
Land Pattern Recommendation  
12.65 [.498ꢀ  
.180  
0.38 0.127  
[.015 .005ꢀ  
1
2
6
5
4
3
0.76  
[.030ꢀ  
+0.127  
0
6.807  
.268  
1.590 0.127  
[.063 .005ꢀ  
+.005  
- .000  
1.91 [.075ꢀ  
7°  
7°  
3.180 0.127  
[.125 .005ꢀ  
0.45  
[.018ꢀ  
45°  
0.20 0.10  
[.008 .004ꢀ  
0.750 0.250  
[0.0295 0.010ꢀ  
Dimensions in Millimeters [Inchesꢀ  
Coplanarity = 0.1mm [0.004 inchesꢀ  
11.50 0.250  
[.453 .010ꢀ  
2
ACPL-P454 (Stretched SO6, 7mm Clearance)  
+0.254  
0
4.580  
.180  
Land Pattern Recommendation  
10.7 [.421ꢀ  
+.010  
0.38 0.127  
1.27 [.050ꢀ BSG  
[.015 .005ꢀ  
- .000  
2.16 [.085ꢀ  
7.62 [.300ꢀ  
1.590 0.127  
[.063 .005ꢀ  
6.81 [.268ꢀ  
0.45 [.018ꢀ  
0.20 [.008ꢀ  
7.00°  
7.00°  
45.00°  
7.00°  
A
7.00°  
3.180 0.127  
[.125 .005ꢀ  
1
.0.250  
[.040 .010ꢀ  
Dimensions in Millimeters [Inchesꢀ  
Coplanarity = 0.1mm [0.004 inchesꢀ  
9.7 0.250  
[.382 .010ꢀ  
0.20 0.10  
[.008 .004ꢀ  
Recommended Pb-Free IR Profile  
Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non-Halide Flux should be used.  
Regulatory Information  
The ACPL-W454/P454 are approved by the following organizations:  
IEC/EN/DIN EN 60747-5-2 (Option 060 only)  
Approval under:  
IEC 60747-5-2 :1997 + A1:2002  
EN 60747-5-2:2001 + A1:2002  
UL - Approval under UL 1577, component recognition pro-  
gram up to V = 3750 V  
(5000VRMS for ACPL-W454).  
ISO  
RMS  
File E55361.  
CSA - Approval under CSA Component Acceptance Notice  
#5, File CA 88324.  
DIN EN 60747-5-2 (VDE 0884 Teil 2):2003-01  
3
Insulation Related Specifications  
W454  
P454  
Parameter  
Symbol  
Value  
Value  
Units Conditions  
Min External Air Gap  
(Clearance)  
L(IO1)  
8
7
mm  
mm  
mm  
V
Measured from input terminals to output terminals  
Min. External Tracking Path  
(Creepage)  
L(IO2)  
8
8
Measured from input terminals to output terminals  
Through insulation distance conductor to conductor  
Min. Internal Plastic Gap  
(Clearance)  
0.08  
0.08  
175  
Tracking Resistance  
CTI  
175  
IIIa  
DIN IEC 112/VDE 0303 Part 1  
Material Group DIN VDE 0109  
Isolation Group  
(per DIN VDE 0109)  
IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics (Option 060 only)  
Description  
Symbol  
ACPL-W454  
ACPL-P454  
Units  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage 150 Vrms  
I-IV  
I-IV  
I-III  
I-III  
I-II  
I-IV  
I-IV  
I-III  
I-III  
for rated mains voltage 300 Vrms  
for rated mains voltage 450 Vrms  
for rated mains voltage 600 Vrms  
for rated mains voltage 1000 Vrms  
Climatic Classification  
55/100/21  
55/100/21  
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b*  
2
2
VIORM  
VPR  
1140  
891  
V peak  
V peak  
V
IORM x 1.875 = VPR, 100% Production Test with tm = 1 sec  
2137  
1670  
Partial Discharge < 5 pC,  
Input to Output Test Voltage, Method a*  
V
IORM x 1.5 = VPR, Type and sample test, tm = 60 sec,  
VPR  
1710  
8000  
1336  
8000  
V peak  
Partial Discharge < 5 pC  
Highest Allowable Overvoltage*  
VIOTM  
V peak  
(Transient Overvoltage, tini = 10 sec)  
Safety Limiting Values  
(Maximum values allowed in the event of a failure)  
Case Temperature  
Input Current  
Output Power  
TS  
175  
230  
600  
175  
230  
600  
°C  
mA  
mW  
IS,INPUT  
PS,OUTPUT  
Insulation Resistance at TS, VIO = 500 V  
RS  
109  
109  
*
Refer to the optocoupler section of the Designer’s Catalog, under regulatory information (IEC/EN/DIN EN 60747-5-2) for a detailed description of  
Method a and Method b partial discharge test profiles.  
4
Absolute Maximum Ratings  
Storage Temperature  
-55°C to +125°C  
-55°C to +100°C  
Operating Temperature  
Average Input Current - IF  
25 mA[1]  
Peak Input Current - IF  
50 mA[2] (50% duty cycle, 1 ms pulse width)  
1.0 A (1 ms pulse width, 300 pps)  
5 V  
Peak Transient Input Current - IF  
Reverse Input Voltage - VR (Pin3-1)  
Input Power Dissipation  
45 mW[3]  
Average Output Current - IO (Pin 5)  
Peak Output Current  
8 mA  
16 mA  
Output Voltage - VO (Pin 5-4)  
Supply Voltage - VCC (Pin 6-4)  
Output Power Dissipation  
Solder Reflow Temperature Profile  
-0.5 V to 20 V  
-0.5 V to 30 V  
100 mW[4]  
see Package Outline Drawings section  
DC Electrical Specifications  
Over recommended temperature (T = 0°C to 70°C) unless otherwise specified.  
A
Parameter  
Symbol Min Typ.*  
Max. Units  
Test Conditions  
Fig.  
Note  
Current  
Transfer Ratio  
CTR  
CTR  
VOL  
IOH  
25  
21  
26  
22  
32  
60  
65  
%
%
V
TA = 25°C  
VO = 0.4 V  
IF = 16 mA 1, 2,  
5
V
CC = 4.5 V  
4
34  
VO = 0.5 V  
Current  
Transfer Ratio  
35  
TA = 25°C  
TA = 25°C  
VO = 0.4 V  
IF = 12 mA  
5
V
CC = 4.5 V  
37  
VO = 0.5 V  
Logic Low  
Output Voltage  
0.2  
0.2  
0.003  
0.01  
0.4  
0.5  
0.5  
1
IO = 3.0 mA  
IO = 2.4 mA  
VO = VCC= 5.5 V  
VO = VCC = 15.0 V  
IF = 16 mA  
VCC = 4.5 V  
1
5
Logic High  
Output Current  
A  
TA = 25°C  
TA = 25°C  
IF = 0 mA  
50  
Logic Low  
Supply Current  
ICCL  
ICCH  
50  
200  
A  
A  
IF = 16 mA, VCC = 15 V  
VO = open,  
VCC = 15 V  
11  
11  
Logic High  
Supply Current  
0.02  
0.02  
1.5  
1
TA = 25°C  
TA = 25°C  
IR = 10 A  
IF = 16 mA, VO =  
Open,  
2
Input Forward  
Voltage  
VF  
1.7  
1.8  
V
V
IF = 16 mA  
3
1.5  
Input Reverse  
Breakdown  
Voltage  
BVR  
5
Temperature  
Coefficient of For-  
ward Voltage  
VF/TA  
-1.6  
60  
mV/°C IF = 16 mA  
Input  
CIN  
pF  
f = 1 MHz, VF = 0  
Capacitance  
*All typicals at T = 25°C.  
A
5
Switching Specifications  
Over recommended temperature (T = 0°C to 70°C) unless otherwise specified  
A
Parameter  
Symbol Min. Typ.* Max. Units Test Conditions  
Fig.  
Note  
Propagation  
Delay Time to  
Logic Low at  
Output  
tPHL  
0.2  
0.2  
0.5  
0.3  
0.5  
0.7  
s  
TA = 25°C  
Pulse: f = 20 kHz, Duty Cycle = 10%  
IF = 16 mA, VCC = 5.0 V  
6,8,9  
9
RL = 1.9 k, CL = 15 pF  
V
THHL = 1.5 V  
0.2  
0.1  
TA = 25°C  
Pulse: f = 10 kHz, Duty Cycle = 50%  
IF = 12 mA, VCC = 15.0 V  
6,  
10-14  
10  
RL = 20 k, CL = 100 pF  
0.5  
1.0  
V
THHL = 1.5 V  
Propagation  
Delay Time to  
Logic High at  
Output  
tPLH  
0.3  
0.3  
0.5  
0.7  
s  
TA = 25°C  
TA = 25°C  
Pulse: f = 20 kHz, Duty Cycle = 10%  
IF = 16 mA, VCC = 5.0 V  
6,8,9  
9
RL = 1.9 k, CL = 15 pF  
V
THHL = 1.5 V  
0.3  
0.2  
0.8  
0.8  
1.1  
1.4  
Pulse: f = 10 kHz, Duty Cycle = 50%  
IF = 12 mA, VCC = 15.0 V  
6,  
10-14  
10  
RL = 20 k, CL = 100 pF  
V
THHL = 2.0 V  
Propagation  
Delay Difference  
Between Any 2  
Parts  
tPLH  
- tPHL  
-0.4 0.3  
-0.7 0.3  
0.9  
1.3  
s  
s  
TA = 25°C  
Pulse: f = 10 kHz, Duty Cycle = 50%  
IF = 12 mA, VCC = 15.0 V  
6,  
10-14  
13  
RL = 20 k, CL = 100 pF  
V
THHL = 1.5 V VTHLH = 2.0V  
Common Mode  
Transient Immu-  
nity at Logic High  
Level Output  
|CMH|  
|CML|  
15  
15  
15  
15  
15  
30  
30  
30  
30  
30  
kV/s TA = 25°C  
TA = 25°C  
VCC = 5.0 V, RL = 1.9 kꢃ  
7
7
7
7
7
7,9  
CL = 15 pF, IF = 0 mA  
VCM = 1500 VP-P  
VCC = 15.0 V, RL = 20 kꢃ  
CL = 100 pF, IF = 0 mA  
8,10  
7,9  
V
CM = 1500 VP-P  
Common Mode  
Transient Immu-  
nity at Logic Low  
Level Output  
kV/s TA = 25°C  
TA = 25°C  
VCC = 5.0 V, RL = 1.9 kꢃ  
CL = 15 pF, IF = 16 mA  
V
CM = 1500 VP-P  
VCC = 15.0 V, RL = 20 kꢃ  
CL = 100 pF, IF = 12 mA  
8,10  
8,10  
VCM = 1500 VP-P  
TA = 25°C  
VCC = 15.0 V, RL = 20 kꢃ  
CL = 100 pF, IF = 16 mA  
V
CM = 1500 VP-P  
*All typicals at T = 25°C.  
A
6
Package Characteristics  
Over recommended temperature (T = 0°C to 70°C) unless otherwise specified. All typicals at T = 25°C.  
A
A
Parameter  
Symbol Min.  
Typ.  
Max.  
Units  
Test Conditions  
Fig.  
Note  
Input-Output Momentary  
Withstand Voltage*  
VISO  
3750  
Vrms  
RH 50%, t = 1 min, TA = 25°C  
6,12  
5000 (For “ACPL-W454)  
1012  
Input-Output Resistance  
Input-Output Capacitance  
RI-O  
CI-O  
V
I-O = 500 Vdc  
6
6
0.6  
pF  
f = 1 MHz; VI-O = 0 Vdc  
*
The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage  
rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table (if applicable).  
Notes:  
1. Derate linearly above 70°C free-air temperature at a rate of 0.8 mA/°C.  
2. Derate linearly above 70°C free-air temperature at a rate of 1.6mA/°C.  
3. Derate linearly above 70°C free-air temperature at a rate of 0.9 mW/°C.  
4. Derate linearly above 70°C free-air temperature at a rate of 2.0 mW/°C.  
5. CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current (I ), to the forward LED input current (I ), times 100.  
O
F
6. Device considered a two-terminal device: Pins 1 and 3 shorted together and Pins 4, 5 and 6 shorted together.  
7. Under TTL load and drive conditions: Common mode transient immunity in a Logic High level is the maximum tolerable (positive) dV /dt on the  
CM  
leading edge of the common mode pulse, V , to assure that the output will remain in a Logic High state (i.e., V > 2.0 V). Common mode transient  
CM  
O
immunity in a Logic Low level is the maximum tolerable (negative) dV /dt on the trailing edge of the common mode pulse signal, V to assure  
CM  
CM,  
that the output will remain in a Logic Low state (i.e., VO < 0.8 V).  
8. Under IPM (Intelligent Power Module) load and LED drive conditions: Common mode transient immunity in a Logic High level is the maximum  
tolerable dV /dt on the leading edge of the common mode pulse, VCM, to assure that the output will remain in a Logic High state (i.e., V > 3.0  
CM  
O
V). Common mode transient immunity in a Logic Low level is the maximum tolerable dV /dt on the trailing edge of the common mode pulse  
CM  
signal,V , to assure that the output will remain in a Logic Low state (i.e., V < 1.0 V).  
CM  
O
9. The 1.9 kload represents 1 TTL unit load of 1.6 mA and the 5.6 kpull-up resistor.  
10. The R = 20 k, C = 100 pF load represents an IPM (Intelligent Power Mode) load.  
L
L
11. Use of a 0.1 F bypass capacitor connected between pins 4 and 6 is recommended.  
12. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ꢅꢆ4500 V  
for 1 second (leakage detection  
RMS  
current limit, I 5 A); each optocoupler under ACPL-W454 is proof tested by applying an insulation test voltage ≥ 6000 V  
for 1 second (leak-  
I-O  
RMS  
age detection current limit, I ≤ 5 μA).  
I-O  
13. The difference between t and t , between any two ACPL-W454/P454 parts under the same test condition. (See Power Inverter Dead Time and  
PLH  
PHL  
Propagation Delay Specifications section).  
1000  
100  
10  
1.5  
1.0  
40 mA  
35 mA  
T
V
= 25 ˚C  
A
10  
= 5.0 V  
CC  
I
F
T
A
= 25˚C  
30 mA  
25 mA  
20 mA  
+
V
F
-
1.0  
5
0.1  
NORMALIZED  
= 16 mA  
0.5  
0.0  
15 mA  
10 mA  
I
F
V
V
T
= 0.4 V  
= 5.0 V  
= 25 ˚C  
O
0.01  
0.001  
CC  
I
= 5 mA  
F
A
0
0
20  
10  
- OUTPUT VOLTAGE - V  
0
2
4
6
8 10 12 14 16 18 20 22 24 26  
IF - INPUT CURRENT - mA  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
V
O
VF - FORWARD VOLTAGE - VOLTS  
Figure 1. DC and Pulsed Transfer Characteristics.  
Figure 2. Current Transfer Ratio vs. Input Current.  
Figure 3. Input Current vs. Forward Voltage.  
7
4
3
2
1.1  
1.0  
10  
10  
10  
I
V
= 0 mA  
F
= V  
= 5.0 V  
CC  
O
0.9  
0.8  
0.7  
0.6  
NORMALIZED  
1
0
10  
10  
I
= 16 mA  
F
V
V
T
= 0.4 V  
O
= 5.0 V  
CC  
= 25 ˚C  
A
-1  
10  
10  
-2  
-60 -40 -20  
0
20 40 60 80 100 120  
-60 -40 -20  
0
20 40 60 80 100 120  
TA - TEMPERATURE - ˚C  
TA - TEMPERATURE - ˚C  
Figure 4. Current Transfer Ratio vs. Temperature.  
Figure 5. Logic High Output Current vs. Tempera-  
ture.  
ACPL-W454/P454  
I
F
PULSE  
GEN.  
I
V
F
CC  
O
0
1
2
6
Z
= 50Ω  
= 5 ns  
O
r
R
L
t
V
CC  
OL  
V
O
5
4
V
L
0.1μF  
V
V
THLH  
THHL  
3
I
MONITOR  
F
V
C
100 Ω  
t
t
PHL  
PLH  
Figure 6. Switching Test Circuit.  
ACPL-W454/P454  
10 V  
I
90%  
90%  
V
F
CM  
0 V  
V
V
1
2
3
6
5
4
10%  
10%  
CC  
O
R
L
A
t
r
t
f
B
0.1μF  
V
V
V
O
O
CC  
SWITCH AT A: I = 0 mA  
F
V
FF  
C
L
V
OL  
V
CM  
SWITCH AT B: I = 12 mA, 16 mA  
F
+
-
PULSE GEN.  
Figure 7. Test Circuit for Transient Immunity and Typical Waveforms.  
8
0.50  
0.45  
1.4  
1.2  
1.0  
0.8  
2.6  
2.4  
V
T
C
V
= 5.0 V  
V
R
C
V
= 5.0 V  
= 1.9 k  
= 15 pF  
V
T
C
V
V
= 5.0 V  
= 25 ˚C  
= 100 pF  
CC  
CC  
CC  
= 25 ˚C  
= 15 pF  
= V  
A
L
A
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
L
L
L
0.40  
= 1.5 V  
THLH  
= V  
= 1.5 V  
THLH  
= 1.5 V  
= 2.0 V  
THHL  
THHL  
THHL  
THLH  
t
PLH  
10% DUTY CYCLE  
10% DUTY CYCLE  
t
0.35  
0.30  
0.25  
PLH  
50% DUTY CYCLE  
t
PHL  
t
PLH  
0.6  
0.4  
0.2  
0.0  
I
I
= 10 mA  
= 16 mA  
F
F
I
I
= 10 mA  
= 16 mA  
F
F
t
PHL  
t
0.20  
PHL  
8
I
I
= 10 mA  
= 16 mA  
F
F
0.15  
0.10  
0.2  
0.0  
-60 -40 -20  
0
20 40 60 80 100 120  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
10 12 14 16 18 20  
RL - LOAD RESISTANCE - k  
TA - TEMPERATURE - ˚C  
RL - LOAD RESISTANCE - k  
Figure 8. Propagation Delay Time vs. Tempera-  
ture.  
Figure 9. Propagation Delay Time vs. Load Resis-  
tance.  
Figure 10. Propagation Delay Time vs. Load  
Resistance.  
1.8  
1.1  
3.5  
V
T
C
V
V
= 15.0 V  
= 25 ˚C  
V
R
C
V
V
= 15.0 V  
= 20 k  
= 100 pF  
I
I
= 10 mA  
= 16 mA  
V
T
R
V
V
= 15.0 V  
CC  
CC  
F
F
CC  
= 25 ˚C  
t
PLH  
PHL  
1.6  
1.4  
1.0  
0.9  
A
L
A
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
= 100 pF  
= 1.5 V  
= 20 k  
L
L
L
= 1.5 V  
= 2.0 V  
= 1.5 V  
= 2.0 V  
THHL  
THHL  
THLH  
THHL  
t
PLH  
= 2.0 V  
1.2  
1.0  
0.8  
0.6  
0.4  
THLH  
THLH  
t
0.8  
0.7  
0.6  
PLH  
50% DUTY CYCLE  
50% DUTY CYCLE  
50% DUTY CYCLE  
t
t
PHL  
0.5  
t
PHL  
I
I
= 10 mA  
= 16 mA  
F
F
I
I
= 10 mA  
= 16 mA  
F
0.4  
0.3  
0.2  
0.0  
F
0.0  
-60 -40 -20  
0
20 40  
60 80 100 120  
0
200  
400  
600  
800  
1000  
0
5
10 15 20 25 30 35 40 45 50  
C - LOAD CAPACITANCE - pF  
R - LOAD RESISTANCE - k  
L
TA - TEMPERATURE - ˚C  
L
Figure 11. Propagation Delay Time vs. Tempera-  
ture.  
Figure 12. Propagation Delay Time vs. Load Re-  
sistance.  
Figure 13. Propagation Delay Time vs. Load  
Capacitance.  
1.2  
T
= 25 ˚C  
= 20 k  
= 100 pF  
A
1.1  
1.0  
R
C
V
V
L
L
= 1.5 V  
= 2.0 V  
THHL  
THLH  
0.9  
0.8  
0.7  
50% DUTY CYCLE  
t
PLH  
0.6  
0.5  
0.4  
0.3  
0.2  
t
PHL  
I
I
= 10 mA  
= 16 mA  
F
F
10 11 12 13 14 15 16 17 18 19 20  
- SUPPLY VOLTAGE - V  
V
CC  
Figure 14. Propagation Delay Time vs. Supply  
Voltage.  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2010 Avago Technologies. All rights reserved. Obsoletes AV01-0253EN  
AV02-1307EN - August 4, 2010  

相关型号:

ACPL-P454-560E

High CMR High Speed Optocoupler Surface Mountable in 6-pin stretched SO6
AVAGO

ACPL-P456

ACPL-P456 and ACPL-W456 Intelligent Power Module and Gate Drive Interface Optocouplers
AVAGO

ACPL-P456-500E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, ROHS COMPLIANT, SOP-6
AVAGO

ACPL-P456-560E

ACPL-P456 and ACPL-W456 Intelligent Power Module and Gate Drive Interface Optocouplers
AVAGO

ACPL-P480

High CMR Intelligent Power Module and Gate Drive Interface Optocoupler
BOARDCOM

ACPL-P480

Available in Stretched SO-6 package
AVAGO

ACPL-P480-500E

High CMR Intelligent Power Module and Gate Drive Interface Optocoupler
AVAGO

ACPL-P481

Inverted Logic, High CMR Optocoupler for Intelligent Power Modules and IGBT/MOSFET Gate Drive
AVAGO

ACPL-P481

Inverted Logic, High CMR Optocoupler for Intelligent Power Modules and IGBT/MOSFET Gate Drive
BOARDCOM

ACPL-P481-500E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, ROHS COMPLIANT, SOP-6
AVAGO

ACPL-P483

Inverted Logic High CMR Intelligent Power Module and Gate Drive Interface Optocoupler
BOARDCOM

ACPL-P483

Short Maximum Propagation Delays
AVAGO