MVTX2603AG [ZARLINK]

Unmanaged 24-Port 10/100 Mb + 2-Port 1 Gb Ethernet Switch; 非网管型24端口10/100兆+ 2端口1 Gb以太网交换机
MVTX2603AG
型号: MVTX2603AG
厂家: ZARLINK SEMICONDUCTOR INC    ZARLINK SEMICONDUCTOR INC
描述:

Unmanaged 24-Port 10/100 Mb + 2-Port 1 Gb Ethernet Switch
非网管型24端口10/100兆+ 2端口1 Gb以太网交换机

网络接口 电信电路 以太网 局域网(LAN)标准
文件: 总109页 (文件大小:793K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MVTX2603  
Unmanaged 24-Port 10/100 Mb + 2-Port 1 Gb  
Ethernet Switch  
Data Sheet  
February 2004  
Features  
Ordering Information  
Integrated Single-Chip 10/100/1000 Mbps  
Ethernet Switch  
MVTX2603AG  
553 Pin HSBGA  
24 10/100 Mbps Autosensing, Fast Ethernet  
Ports with RMII or Serial Interface (7WS)  
-40°C to +85°C  
2 Gigabit Ports with GMII, PCS, 10/100 and  
stacking (2 G per port) interface options per port  
Supports per-system option to enable flow control  
for best effort frames even on QoS-enabled ports  
Load sharing among trunked ports can be based  
on source MAC and/or destination MAC. The  
Gigabit trunking group has one more option,  
based on source port.  
Serial interface for configuration  
Supports two Frame Buffer Memory domains with  
SRAM at 100 MHz  
Supports memory size 2 MB, or 4 MB  
• For 24+2, two SRAM domains (2 MB or 4 MB) are  
required.  
Port Mirroring to a dedicated port or port 23  
Built-in reset logic triggered by system  
• For 24+2 stacking (2 G per stacking port), two ZBT  
domains (2 MB or 4 MB) are required.  
malfunction  
Applies centralized shared memory architecture  
Up to 64K MAC addresses  
I2C EEPROM for configuration  
Traffic Classification  
Maximum throughput is 6.4 Gbps non-blocking  
• 4 transmission priorities for Fast Ethernet ports with 2  
dropping levels  
High performance packet forwarding (19.047 M  
packets per second) at full wire speed  
• Classification based on:  
Full Duplex Ethernet IEEE 802.3x Flow Control  
Backpressure flow control for Half Duplex ports  
-
-
Port based priority  
VLAN Priority field in VLAN tagged frame  
Supports Ethernet multicasting and broadcasting  
and flooding control  
Frame Data Buffer A  
SRAM (1 M / 2 M)  
Frame Data Buffer B  
SRAM (1 M / 2 M)  
FDB Interface  
LED  
Search  
Engine  
MCT  
Link  
FCB  
Frame Engine  
GMII/  
GMII/  
24 x 10 /100  
PCS  
PCS  
Port  
24  
Management  
Module  
Parallel/  
Serial  
RMII  
Port  
25  
Ports 0 - 23  
Figure 1 - MVTX2603 System Block Diagram  
1
Zarlink Semiconductor Inc.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright 2003-2004, Zarlink Semiconductor Inc. All Rights Reserved.  
MVTX2603  
Data Sheet  
-
-
DS/TOS field in IP packet  
UDP/TCP logical ports: 8 hard-wired and 8 programmable ports, including one programmable range  
• The precedence of the above classifications is programmable  
QoS Support  
• Supports IEEE 802.1p/Q Quality of Service with 4 transmission priority queues with delay bounded, strict priority, and  
WFQ service disciplines  
• Provides 2 levels of dropping precedence with WRED mechanism  
• User controls the WRED thresholds  
• Buffer management: per class and per port buffer reservations  
• Port-based priority: VLAN priority in a tagged frame can be overwritten by the priority of Port VLAN ID.  
3 port trunking groups, one for the 2 Gigabit ports, and two groups for 10/100 ports, with up to 4 10/100  
ports per group  
Full set of LED signals provided by a serial interface or 6 LED signals dedicated to Gigabit port status only  
(without serial interface)  
Hardware auto-negotiation through serial management interface (MDIO) for Ethernet ports  
Hardware auto-negotiation through serial management interface (MDIO) for Ethernet ports  
Built-In Self Test for internal and external SRAM  
Description  
The MVTX2603 is a high density, low cost, high performance, non-blocking Ethernet switch chip. A single chip  
provides 24 ports at 10/100 Mbps, 2 ports at 1000 Mbps. The Gigabit ports can also support 10/100 M and 2 G  
stacking modes.  
The chip supports up to 64 K MAC addresses. The centralized shared memory architecture permits a very high  
performance packet forwarding rate at up to 9.524 M packets per second at full wire speed. The chip is optimized to  
provide low-cost, high-performance workgroup switching.  
Two Frame Buffer Memory domains utilize cost-effective, high-performance synchronous SRAM with aggregate  
bandwidth of 12.8 Gbps to support full wire speed on all ports simultaneously. In the 24+2 stacking (2 G per  
stacking port) configuration, 2 ZBT domains are needed.  
With delay bounded, strict priority, and/or WFQ transmission scheduling and WRED dropping schemes, the  
MVTX2603 provides powerful QoS functions for various multimedia and mission-critical applications. The chip  
provides 4 transmission priorities (8 priorities per Gigabit port) and 2 levels of dropping precedence. Each packet is  
assigned a transmission priority and dropping precedence based on the VLAN priority field in a VLAN tagged  
frame, or the DS/TOS field, or the UDP/TCP logical port fields in IP packets. The MVTX2603 recognizes a total of  
16 UDP/TCP logical ports, 8 hard-wired and 8 programmable (including one programmable range).  
The MVTX2603 supports 3 groups of port trunking/load sharing. One group is dedicated to the two Gigabit ports  
and the other two groups to 10/100 ports, where each 10/100 group can contain up to 4 ports. Port trunking/load  
sharing can be used to group ports between interlinked switches to increase the effective network bandwidth.  
In half-duplex mode, all ports support backpressure flow control, to minimize the risk of losing data during long  
activity bursts. In full-duplex mode, IEEE 802.3x flow control is provided. The MVTX2603 also supports a per-  
system option to enable flow control for best effort frames even on QoS-enabled ports.  
The Physical Coding Sublayer (PCS) is integrated on-chip to provide a direct 10-bit interface for connection to  
SERDES chips. The PCS can be bypassed to provide a GMII interface.  
The MVTX2603 is fabricated using 0.25 micron technology. Inputs, however, are 3.3 V tolerant, and the outputs are  
capable of directly interfacing to LVTTL levels. The MVTX2603 is packaged in a 553-pin Ball Grid Array package.  
2
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Table of Contents  
1.0 Block Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.1 Frame Data Buffer (FDB) Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.2 GMII/PCS MAC Module (GMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.3 Physical Coding Sublayer (PCI) Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.4 10/100 MAC Module (RMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.5 Configuration Interface Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
1.6 Frame Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
1.7 Search Engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
1.8 LED Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
1.9 Internal Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.0 System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.1 Configuration Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.2 I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.2.1 Start Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.2.2 Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.2.3 Data Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.2.4 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.2.5 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.2.6 Stop Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.3 Synchronous Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.3.1 Write Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.3.2 Read Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.4 Stacking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.0 MVTX2603 Data Forwarding Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.1 Unicast Data Frame Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.2 Multicast Data Frame Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.0 Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.2 ZBT Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.3 Detailed Memory Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.4 Memory Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5.0 Search Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5.1 Search Engine Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5.2 Basic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5.3 Search, Learning, and Aging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5.3.1 MAC Search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5.3.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5.3.3 Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5.4 Quality of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.5 Priority Classification Rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.6 Port Based VLAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
5.7 Memory Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.0 Frame Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
6.1 Data Forwarding Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
6.2 Frame Engine Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
6.2.1 FCB Manager. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
6.2.2 Rx Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
6.2.3 RxDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
6.2.4 TxQ Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
6.3 Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6.4 TxDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Table of Contents  
7.0 Quality of Service and Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
7.1 Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
7.2 Four QoS Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
7.3 Delay Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
7.4 Strict Priority and Best Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
7.5 Weighted Fair Queuing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
7.6 Shaper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
7.7 WRED Drop Threshold Management Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
7.8 Buffer Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
7.8.1 Dropping When Buffers Are Scarce. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
7.9 MVTX2603 Flow Control Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
7.9.1 Unicast Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
7.9.2 Multicast Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
7.10 Mapping to IETF Diffserv Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
8.0 Port Trunking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
8.1 Features and Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
8.2 Unicast Packet Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
8.3 Multicast Packet Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
8.4 Trunking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
9.0 Port Mirroring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
9.1 Port Mirroring Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
9.2 Setting Registers for Port Mirroring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
10.0 TBI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
11.0 GPSI (7WS) Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
11.1 GPSI Connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
11.2 SCAN LINK and SCAN COL interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
12.0 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
12.1 LED Interface Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
12.2 Port Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
12.3 LED Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
13.0 Register Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
13.1 MVTX2603 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
13.2 Group 0 Address MAC Ports Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
13.2.1 ECR1Pn: Port N Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
13.2.2 ECR2Pn: Port N Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
13.2.3 GGControl – Extra GIGA Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
13.3 Group 1 Address VLAN Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
13.3.1 AVTCL – VLAN Type Code Register Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
13.3.2 AVTCH – VLAN Type Code Register High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
13.3.3 PVMAP00_0 – Port 00 Configuration Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
13.3.4 PVMAP00_1 – Port 00 Configuration Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
13.3.5 PVMAP00_2 – Port 00 Configuration Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
13.3.6 PVMAP00_3 – Port 00 Configuration Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
13.4 Port Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
13.4.1 PVMODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
13.4.2 TRUNK0_MODE– Trunk group 0 mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
13.4.3 TRUNK1_MODE – Trunk group 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
13.5 Group 4 Address Search Engine Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
13.5.1 TX_AGE – Tx Queue Aging timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
13.5.2 AGETIME_LOW – MAC address aging time Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
13.5.3 AGETIME_HIGH –MAC address aging time High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
4
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Table of Contents  
13.5.4 SE_OPMODE – Search Engine Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
13.6 Group 5 Address Buffer Control/QOS Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
13.6.1 FCBAT – FCB Aging Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
13.6.2 QOSC – QOS Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
13.6.3 FCR – Flooding Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
13.6.4 AVPML – VLAN Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
13.6.5 AVPMM – VLAN Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
13.6.6 AVPMH – VLAN Priority Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
13.6.7 TOSPML – TOS Priority Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
13.6.8 TOSPMM – TOS Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
13.6.9 TOSPMH – TOS Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
13.6.10 AVDM – VLAN Discard Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
13.6.11 TOSDML – TOS Discard Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
13.6.12 BMRC - Broadcast/Multicast Rate Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
13.6.13 UCC – Unicast Congestion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
13.6.14 MCC – Multicast Congestion Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
13.6.15 PR100 – Port Reservation for 10/100 ports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
13.6.16 PRG – Port Reservation for Giga ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
13.6.17 SFCB – Share FCB Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
13.6.18 C2RS – Class 2 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
13.6.19 C3RS – Class 3 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
13.6.20 C4RS – Class 4 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
13.6.21 C5RS – Class 5 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
13.6.22 C6RS – Class 6 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
13.6.23 C7RS – Class 7 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
13.6.24 Classes Byte Limit Set 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
13.6.25 Classes Byte Limit Set 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
13.6.26 Classes Byte Limit Set 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
13.6.27 Classes Byte Limit Set 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
13.6.28 Classes Byte Limit Giga Port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
13.6.29 Classes Byte Limit Giga Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
13.6.30 Classes WFQ Credit Set 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
13.6.31 Classes WFQ Credit Set 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
13.6.32 Classes WFQ Credit Set 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
13.6.33 Classes WFQ Credit Set 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
13.6.34 Classes WFQ Credit Port G1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
13.6.35 Classes WFQ Credit Port G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
13.6.36 Class 6 Shaper Control Port G1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
13.6.37 Class 6 Shaper Control Port G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
13.6.38 RDRC0 – WRED Rate Control 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
13.6.39 RDRC1 – WRED Rate Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
13.6.40 User Defined Logical Ports and Well Known Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
13.6.40.1 USER_PORT0_(0~7) – User Define Logical Port (0~7). . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
13.6.40.2 USER_PORT_[1:0]_PRIORITY - User Define Logic Port 1 and 0 Priority. . . . . . . . . . . . . 63  
13.6.40.3 USER_PORT_[3:2]_PRIORITY - User Define Logic Port 3 and 2 Priority. . . . . . . . . . . . . 63  
13.6.40.4 USER_PORT_[5:4]_PRIORITY - User Define Logic Port 5 and 4 Priority. . . . . . . . . . . . . 63  
13.6.40.5 USER_PORT_[7:6]_PRIORITY - User Define Logic Port 7 and 6 Priority. . . . . . . . . . . . . 63  
13.6.40.6 USER_PORT_ENABLE [7:0] – User Define Logic 7 to 0 Port Enables . . . . . . . . . . . . . . . 63  
13.6.40.7 WELL_KNOWN_PORT [1:0] PRIORITY- Well Known Logic Port 1 and 0 Priority . . . . . . 64  
13.6.40.8 WELL_KNOWN_PORT [3:2] PRIORITY- Well Known Logic Port 3 and 2 Priority . . . . . . 64  
13.6.40.9 WELL_KNOWN_PORT [5:4] PRIORITY- Well Known Logic Port 5 and 4 Priority . . . . . . 64  
13.6.40.10 WELL_KNOWN_PORT [7:6] PRIORITY- Well Known Logic Port 7 and 6 Priority . . . . . 64  
5
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Table of Contents  
13.6.40.11 WELL KNOWN_PORT_ENABLE [7:0] – Well Known Logic 7 to 0 Port Enables. . . . . . . 65  
13.6.40.12 RLOWL – User Define Range Low Bit 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
13.6.40.13 RLOWH – User Define Range Low Bit 15:8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
13.6.40.14 RHIGHL – User Define Range High Bit 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
13.6.40.15 RHIGHH – User Define Range High Bit 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
13.6.40.16 RPRIORITY – User Define Range Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
13.7 Group 6 Address MISC Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
13.7.1 MII_OP0 – MII Register Option 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
13.7.2 MII_OP1 – MII Register Option 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
13.7.3 FEN – Feature Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
13.7.4 MIIC0 – MII Command Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
13.7.5 MIIC1 – MII Command Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
13.7.6 MIIC2 – MII Command Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
13.7.7 MIIC3 – MII Command Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
13.7.8 MIID0 – MII Data Register 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
13.7.9 MIID1 – MII Data Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
13.7.10 LED Mode – LED Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
13.7.11 CHECKSUM - EEPROM Checksum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
13.8 Group 7 Address Port Mirroring Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
13.8.1 MIRROR1_SRC – Port Mirror source port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
13.8.2 MIRROR1_DEST – Port Mirror destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
13.8.3 MIRROR2_SRC – Port Mirror source port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
13.8.4 MIRROR2_DEST – Port Mirror destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
13.9 Group F Address CPU Access Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
13.9.1 GCR-Global Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
13.9.2 DCR-Device Status and Signature Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
13.9.3 DCR1-Giga port status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
13.9.4 DPST – Device Port Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
13.9.5 DTST – Data read back register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
13.9.6 PLLCR - PLL Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
13.9.7 LCLK - LA_CLK delay from internal OE_CLK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
13.9.8 OECLK - Internal OE_CLK delay from SCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
13.9.9 DA – DA Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
13.10 TBI Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
13.10.1 Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
13.10.2 Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
13.10.3 Advertisement Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
13.10.4 Link Partner Ability Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
13.10.5 Expansion Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
13.10.6 Extended Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
14.0 BGA and Ball Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
14.1 BGA Views (Top-View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
14.1.1 Encapsulated View. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
14.2 Ball – Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
14.2.1 Ball Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
14.3 Ball – Signal Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
14.4 AC/DC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
14.4.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
14.4.2 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
14.4.3 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
14.4.4 Typical Reset & Bootstrap Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
14.5 Local Frame Buffer SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
6
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Table of Contents  
14.5.1 Local SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
14.6 Local Switch Database SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
14.6.1 Local SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
14.7 AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
14.7.1 Reduced Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
14.7.2 Gigabit Media Independent Interface - Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
14.7.3 Ten Bit Interface - Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
14.7.4 Gigabit Media Independent Interface - Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
14.7.5 Ten Bit Interface - Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
14.7.6 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
14.7.7 SCANLINK SCANCOL Output Delay Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
14.7.8 MDIO Input Setup and Hold Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
14.7.9 I2C Input Setup Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
14.7.10 Serial Interface Setup Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
7
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
List of Figures  
Figure 1 - MVTX2603 System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 2 - Data Transfer Format for I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 3 - Write Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 4 - Read Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 5 - MVTX2603 SRAM Interface Block Diagram (DMAs for 10/1000 Ports Only) . . . . . . . . . . . . . . . . . . . . 15  
Figure 6 - Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 7 - Priority Classification Rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 8 - Memory Configuration For: 2 Banks, 1 Layer, 2 MB Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 9 - Memory Configuration For: 2 Banks, 2 Layer, 4 MB Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 10 - Memory Configuration For: 2 Banks, 1 Layer, 4 MB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 11 - Memory Configuration For: 2 Banks, 2 Layers, 4 MB Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 12 - Memory Configuration For: 2 Banks, 1 Layer, 4 MB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 13 - Buffer Partition Scheme Used to Implement MVTX2603 Buffer Management . . . . . . . . . . . . . . . . . . 30  
Figure 14 - TBI Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 15 - GPSI (7WS) Mode Connection Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 16 - SCAN LINK and SCAN COLLISON Status Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 17 - Timing Diagram of LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 18 - Typical Reset & Bootstrap Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Figure 19 - Local Memory Interface – Input Setup and Hold Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Figure 20 - Local Memory Interface - Output Valid Delay Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Figure 21 - Local Memory Interface – Input Setup and Hold Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Figure 22 - Local Memory Interface - Output Valid Delay Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Figure 23 - AC Characteristics – Reduced Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Figure 24 - AC Characteristics – Reduced Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Figure 25 - AC Characteristics- GMII. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Figure 26 - AC Characteristics – Gigabit Media Independent Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Figure 27 - Gigabit TBI Interface Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Figure 28 - Gigabit TBI Interface Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Figure 29 - AC Characteristics- GMII. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Figure 30 - AC Characteristics – Gigabit Media Independent Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Figure 31 - Gigabit TBI Interface Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Figure 32 - Gigabit TBI Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Figure 33 - AC Characteristics – LED Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Figure 34 - SCANLINK SCANCOL Output Delay Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Figure 35 - SCANLINK, SCANCOL Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Figure 36 - MDIO Input Setup and Hold Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Figure 37 - MDIO Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Figure 38 - I2C Input Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Figure 39 - I2C Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Figure 40 - Serial Interface Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Figure 41 - Serial Interface Output Delay Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
8
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
List of Tables  
Table 1 - Memory Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 2 - PVMAP Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 3 - Supported Memory Configurations (Pipeline SBRAM Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 4 - Supported Memory Configurations (ZBT Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 5 - Options for Memory Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 6 - Two-dimensional World Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 8 - Four QoS Configurations for a Gigabit Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 7 - Four QoS Configurations for a 10/100 Mbps Port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 9 - WRED Drop Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 10 - Mapping between MVTX2603 and IETF Diffserv Classes for Gigabit Ports . . . . . . . . . . . . . . . . . . . . . 32  
Table 11 - Mapping between MVTX2603 and IETF Diffserv Classes for 10/100 Ports . . . . . . . . . . . . . . . . . . . . . 32  
Table 12 - MVTX2603 Features Enabling IETF Diffserv Standards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 13 - Reset & Bootstrap Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Table 14 - AC Characteristics – Local Frame Buffer SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Table 15 - AC Characteristics – Local Switch Database SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . 98  
Table 16 - AC Characteristics – Reduced Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Table 17 - AC Characteristics – Gigabit Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Table 18 - Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Table 19 - Input Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Table 20 - AC Characteristics – Gigabit Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Table 21 - Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Table 22 - Input Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Table 23 - AC Characteristics – LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Table 24 - SCANLINK, SCANCOL Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Table 25 - MDIO Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Table 26 - I2C Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Table 27 - Serial Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
9
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
1.0 Block Functionality  
1.1 Frame Data Buffer (FDB) Interfaces  
The FDB interface supports pipelined synchronrous burst SRAM (SBRAM) memory at 100 MHz. To ensure a non-  
blocking switch, two memory domains are required. Each domain has a 64 bit wide memory bus. At 100 MHz, the  
aggregate memory bandwidth is 12.8 Gbps, which is enough to support 24 10/100 Mbps and 2 Gigabit ports at full  
wire speed switching. For 24+ 2 stacking application, ZBT memory at 125 MHz is required.  
The Switching Database is also located in the external SBRAM; it is used for storing MAC addresses and their  
physical port number. It is duplicated and stored in both memory domains. Therefore, when the system updates the  
contents of the switching database, it has to write the entry to both domains at the same time.  
1.2 GMII/PCS MAC Module (GMAC)  
The GMII/PCS Media Access Control (MAC) module provides the necessary buffers and control interface between  
the Frame Engine (FE) and the external physical device (PHY).  
The MVTX2603 GMAC implements both GMII and MII interfaces, which offers a simple migration from 10/100 to  
1 G. The GMAC of the MVTX2603 meets the IEEE 802.3Z specification. It is able to operate in 10 M/100 M either  
Half or Full Duplex mode with a back pressure/flow control mechanism or in 1 G full duplex mode with flow control  
mechanism. Furthermore, it will automatically retransmit upon collision for up to 16 total transmissions. PHY  
addresses for GMAC are 01h and 02h.  
1.3 Physical Coding Sublayer (PCI) Interface  
For the MVTX2603, the 1000BASE-X PCI Interface is designed internally and may be utilized in the absence of a  
GMII. The PCS incorporates all the functions required by the GMII to include encoding (decoding) 8B GMII data to  
(from) 8B/10B TBI format for PHY communication and generating Collision Detect (COL) signals for half-duplex  
mode. It also manages the Auto negotiation process by informing the management entity that the PHY is ready for  
communications. The on-chip TBI may be disabled if TBI exists within the Gigabit PHY. The TBI interface provides  
a uniform interface for all 1000 Mbps PHY implementations.  
The PCS comprises the PCS Transmit, Synchronization, PCS Receive and Auto negotiation processes for  
1000BASE-X.  
The PCS Transmit process sends the TBI signals TXD [9:0] to the physical medium and generates the GMII  
Collision Detect (COL) signal based on whether a reception is occurring simultaneously with transmission.  
Additionally, the Transmit process generates an internal “transmitting” flag and monitors Auto negotiation to  
determine whether to transmit data or to reconfigure the link.  
The PCS Synchronization process determines whether or not the receive channel is operational.  
The PCS Receive process generates RXD [7:0] on the GMII from the TBI data [9:0], and the internal “receiving” flag  
for use by the Transmit processes.  
The PCS Auto negotiation process allows the MVTX2603 to exchange configuration information between two  
devices that share a link segment and to automatically configure the link for the appropriate speed of operation for  
both devices.  
1.4 10/100 MAC Module (RMAC)  
The 10/100 Media Access Control module provides the necessary buffers and control interface between the Frame  
Engine (FE) and the external physical device (PHY). The MVTX2603 has two interfaces, RMII or Serial (only for  
10 M). The 10/100 MAC of the MVTX2603 device meets the IEEE 802.3 specification. It is able to operate in either  
Half or Full Duplex mode with a back pressure/flow control mechanism. In addition, it will automatically retransmit  
upon collision for up to 16 total transmissions. The PHY address for 24 10/100 MAC are from 08h to 1fh.  
10  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
1.5 Configuration Interface Module  
The MVTX2603 supports a serial and an I2C interface, which provides an easy way to configure the system. Once  
configured, the resulting configuration can be stored in an I2C EEPROM.  
1.6 Frame Engine  
The main function of the frame engine is to forward a frame to its proper destination port or ports. When a frame  
arrives, the frame engine parses the frame header (64 bytes) and formulates a switching request, which is sent to  
the search engine to resolve the destination port. The arriving frame is moved to the FDB. After receiving a switch  
response from the search engine, the frame engine performs transmission scheduling based on the frame’s priority.  
The frame engine forwards the frame to the MAC module when the frame is ready to be sent.  
1.7 Search Engine  
The Search Engine resolves the frame’s destination port or ports according to the destination MAC address (L2). It  
also performs MAC learning, priority assignment and trunking functions.  
1.8 LED Interface  
The LED interface provides a serial interface for carrying 24+2 port status signals. It can also provide direct status  
pins (6) for the two Gigabit ports.  
1.9 Internal Memory  
Several internal tables are required and are described as follows:  
Frame Control Block (FCB) - Each FCB entry contains the control information of the associated frame  
stored in the FDB, e.g., frame size, read/write pointer, transmission priority, etc.  
MCT Link Table - The MCT Link Table stores the linked list of MCT entries that have collisions in the  
external MAC Table. The external MAC table is located in the FDB Memory.  
Note: the external MAC table is located in the external SBRAM Memory.  
2.0 System Configuration  
2.1 Configuration Mode  
The MVTX2603 can be configured by EEPROM (24C02 or compatible) via an I2C interface at boot time, or via a  
synchronous serial interface during operation.  
2
2.2 I C Interface  
The I2C interface uses two bus lines, a serial data line (SDA) and a serial clock line (SCL). The SCL line carries the  
control signals that facilitate the transfer of information from EEPROM to the switch. Data transfer is 8-bit serial and  
bidirectional, at 50 Kbps. Data transfer is performed between master and slave IC using a request /  
acknowledgment style of protocol. The master IC generates the timing signals and terminates data transfer. Figure  
2 depicts the data transfer format.  
START SLAVE ADDRESS R/W ACK DATA 1 (8 bits) ACK DATA 2 ACK  
DATA M  
ACK STOP  
Figure 2 - Data Transfer Format for I2C Interface  
11  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
2.2.1 Start Condition  
Generated by the master (in our case, the MVTX2603). The bus is considered to be busy after the Start condition is  
generated. The Start condition occurs if while the SCL line is High, there is a High-to-Low transition of the SDA line.  
Other than in the Start condition (and Stop condition), the data on the SDA line must be stable during the High  
period of SCL. The High or Low state of SDA can only change when SCL is Low. In addition, when the I2C bus is  
free, both lines are High.  
2.2.2 Address  
The first byte after the Start condition determines which slave the master will select. The slave in our case is the  
EEPROM. The first seven bits of the first data byte make up the slave address.  
2.2.3 Data Direction  
The eighth bit in the first byte after the Start condition determines the direction (R/W) of the message. A master  
transmitter sets this bit to W; a master receiver sets this bit to R.  
2.2.4 Acknowledgment  
Like all clock pulses, the acknowledgment-related clock pulse is generated by the master. However, the transmitter  
releases the SDA line (High) during the acknowledgment clock pulse. Furthermore, the receiver must pull down the  
SDA line during the acknowledge pulse so that it remains stable Low during the High period of this clock pulse. An  
acknowledgment pulse follows every byte transfer.  
If a slave receiver does not acknowledge after any byte, then the master generates a Stop condition and aborts the  
transfer.  
If a master receiver does not acknowledge after any byte, then the slave transmitter must release the SDA line to let  
the master generate the Stop condition.  
2.2.5 Data  
After the first byte containing the address, all bytes that follow are data bytes. Each byte must be followed by an  
acknowledge bit. Data is transferred MSB first.  
2.2.6 Stop Condition  
Generated by the master. The bus is considered to be free after the Stop condition is generated. The Stop condition  
occurs if while the SCL line is High, there is a Low-to-High transition of the SDA line.  
The I2C interface serves the function of configuring the MVTX2603 at boot time. The master is the MVTX2603 and  
the slave is the EEPROM memory.  
2.3 Synchronous Serial Interface  
The synchronous serial interface serves the function of configuring the MVTX2603 not at boot time but via a PC.  
The PC serves as master and the MVTX2603 serves as slave. The protocol for the synchronous serial interface is  
nearly identical to the I2C protocol. The main difference is that there is no acknowledgment bit after each byte of  
data transferred.  
The unmanaged MVTX2603 uses a synchronous serial interface to program the internal registers. To reduce the  
number of signals required, the register address, command and data are shifted in serially through the D0 pin.  
STROBE- pin is used as the shift clock. AUTOFD- pin is used as data return path.  
12  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Each command consists of four parts.  
START pulse  
Register Address  
Read or Write command  
Data to be written or read back  
Any command can be aborted in the middle by sending a ABORT pulse to the MVTX2603.  
A START command is detected when D0 is sampled high when STROBE- rise and D0 is sampled low when  
STROBE- fall.  
An ABORT command is detected when D0 is sampled low when STROBE- rise and D0 is sampled high when  
STROBE- fall.  
2.3.1 Write Command  
STROBE-  
2 extra clock cycles  
after last transfer  
transfer  
D0 D1 D2 D3 D4 D5 D6 D7  
D0  
A0 A1 A2 ... A9 A10 A11  
W
START ADDRESS  
COMMAND DATA  
Figure 3 - Write Command  
2.3.2 Read Command  
STROBE-  
R
A10 A11  
A0 A1 A2 ...  
A
9
D0  
START  
AUTOFD-  
ADDRESS  
COMMAND  
DATA  
4  
D0  
D
1
D2 D3 D4 D5 D6 D7  
Figure 4 - Read Command  
All registers in MVTX2603 can be modified through this synchronous serial interface.  
2.4 Stacking  
The two Gigabits ports can be used as link between boxes. Each Gigabit port can be accelerated to 2 Gpbs if  
desired (in conjunction with ZBT memory domains at 125 MHz). If both Gigabit ports are used for this purpose, this  
provides a total of 4 Gbps of bandwidth between devices.  
13  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
3.0 MVTX2603 Data Forwarding Protocol  
3.1 Unicast Data Frame Forwarding  
When a frame arrives, it is assigned a handle in memory by the Frame Control Buffer Manager (FCB Manager). An  
FCB handle will always be available, because of advance buffer reservations.  
The memory (SRAM) interface consists of two 64-bit buses, connected to two SRAM banks, A and B. The Receive  
DMA (RxDMA) is responsible for multiplexing the data and the address. On a port’s “turn,” the RxDMA will move 8  
bytes (or up to the end-of-frame) from the port’s associated RxFIFO into memory (Frame Data Buffer, or FDB).  
Once an entire frame has been moved to the FDB and a good end-of-frame (EOF) has been received, the Rx  
interface makes a switch request. The RxDMA arbitrates among multiple switch requests.  
The switch request consists of the first 64 bytes of a frame, containing among other things, the source and  
destination MAC addresses of the frame. The search engine places a switch response in the switch response  
queue of the frame engine when done. Among other information, the search engine will have resolved the  
destination port of the frame and will have determined that the frame is unicast.  
After processing the switch response, the Transmission Queue Manager (TxQ manager) of the frame engine is  
responsible for notifying the destination port that it has a frame to forward to it. But first, the TxQ manager has to  
decide whether or not to drop the frame, based on global FDB reservations and usage, as well as TxQ occupancy  
at the destination. If the frame is not dropped, then the TxQ manager links the frame’s FCB to the correct per-port-  
per-class TxQ. Unicast TxQ’s are linked lists of transmission jobs, represented by their associated frames’ FCB’s.  
There is one linked list for each transmission class for each port. There are 4 transmission classes for each of the  
24 10/100 ports and 8 classes for each of the two Gigabit ports – a total of 112 unicast queues.  
The TxQ manager is responsible for scheduling transmission among the queues representing different classes for a  
port. When the port control module determines that there is room in the MAC Transmission FIFO (TxFIFO) for  
another frame, it requests the handle of a new frame from the TxQ manager. The TxQ manager chooses among  
the head-of-line (HOL) frames from the per-class queues for that port using a Zarlink Semiconductor scheduling  
algorithm.  
The Transmission DMA (TxDMA) is responsible for multiplexing the data and the address. On a port’s turn, the  
TxDMA will move 8 bytes (or up to the EOF) from memory into the port’s associated TxFIFO. After reading the EOF,  
the port control requests a FCB release for that frame. The TxDMA arbitrates among multiple buffer release  
requests.  
The frame is transmitted from the TxFIFO to the line.  
3.2 Multicast Data Frame Forwarding  
After receiving the switch response, the TxQ manager has to make the dropping decision. A global decision to drop  
can be made, based on global FDB utilization and reservations. If so, then the FCB is released and the frame is  
dropped. In addition, a selective decision to drop can be made, based on the TxQ occupancy at some subset of the  
multicast packet’s destinations. If so, then the frame is dropped at some destinations but not others and the FCB is  
not released.  
If the frame is not dropped at a particular destination port, then the TxQ manager formats an entry in the multicast  
queue for that port and class. Multicast queues are physical queues (unlike the linked lists for unicast frames).  
There are 2 multicast queues for each of the 24 10/100 ports. The queue with higher priority has room for 32 entries  
and the queue with lower priority has room for 64 entries. There are 4 multicast queues for each of the two Gigabit  
ports. The sizes of the queues are: 32 entries (higher priority queue, 32 entries, 32 entries and 64 entries (lower  
priority queue). There is one multicast queue for every two priority classes. For the 10/100 ports to map the 8  
transmit priorities into 2 multicast queues, the 2 LSB are discarded. For the gigabit ports to map the 8 transmit  
priorities into 4 multicast queues, the LSB are discarded.  
14  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
During scheduling, the TxQ manager treats the unicast queue and the multicast queue of the same class as one  
logical queue. The older head of line of the two queues is forwarded first.  
The port control requests a FCB release only after the EOF for the multicast frame has been read by all ports to  
which the frame is destined.  
4.0 Memory Interface  
4.1 Overview  
The MVTX2603 provides two 64-bit wide SRAM banks, SRAM Bank A and SRAM Bank B, with a 64-bit bus  
connected to each. Each DMA can read and write from both bank A and bank B. The following figure provides an  
overview of the MVTX2603 SRAM banks.  
SRAM Bank A  
SRAM Bank B  
TXDMA  
16-23  
TXDMA  
0-7  
TXDMA  
8-15  
RXDMA  
0-7  
RXDMA  
8-15  
RXDMA  
16-23  
Figure 5 - MVTX2603 SRAM Interface Block Diagram (DMAs for 10/1000 Ports Only)  
4.2 ZBT Support  
The MVTX2603 supports Zero Bus Turnaround (ZBT). ZBT is a synchronous SRAM architecture that is optimized  
for networking and telecommunications applications. It can significantly increase the switch’s internal bandwidth  
when compared to standard Pipeline SyncBurst SRAM.  
The ZBT architecture is optimized for switching and other applications with highly random READs and WRITEs.  
ZBT SRAMs eliminate all idle cycles when turning the data bus around from a WRITE operation to a READ  
operation (or vice versa). This feature results in dramatic performance improvements in systems that have such  
traffic patterns (that is, frequent and random read and write access to the SRAM).  
Please refer to the ZBT Application Note for further details.  
4.3 Detailed Memory Information  
Because the bus for each bank is 64-bits wide, frames are broken into 8-byte granules, written to and read from  
memory. The first 8-byte granule gets written to Bank A, the second 8-byte granule gets written to Bank B, and so  
on in alternating fashion. When reading frames from memory, the same procedure is followed, first from A, then  
from B and so on.  
15  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
The reading and writing from alternating memory banks can be performed with minimal waste of memory  
bandwidth. What’s the worst case? For any speed port, in the worst case, a 1-byte-long EOF granule gets  
written to Bank A. This means that a 7-byte segment of Bank A bandwidth is idle, and furthermore, the next 8-byte  
segment of Bank B bandwidth is idle, because the first 8 bytes of the next frame will be written to Bank A, not B.  
This scenario results in a maximum 15 bytes of waste per frame, which is always acceptable because the  
interframe gap is 20 bytes.  
Search engine data is written to both banks in parallel. In this way, a search engine read operation can be  
performed by either bank at any time without a problem.  
4.4 Memory Requirements  
To speed up searching and decrease memory latency, the external MCT database is duplicated in both memory  
banks. To support 64 K MCT, 4 MB memory is required. Up to 2 K frame buffers are supported and they will use  
3 MB of memory. The maximum system memory requirement is 4 MB. If less memory is desired, the configuration  
can scale down proportionally.  
Bank A  
Bank B  
Frame Buffer  
Max MAC Address  
32 K  
64 k  
1 M  
2 M  
1 M  
2 M  
1 K  
2 K  
Table 1 - Memory Configuration  
1 M Bank A  
1 M Bank B 2 M Bank A 2 M Bank B  
0.75 M  
0.25 M  
0.75 M  
0.25 M  
1.5 M  
0.5 M  
1.5 M  
0.5 M  
Frame Data Buffer (FDR) Area  
MAC Address Control Table (MCT) Area  
Figure 6 - Memory Map  
5.0 Search Engine  
5.1 Search Engine Overview  
The MVTX2603 search engine is optimized for high throughput searching, with enhanced features to support:  
Up to 64 K MAC addresses  
3 groups of port trunking (1 for the two Gigabit ports, and 2 others)  
Traffic classification into 4 (or 8 for Gigabit) transmission priorities, and 2 drop precedence levels  
Flooding, Broadcast, Multicast Storm Control  
MAC address learning and aging  
Port based VLAN  
16  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
5.2 Basic Flow  
Shortly after a frame enters the MVTX2603 and is written to the Frame Data Buffer (FDB), the frame engine  
generates a Switch Request, which is sent to the search engine. The switch request consists of the first 64 bytes of  
the frame, which contain all the necessary information for the search engine to perform its task. When the search  
engine is done, it writes to the Switch Response Queue, and the frame engine uses the information provided in that  
queue for scheduling and forwarding.  
In performing its task, the search engine extracts and compresses the useful information from the 64-byte switch  
request. Among the information extracted are the source and destination MAC addresses, the transmission and  
discard priorities, whether the frame is unicast or multicast. Requests are sent to the external SRAM to locate the  
associated entries in the external hash table.  
When all the information has been collected from external SRAM, the search engine has to compare the MAC  
address on the current entry with the MAC address for which it is searching. If it is not a match, the process is  
repeated on the internal MCT Table. All MCT entries other than the first of each linked list are maintained internal to  
the chip. If the desired MAC address is still not found, then the result is either learning (source MAC address  
unknown) or flooding (destination MAC address unknown).  
In addition, port based VLAN information is used to select the correct set of destination ports for the frame (for  
multicast) or to verify that the frame’s destination port is associated with the VLAN (for unicast).  
If the destination MAC address belongs to a port trunk, then the trunk number is retrieved instead of the port  
number. But on which port of the trunk will the frame be transmitted? This is easily computed using a hash of the  
source and destination MAC addresses.  
As stated earlier, when all the information is compiled the switch response is generated.  
5.3 Search, Learning, and Aging  
5.3.1 MAC Search  
The search block performs source MAC address and destination MAC address searching. As we indicated earlier,  
if a match is not found, then the next entry in the linked list must be examined, and so on until a match is found or  
the end of the list is reached.  
The port based VLAN bitmap is used to determine whether the frame should be forwarded to the outgoing port.  
When the egress port is not included in the ingress port VLAN bitmap, the packet is discarded.  
The MAC search block is also responsible for updating the source MAC address timestamp and the VLAN port  
association timestamp, used for aging.  
5.3.2 Learning  
The learning module learns new MAC addresses and performs port change operations on the MCT database. The  
goal of learning is to update this database as the networking environment changes over time. Learning and port  
change will be performed based on memory slot availability only.  
5.3.3 Aging  
Aging time is controlled by register 400h and 401h.  
The aging module scans and ages MCT entries based on a programmable “age out” time interval. As we indicated  
earlier, the search module updates the source MAC address timestamps for each frame it processes. When an  
entry is ready to be aged, the entry is removed from the table.  
17  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
5.4 Quality of Service  
Quality of Service (QoS) refers to the ability of a network to provide better service to selected network traffic over  
various technologies. Primary goals of QoS include dedicated bandwidth, controlled jitter and latency (required by  
some real-time and interactive traffic) and improved loss characteristics.  
Traditional Ethernet networks have had no prioritization of traffic. Without a protocol to prioritize or differentiate  
traffic, a service level known as “best effort” attempts to get all the packets to their intended destinations with  
minimum delay; however, there are no guarantees. In a congested network or when a low-performance  
switch/router is overloaded, “best effort” becomes unsuitable for delay-sensitive traffic and mission-critical data  
transmission.  
The advent of QoS for packet-based systems accommodates the integration of delay-sensitive video and  
multimedia traffic onto any existing Ethernet network. It also alleviates the congestion issues that have previously  
plagued such “best effort” networking systems. QoS provides Ethernet networks with the breakthrough technology  
to prioritize traffic and ensure that a certain transmission will have a guaranteed minimum amount of bandwidth.  
Extensive core QoS mechanisms are built into the MVTX2603 architecture to ensure policy enforcement and  
buffering of the ingress port, as well as weighted fair-queue (WFQ) scheduling at the egress port.  
In the MVTX2603, QoS-based policies sort traffic into a small number of classes and mark the packets accordingly.  
The QoS identifier provides specific treatment to traffic in different classes, so that different quality of service is  
provided to each class. Frame and packet scheduling and discarding policies are determined by the class to which  
the frames and packets belong. For example, the overall service given to frames and packets in the premium class  
will be better than that given to the standard class; the premium class is expected to experience lower loss rate or  
delay.  
The MVTX2603 supports the following QoS techniques:  
In a port-based setup, any station connected to the same physical port of the switch will have the same  
transmit priority.  
In a tag-based setup, a 3-bit field in the VLAN tag provides the priority of the packet. This priority can be  
mapped to different queues in the switch to provide QoS.  
In a TOS/DS-based set up, TOS stands for “Type of Service” that may include “minimize delay,” “maximize  
throughput,” or “maximize reliability.” Network nodes may select routing paths or forwarding behaviours that  
are suitably engineered to satisfy the service request.  
In a logical port-based set up, a logical port provides the application information of the packet. Certain  
applications are more sensitive to delays than others; using logical ports to classify packets can help speed  
up delay sensitive applications, such as VoIP.  
5.5 Priority Classification Rule  
Figure 7 on page 19 shows the MVTX2603 priority classification rule  
18  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Yes  
Use Default Port Settings  
Fix Port Priority ?  
No  
Yes  
TOS Precedence over VLAN?  
(FCR Register, Bit 7)  
Use Default Port Settings  
No  
No  
No  
No  
IP Frame ?  
IP  
VLAN Tag ?  
Yes  
Yes  
Use Logical Port  
Yes  
Use Logical Port  
Yes  
No  
Use TOS  
Use VLAN Priority  
Figure 7 - Priority Classification Rule  
5.6 Port Based VLAN  
An administrator can use the PVMAP Registers to configure the MVTX2603 for port-based VLAN. For example,  
ports 1-3 might be assigned to the Marketing VLAN, ports 4-6 to the Engineering VLAN, and ports 7-9 to the  
Administrative VLAN. The MVTX2603 determines the VLAN membership of each packet by noting the port on  
which it arrives. From there, the MVTX2603 determines which outgoing port(s) is/are eligible to transmit each  
packet, or whether the packet should be discarded.  
Destination Port Numbers Bit Map  
Port Registers  
26  
0
2
1
1
1
0
0
Register for Port #0  
PVMAP00_0[7:0] to PVMAP00_3[2:0]  
Register for Port #1  
0
0
1
0
0
0
1
0
PVMAP01_0[7:0] to PVMAP01_3[2:0]  
Register for Port #2  
PVMAP02_0[7:0] to PVMAP02_3[2:0]  
Register for Port #26  
0
0
0
0
PVMAP26_0[7:0] to PVMAP26_3[2:0]  
Table 2 - PVMAP Register  
For example, in the above table, a 1 denotes that an outgoing port is eligible to receive a packet from an incoming  
port. A 0 (zero) denotes that an outgoing port is not eligible to receive a packet from an incoming port.  
19  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
In this example:  
Data packets received at port #0 are eligible to be sent to outgoing ports 1 and 2  
Data packets received at port #1 are eligible to be sent to outgoing ports 0, and 2  
Data packets received at port #2 are not eligible to be sent to ports 0 and 1  
5.7 Memory Configurations  
The MVTX2603 supports the following memory configurations. SBRAM modes support 1 M and 2 M configurations,  
while ZBT mode supports 4 M configurations, 2 M per domain (bank). For detail connection information, please  
reference the memory application note.  
1 M per bank  
(Bootstrap pin  
TSTOUT7 = open)  
2 M per bank  
(Bootstrap pin  
Configuration  
Connections  
TSTOUT7 = pull down)  
Single Layer  
Two 128 K x 32  
Two 256 K x 32  
SRAM/bank  
Connect 0E# and WE#  
(Bootstrap pin  
SRAM/bank or  
TSTOUT13 = open)  
One 128 K x 64 SRAM/bank  
Double Layer  
NA  
Four 128 K x 32  
Connect 0E0# and  
WE0# Connect 0E1#  
and WE1#  
(Bootstrap pin  
SRAM/bank or  
TSTOUT13 = pull down)  
Two 128 K x 64 SRAM/bank  
Table 3 - Supported Memory Configurations (Pipeline SBRAM Mode)  
20  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Configuration  
2 M per bank  
Connections  
Single Layer  
Two 256 K x 32 ZBT SRAM/bank  
or One 256 K x 64 ZBT SRAM/bank  
Connect ADS# to Layer 0 chipselect pin  
(Bootstrap pin  
TSTOUT13 = open)  
Double Layer  
Four 128 K x 32 ZBT SRAM/bank  
or Two 128 K x 64 ZBT SRAM/bank  
Connect ADS# to Layer 0 chipselect pin  
and 0E# to Layer 1 chipselect pin  
(Bootstrap pin  
TSTOUT13 = pull down)  
Table 4 - Supported Memory Configurations (ZBT Mode)  
Frame data Buffer  
Only Bank A  
Bank A and Bank B  
1 M/bank 2 M/bank  
Bank A and Bank B  
1 M  
2 M  
1 M/bank  
2 M/bank  
(SRAM)  
(SRAM)  
(SRAM)  
(SRAM)  
(ZBT SRAM)  
(ZBT SRAM)  
MVTX2601  
MVTX2602  
MVTX2603  
X
X
X
X
X
X
MVTX2603  
X (125 Mhz)  
X (125 Mhz)  
X (125 Mhz)  
X (125 Mhz)  
(Gigabit ports in 2 giga mode)  
MVTX2604  
X
X
MVTX2604  
(Gigabit ports in 2 giga mode)  
Table 5 - Options for Memory Configuration  
Bank B (1M One Layer)  
Bank A (1M One Layer)  
Data LA_D[63:32]  
Data LB_D[63:32]  
Data LB_D[31:0]  
Data LA_D[31:0]  
SRAM  
Memory  
128K  
SRAM  
Memory  
128K  
Memory  
128K  
32 bits  
Memory  
128K  
32 bits  
32 bits  
32 bits  
Address LB_A[19:3]  
Address LA_A[19:3]  
B
t t  
TSTOUT7  
O
TSTOUT13  
O
TSTOUT4  
O
Figure 8 - Memory Configuration For: 2 Banks, 1 Layer, 2 MB Total  
21  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
BANK A (2M Two Layers)  
BANK B (2M Two Layers)  
Data LA_D[63:32]  
Data LB_D[63:32]  
Data LA_D[31:0]  
Data LB_D[31:0]  
SRAM  
Memory  
128 K  
SRAM  
SRAM  
Memory  
128 K  
SRAM  
Memory  
128 K  
Memory  
128 K  
32 bits  
32 bits  
32 bits  
32 bits  
SRAM  
Memory  
128 K  
SRAM  
Memory  
128 K  
SRAM  
Memory  
128 K  
SRAM  
Memory  
128 K  
32 bits  
32 bits  
32 bits  
32 bits  
Address LA_A[19:3]  
Address LB_A[19:3]  
Bootstraps: TSTOUT7 = Pull Down, TSTOUT13 = Pull Down, TSTOUT4 = Open  
M
C
fi  
ti  
F
2 b  
k
2 L  
4MB t
 
t l  
Figure 9 - Memory Configuration For: 2 Banks, 2 Layer, 4 MB Total  
BANK A (2M One Layer)  
BANK B (2M One Layer)  
Data LA_D[63:32]  
Data LB_D[63:32]  
Data LA_D[31:0]  
Data LB_D[31:0]  
SRAM  
Memory  
256 K  
SRAM  
Memory  
256 K  
Memory  
256 K  
Memory  
256 K  
32 bits  
32 bits  
32 bits  
32 bits  
Address LA_A[20:3]  
Address LB_A[20:3]  
Bootstraps: TSTOUT7 = Pull Down, TSTOUT13 = Open, TSTOUT4 = Open  
Figure 10 - Memory Configuration For: 2 Banks, 1 Layer, 4 MB  
22  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
BANK A (2M Two Layers)  
BANK B (2M Two Layers)  
Data LA_D[63:32]  
Data LB_D[63:32]  
Data LA_D[31:0]  
Data LB_D[31:0]  
ZBT  
ZBT  
ZBT  
ZBT  
Memory  
128 K  
32 bits  
Memory  
128 K  
Memory  
128 K  
32 bits  
Memory  
128 K  
32 bits  
32 bits  
ZBT  
ZBT  
ZBT  
ZBT  
Memory  
128 K  
32 bits  
Memory  
128 K  
32 bits  
Memory  
128 K  
32 bits  
Memory  
128 K  
32 bits  
Address LA_A[19:3]  
Address LB_A[19:3]  
Figure 11 - Memory Configuration For: 2 Banks, 2 Layers, 4 MB Total  
BANK A (2M One Layer)  
BANK B (2M One Layer)  
Data LA_D[63:32]  
Data LB_D[63:32]  
Data LA_D[31:0]  
Data LB_D[31:0]  
ZBT  
ZBT  
ZBT  
ZBT  
Memory  
256 K  
32 bits  
Memory  
256 K  
32 bits  
Memory  
256 K  
32 bits  
Memory  
256 K  
32 bits  
Address LA_A[20:3]  
Address LB_A[20:3]  
Bootstraps: TSTOUT7 = Pull Down, TSTOUT13 = Open, TSTOUT4 = Pull Down  
Figure 12 - Memory Configuration For: 2 Banks, 1 Layer, 4 MB  
23  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
6.0 Frame Engine  
6.1 Data Forwarding Summary  
When a frame enters the device at the RxMAC, the RxDMA will move the data from the MAC RxFIFO to the  
FDB. Data is moved in 8-byte granules in conjunction with the scheme for the SRAM interface.  
A switch request is sent to the Search Engine. The Search Engine processes the switch request.  
A switch response is sent back to the Frame Engine and indicates whether the frame is unicast or multicast  
and its destination port or ports.  
A Transmission Scheduling Request is sent in the form of a signal notifying the TxQ manager. Upon  
receiving a Transmission Scheduling Request, the device will format an entry in the appropriate  
Transmission Scheduling Queue (TxSch Q) or Queues. There are 4 TxSch Q for each 10/100 port (and 8  
per Gigabit port), one for each priority. Creation of a queue entry either involves linking a new job to the  
appropriate linked list if unicast or adding an entry to a physical queue if multicast.  
When the port is ready to accept the next frame, the TxQ manager will get the head-of-line (HOL) entry of  
one of the TxSch Qs, according to the transmission scheduling algorithm (to ensure per-class quality of  
service). The unicast linked list and the multicast queue for the same port-class pair are treated as one  
logical queue. The older HOL between the two queues goes first. For 10/100 ports multicast queue 0 is  
associated with unicast queue 0 and multicast queue 1 is associated with unicast queue 2. For Gigabit ports  
multicast queue 0 is associated with unicast queue 0, multicast queue 1 with unicast queue 2, multicast  
queue 2 with unicast queue 4 and multicast queue 3 with unicast queue 6.  
The TxDMA will pull frame data from the memory and forward it granule-by-granule to the MAC TxFIFO of  
the destination port.  
6.2 Frame Engine Details  
This section briefly describes the functions of each of the modules of the MVTX2603 frame engine.  
6.2.1 FCB Manager  
The FCB manager allocates FCB handles to incoming frames, and releases FCB handles upon frame departure.  
The FCB manager is also responsible for enforcing buffer reservations and limits. The default values can be  
determined by referring to Chapter 8. In addition, the FCB manager is responsible for buffer aging and for linking  
unicast forwarding jobs to their correct TxSch Q. The buffer aging can be enabled or disabled by the bootstrap pin  
and the aging time is defined in register FCBAT.  
6.2.2 Rx Interface  
The Rx interface is mainly responsible for communicating with the RxMAC. It keeps track of the start and end of  
frame and frame status (good or bad). Upon receiving an end of frame that is good, the Rx interface makes a switch  
request.  
6.2.3 RxDMA  
The RxDMA arbitrates among switch requests from each Rx interface. It also buffers the first 64 bytes of each  
frame for use by the search engine when the switch request has been made.  
6.2.4 TxQ Manager  
First, the TxQ manager checks the per-class queue status and global reserved resource situation, and using this  
information, makes the frame dropping decision after receiving a switch response. If the decision is not to drop, the  
TxQ manager requests that the FCB manager link the unicast frame’s FCB to the correct per-port-per-class TxQ. If  
multicast, the TxQ manager writes to the multicast queue for that port and class. The TxQ manager can also trigger  
24  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
source port flow control for the incoming frame’s source if that port is flow control enabled. Second, the TxQ  
manager handles transmission scheduling; it schedules transmission among the queues representing different  
classes for a port. Once a frame has been scheduled, the TxQ manager reads the FCB information and writes to  
the correct port control module.  
6.3 Port Control  
The port control module calculates the SRAM read address for the frame currently being transmitted. It also writes  
start of frame information and an end of frame flag to the MAC TxFIFO. When transmission is done, the port control  
module requests that the buffer be released.  
6.4 TxDMA  
The TxDMA multiplexes data and address from port control, and arbitrates among buffer release requests from the  
port control modules.  
7.0 Quality of Service and Flow Control  
7.1 Model  
Quality of service is an all-encompassing term for which different people have different interpretations. In general,  
the approach to quality of service described here assumes that we do not know the offered traffic pattern. We also  
assume that the incoming traffic is not policed or shaped. Furthermore, we assume that the network manager  
knows his applications, such as voice, file transfer, or web browsing, and their relative importance. The manager  
can then subdivide the applications into classes and set up a service contract with each. The contract may consist  
of bandwidth or latency assurances per class. Sometimes it may even reflect an estimate of the traffic mix offered to  
the switch. As an added bonus, although we do not assume anything about the arrival pattern, if the incoming traffic  
is policed or shaped, we may be able to provide additional assurances about our switch’s performance.  
Table 6 on page 25 shows examples of QoS applications with three transmission priorities, but best effort (P0)  
traffic may form a fourth class with no bandwidth or latency assurances. Gigabit ports actually have eight total  
transmission priorities.  
Total  
Low Drop Probability  
(low-drop)  
High Drop Probability  
(high-drop)  
Goals  
Assured Bandwidth  
(user defined)  
Highest transmission 50 Mbps  
priority, P3  
Apps: phone calls, circuit  
emulation.  
Apps: training video.  
Latency: < 1 ms.  
Latency: < 1 ms.  
Drop: No drop if P3 not  
oversubscribed.  
Drop: No drop if P3 not  
oversubscribed; first P3 to  
drop otherwise.  
Middle transmission  
priority, P2  
37.5 Mbps  
Apps: interactive apps, Web  
business.  
Apps: non-critical interactive  
apps.  
Latency: < 4-5 ms.  
Drop: No drop if P2 not  
oversubscribed.  
Latency: < 4-5 ms.  
Drop: No drop if P2 not  
oversubscribed; first P2 to  
drop otherwise.  
Table 6 - Two-dimensional World Traffic  
25  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Low transmission  
priority, P1  
12.5 Mbps  
100 Mbps  
Apps: emails, file backups.  
Latency: < 16 ms desired, but  
not critical.  
Apps: casual web browsing.  
Latency: < 16 ms desired, but  
not critical.  
Drop: No drop if P1 not  
oversubscribed.  
Drop: No drop if P1 not  
oversubscribed; first to drop  
otherwise.  
Total  
Table 6 - Two-dimensional World Traffic  
A class is capable of offering traffic that exceeds the contracted bandwidth. A well-behaved class offers traffic at a  
rate no greater than the agreed-upon rate. By contrast, a misbehaving class offers traffic that exceeds the agreed-  
upon rate. A misbehaving class is formed from an aggregation of misbehaving microflows. To achieve high link  
utilization, a misbehaving class is allowed to use any idle bandwidth. However, such leniency must not degrade the  
quality of service (QoS) received by well-behaved classes.  
As Table 6 illustrates, the six traffic types may each have their own distinct properties and applications. As shown,  
classes may receive bandwidth assurances or latency bounds. In the table, P3, the highest transmission class,  
requires that all frames be transmitted within 1 ms, and receives 50% of the 100 Mbps of bandwidth at that port.  
Best-effort (P0) traffic forms a fourth class that only receives bandwidth when none of the other classes have any  
traffic to offer. It is also possible to add a fourth class that has strict priority over the other three; if this class has  
even one frame to transmit, then it goes first. In the MVTX2603, each 10/100 Mbps port will support four total  
classes, and each 1000 Mbps port will support eight classes. We will discuss the various modes of scheduling  
these classes in the next section.  
In addition, each transmission class has two subclasses, high-drop and low-drop. Well-behaved users should rarely  
lose packets. But poorly behaved users – users who send frames at too high a rate – will encounter frame loss, and  
the first to be discarded will be high-drop. Of course, if this is insufficient to resolve the congestion, eventually some  
low-drop frames are dropped, and then all frames in the worst case.  
Table 6 shows that different types of applications may be placed in different boxes in the traffic table. For example,  
casual web browsing fits into the category of high-loss, high-latency-tolerant traffic, whereas VoIP fits into the  
category of low-loss, low-latency traffic.  
7.2 Four QoS Configurations  
There are four basic pieces to QoS scheduling in the MVTX2603: strict priority (SP), delay bound, weighted fair  
queuing (WFQ), and best effort (BE). Using these four pieces, there are four different modes of operation, as shown  
in Table 4, “Supported Memory Configurations (ZBT Mode),” and Table 6, “Two-dimensional World Traffic,” . For  
10/100 Mbps ports, these modes are selected by the following registers:  
QOSC24 [7:6]  
QOSC28 [7:6]  
QOSC32 [7:6]  
QOSC36 [7:6]  
CREDIT_C00  
CREDIT_C10  
CREDIT_C20  
CREDIT_C30  
26  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
P3  
P2  
P1  
P0  
Op1 (default)  
Op2  
Delay Bound  
BE  
BE  
SP  
Delay Bound  
WFQ  
Op3  
SP  
Op4  
WFQ  
Table 7 - Four QoS Configurations for a 10/100 Mbps Port  
These modes are selected by QOSC40 [7:6] and QOSC48 [7:6] for the first and second gigabit ports, respectively.  
P7  
P6  
P5  
P4  
P3  
P2  
P1  
BE  
BE  
P0  
Op1 (default)  
Op2  
Delay Bound  
SP  
Delay Bound  
WFQ  
Op3  
SP  
Op4  
WFQ  
Table 8 - Four QoS Configurations for a Gigabit Port  
The default configuration for a 10/100 Mbps port is three delay-bounded queues and one best-effort queue. The  
delay bounds per class are 0.8 ms for P3, 2 ms for P2, and 12.8 ms for P1. For a 1 Gbps port, we have a default of  
six delay-bounded queues and two best-effort queues. The delay bounds for a 1 Gbps port are 0.16 ms for P7 and  
P6, 0.32 ms for P5, 0.64 ms for P4, 1.28 ms for P3, and 2.56 ms for P2. Best effort traffic is only served when there  
is no delay-bounded traffic to be served. For a 1 Gbps port, where there are two best-effort queues, P1 has strict  
priority over P0.  
We have a second configuration for a 10/100 Mbps port in which there is one strict priority queue, two delay  
bounded queues, and one best effort queue. The delay bounds per class are 3.2 ms for P2 and 12.8 ms for P1. If  
the user is to choose this configuration, it is important that P3 (SP) traffic be either policed or implicitly bounded  
(e.g., if the incoming P3 traffic is very light and predictably patterned). Strict priority traffic, if not admission-  
controlled at a prior stage to the MVTX2603, can have an adverse effect on all other classes’ performance. For a 1  
Gbps port, P7 and P6 are both SP classes and P7 has strict priority over P6. In this case, the delay bounds per  
class are 0.32 ms for P5, 0.64 ms for P4, 1.28 ms for P3, and 2.56 ms for P2.  
The third configuration for a 10/100 Mbps port contains one strict priority queue and three queues receiving a  
bandwidth partition via WFQ. As in the second configuration, strict priority traffic needs to be carefully controlled. In  
the fourth configuration, all queues are served using a WFQ service discipline.  
7.3 Delay Bound  
In the absence of a sophisticated QoS server and signaling protocol, the MVTX2603 may not know the mix of  
incoming traffic ahead of time. To cope with this uncertainty, our delay assurance algorithm dynamically adjusts its  
scheduling and dropping criteria, guided by the queue occupancies and the due dates of their head-of-line (HOL)  
frames. As a result, we assure latency bounds for all admitted frames with high confidence, even in the presence of  
system-wide congestion. Our algorithm identifies misbehaving classes and intelligently discards frames at no  
detriment to well-behaved classes. Our algorithm also differentiates between high-drop and low-drop traffic with a  
weighted random early drop (WRED) approach. Random early dropping prevents congestion by randomly dropping  
a percentage of high-drop frames even before the chip’s buffers are completely full, while still largely sparing low-  
drop frames. This allows high-drop frames to be discarded early, as a sacrifice for future low-drop frames. Finally,  
the delay bound algorithm also achieves bandwidth partitioning among classes.  
27  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
7.4 Strict Priority and Best Effort  
When strict priority is part of the scheduling algorithm, if a queue has even one frame to transmit, it goes first. Two  
of our four QoS configurations include strict priority queues. The goal is for strict priority classes to be used for IETF  
expedited forwarding (EF), where performance guarantees are required. As we have indicated, it is important that  
strict priority traffic be either policed or implicitly bounded, so as to keep from harming other traffic classes.  
When best effort is part of the scheduling algorithm, a queue only receives bandwidth when none of the other  
classes have any traffic to offer. Two of our four QoS configurations include best effort queues. The goal is for best  
effort classes to be used for non-essential traffic, because we provide no assurances about best effort performance.  
However, in a typical network setting, much best effort traffic will indeed be transmitted and with an adequate  
degree of expediency.  
Because we do not provide any delay assurances for best effort traffic, we do not enforce latency by dropping best  
effort traffic. Furthermore, because we assume that strict priority traffic is carefully controlled before entering the  
MVTX2603, we do not enforce a fair bandwidth partition by dropping strict priority traffic. To summarize, dropping to  
enforce bandwidth or delay does not apply to strict priority or best effort queues. We only drop frames from best  
effort and strict priority queues when global buffer resources become scarce.  
7.5 Weighted Fair Queuing  
In some environments – for example, in an environment in which delay assurances are not required, but precise  
bandwidth partitioning on small time scales is essential, WFQ may be preferable to a delay-bounded scheduling  
discipline. The MVTX2603 provides the user with a WFQ option with the understanding that delay assurances can  
not be provided if the incoming traffic pattern is uncontrolled. The user sets four WFQ “weights” (eight for Gigabit  
ports) such that all weights are whole numbers and sum to 64. This provides per-class bandwidth partitioning with  
error within 2%.  
In WFQ mode, though we do not assure frame latency, the MVTX2603 still retains a set of dropping rules that helps  
to prevent congestion and trigger higher level protocol end-to-end flow control.  
As before, when strict priority is combined with WFQ, we do not have special dropping rules for the strict priority  
queues, because the input traffic pattern is assumed to be carefully controlled at a prior stage. However, we do  
indeed drop frames from SP queues for global buffer management purposes. In addition, queue P0 for a 10/100  
port (and queues P0 and P1 for a Gigabit port) are treated as best effort from a dropping perspective, though they  
still are assured a percentage of bandwidth from a WFQ scheduling perspective. What this means is that these  
particular queues are only affected by dropping when the global buffer count becomes low.  
7.6 Shaper  
Although traffic shaping is not a primary function of the MVTX2603, the chip does implement a shaper for expedited  
forwarding (EF). Our goal in shaping is to control the peak and average rate of traffic exiting the MVTX2603.  
Shaping is limited to the two Gigabit ports only, and only to class P6 (the second highest priority). This means that  
class P6 will be the class used for EF traffic. If shaping is enabled for P6, then P6 traffic must be scheduled using  
strict priority. With reference to Table 8 only the middle two QoS configurations may be used.  
Peak rate is set using a programmable whole number, no greater than 64. For example, if the setting is 32, then the  
peak rate for shaped traffic is 32/64 * 1000 Mbps = 500 Mbps. Average rate is also a programmable whole number,  
no greater than 64, and no greater than the peak rate. For example, if the setting is 16, then the average rate for  
shaped traffic is 16/64 * 1000 Mbps = 250 Mbps. As a consequence of the above settings in our example, shaped  
traffic will exit the MVTX2603 at a rate always less than 500 Mbps and averaging no greater than 250 Mbps. See  
Programming QoS Registers Application Note for more information.  
Also, when shaping is enabled, it is possible for a P6 queue to explode in length if fed by a greedy source. The  
reason is that a shaper is by definition not work-conserving; that is, it may hold back from sending a packet even if  
the line is idle. Though we do have global resource management, we do nothing to prevent this situation locally. We  
assume SP traffic is policed at a prior stage to the MVTX2603.  
28  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
7.7 WRED Drop Threshold Management Support  
To avoid congestion, the Weighted Random Early Detection (WRED) logic drops packets according to specified  
parameters. The following table summarizes the behavior of the WRED logic.  
Table 9 - WRED Drop Thresholds  
Px is the total byte count, in the priority queue x. The WRED logic has three drop levels, depending on the value of  
N, which is based on the number of bytes in the priority queues. If delay bound scheduling is used, N equals  
P3*16+P2*4+P1. If using WFQ scheduling, N equals P3+P2+P1. Each drop level from one to three has defined  
high-drop and low-drop percentages, which indicate the minimum and maximum percentages of the data that can  
be discarded. The X, Y Z percent can be programmed by the register RDRC0, RDRC1. In Level 3, all packets are  
dropped if the bytes in each priority queue exceed the threshold. Parameters A, B, C are the byte count thresholds  
for each priority queue. They can be programmed by the QOS control register (refer to the register group 5).  
7.8 Buffer Management  
Because the number of FDB slots is a scarce resource and because we want to ensure that one misbehaving  
source port or class cannot harm the performance of a well-behaved source port or class, we introduce the concept  
of buffer management into the MVTX2603. Our buffer management scheme is designed to divide the total buffer  
space into numerous reserved regions and one shared pool as shown in Figure 13 on page 30.  
As shown in the figure, the FDB pool is divided into several parts. A reserved region for temporary frames stores  
frames prior to receiving a switch response. Such a temporary region is necessary, because when the frame first  
enters the MVTX2603, its destination port and class are as yet unknown and so the decision to drop or not needs to  
be temporarily postponed. This ensures that every frame can be received first before subjecting them to the frame  
drop discipline after classifying.  
Six reserved sections, one for each of the first six priority classes, ensure a programmable number of FDB slots per  
class. The lowest two classes do not receive any buffer reservation. Furthermore, even for 10/100 Mbps ports, a  
frame is stored in the region of the FDB corresponding to its class. As we have indicated, the eight classes use only  
four transmission scheduling queues for 10/100 Mbps ports, but as far as buffer usage is concerned, there are still  
eight distinguishable classes.  
Another segment of the FDB reserves space for each of the 26 ports ethernet port. Two parameters can be set, one  
for the source port reservation for 10/100 Mbps ports, and one for the source port reservation for 1 Gbps ports.  
These 26 reserved regions make sure that no well-behaved source port can be blocked by another misbehaving  
source port.  
In addition, there is a shared pool, which can store any type of frame. The frame engine allocates the frames first in  
the six priority sections. When the priority section is full or the packet has priority 1 or 0, the frame is allocated in the  
shared poll. Once the shared poll is full the frames are allocated in the section reserved for the source port.  
29  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
The following registers define the size of each section of the frame data buffer:  
PR100- Port Reservation for 10/100 Ports  
PRG- Port Reservation for Giga Ports  
SFCB- Share FCB Size  
C2RS- Class 2 Reserve Size  
C3RS- Class 3 Reserve Size  
C4RS- Class 4 Reserve Size  
C5RS- Class 5 Reserve Size  
C6RS- Class 6 Reserve Size  
C7RS- Class 7 Reserve Size  
temporary  
reservation  
shared pool  
S
per-class  
reservation  
per-source  
reservations  
per-source  
reservations  
(2 G)  
(24 10/100 M, CPU)  
Figure 13 - Buffer Partition Scheme Used to Implement MVTX2603 Buffer Management  
7.8.1 Dropping When Buffers Are Scarce  
Summarizing the two examples of local dropping discussed earlier in this chapter:  
If a queue is a delay-bounded queue, we have a multi-level WRED drop scheme, designed to control delay  
and partition bandwidth in case of congestion.  
If a queue is a WFQ-scheduled queue, we have a multi-level WRED drop scheme, designed to prevent  
congestion.  
In addition to these reasons for dropping, we also drop frames when global buffer space becomes scarce. The  
function of buffer management is to make sure that such dropping causes as little blocking as possible.  
30  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
7.9 MVTX2603 Flow Control Basics  
Because frame loss is unacceptable for some applications, the MVTX2603 provides a flow control option. When  
flow control is enabled, scarcity of buffer space in the switch may trigger a flow control signal; this signal tells a  
source port that is sending a packet to this switch to temporarily hold off.  
While flow control offers the clear benefit of no packet loss, it also introduces a problem for quality of service. When  
a source port receives an Ethernet flow control signal, all microflows originating at that port, well-behaved or not,  
are halted. A single packet destined for a congested output can block other packets destined for uncongested  
outputs. The resulting head-of-line blocking phenomenon means that quality of service cannot be assured with high  
confidence when flow control is enabled.  
In the MVTX2603, each source port can independently have flow control enabled or disabled. For flow control  
enabled ports, by default all frames are treated as lowest priority during transmission scheduling. This is done so  
that those frames are not exposed to the WRED Dropping scheme. Frames from flow control enabled ports feed to  
only one queue at the destination, the queue of lowest priority. What this means is that if flow control is enabled for  
a given source port, then we can guarantee that no packets originating from that port will be lost, but at the possible  
expense of minimum bandwidth or maximum delay assurances. In addition, these “downgraded” frames may only  
use the shared pool or the per-source reserved pool in the FDB; frames from flow control enabled sources may not  
use reserved FDB slots for the highest six classes (P2-P7).  
The MVTX2603 does provide a system-wide option of permitting normal QoS scheduling (and buffer use) for  
frames originating from flow control enabled ports. When this programmable option is active, it is possible that  
some packets may be dropped, even though flow control is on. The reason is that intelligent packet dropping is a  
major component of the MVTX2603’s approach to ensuring bounded delay and minimum bandwidth for high priority  
flows.  
7.9.1 Unicast Flow Control  
For unicast frames, flow control is triggered by source port resource availability. Recall that the MVTX2603’s buffer  
management scheme allocates a reserved number of FDB slots for each source port. If a programmed number of a  
source port’s reserved FDB slots have been used, then flow control Xoff is triggered.  
Xon is triggered when a port is currently being flow controlled, and all of that port’s reserved FDB slots have been  
released.  
Note that the MVTX2603’s per-source-port FDB reservations assure that a source port that sends a single frame to  
a congested destination will not be flow controlled.  
7.9.2 Multicast Flow Control  
In unmanaged mode, flow control for multicast frames is triggered by a global buffer counter. When the system  
exceeds a programmable threshold of multicast packets, Xoff is triggered. Xon is triggered when the system returns  
below this threshold.  
In managed mode, per-VLAN flow control is used for multicast frames. In this case, flow control is triggered by  
congestion at the destination. How so? The MVTX2603 checks each destination to which a multicast packet is  
headed. For each destination port, the occupancy of the lowest-priority transmission multicast queue (measured in  
number of frames) is compared against a programmable congestion threshold. If congestion is detected at even  
one of the packet’s destinations then Xoff is triggered.  
In addition, each source port has a 26-bit port map recording which port or ports of the multicast frame’s fanout  
were congested at the time Xoff was triggered. All ports are continuously monitored for congestion, and a port is  
identified as uncongested when its queue occupancy falls below a fixed threshold. When all those ports that were  
originally marked as congested in the port map have become uncongested, then Xon is triggered and the 26-bit  
vector is reset to zero.  
31  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
The MVTX2603 also provides the option of disabling VLAN multicast flow control.  
Note: If per-Port flow control is on, QoS performance will be affected. To determine the most efficient way to  
program, please refer to the QoS Application Note.  
7.10 Mapping to IETF Diffserv Classes  
The mapping between priority classes discussed in this chapter and elsewhere is shown below.  
P7  
P6  
EF  
P5  
P4  
P3  
P2  
P1  
P0  
VTX  
NM  
AF0  
AF1  
AF2  
AF3  
BE0  
BE1  
IETF  
Table 10 - Mapping between MVTX2603 and IETF Diffserv Classes for Gigabit Ports  
As the table illustrates, P7 is used solely for network management (NM) frames. P6 is used for expedited  
forwarding service (EF). Classes P2 through P5 correspond to an assured forwarding (AF) group of size 4. Finally,  
P0 and P1 are two best effort (BE) classes.  
For 10/100 Mbps ports, the classes of Table 12 are merged in pairs—one class corresponding to NM+EF, two AF  
classes, and a single BE class.  
VTX  
P3  
P2  
P1  
P0  
IETF  
NM+EF  
AF0  
AF1  
BE0  
Table 11 - Mapping between MVTX2603 and IETF Diffserv Classes for 10/100 Ports  
Features of the MVTX2603 that correspond to the requirements of their associated IETF classes are summarized in  
the table below.  
Network management (NM) and  
Expedited forwarding (EF)  
Global buffer reservation for NM and EF  
Shaper for EF traffic on 1 Gbps ports  
Option of strict priority scheduling  
No dropping if admission controlled  
Assured forwarding (AF)  
Four AF classes for 1 Gbps ports  
Programmable bandwidth partition, with option of WFQ service  
Option of delay-bounded service keeps delay under fixed levels even  
if not admission-controlled  
Random early discard, with programmable levels  
Global buffer reservation for each AF class  
Best effort (BE)  
Two BE classes for 1 Gbps ports  
Service only when other queues are idle means that QoS not  
adversely affected  
Random early discard, with programmable levels  
Traffic from flow control enabled ports automatically classified as BE  
Table 12 - MVTX2603 Features Enabling IETF Diffserv Standards  
32  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
8.0 Port Trunking  
8.1 Features and Restrictions  
A port group (i.e., trunk) can include up to 4 physical ports but all of the ports in a group must be in the same  
MVTX2603.  
The two Gigabit ports may also be trunked together. There are three trunk groups total including the option to trunk  
Gigabit ports.  
Load distribution among the ports in a trunk for unicast is performed using hashing based on source MAC address  
and destination MAC address. Three other options include source MAC address only, destination MAC address  
only and source port (in bidirectional ring mode only). Load distribution for multicast is performed similarly.  
If a VLAN includes any of the ports in a trunk group, all the ports in that trunk group should be in the same VLAN  
member map.  
The MVTX2603 also provides a safe fail-over mode for port trunking automatically. If one of the ports in the trunking  
group goes down, the MVTX2603 will automatically redistribute the traffic over to the remaining ports in the trunk.  
8.2 Unicast Packet Forwarding  
The search engine finds the destination MCT entry, and if the status field says that the destination port found  
belongs to a trunk, then the group number is retrieved instead of the port number. In addition, if the source address  
belongs to a trunk, then the source port’s trunk membership register is checked.  
A hash key, based on some combination of the source and destination MAC addresses for the current packet  
selects the appropriate forwarding port.  
8.3 Multicast Packet Forwarding  
For multicast packet forwarding, the device must determine the proper set of ports from which to transmit the  
packet based on the VLAN index and hash key.  
Two functions are required in order to distribute multicast packets to the appropriate destination ports in a port  
trunking environment.  
Determining one forwarding port per group. For multicast packets, all but one port per group, the forwarding port,  
must be excluded. Preventing the multicast packet from looping back to the source trunk.  
The search engine needs to prevent a multicast packet from sending to a port that is in the same trunk group with  
the source port. This is because, when we select the primary forwarding port for each group, we do not take the  
source port into account. To prevent this, we simply apply one additional filter, so as to block that forwarding port for  
this multicast packet.  
33  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
8.4 Trunking  
3 trunk groups are supported. Groups 0 and 1 can trunk up to 4 10/100 ports. Group 2 can trunk 2 Gigabit ports.  
The supported combinations are shown in the following table.  
Group 0  
Port 0  
Port 1  
Port 2  
Port 3  
X
X
X
X
X
X
X
X
X
Select via trunk0_mode register  
Group 1  
Port 4  
Port 5  
Port 6  
X
Port 7  
X
X
X
X
X
Select via trunk1_mode register  
Group 2  
Port 25(Giga 0)  
X
Port 26 (Giga 1)  
X
The trunks are individually enabled/disabled by controlling pin trunk 0, 1, 2.  
9.0 Port Mirroring  
9.1 Port Mirroring Features  
The received or transmitted data of any 10/100 port in the MVTX2603 chip can be “mirrored” to any other port. We  
support two such mirrored source-destination pairs. A mirror port cannot also serve as a data port. Please refer to  
the Port Mirroring Application Note for further details.  
9.2 Setting Registers for Port Mirroring  
MIRROR1_SRC: Sets the source port for the first port mirroring pair. Bits [4:0] select the source port to be  
mirrored. An illegal port number is used to disable mirroring (which is the default setting). Bit [5] is used to  
select between ingress (Rx) or egress (Tx) data.  
MIRROR1_DEST: Sets the destination port for the first port mirroring pair. Bits [4:0] select the destination  
port to be mirrored. The default is port 23.  
MIRROR2_SRC: Sets the source port for the second port mirroring pair. Bits [4:0] select the source port to  
be mirrored. An illegal port number is used to disable mirroring (which is the default setting). Bit [5] is used  
to select between ingress (Rx) or egress (Tx) data.  
MIRROR2_DEST: Sets the destination port for the second port mirroring pair. Bits [4:0] select the  
destination port to be mirrored. The default is port 0.  
34  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
10.0 TBI Interface  
The TBI interface can be used for 1000Mbps fiber operation. In this mode, the MVTX2603 is connected to the  
Serdes as shown in Figure 14. There are two TBI interfaces in the MVTX2603 devices. To enable to TBI function,  
the corresponding TXEN and TXER pins need to be boot strapped. See Ball – Signal Description for details.  
M25/26_TXD[9:0]  
M25/26_TXCLK  
T[9:0]  
REFCLK  
MVTX2603  
SERDES  
M25/26_RXD[9:0]  
M25/26_RXCLK  
M25/26_COL  
R[9:0]  
RBC0  
RBC1  
Figure 14 - TBI Connection  
35  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
11.0 GPSI (7WS) Interface  
11.1 GPSI Connection  
The 10/100 RMII ethernet port can function in GPSI (7WS) mode when the corresponding TXEN pin is strapped  
low with a 1 K pull down resistor. In this mode, the TXD[0], TXD[1], RXD[0] and RXD[1] serve as TX data, TX clock,  
RX data and RX clock respectively. The link status and collision from the PHY are multiplexed and shifted into the  
switch device through external glue logic. The duplex of the port can be controlled by programming the ECR  
register.  
The GPSI interface can be operated in port based VLAN mode only  
crs  
rxd  
CRS_DV  
RXD[0]  
RXD[1]  
TXD[1]  
rx_clk  
tx_clk  
txd  
link0  
col0  
Port 0  
Ethernet  
PHY  
TXD[0]  
TXEN  
txen  
link1  
link2  
col1  
col2  
260X  
link23  
col23  
Port 23  
Ethernet  
PHY  
Link  
Serializer  
(CPLD)  
Collision  
Serializer  
(CPLD)  
Figure 15 - GPSI (7WS) Mode Connection Diagram  
36  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
11.2 SCAN LINK and SCAN COL interface  
An external CPLD logic is required to take the link signals and collision signals from the GPSI PHYs and shift them  
into the switch device. The switch device will drive out a signature to indicate the start of the sequence. After that,  
the CPLD should shift in the link and collision status of the PHYS as shown in the figure. The extra link status  
indicates the polarity of the link signal. One indicates the polarity of the link signal is active high.  
scan_clk  
scan_link/  
scan_col  
25 cycles for link/  
24 cycles for col  
Drived by VTX260x  
Driven by MVTX260x  
Drived by CPLD  
Driven by CPLD  
Ttaolt3a2l 3cy2ccleyscpleesriopderiod  
To  
Figure 16 - SCAN LINK and SCAN COLLISON Status Diagram  
12.0 LED Interface  
12.1 LED Interface Introduction  
A serial output channel provides port status information from the MVTX2603 chips. It requires three additional pins:  
LED_CLK at 12.5 MHz  
LED_SYN a sync pulse that defines the boundary between status frames  
LED_DATA a continuous serial stream of data for all status LEDs that repeats once every frame time  
A non-serial interface is also allowed, but in this case, only the Gigabit ports will have status LEDs.  
A low cost external device (44 pin PAL) is used to decode the serial data and to drive an LED array for display. This  
device can be customized for different needs.  
12.2 Port Status  
In the MVTX2603, each port has 8 status indicators, each represented by a single bit. The 8 LED status indicators  
are  
Bit 0: Flow control  
Bit 1:Transmit data  
Bit 2: Receive data  
Bit 3: Activity (where activity includes either transmission or reception of data)  
Bit 4: Link up  
Bit 5: Speed (1= 100 Mb/s; 0= 10 Mb/s)  
Bit 6: Full-duplex  
Bit 7: Collision  
Eight clocks are required to cycle through the eight status bits for each port.  
37  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
When the LED_SYN pulse is asserted, the LED interface will present 256 LED clock cycles with the clock cycles  
providing information for the following ports.  
Port 0 (10/100): cycles #0 to cycle #7  
Port 1 (10/100): cycles#8 to cycle #15  
Port 2 (10/100): cycle #16 to cycle #23  
...  
Port 22 (10/100): cycle #176 to cycle #183  
Port 23 (10/100): cycle #184 to cycle #191  
Port 24 (Gigabit 0): cycle #192 to cycle #199  
Port 25 (Gigabit 1): cycle #200 to cycle #207  
Byte 26 (additional status): cycle #208 to cycle #215  
Byte 27 (additional status): cycle #216 to cycle #223  
Cycles #224 to 256 present data with a value of zero.  
The first two bits of byte 26 provides the speed information for the Gigabit ports while the remainder of byte 26 and  
byte 27 provides bit status  
26[0]: G0 port (1= port 24 is operating at Gigabit speed; 0= speed is either 10 or 100 Mb/s depending on  
speed bit of Port 24)  
26[1]: G1 port (1= port 25 is operating at Gigabit speed; 0= speed is either 10 or 100 Mb/s depending on  
speed bit of Port 25)  
26[2]: initialization done  
26[3]: initialization start  
26[4]: checksum ok  
26[5]: link_init_complete  
26[6]: bist_fail  
26[7]: ram_error  
27[0]: bist_in_process  
27[1]: bist_done  
12.3 LED Interface Timing Diagram  
The signal from the MVTX2603 to the LED decoder is shown in Figure 17.  
Figure 17 - Timing Diagram of LED Interface  
38  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
13.0 Register Definition  
13.1 MVTX2603 Register Description  
CPU Addr  
(Hex)  
I2C Addr  
(Hex)  
Register  
Description  
R/W  
Default  
Notes  
0. ETHERNET Port Control Registers Substitute [N] with Port number (0..17h, 19h, 1Ah)  
ECR1P”N”  
ECR2P”N”  
Port Control Register 1 for Port N  
Port Control Register 2 for Port N  
0000 + 2 x N  
001 + 2 x N  
R/W 000-018  
R/W 01B-033  
020  
000  
1. VLAN Control Registers Substitute [N] with Port number (0..17h, 19h, 1Ah)  
AVTCL  
VLAN Type Code Register Low  
VLAN Type Code Register High  
Port “N” Configuration Register 0  
Port “N” Configuration Register 1  
Port “N” Configuration Register 2  
Port “N” Configuration Register 3  
VLAN Operating Mode  
100  
R/W 036  
000  
081  
0FF  
0FF  
0FF  
007  
000  
AVTCH  
101  
R/W 037  
PVMAP”N”_0  
PVMAP”N”_1  
PVMAP”N”_2  
PVMAP”N”_3  
PVMODE  
102 + 4N  
103 + 4N  
104 + 4N  
105 + 4N  
170  
R/W 038-052  
R/W 053-06D  
R/W 06E-088  
R/W 089-0A3  
R/W 0A4  
2. TRUNK Control Registers  
TRUNK0_ MODE  
TRUNK1_ MODE  
TRUNK2_ MODE  
TX_AGE  
Trunk Group 0 Mode  
203  
20B  
210  
325  
R/W 0A5  
R/W 0A6  
R/W NA  
R/W 0A7  
003  
003  
003  
008  
Trunk Group 1 Mode  
Trunk Group 2 Mode  
Transmission Queue Aging Time  
3. Search Engine Configurations  
AGETIME_LOW  
MAC Address Aging Time Low  
400  
R/W 0A8  
2M:05C/  
4M:02E  
AGETIME_ HIGH  
SE_OPMODE  
MAC Address Aging Time High  
Search Engine Operating Mode  
401  
403  
R/W 0A9  
R/W NA  
000  
000  
4. Buffer Control and QOS Control  
FCBAT  
QOSC  
FCB Aging Timer  
500  
501  
502  
503  
504  
505  
506  
507  
R/W 0AA  
R/W 0AB  
R/W 0AC  
R/W 0AD  
R/W 0AE  
R/W 0AF  
R/W 0B0  
R/W 0B1  
0FF  
000  
008  
000  
000  
000  
000  
000  
QOS Control  
FCR  
Flooding Control Register  
VLAN Priority Map Low  
VLAN Priority Map Middle  
VLAN Priority Map High  
TOS Priority Map Low  
TOS Priority Map Middle  
AVPML  
AVPMM  
AVPMH  
TOSPML  
TOSPMM  
39  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
CPU Addr  
(Hex)  
I2C Addr  
(Hex)  
Register  
TOSPMH  
Description  
TOS Priority Map High  
R/W  
Default  
Notes  
508  
509  
50A  
50B  
50C  
R/W 0B2  
R/W 0B3  
R/W 0B4  
R/W 0B5  
R/W 0B6  
000  
000  
000  
000  
AVDM  
TOSDML  
BMRC  
UCC  
VLAN Discard Map  
TOS Discard Map  
Broadcast/Multicast Rate Control  
Unicast Congestion Control  
2M:008/  
4M:010  
MCC  
Multicast Congestion Control  
50D  
50E  
R/W 0B7  
R/W 0B8  
050  
PR100  
Port Reservation for 10/100 Ports  
2M:024/  
4M:036  
SFCB  
Share FCB Size  
510  
R/W 0BA  
2M:014/  
4M:064  
C2RS  
Class 2 Reserve Size  
Class 3 Reserve Size  
Class 4 Reserve Size  
Class 5 Reserve Size  
Class 6 Reserve Size  
Class 7 Reserve Size  
QOS Control (N=0 59)  
WRED Drop Rate Control 0  
WRED Drop Rate Control 1  
511  
512  
513  
514  
515  
516  
R/W 0BB  
R/W 0BC  
R/W 0BD  
R/W 0BE  
R/W 0BF  
R/W 0C0  
R/W 0C1-0D2  
R/W 0FB  
R/W 0FC  
000  
000  
000  
000  
000  
000  
000  
08F  
088  
C3RS  
C4RS  
C5RS  
C6RS  
C7RS  
QOSC”N”  
RDRC0  
RDRC1  
517 512  
553  
554  
USER_  
User Define Logical Port “N” Low  
(N=0-7)  
580 + 2N  
R/W 0D6-0DD 000  
PORT”N”_LOW  
USER_  
User Define Logical Port “N” High  
581 + 2N  
590  
R/W 0DE-0E5 000  
PORT”N”_HIGH  
USER_ PORT1:0_  
PRIORITY  
User Define Logic Port 1 and 0 Priority  
User Define Logic Port 3 and 2 Priority  
User Define Logic Port 5 and 4 Priority  
User Define Logic Port 7 and 6 Priority  
R/W 0E6  
R/W 0E7  
R/W 0E8  
R/W 0E9  
000  
000  
000  
000  
USER_ PORT3:2_  
PRIORITY  
591  
USER_ PORT5:4_  
PRIORITY  
592  
USER_  
593  
PORT7:6_PRI  
ORITY  
USER_PORT_  
ENABLE  
User Define Logic Port Enable  
594  
595  
596  
R/W 0EA  
R/W 0EB  
R/W 0EC  
000  
000  
000  
WLPP10  
Well known Logic Port Priority for 1  
and 0  
WLPP32  
Well known Logic Port Priority for 3  
and 2  
40  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
CPU Addr  
(Hex)  
I2C Addr  
(Hex)  
Register  
WLPP54  
Description  
R/W  
Default  
Notes  
Well known Logic Port Priority for 5  
and 4  
597  
R/W 0ED  
000  
WLPP76  
WLPE  
Well-known Logic Port Priority for 7 & 6 598  
R/W 0EE  
R/W 0EF  
R/W 0F4  
R/W 0F5  
R/W 0D3  
R/W 0D4  
R/W 0D5  
000  
000  
000  
000  
000  
000  
000  
Well known Logic Port Enable  
User Define Range Low Bit7:0  
User Define Range Low Bit 15:8  
User Define Range High Bit 7:0  
User Define Range High Bit 15:8  
User Define Range Priority  
599  
59A  
59B  
59C  
59D  
59E  
RLOWL  
RLOWH  
RHIGHL  
RHIGHH  
RPRIORITY  
5. MISC Configuration Registers  
MII_OP0  
MII_OP1  
FEN  
MII Register Option 0  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
60B  
R/W 0F0  
R/W 0F1  
R/W 0F2  
R/W N/A  
R/W N/A  
R/W N/A  
R/W N/A  
000  
000  
010  
000  
000  
000  
000  
N/A  
N/A  
000  
000  
MII Register Option 1  
Feature Registers  
MIIC0  
MIIC1  
MIIC2  
MIIC3  
MIID0  
MIID1  
LED  
MII Command Register 0  
MII Command Register 1  
MII Command Register 2  
MII Command Register 3  
MII Data Register 0  
RO  
RO  
N/A  
N/A  
MII Data Register 1  
LED Control Register  
EEPROM Checksum Register  
R/W 0F3  
R/W 0FF  
SUM  
6. Port Mirroring Controls  
MIRROR1_SRC  
MIRROR1_ DEST  
MIRROR2_SRC  
MIRROR2_ DEST  
Port Mirror 1 Source Port  
700  
701  
702  
703  
R/W N/A  
R/W N/A  
R/W N/A  
R/W N/A  
07F  
017  
0FF  
000  
Port Mirror 1 Destination Port  
Port Mirror 2 Source Port  
Port Mirror 2 Destination Port  
F. Device Configuration Register  
GCR  
DCR  
DCR1  
DPST  
DTST  
DA  
Global Control Register  
F00  
F01  
F02  
F03  
F04  
FFF  
R/W N/A  
000  
N/A  
N/A  
000  
N/A  
DA  
Device Status and Signature Register  
Giga Port status  
RO  
RO  
N/A  
N/A  
Device Port Status Register  
Data read back register  
DA Register  
R/W N/A  
RO  
RO  
N/A  
N/A  
41  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
13.2 Group 0 Address MAC Ports Group  
13.2.1 ECR1Pn: Port N Control Register  
2
I C Address h000-01A; CPU Address: 0000+2xN  
2
Accessed by serial interface and I C (R/W)  
7
6
5
4
3
2
1
0
Sp State  
A-FC  
Port Mode  
Bit [0]  
1 - Flow Control Off  
0 - Flow Control On  
• When Flow Control On:  
• In half duplex mode, the MAC transmitter applies back pressure for flow control.  
• In full duplex mode, the MAC transmitter sends Flow Control frames when  
necessary. The MAC receiver interprets and processes incoming flow control  
frames. The Flow Control Frame Received counter is incremented whenever a  
flow control is received.  
• When Flow Control off:  
• In half duplex mode, the MAC Transmitter does not assert flow control by sending  
flow control frames or jamming collision.  
• In full duplex mode, the Mac transmitter does not send flow control frames. The  
MAC receiver does not interpret or process the flow control frames. The Flow  
Control Frame Received counter is not incremented.  
Bit [1]  
1 - Half Duplex - Only 10/100 mode  
0 - Full Duplex  
Bit [2]  
1 - 10 Mbps  
0 - 100 Mbps  
Bit [4:3]  
00 - Automatic Enable Auto Neg. This enables hardware state machine for  
auto-negotiation.  
01 - Limited Disable auto Neg. This disables hardware for speed auto-  
negotiation. Poll MII for link status.  
10 - Link Down. Disable auto Neg. state machine and force link down  
(disable the port)  
11 - Link Up. User ERC1 [2:0] for config.  
Bit [5]  
Asymmetric Flow Control Enable  
• 0 - Disable asymmetric flow control  
• 1 - Enable asymmetric flow control  
Asymmetric Flow Control Enable. When this bit is set and flow control is on  
(bit [0] = 0, don't send out a flow control frame. But MAC receiver interprets  
and process flow control frames. Default is 0  
Bit [7:6]  
SS - Spanning tree state Default is 11  
• 00 – Blocking: Frame is dropped  
• 01 - Listening:  
• 10 - Learning:  
Frame is dropped  
Frame is dropped. Source MAC address is learned.  
• 11 - Forwarding: Frame is forwarded. Source MAC address is learned.  
42  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
13.2.2 ECR2Pn: Port N Control Register  
2
I C Address: h01B-035; CPU Address: h0001+2xN  
2
Accessed by and serial interface and I C (R/W)  
7
6
5
4
3
2
1
0
QoS Sel  
Reserve  
DisL  
Ftf  
Futf  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Filter untagged frame (Default 0)  
• 0: Disable  
• 1: All untagged frames from this port are discarded  
Filter Tag frame (Default 0)  
• 0: Disable  
• 1: All tagged frames from this port are discarded  
Learning Disable (Default 0)  
• 1 Learning is disabled on this port  
• 0 Learning is enabled on this port  
Bit [3]:  
Must be set to ‘1’  
Bit [5:4:]  
QOS mode selection (Default 00)  
Determines which of the 4 sets of QoS settings is used for 10/100 ports.  
Note that there are 4 sets of per-queue byte thresholds, and 4 sets of WFQ  
ratios programmed. These bits select among the 4 choices for each 10/100  
port. Refer to QoS Application Note.  
• 00: select class byte limit set 0 and classes WFQ credit set 0  
• 01: select class byte limit set 1 and classes WFQ credit set 1  
• 10: select class byte limit set 2 and classes WFQ credit set 2  
• 11: select class byte limit set 3 and classes WFQ credit set 3  
Bit [7:6]  
Reserved  
13.2.3 GGControl – Extra GIGA Port Control  
CPU Address: h036  
Accessed by serial interface (R/W)  
7
6
5
4
3
2
1
0
DF  
MiiB  
RstA  
DF  
MiiA  
RstA  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Reset GIGA port A  
• 0: Normal operation (default)  
• 1: Reset Gigabit port A  
GIGA port A use MII interface (10/100 M)  
• 0: Gigabit port operations at 1000 mode  
• 1: Gigabit port operations at 10/100 mode  
Reserved - Must be zero  
43  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Bit [3]:  
GIGA port A direct flow control (MAC to MAC connection). The MVTX2603  
supports direct flow control mechanism, the flow control frame is therefore  
not sent through the Gigabit port data path.  
• 0: Direct flow control disabled (default)  
• 1: Direct flow control enabled  
Bit [4]:  
Bit [5]:  
Reset GIGA port B  
• 0: Normal operation (default)  
• 1: Reset Gigabit port B  
GIGA port B use MII interface (10/100 M)  
• 0: Gigabit port operates at 1000 mode  
• 1: Gigabit port operates at 10/100 mode  
Bit [6]:  
Bit [7]:  
Reserved. Must be zero.  
GIGA port B direct flow control (MAC to MAC connection). The MVTX2603  
supports direct flow control mechanism, the flow control frame is therefore  
not sent through the Gigabit port data path.  
• 0: Direct flow control disabled (default)  
• 1: Direct flow control enabled  
13.3 Group 1 Address VLAN Group  
13.3.1 AVTCL – VLAN Type Code Register Low  
2
I C Address h036; CPU Address: h100  
2
Accessed by serial interface and I C (R/W)  
Bit [7:0]:  
VLANType_LOW: Lower 8 bits of the VLAN type code (Default 00)  
13.3.2 AVTCH – VLAN Type Code Register High  
2
I C Address h037; CPU Address: h101  
2
Accessed by serial interface and I C (R/W)  
Bit [7:0]:  
VLANType_HIGH: Upper 8 bits of the VLAN type code (Default is 81)  
13.3.3 PVMAP00_0 – Port 00 Configuration Register 0  
2
I C Address h038, CPU Address: h102  
2
Accessed by serial interface and I C (R/W)  
Bit [7:0]:  
VLAN Mask for ports 7 to 0 (Default FF)  
This register indicates the legal egress ports. A “1” on bit 7 means that the packet can be sent to port 7. A “0” on bit  
7 means that any packet destined to port 7 will be discarded. This register works with registers 1, 2 and 3 to form a  
27 bit mask to all egress ports.  
44  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
13.3.4 PVMAP00_1 – Port 00 Configuration Register 1  
2
I C Address h53, CPU Address: h103  
2
Accessed by serial interface and I C (R/W)  
Bit [7:0]:  
VLAN Mask for ports 15 to 8 (Default is FF)  
13.3.5 PVMAP00_2 – Port 00 Configuration Register 2  
2
I C Address h6E, CPU Address: h104  
2
Accessed by serial interface and I C (R/W)  
Bit [7:0]:  
VLAN Mask for ports 23 to 16 (Default FF)  
13.3.6 PVMAP00_3 – Port 00 Configuration Register 3  
2
I C Address h89, CPU Address: h105  
2
Accessed by serial interface and I C (R/W)  
7
6
5
3
2
1
0
FP en  
Drop  
Default tx priority  
VLAN Mask  
Bit [0]:  
Reserved (Default 1)  
Bit [2:1]:  
Bit [5:1]:  
VLAN Mask for ports 26 to 25 (Default 3)  
Default Transmit priority. Used when Bit [7] = 1 (Default 0)  
000 Transmit Priority Level 0 (Lowest)  
001 Transmit Priority Level 1  
010 Transmit Priority Level 2  
011 Transmit Priority Level 3  
100 Transmit Priority Level 4  
101 Transmit Priority Level 5  
110 Transmit Priority Level 6  
111 Transmit Priority Level 7 (Highest)  
Bit [6]:  
Bit [7]:  
Default Discard priority (Default 0)  
0 - Discard Priority Level 0 (Lowest)  
1 - Discard Priority Level 7(Highest)  
Enable Fix Priority (Default 0)  
0 Disable fix priority. All frames are analysed. Transmit Priority and  
Discard Priority are based on VLAN Tag, TOS field or Logical Port.  
1 Transmit Priority and Discard Priority are based on values programmed  
in bit [6:3]  
45  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
13.4 Port Configuration Register  
2
PVMAP01_0,1,2,3 I C Address h39,54,6F,8A; CPU Address:h106,107,108,109)  
2
PVMAP02_0,1,2,3 I C Address h3A,55,70,8B; CPU Address:h10A, 10B, 10C, 10D)  
2
PVMAP03_0,1,2,3 I C Address h3B,56,71,8C; CPU Address:h10E, 10F, 110, 111)  
2
PVMAP04_0,1,2,3 I C Address h3C,57,72,8D; CPU Address:h112, 113, 114, 115)  
2
PVMAP05_0,1,2,3 I C Address h3D,58,73,8E; CPU Address:h116, 117, 118, 119)  
2
PVMAP06_0,1,2,3 I C Address h3E,59,74,8F; CPU Address:h11A, 11B, 11C, 11D)  
2
PVMAP07_0,1,2,3 I C Address h3F,5A,75,90; CPU Address:h11E, 11F, 120, 121)  
2
PVMAP08_0,1,2,3 I C Address h40,5B,76,91; CPU Address:h122, 123, 124, 125)  
2
PVMAP09_0,1,2,3 I C Address h41,5C,77,92; CPU Address:h126, 127, 128, 129)  
2
PVMAP10_0,1,2,3 I C Address h42,5D,78,93; CPU Address:h12A, 12B, 12C, 12D)  
2
PVMAP11_0,1,2,3 I C Address h43,5E,79,94; CPU Address:h12E, 12F, 130, 131)  
2
PVMAP12_0,1,2,3 I C Address h44,5F,7A,95; CPU Address:h132, 133, 134, 135)  
2
PVMAP13_0,1,2,3 I C Address h45,60,7B,96; CPU Address:h136, 137, 138, 139)  
2
PVMAP14_0,1,2,3 I C Address h46,61,7C,97; CPU Address:h13A, h13B, 13C, 13D)  
2
PVMAP15_0,1,2,3 I C Address h47,62,7D,98; CPU Address:h13E, 13F, 140, 141)  
2
PVMAP16_0,1,2,3 I C Address h48,63,7E,99; CPU Address:h142, 143, 144, 145)  
2
PVMAP17_0,1,2,3 I C Address h49,64,7F,9A; CPU Address:h146, 147, 148, 149)  
2
PVMAP18_0,1,2,3 I C Address h4A,65,80,9B; CPU Address:h14A, 14B, 14C, 14D)  
2
PVMAP19_0,1,2,3 I C Address h4B,66,81,9C; CPU Address:h14E, 14F, 150, 151)  
2
PVMAP20_0,1,2,3 I C Address h4C,67,82,9D; CPU Address:h152, 153, 154, 155)  
2
PVMAP21_0,1,2,3 I C Address h4D,68,83,9E; CPU Address:h156, 157, 158, 159)  
2
PVMAP22_0,1,2,3 I C Address h4E,69,84,9F; CPU Address:h15A, 15B, 15C, 15D)  
2
PVMAP23_0,1,2,3 I C Address h4F,6A,85,A0; CPU Address:h15E, 15F, 160, 161)  
2
PVMAP25_0,1,2,3 I C Address h51,6C,87,A2; CPU Address:h166, 167, 168, 169) (Gigabit port 1)  
2
PVMAP26_0,1,2,3 I C Address h52,6D,88,A3; CPU Address:h16A, 16B, 16C, 16D) (Gigabit port 2)  
13.4.1 PVMODE  
2
I C Address: h0A4, CPU Address: h170  
2
Accessed by serial interface, and I C (R/W)  
7
5
4
3
2
1
0
SM0 rPCS  
DF  
SL  
Bit [0]:  
Bit [1]:  
Reserved  
Must be ‘0’  
Slow learning  
Same function as SE_OP MODE bit 7. Either bit can enable the function; both need to  
be turned off to disable the feature.  
Bit [2]:  
Bit [3]:  
Disable dropping of frames with destination MAC addresses 0180C2000001 to  
0180C200000F (Default = 0)  
• 0: Drop all frames in this range  
• 1: Disable dropping of frames in this range  
• 1: Disable reset PCS  
• 0: Enable reset PCS. PCS FIFO will be reset when receiving a PCS symbol error  
46  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Bit [4]:  
Support MAC address 0  
• 0: MAC address 0 is not learned.  
• 1: MAC address 0 is learned.  
Bit [7:5]:  
Reserved  
13.4.2 TRUNK0_MODE– Trunk group 0 mode  
2
I C Address: h0A5; CPU Address: h203  
2
Accessed by serial interface and I C (R/W)  
7
4
3
2
1
0
Hash Select  
Port Select  
Bit [1:0]:  
Bit [3:2]  
Port selection in unmanaged mode. Input pin TRUNK0 enable/disable  
trunk group 0  
• 00 Reserved  
• 01 Port 0 and 1 are used for trunk 0  
• 10 Port 0,1 and 2 are used for trunk 0  
• 11 Port 0,1,2 and 3 are used for trunk 0  
Hash Select. The Hash selected is valid for Trunk 0, 1 and 2. (Default  
00)  
• 00 Use Source and Destination Mac Address for hashing  
• 01 Use Source Mac Address for hashing  
• 10 Use Destination Mac Address for hashing  
• 11 Use source destination MAC address and ingress physical port number  
for hashing  
Note: Trunk group 2 (two gigabit ports) is enabled/disabled using input pin TRUNK2.  
13.4.3 TRUNK1_MODE – Trunk group 1 mode  
2
I C Address: h0A6; CPU Address: h20B  
2
Accessed by serial interface and I C (R/W)  
7
2
1
0
Port Select  
Bit [1:0]:  
Port selection in unmanaged mode. Input pin TRUNK1  
enable/disable trunk group 1  
00 Reserved  
01 Port 4 and 5 are used for trunk1  
10 Reserved  
11 Port 4, 5, 6 and 7 are used for trunk1  
47  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
13.5 Group 4 Address Search Engine Group  
13.5.1 TX_AGE – Tx Queue Aging timer  
2
I C Address: h07;CPU Address: h325  
Accessed by serial interface (RW)  
7
6
5
0
Tx Queue Agent  
Bit [5:0]: Unit of 100 ms (Default 8)  
Disable transmission queue aging if value is zero. Aging timer for all ports and queues.  
For no packet loss flow control, this register must be set to 0.  
13.5.2 AGETIME_LOW – MAC address aging time Low  
2
I C Address: h0A8; CPU Address: h400  
2
Accessed by serial interface and I C (R/W)  
Bit [7:0] Low byte of the MAC address aging timer.  
MAC address aging is enable/disable by boot strap TSTOUT9  
13.5.3 AGETIME_HIGH –MAC address aging time High  
2
I C Address: h0A9; CPU Address: h401  
2
Accessed by serial interface and I C (R/W)  
Bit [7:0]: High byte of the MAC address aging timer.  
The default setting provide 300 seconds aging time. Aging time is based on the following equation:  
{AGETIME_HIGH,AGETIME_LOW} X (# of MAC address entries in the memory x 100 µsec). Number of  
MAC entries = 32 K when 1 MB is used per bank. Number of MAC entries = 64 K when 2 MB is used per  
bank.  
13.5.4 SE_OPMODE – Search Engine Operation Mode  
CPU Address: h403  
Accessed by serial interface (R/W)  
{SE_OPMODE} X(# of entries 100 usec)  
7
6
5
0
SL  
DMS  
Bit [5:0]:  
Reserved  
Bit [6]:  
Disable MCT speedup aging  
• 1 – Disable speedup aging when MCT resource is low.  
• 0 – Enable speedup aging when MCT resource is low.  
Bit [7]:  
Slow Learning  
• 1– Enable slow learning. Learning is temporary disabled when search  
demand is high  
• 0 – Learning is performed independent of search demand  
48  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
13.6 Group 5 Address Buffer Control/QOS Group  
13.6.1 FCBAT – FCB Aging Timer  
2
I C Address: h0AA; CPU Address: h500  
7
0
FCBAT  
FCB Aging time. Unit of 1ms. (Default FF)  
This function is for buffer aging control. It is used to configure the aging  
time, and can be enabled/ disabled through bootstrap pin. It is not  
recommended to use this function for normal operation.  
Bit [7:0]:  
13.6.2 QOSC – QOS Control  
2
I C Address: h0AB; CPU Address: h501  
2
Accessed by serial interface and I C (R/W)  
7
6
5
4
3
1
0
L
Tos-d  
Tos-p  
VF1c  
Bit [0]:  
Bit [4]:  
QoS frame lost is OK. Priority will be available for flow control enabled  
source only when this bit is set (Default 0)  
Per VLAN Multicast Flow Control (Default 0)  
• 0 - Disable  
• 1 - Enable  
Bit [5]:  
Bit [6]:  
Reserved  
Select TOS bits for Priority (Default 0)  
• 0 - Use TOS [4:2] bits to map the transmit priority  
• 1 - Use TOS [7:5] bits to map the transmit priority  
Bit [7]:  
Select TOS bits for Drop Priority (Default 0)  
• 0 - Use TOS[4:2] bits to map the drop priority  
• 1 - Use TOS[7:5] bits to map the drop priority  
13.6.3 FCR – Flooding Control Register  
2
I C Address: h0AC; CPU Address: h502  
2
Accessed by serial interface and I C (R/W)  
7
6
4
3
0
Tos  
TimeBase  
U2MR  
49  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Bit [3:0]:  
Bit [6:4]:  
U2MR: Unicast to Multicast Rate. Units in terms of time base defined in  
bits [6:4]. This is used to limit the amount of flooding traffic. The value  
in U2MR specifies how many packets are allowed to flood within the  
time specified by bit [6:4]. To disable this function, program U2MR to 0.  
(Default = 8)  
TimeBase:  
000 = 100 us  
001 = 200 us  
010 = 400 us  
011 = 800 us  
100 = 1.6 ms  
101 = 3.2 ms  
110 = 6.4 ms  
111 = 100 us (same as 000)  
(Default = 000)  
Bit [7]:  
Select VLAN tag or TOS (IP packets) to be preferentially picked to map  
transmit priority and drop priority (Default = 0).  
• 0 – Select VLAN Tag priority field over TOS  
• 1 – Select TOS over VLAN tag priority field  
13.6.4 AVPML – VLAN Priority Map  
2
I C Address: h0AD; CPU Address: h503  
2
Accessed by serial interface and I C (R/W)  
7
6
5
3
2
0
VP2  
VP1  
VP0  
Registers AVPML, AVPMM, and AVPMH allow the eight VLAN priorities to map into eight internal level transmit  
priorities. Under the internal transmit priority, seven is highest priority where as zero is the lowest. This feature  
allows the user the flexibility of redefining the VLAN priority field. For example, programming a value of 7 into bit 2:0  
of the AVPML register would map VLAN priority 0 into internal transmit priority 7. The new priority is used inside the  
2603. When the packet goes out it carries the original priority.  
Bit [2:0]:  
Bit [5:3]:  
Bit [7:6]:  
Priority when the VLAN tag priority field is 0 (Default 0)  
Priority when the VLAN tag priority field is 1 (Default 0)  
Priority when the VLAN tag priority field is 2 (Default 0)  
50  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
13.6.5 AVPMM – VLAN Priority Map  
2
I C Address: h0AE, CPU Address: h504  
2
Accessed by serial interface and I C (R/W)  
7
6
4
3
1
0
VP5  
VP4  
VP3  
VP2  
Map VLAN priority into eight level transmit priorities:  
Bit [0]:  
Priority when the VLAN tag priority field is 2 (Default 0)  
Priority when the VLAN tag priority field is 3 (Default 0)  
Priority when the VLAN tag priority field is 4 (Default 0)  
Priority when the VLAN tag priority field is 5 (Default 0)  
Bit [3:1]:  
Bit [6:4]:  
Bit [7]:  
13.6.6 AVPMH – VLAN Priority Map  
2
I C Address: h0AF, CPU Address: h505  
2
Accessed by serial interface and I C (R/W)  
7
5
4
2
1
0
VP7  
Map VLAN priority into eight level transmit priorities:  
VP6  
VP5  
Bit [1:0]:  
Bit [4:2]:  
Bit [7:5]:  
Priority when the VLAN tag priority field is 5 (Default 0)  
Priority when the VLAN tag priority field is 6 (Default 0)  
Priority when the VLAN tag priority field is 7 (Default 0)  
13.6.7 TOSPML – TOS Priority Map  
2
I C Address: h0B0, CPU Address: h506  
2
Accessed by serial interface and I C (R/W)  
7
6
5
3
2
0
TP2  
TP1  
TP0  
Map TOS field in IP packet into eight level transmit priorities:  
Bit [2:0]:  
Bit [5:3]:  
Bit [7:6]:  
Priority when the TOS field is 0 (Default 0)  
Priority when the TOS field is 1 (Default 0)  
Priority when the TOS field is 2 (Default 0)  
51  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
13.6.8 TOSPMM – TOS Priority Map  
2
I C Address: h0B1, CPU Address: h507  
2
Accessed by serial interface and I C (R/W)  
7
6
4
3
1
0
TP5  
TP4  
TP3  
TP2  
Map TOS field in IP packet into four level transmit priorities:  
Bit [0]:  
Priority when the TOS field is 2 (Default 0)  
Priority when the TOS field is 3 (Default 0)  
Priority when the TOS field is 4 (Default 0)  
Priority when the TOS field is 5 (Default 0)  
Bit [3:1]:  
Bit [6:4]:  
Bit [7]:  
13.6.9 TOSPMH – TOS Priority Map  
2
I C Address: h0B2, CPU Address: h508  
2
Accessed by serial interface and I C (R/W)  
7
5
4
2
1
0
TP7  
Map TOS field in IP packet into four level transmit priorities:  
TP6  
TP5  
Bit [1:0]:  
Bit [4:2]:  
Bit [7:5]:  
Priority when the TOS field is 5 (Default 0)  
Priority when the TOS field is 6 (Default 0)  
Priority when the TOS field is 7 (Default 0)  
13.6.10 AVDM – VLAN Discard Map  
2
I C Address: h0B3, CPU Address: h509  
2
Accessed by serial interface and I C (R/W)  
7
6
5
4
3
2
1
0
FDV7  
FDV6  
FDV5 FDV4 FDV3 FDV2 FDV1 FDV0  
Map VLAN priority into frame discard when low priority buffer usage is above threshold  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Bit [3]:  
Frame drop priority when VLAN tag priority field is 0 (Default 0)  
Frame drop priority when VLAN tag priority field is 1 (Default 0)  
Frame drop priority when VLAN tag priority field is 2 (Default 0)  
Frame drop priority when VLAN tag priority field is 3 (Default 0)  
52  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Bit [4]:  
Bit [5]:  
Bit [6]:  
Bit [7]:  
Frame drop priority when VLAN tag priority field is 4 (Default 0)  
Frame drop priority when VLAN tag priority field is 5 (Default 0)  
Frame drop priority when VLAN tag priority field is 6 (Default 0)  
Frame drop priority when VLAN tag priority field is 7 (Default 0)  
13.6.11 TOSDML – TOS Discard Map  
2
I C Address: h0B4, CPU Address: h50A  
2
Accessed by serial interface and I C (R/W)  
7
6
5
4
3
2
1
0
FDT7  
FDT6  
FDT5  
FDT4 FDT3  
FDT2  
FDT1  
FDT0  
Map TOS into frame discard when low priority buffer usage is above threshold  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Bit [3]:  
Bit [4]:  
Bit [5]:  
Bit [6]:  
Bit [7]:  
Frame drop priority when TOS field is 0 (Default 0)  
Frame drop priority when TOS field is 1 (Default 0)  
Frame drop priority when TOS field is 2 (Default 0)  
Frame drop priority when TOS field is 3 (Default 0)  
Frame drop priority when TOS field is 4 (Default 0)  
Frame drop priority when TOS field is 5 (Default 0)  
Frame drop priority when TOS field is 6 (Default 0)  
Frame drop priority when TOS field is 7 (Default 0)  
13.6.12 BMRC - Broadcast/Multicast Rate Control  
2
I C Address: h0B5, CPU Address: h50B  
2
Accessed by serial interface and I C (R/W)  
7
4
3
0
Broadcast Rate  
Multicast Rate  
This broadcast and multicast rate defines for each port the number of packet allowed to be forwarded within  
a specified time. Once the packet rate is reached, packets will be dropped. To turn off the rate limit,  
program the field to 0. Timebase is based on register 502 [6:4].  
Bit [3:0]:  
Multicast Rate Control Number of multicast packets allowed within the  
time defined in bits 6 to 4 of the Flooding Control Register (FCR).  
(Default 0).  
Bit [7:4]:  
Broadcast Rate Control Number of broadcast packets allowed within  
the time defined in bits 6 to 4 of the Flooding Control Register (FCR).  
(Default 0)  
53  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
13.6.13 UCC – Unicast Congestion Control  
2
I C Address: h0B6, CPU Address: h50C  
2
Accessed by serial interface and I C (R/W)  
7
0
Unicast congest threshold  
Bit [7:0]:  
Number of frame count. Used for best effort dropping at B% when  
destination port’s best effort queue reaches UCC threshold and shared  
pool is all in use. Granularity 1 frame. (Default: h10 for 2 MB/bank or  
h08 for 1 MB/bank)  
13.6.14 MCC – Multicast Congestion Control  
2
I C Address: h0B7, CPU Address: h50D  
2
Accessed by serial interface and I C (R/W)  
7
5
4
0
FC reaction prd  
Multicast congest threshold  
Bit [4:0]:  
Bit [7:5]:  
In multiples of two. Used for triggering MC flow control when  
destination multicast port’s best effort queue reaches MCC threshold.  
(Default 0x10)  
Flow control reaction period (Default 2) Granularity 4 uSec.  
13.6.15 PR100 – Port Reservation for 10/100 ports  
2
I C Address: h0B8, CPU Address: h50E  
2
Accessed by serial interface and I C (R/W)  
7
4
3
0
Buffer low thd  
SP Buffer reservation  
Bit [3:0]:  
Per port buffer reservation.  
Define the space in the FDB reserved for each 10/100 port. Expressed  
in multiples of 4 packets. For each packet 1536 bytes are reserved in  
the memory.  
Bits [7:4]:  
Expressed in multiples of 4 packets. Threshold for dropping all best  
effort frames when destination port best efforts queues reach UCC  
threshold and shared pool all used and source port reservation is at or  
below the PR100[7:4] level. Also the threshold for initiating UC flow  
control.  
Default:  
• h36 for 24+2 configuration with memory 2 MB/bank;  
• h24 for 24+2 configuration with 1 MB/bank;  
54  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
13.6.16 PRG – Port Reservation for Giga ports  
2
I C Address: h0B9, CPU Address: h50F  
2
Accessed by serial interface and I C (R/W)  
7
3
0
Buffer low thd  
SP buffer reservation  
Bit [3:0]:  
Per source port buffer reservation.  
Define the space in the FDB reserved for each Gigabit port. Expressed  
in multiples of 16 packets. For each packet 1536 bytes are reserved in  
the memory.  
Bits [7:4]:  
Expressed in multiples of 16 packets. Threshold for dropping all best  
effort frames when destination port best effort queues reach UCC  
threshold and shared pool is all used and source port reservation is at  
or below the PRG[7:4] level. Also the threshold for initiating UC flow  
control.  
Default:  
• H58 for memory 2 MB/bank;  
• H35 for 1 MB/bank;  
13.6.17 SFCB – Share FCB Size  
2
I C Address: h0BA, CPU Address: h510  
2
Accessed by serial interface and I C (R/W)  
7
0
Shared buffer size  
Bits [7:0]:  
Expressed in multiples of 4 packets. Buffer reservation for shared pool.  
Default:  
• h64 for 24+2 configuration with memory of 2 MB/bank;  
• h14 for 24+2 configuration with memory of 1 MB/bank;  
13.6.18 C2RS – Class 2 Reserve Size  
2
I C Address: h0BB, CPU Address: h511  
2
Accessed by serial interface and I C (R/W)  
7
0
Class 2 FCB Reservation  
Buffer reservation for class 2 (third lowest priority). Granularity 1. (Default 0)  
55  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
13.6.19 C3RS – Class 3 Reserve Size  
2
I C Address: h0BC, CPU Address: h512  
2
Accessed by serial interface and I C (R/W)  
7
0
0
0
0
0
Class 3 FCB Reservation  
Buffer reservation for class 3. Granularity 1. (Default 0)  
13.6.20 C4RS – Class 4 Reserve Size  
2
I C Address: h0BD, CPU Address: h513  
Accessed by serial interface and I C (R/W)  
2
7
Class 4 FCB Reservation  
Buffer reservation for class 4. Granularity 1. (Default 0)  
13.6.21 C5RS – Class 5 Reserve Size  
2
I C Address: h0BE; CPU Address: h514  
Accessed by serial interface and I C (R/W)  
2
7
Class 5 FCB Reservation  
Buffer reservation for class 5. Granularity 1. (Default 0)  
13.6.22 C6RS – Class 6 Reserve Size  
2
I C Address: h0BF; CPU Address h515  
Accessed by serial interface and I C (R/W)  
2
7
Class 6 FCB Reservation  
Buffer reservation for class 6 (second highest priority). Granularity 1. (Default 0)  
13.6.23 C7RS – Class 7 Reserve Size  
2
I C Address: h0C0; CPU Address: h516  
Accessed by serial interface and I C (R/W)  
2
7
Class 7 FCB Reservation  
Buffer reservation for class 7 (highest priority). Granularity 1. (Default 0)  
56  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
13.6.24 Classes Byte Limit Set 0  
2
Accessed by serial interface and I C (R/W)  
2
C — QOSC00 – BYTE_C01 (I C Address h0C1, CPU Address 517)  
2
B — QOSC01 – BYTE_C02 (I C Address h0C2, CPU Address 518)  
2
A — QOSC02 – BYTE_C03 (I C Address h0C3, CPU Address 519)  
QOSC00 through QOSC02 represents one set of values A-C for a 10/100 port when using the Weighted Random  
Early Drop (WRED) Scheme described in Chapter 7.7. There are four such sets of values A-C specified in Classes  
Byte Limit Set 0, 1, 2 and 3.  
Each 10/ 100 port can choose one of the four Byte Limit Sets as specified by the QoS Select field located in bits 5  
to 4 of the ECR2n register. The values A-C are per-queue byte thresholds for random early drop. QOSC02  
represents A, and QOSC00 represents C.  
Granularity when Delay bound is used: QOSC02: 128 bytes, QOSC01: 256 bytes. QOSC00: 512 bytes. Granularity  
when WFQ is used: QOSC02: 512 bytes, QOSC01: 512 bytes, QOSC00: 512 bytes.  
13.6.25 Classes Byte Limit Set 1  
2
Accessed by serial interface and I C (R/W)  
2
C - QOSC03 – BYTE_C11 (I C Address h0C4, CPU Address 51a)  
2
B - QOSC04 – BYTE_C12 (I C Address h0C5, CPU Address 51b)  
2
A - QOSC05 – BYTE_C13 (I C Address h0C6, CPU Address 51c)  
QOSC03 through QOSC05 represents one set of values A-C for a 10/100 port when using the Weighted Random  
Early Detect (WRED) Scheme.  
Granularity when Delay bound is used: QOSC05: 128 bytes, QOSC04: 256 bytes. QOSC03: 512 bytes. Granularity  
when WFQ is used: QOSC05: 512 bytes, QOSC04: 512 bytes, QOSC03: 512 bytes.  
13.6.26 Classes Byte Limit Set 2  
2
Accessed by serial interface and I C (R/W)  
C - QOSC06 – BYTE_C21 (CPU Address 51d)  
B - QOSC07 – BYTE_C22 (CPU Address 51e)  
A - QOSC08 – BYTE_C23 (CPU Address 51f)  
QOSC06 through QOSC08 represents one set of values A-C for a 10/100 port when using the Weighted Random  
Early Detect (WRED) Scheme.  
Granularity when Delay bound is used: QOSC08: 128 bytes, QOSC07: 256 bytes. QOSC06: 512 bytes. Granularity  
when WFQ is used: QOSC08: 512 bytes, QOSC07: 512 bytes, QOSC06: 512 bytes.  
13.6.27 Classes Byte Limit Set 3  
2
Accessed by serial interface and I C (R/W)  
C - QOSC09 – BYTE_C31 (CPU Address 520)  
B - QOSC10 – BYTE_C32 (CPU Address 521)  
A - QOSC11 – BYTE_C33 (CPU Address 522)  
QOSC09 through QOSC011 represents one set of values A-C for a 10/100 port when using the Weighted Random  
Early Detect (WRED) Scheme.  
57  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Granularity when Delay bound is used: QOSC11: 128 bytes, QOSC10: 256 bytes. QOSC09: 512 bytes. Granularity  
when WFQ is used: QOSC11: 512 bytes, QOSC10: 512 bytes, QOSC09: 512 bytes.  
13.6.28 Classes Byte Limit Giga Port 1  
2
Accessed by serial interface and I C (R/W)  
2
F - QOSC12 – BYTE_C2_G1 (I C Address h0C7, CPU Address 523)  
2
E - QOSC13 – BYTE_C3_G1 (I C Address h0C8, CPU Address 524)  
2
D - QOSC14 – BYTE_C4_G1 (I C Address h0C9, CPU Address 525)  
2
C - QOSC15 – BYTE_C5_G1 (I C Address h0CA, CPU Address 526)  
2
B - QOSC16 – BYTE_C6_G1 (I C Address h0CB, CPU Address 527)  
2
A - QOSC17 – BYTE_C7_G1 (I C Address h0CC, CPU Address 528)  
QOSC12 through QOSC17 represent the values A-F for Gigabit port 24. They are per-queue byte thresholds for  
random early drop. QOSC17 represents A, and QOSC12 represents F.  
Granularity when Delay bound is used: QOSC17 and QOSC16: 256 bytes, QOSC15 and QOSC14: 512 bytes,  
QOSC13 and QOSC12: 1024 bytes.  
Granularity when WFQ is used: QOSC17 to QOSC12: 1024 bytes  
13.6.29 Classes Byte Limit Giga Port 2  
2
Accessed by serial interface and I C (R/W)  
2
F - QOSC18 – BYTE_C2_G2 (I C Address h0CD, CPU Address 529)  
2
E - QOSC19 – BYTE_C3_G2 (I C Address h0CE, CPU Address 52a)  
2
D - QOSC20 – BYTE_C4_G2 (I C Address h0CF, CPU Address 52b)  
2
C - QOSC21 – BYTE_C5_G2 (I C Address h0D0, CPU Address 52c)  
2
B - QOSC22 – BYTE_C6_G2 (I C Address h0D1, CPU Address 52d)  
2
A - QOSC23 – BYTE_C7_G2 (I C Address h0D2, CPU Address 52e)  
QOSC18 through QOSC23 represent the values A-F for Gigabit port 2. They are per-queue byte thresholds for  
random early drop. QOSC23 represents A, and QOSC18 represents F.  
Granularity when Delay Bound is used: QOSC23 and QOSC22: 256 bytes, QOSC21 and QOSC20: 512 bytes,  
QOSC19 and QOSC18: 1024 bytes.  
Granularity when WFQ is used: QOSC18 to QOSC23: 1024 bytes  
13.6.30 Classes WFQ Credit Set 0  
Accessed by serial interface (R/W)  
W0 - QOSC24[5:0] – CREDIT_C00 (CPU Address 52f)  
W1 - QOSC25[5:0] – CREDIT_C01 (CPU Address 530)  
W2 - QOSC26[5:0] – CREDIT_C02 (CPU Address 531)  
W3 - QOSC27[5:0] – CREDIT_C03 (CPU Address 532)  
58  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
QOSC24 through QOSC27 represents one set of WFQ parameters for a 10/100 port. There are four such sets of  
values. The granularity of the numbers is 1 and their sum must be 64. QOSC27 corresponds to W3 and QOSC24  
corresponds to W0.  
QOSC24[7:6]: Priority service type for the ports select this parameter set. Option 1 to 4  
QOSC25[7]: Priority service allow flow control for the ports select this parameter set  
QOSC25[6]: Flow control pause best effort traffic only  
Both flow control allow and flow control best effort only can take effect only the priority type is WFQ.  
13.6.31 Classes WFQ Credit Set 1  
Accessed by serial interface (R/W)  
W0 - QOSC28[5:0] – CREDIT_C10 (CPU Address 533)  
W1 - QOSC29[5:0] – CREDIT_C11 (CPU Address 534)  
W2 - QOSC30[5:0] – CREDIT_C12 (CPU Address 535)  
W3 - QOSC31[5:0] – CREDIT_C13 (CPU Address 536)  
QOSC28 through QOSC31 represents one set of WFQ parameters for a 10/100 port. There are four such sets of  
values. The granularity of the numbers is 1 and their sum must be 64. QOSC31 corresponds to W3 and QOSC28  
corresponds to W0.  
QOSC28[7:6]: Priority service type for the ports select this parameter set. Option 1 to 4  
QOSC29[7]: Priority service allow flow control for the ports select this parameter set  
QOSC29[6]: Flow control pause best effort traffic only  
13.6.32 Classes WFQ Credit Set 2  
Accessed by serial interface (R/W)  
W0 - QOSC32[5:0] – CREDIT_C20 (CPU Address 537)  
W1 - QOSC33[5:0] – CREDIT_C21 (CPU Address 538)  
W2 - QOSC34[5:0] – CREDIT_C22 (CPU Address 539)  
W3 - QOSC35[5:0] – CREDIT_C23 (CPU Address 53a)  
QOSC35 through QOSC32 represents one set of WFQ parameters for a 10/100 port. There are four such sets of  
values. The granularity of the numbers is 1 and their sum must be 64. QOSC35 corresponds to W3 and QOSC32  
corresponds to W0.  
QOSC32[7:6]: Priority service type for the ports select this parameter set. Option 1 to option 4  
QOSC33[7]: Priority service allow flow control for the ports select this parameter set  
QOSC33[6]: Flow Control pause best effort traffic only  
13.6.33 Classes WFQ Credit Set 3  
Accessed by serial interface (R/W)  
W0 - QOSC36[5;0] – CREDIT_C30 (CPU Address 53b)  
W1 - QOSC37[5:0] – CREDIT_C31 (CPU Address 53c)  
W2 - QOSC38[5:0] – CREDIT_C32 (CPU Address 53d)  
W3 - QOSC39[5:0] – CREDIT_C33 (CPU Address 53e)  
59  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
QOSC39 through QOSC36 represents one set of WFQ parameters for a 10/100 port. There are four such sets of  
values. The granularity of the numbers is 1, and their sum must be 64. QOSC39 corresponds to W3 and QOSC36  
corresponds to W0.  
QOSC36[7:6]: Priority service type for the ports select this parameter set. Option 1 to option 4  
QOSC37[7]: Priority service allow flow control for the ports select this parameter set  
QOSC37[6]: Flow Control pause best effort traffic only  
13.6.34 Classes WFQ Credit Port G1  
Accessed by serial interface (R/W)  
W0 - QOSC40[5:0] – CREDIT_C0_G1 (CPU Address 53F)  
[7:6] - Priority service type. Option 1 to 4.  
W1 - QOSC41[5:0] – CREDIT_C1_G1 (CPU Address 540)  
[7]: Priority service allow flow control for the ports select this parameter set.  
[6]: Flow Control pause best effort traffic only  
W2 - QOSC42[5:0] – CREDIT_C2_G1 (CPU Address 541)  
W3 - QOSC43[5:0] – CREDIT_C3_G1 (CPU Address 542)  
W4 - QOSC44[5:0] – CREDIT_C4_G1 (CPU Address 543)  
W5 - QOSC45[5:0] – CREDIT_C5_G1 (CPU Address 544)  
W6 - QOSC46[5:0] – CREDIT_C6_G1 (CPU Address 545)  
W7 - QOSC47[5:0] – CREDIT_C7_G1 (CPU Address 546)  
QOSC40 through QOSC47 represents the set of WFQ parameters for Gigabit port 24. The granularity of the  
numbers is 1 and their sum must be 64. QOSC47 corresponds to W7 and QOSC40 corresponds to W0. In the 2G  
trunk configuration, the sum of all values QOSC40 through QOSC47 must equal 128.  
13.6.35 Classes WFQ Credit Port G2  
Accessed by serial interface (R/W)  
W0 - QOSC48[5:0] – CREDIT_C0_G2 (CPU Address 547)  
[7:6] - Priority service type. Option 1 to 4.  
W1 - QOSC49[5:0] – CREDIT_C1_G2 (CPU Address 548)  
[7]: Priority service allow flow control for the ports select this parameter set.  
[6]: Flow Control pause best effort traffic only  
W2 - QOSC50[5:0] – CREDIT_C2_G2 (CPU Address 549)  
W3 - QOSC51[5:0] – CREDIT_C3_G2 (CPU Address 54a)  
W4 - QOSC52[5:0] – CREDIT_C4_G2 (CPU Address 54b)  
W5 - QOSC53[5:0] – CREDIT_C5_G2 (CPU Address 54c)  
W6 - QOSC54[5:0] – CREDIT_C6_G2 (CPU Address 54d)  
W7 - QOSC55[5:0] – CREDIT_C7_G2 (CPU Address 54e)  
QOSC48 through QOSC55 represents the set of WFQ parameters for Gigabit port 25. The granularity of the  
numbers is 1, and their sum must be 64. QOSC55 corresponds to W7 and QOSC48 corresponds to W0. In the 2G  
trunk configuration, the sum of all values QOSC48 through QOSC55 must equal 128.  
60  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
13.6.36 Class 6 Shaper Control Port G1  
Accessed by serial interface (R/W)  
• QOSC56[5:0] – TOKEN_RATE_G1 (Address 54f). Programs the average rate for Gigabit port 1. When equal to 0,  
shaper is disable. Granularity is 1.  
• QOSC57[7:0] – TOKEN_LIMIT_G1 (Address 550). Programs the maximum counter for Gigabit port1. Granularity is  
16 bytes.  
Shaper is implemented to control the peak and average rate for outgoing traffic with priority 6 (queue 6). Shaper is  
limited to gigabit ports and queue P6 when it is in strict priority. QOSC41 programs the peak rate for Gigabit port 1.  
See Programming QoS Registers Application Note for more information.  
13.6.37 Class 6 Shaper Control Port G2  
Accessed by serial interface (R/W)  
• QOSC58[5:0] – TOKEN_RATE_G2 (CPU Address 551). Programs the average rate for Gigabit port 2. When equal to  
0, shaper is disable. Granularity is 1.  
• QOSC59[7:0] – TOKEN_LIMIT_G2 (CPU Address 552). Programs the maximum counter for Gigabit port2.  
Granularity is 16 bytes.  
Shaper is implemented to control the peak and average rate for outgoing traffic with priority 6 (queue 6). Shaper is  
limited to gigabit ports and queue P6 when it is in strict priority. QOSC49 programs the peak rate for Gigabit port 2.  
See Programming QoS Registers Application Note for more information.  
13.6.38 RDRC0 – WRED Rate Control 0  
2
I C Address: h0FB, CPU Address: h553  
c
Accessed by serial Interface and I C (R/W)  
7
4
3
0
X Rate  
Y Rate  
Bits [7:4]:  
Bits [3:0]:  
Corresponds to the frame drop percentage X% for WRED. Granularity  
6.25%.  
Corresponds to the frame drop percentage Y% for WRED. Granularity  
6.25%.  
See Programming QoS Registers Application Note for more information.  
13.6.39 RDRC1 – WRED Rate Control 1  
2
I C Address: h0FC, CPU Address: h554  
2
Accessed by serial Interface and I C (R/W)  
7
4
3
0
Z Rate  
B Rate  
Bits [7:4]:  
Bits [3:0]:  
Corresponds to the frame drop percentage Z% for WRED. Granularity 6.25%.  
Corresponds to the best effort frame drop percentage B%, when shared pool is  
all in use and destination port best effort queue reaches UCC. Granularity  
6.25%.  
See Programming QoS Register Application Note for more information.  
61  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
13.6.40 User Defined Logical Ports and Well Known Ports  
The MVTX2603 supports classifying packet priority through layer 4 logical port information. It can be setup by 8  
Well Known Ports, 8 User Defined Logical Ports and 1 User Defined Range. The 8 Well Known Ports supported are  
0:23  
1:512  
2:6000  
3:443  
4:111  
5:22555  
6:22  
7:554  
Their respective priority can be programmed via Well_Known_Port [7:0] priority register. Well_Known_Port_ Enable  
can individually turn on/off each Well Known Port if desired.  
Similarly, the User Defined Logical Port provides the user programmability to the priority, plus the flexibility to select  
specific logical ports to fit the applications. The 8 User Logical Ports can be programmed via User_Port 0-7  
registers. Two registers are required to be programmed for the logical port number. The respective priority can be  
programmed to the User_Port [7:0] priority register. The port priority can be individually enabled/disabled via  
User_Port_Enable register.  
The User Defined Range provides a range of logical port numbers with the same priority level. Programming is  
similar to the User Defined Logical Port. Instead of programming a fixed port number, an upper and lower limit need  
to be programmed, they are: {RHIGHH, RHIGHL} and {RLOWH, RLOWL} respectively. If the value in the upper limit  
is smaller or equal to the lower limit, the function is disabled. Any IP packet with a logical port that is less than the  
upper limit and more than the lower limit will use the priority specified in RPRIORITY.  
13.6.40.1 USER_PORT0_(0~7) – User Define Logical Port (0~7)  
2
USER_PORT_0 - I C Address h0D6 + 0DE; CPU Address 580(Low) + 581(High)  
2
USER_PORT_1 - I C Address h0D7 + 0DF; CPU Address 582 + 583  
2
USER_PORT_2 - I C Address h0D8 + 0E0; CPU Address 584 + 585  
2
USER_PORT_3 - I C Address h0D9 + 0E1; CPU Address 586 + 587  
2
USER_PORT_4 - I C Address h0DA + 0E2; CPU Address 588 + 589  
2
USER_PORT_5 - I C Address h0DB + 0E3; CPU Address 58a + 58b  
2
USER_PORT_6 - I C Address h0DC + 0E4; CPU Address 58c + 58d  
2
USER_PORT_7 - I C Address h0DD + 0E5; CPU Address 58e + 58f  
2
Accessed by serial interface and I C (R/W)  
7
0
0
TCP/UDP Logic Port Low  
7
TCP/UDP Logic Port High  
(Default 00) This register is duplicated eight times from PORT 0 through PORT 7 and allows the definition of  
eight separate ports.  
62  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
13.6.40.2 USER_PORT_[1:0]_PRIORITY - User Define Logic Port 1 and 0 Priority  
2
I C Address: h0E6, CPU Address: h590  
2
Accessed by serial interface and I C (R/W)  
7
5
4
3
1
0
Priority 1  
The chip allows the definition of the priority  
Drop  
Priority 0  
Drop  
Bits [3:0]:  
Bits [7:4]:  
Priority setting, transmission + dropping, for logic port 0  
Priority setting, transmission + dropping, for logic port 1 (Default 00)  
13.6.40.3 USER_PORT_[3:2]_PRIORITY - User Define Logic Port 3 and 2 Priority  
2
I C Address: h0E7, CPU Address: h591  
2
Accessed by serial interface and I C (R/W)  
7
5
4
3
1
0
Priority 3  
Drop  
Priority 2  
Drop  
13.6.40.4 USER_PORT_[5:4]_PRIORITY - User Define Logic Port 5 and 4 Priority  
2
I C Address: h0E8, CPU Address: h592  
2
Accessed by serial interface and I C (R/W)  
7
5
4
3
1
0
Priority 5  
Drop  
Priority 4  
Drop  
(Default 00)  
13.6.40.5 USER_PORT_[7:6]_PRIORITY - User Define Logic Port 7 and 6 Priority  
2
I C Address: h0E9, CPU Address: h593  
2
Accessed by serial interface and I C (R/W)  
7
5
4
3
1
0
Priority 7  
Drop  
Priority 6  
Drop  
(Default 00)  
13.6.40.6 USER_PORT_ENABLE [7:0] – User Define Logic 7 to 0 Port Enables  
2
I C Address: h0EA, CPU Address: h594  
2
Accessed by serial interface and I C (R/W)  
7
6
5
4
3
2
1
0
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
(Default 00)  
63  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
13.6.40.7 WELL_KNOWN_PORT [1:0] PRIORITY- Well Known Logic Port 1 and 0 Priority  
2
I C Address: h0EB, CPU Address: h595  
2
Accessed by serial interface and I C (R/W)  
7
5
4
3
1
0
Priority 1  
Drop  
Priority 0  
Drop  
Priority 0 - Well known port 23 for telnet applications  
Priority 1 - Well known port 512 for TCP/UDP  
(Default 00)  
13.6.40.8 WELL_KNOWN_PORT [3:2] PRIORITY- Well Known Logic Port 3 and 2 Priority  
2
I C Address: h0EC, CPU Address: h596  
2
Accessed by serial interface and I C (R/W)  
7
5
4
3
1
0
Priority 3  
Priority 2 - Well known port 6000 for XWIN.  
Priority 3 - Well known port 443 for http. sec  
(Default 00)  
Drop  
Priority 2  
Drop  
13.6.40.9 WELL_KNOWN_PORT [5:4] PRIORITY- Well Known Logic Port 5 and 4 Priority  
2
I C Address: h0ED, CPU Address: h597  
2
Accessed by serial interface and I C (R/W)  
7
5
4
3
1
0
Priority 5  
Priority 4 - Well known port 111 for sun rpe.  
Priority 5 - Well known port 22555 for IP Phone call setup  
(Default 00)  
Drop  
Priority 4  
Drop  
13.6.40.10 WELL_KNOWN_PORT [7:6] PRIORITY- Well Known Logic Port 7 and 6 Priority  
2
I C Address: h0EE, CPU Address: h598  
2
Accessed by serial interface and I C (R/W)  
7
5
4
3
1
0
Priority 7  
Drop  
Priority 6  
Drop  
Priority 6 - Well known port 22 for ssh.  
Priority 7 - Well known port 554 for rtsp.  
(Default 00)  
64  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
13.6.40.11 WELL KNOWN_PORT_ENABLE [7:0] – Well Known Logic 7 to 0 Port Enables  
2
I C Address: h0EF, CPU Address: h599  
2
Accessed by serial interface and I C (R/W)  
7
6
5
4
3
2
1
0
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
• 1 - Enable  
• 0 - Disable  
(Default 00)  
13.6.40.12 RLOWL – User Define Range Low Bit 7:0  
2
I C Address: h0F4, CPU Address: h59a  
2
Accessed by serial interface and I C (R/W)  
(Default 00)  
13.6.40.13 RLOWH – User Define Range Low Bit 15:8  
2
I C Address: h0F5, CPU Address: h59b  
2
Accessed by serial interface and I C (R/W)  
(Default 00)  
13.6.40.14 RHIGHL – User Define Range High Bit 7:0  
2
I C Address: h0D3, CPU Address: h59c  
2
Accessed by serial interface and I C (R/W)  
(Default 00)  
13.6.40.15 RHIGHH – User Define Range High Bit 15:8  
2
I C Address: h0D4, CPU Address: h59d  
2
Accessed by serial interface and I C (R/W)  
(Default 00)  
13.6.40.16 RPRIORITY – User Define Range Priority  
2
I C Address: h0D5, CPU Address: h59e  
2
Accessed by serial interface and I C (R/W)  
7
4
3
1
0
Range Transmit Priority  
Drop  
RLOW and RHIGH form a range for logical ports to be classified with priority specified in RPRIORITY  
Bit [3:1]  
Bits [0]:  
Transmit Priority  
Drop Priority  
65  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
13.7 Group 6 Address MISC Group  
13.7.1 MII_OP0 – MII Register Option 0  
2
I C Address: hF0, CPU Address:h600  
2
Accessed by serial interface and I C (R/W)  
7
6
5
4
0
hfc  
1prst  
DisJ  
Vendor Spc. Reg Addr  
Bits [7]:  
Half duplex flow control feature  
• 0 = Half duplex flow control always enable  
• 1 = Half duplex flow control by negotiation  
Bits [6]:  
Bits [5]:  
Link partner reset auto-negotiate disable  
Disable jabber detection. This is for HomePNA application or any serial  
operation slower than 10 Mbps.  
• 1 = disable  
• 0 = enable  
Bit [4:0]:  
Vendor specified link status register address (null value means don’t  
use it) (Default 00); used when the Linkup bit position in the PHY is  
non-standard.  
13.7.2 MII_OP1 – MII Register Option 1  
2
I C Address: hF1, CPU Address:h601  
2
Accessed by serial interface and I C (R/W)  
7
4
3
0
Speed bit location  
Duplex bit location  
Bits [3:0]:  
Bits [7:4]:  
Duplex bit location in vendor specified register  
Speed bit location in vendor specified register  
(Default 00)  
13.7.3 FEN – Feature Register  
2
I C Address: hF2, CPU Address: h602  
2
Accessed by serial interface and I C (R/W)  
7
6
5
3
2
1
0
DML  
MII  
DS  
Bits [1:0]:  
Reserved (Default 0)  
66  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Bit [2]:  
Support DS EF Code. (Default 0)  
When 101110 is detected in DS field (TOS [7:2]), the frame priority is  
set for 110 and drop is set for 0  
Bit [5:3]:  
Bit [6]:  
Reserved (Default 010)  
Disable MII Management State Machine  
• 0: Enable MII Management State Machine (Default 0)  
• 1: Disable MII Management State Machine  
Bit [7]:  
Disable using MCT link list structure  
• 0: Enable using MCT Link List structure (Default 0)  
• 1: Disable using MCT Link List structure  
13.7.4 MIIC0 – MII Command Register 0  
CPU Address: h603  
Accessed by serial interface only (R/W)  
Bit [7:0] MII Data [7:0]  
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then  
program MII command.  
13.7.5 MIIC1 – MII Command Register 1  
CPU Address: h604  
Accessed by serial interface only (R/W)  
Bit [7:0] MII Data [15:8]  
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then  
program MII command.  
13.7.6 MIIC2 – MII Command Register 2  
CPU Address :h605  
Accessed by serial interface only (R/W)  
7
6
5
4
0
Mii OP  
Register address  
Bits [4:0]:  
Bit [6:5]  
REG_AD – Register PHY Address  
OP – Operation code “10” for read command and “01” for write  
command  
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then  
program MII command. Writing to this register will initiate a serial management cycle to the MII management  
interface. For detail information, please refer to the PHY Control Application Note.  
67  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
13.7.7 MIIC3 – MII Command Register 3  
CPU Address: h606  
Accessed by serial interface only (R/W)  
7
6
5
4
0
Rdy  
Valid  
PHY address  
Bits [4:0]:  
Bit [6]  
PHY_AD – 5 Bit PHY Address  
VALID – Data Valid from PHY (Read Only)  
Bit [7]  
RDY – Data is returned from PHY (Ready Only)  
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then  
program MII command.  
13.7.8 MIID0 – MII Data Register 0  
CPU Address: h607  
Accessed by serial interface only (RO)  
Bit [7:0] MII Data [7:0]  
13.7.9 MIID1 – MII Data Register 1  
CPU Address: h608  
Accessed by serial interface only (RO)  
Bit [7:0] MII Data [15:8]  
13.7.10 LED Mode – LED Control  
CPU Address: h609  
Accessed by serial interface and I C (R/W)  
2
7
5
4
3
2
1
0
Clock rate  
Hold Time  
Bit [0]  
Reserved (Default 0)  
Bit [2:1]:  
Hold time for LED signal (Default= 00)  
• 00 = 8 msec 01 = 16 msec  
10 = 32 msec 11 = 64 msec  
Bit [4:3]:  
LED clock frequency (Default 0)  
For 100MHz SCLK  
00 = 100 M/8 = 12.5 MHz  
10 = 100 M/32 = 3.125 MHz  
01 = 100 M/16 = 6.25 MHz  
11 = 100 M/64 = 1.5625 MHz  
For 125 MHz SCLK  
00 = 125 M/64 = 1953 KHz  
10 = 125M/512=244 KHz  
01 = 125 M/128 = 977 KHz  
11 = 125 M/1024 = 122 KHz  
Bit [7:6]:  
Reserved. Must be 0. (Default 0)  
68  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
13.7.11 CHECKSUM - EEPROM Checksum  
2
I C Address: FF, CPU Address: h60b  
2
Accessed by serial interface and I C (R/W)  
Bit [7:0]:  
(Default 0)  
Before requesting that the MVTX2603 updates the EEPROM device, the correct checksum needs to be calculated  
and written into this checksum register. When the MVTX2603 boots from the EEPROM the checksum is calculated  
and the value must be zero. If the checksum is not zeroed the MVTX2603 does not start and pin CHECKSUM_OK  
is set to zero.  
The checksum formula is:FF  
2
Σ I C register = 0  
I=0  
13.8 Group 7 Address Port Mirroring Group  
13.8.1 MIRROR1_SRC – Port Mirror source port  
CPU Address: h700  
Accessed by serial interface (R/W) (Default 7F)  
7
6
5
4
0
I/O  
Src Port Select  
Bit [4:0]:  
Bit [5]:  
Source port to be mirrored. Use illegal port number to disable mirroring  
1 – select ingress data  
0 – select egress data  
Bit [7]:  
Must be ‘1’  
13.8.2 MIRROR1_DEST – Port Mirror destination  
CPU Address: h701  
Accessed by serial interface (R/W) (Default 17)  
7
5
4
0
Dest Port Select  
Bit [4:0]:  
Port Mirror Destination  
69  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
13.8.3 MIRROR2_SRC – Port Mirror source port  
CPU Address: h702  
Accessed by serial interface (R/W) (Default FF)  
7
6
5
4
0
I/O  
Src Port Select  
Bit [4:0]:  
Bit [5]:  
Source port to be mirrored. Use illegal port number to disable mirroring  
1 – select ingress data  
0 – select egress data  
Bit [7]  
Must be 1  
13.8.4 MIRROR2_DEST – Port Mirror destination  
CPU Address: h703  
Accessed by serial interface (R/W) (Default 00)  
7
5
4
0
Dest Port Select  
Bit [4:0]:  
Port Mirror Destination  
13.9 Group F Address CPU Access Group  
13.9.1 GCR-Global Control Register  
CPU Address: hF00  
Accessed by serial interface. (R/W)  
7
4
3
2
1
0
Reset  
Bist  
SR  
SC  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Store configuration (Default = 0)  
Write ‘1’ followed by ‘0’ to store configuration into external EEPROM  
Store configuration and reset (Default = 0)  
Write ‘1’ to store configuration into external EEPROM and reset chip  
Start BIST (Default = 0)  
Write ‘1’ followed by ‘0’ to start the device’s built-in self-test. The result  
is found in the DCR register.  
Bit [3]:  
Soft Reset (Default = 0)  
Write ‘1’ to reset chip  
Bit [7:4]:  
Reserved.  
70  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
13.9.2 DCR-Device Status and Signature Register  
CPU Address: hF01  
Accessed by serial interface. (RO)  
7
6
5
4
3
2
1
0
Revision  
Signature  
RE  
BinP  
BR  
BW  
2
Bit [0]:  
Bit [1]:  
Bit [2]:  
Bit [3]:  
Bit [5:4]:  
Bit [7:6]:  
1: Busy writing configuration to I C  
2
0: Not busy writing configuration to I C  
2
1: Busy reading configuration from I C  
0: Not busy reading configuration from I C  
2
1: BIST in progress  
0: BIST not running  
1: RAM Error  
0: RAM OK  
Device Signature  
01: MVTX2603 device  
Revision  
00: Initial Silicon  
01: XA1 Silicon  
13.9.3 DCR1-Giga port status  
CPU Address: hF02  
Accessed by serial interface (RO)  
7
6
4
3
2
1
0
CIC  
GIGA1  
GIGA0  
Bit [1:0]:  
Bit [3:2]  
Bit [7]  
Giga port 0 strap option  
00 – 100 Mb MII mode  
01 – 2 G mode  
10 – GMII  
11 – PCS  
Giga port 1 strap option  
00 – 100 Mb MII mode  
01 – 2 G mode  
10 – GMII  
11 – PCS  
Chip initialization completed  
71  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
13.9.4 DPST – Device Port Status Register  
CPU Address: hF03  
Accessed by serial interface (R/W)  
Bit[4:0]:  
Read back index register. This is used for selecting what to read back from  
DTST. (Default 00)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
5’b00000 - Port 0 Operating mode and Negotiation status  
5’b00001 - Port 1 Operating mode/Neg status  
5’b00010 - Port 2 Operating mode/Neg status  
5’b00011 - Port 3 Operating mode/Neg status  
5’b00100 - Port 4 Operating mode/Neg status  
5’b00101 - Port 5 Operating mode/Neg status  
5’b00110 - Port 6 Operating mode/Neg status  
5’b00111 - Port 7 Operating mode/Neg status  
5’b01000 - Port 8 Operating mode/Neg status  
5’b01001 - Port 9 Operating mode/Neg status  
5’b01010 - Port 10 Operating mode/Neg status  
5’b01011 - Port 11 Operating mode/Neg status  
5’b01100 - Port 12 Operating mode/Neg status  
5’b01101 - Port 13 Operating mode/Neg status  
5’b01110 - Port 14 Operating mode/Neg status  
5’b01111 - Port 15 Operating mode/Neg status  
5’b10000 - Port 16 Operating mode/Neg status  
5’b10001 - Port 17 Operating mode/Neg status  
5’b10010 - Port 18 Operating mode/Neg status  
5’b00011 - Port 19 Operating mode/Neg status  
5’b10100 - Port 20 Operating mode/Neg status  
5’b10101 - Port 21 Operating mode/Neg status  
5’b10110 - Port 22 Operating mode/Neg status  
5’b10111 - Port 23 Operating mode/Neg status  
5’b11000 - Reserved  
5’b11001 - Port 25 Operating mode/Neg status (Gigabit port 1)  
5’b11010 - Port 26 Operating mode/Neg status (Gigabit port 2)  
13.9.5 DTST – Data read back register  
CPU Address: hF04  
Accessed by serial interface (RO)  
This register provides various internal information as selected in DPST bit [4:0]. Refer to the PHY Control  
Application Note.  
7
6
5
4
3
2
1
0
MD  
Info  
Sig  
Giga  
Inkdn  
FE  
Fdpx  
FcEn  
When bit is 1  
Bit [0] – Flow control enable  
Bit [1] – Full duplex port  
Bit [2] – Fast Ethernet port (if not gigabit port)  
Bit [3] – Link is down  
Bit [4] – Giga port  
72  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Bit [5] – Signal detect (when PCS interface mode)  
Bit [6] – 2 G signal detect (2 G mode only)  
Bit [7] – Module detected (for hot swap purpose)  
13.9.6 PLLCR - PLL Control Register  
CPU Address: hF05  
Accessed by serial interface (RW)  
Bit [3] Must be '1'  
Bit [7] Selects strap option or LCLK/OECLK registers  
0 - Strap option (default)  
1 - LCLK/OECLK registers  
13.9.7 LCLK - LA_CLK delay from internal OE_CLK  
CPU Address: hF06  
Accessed by serial interface (RW)  
PD[12:10]  
000b  
001b  
010b  
011b  
100b  
101b  
110b  
LCLK  
80h  
40h  
20h  
10h  
08h  
04h  
02h  
01h  
Delay  
8 Buffers Delay  
7 Buffers Delay  
6 Buffers Delay  
5 Buffers Delay (Recommend)  
4 Buffers Delay  
3 Buffers Delay  
2 Buffers Delay  
1 Buffers Delay  
111b  
The LCLK delay from SCLK is the sum of the delay programmed in here and the delay in OECLK register.  
13.9.8 OECLK - Internal OE_CLK delay from SCLK  
CPU Address: hF07  
Accessed by serial interface (RW)  
The OE_CLK is used for generating the OE0 and OE1 signals.  
PD[15:13]  
000b  
001b  
010b  
011b  
OECLK Delay  
80h  
40h  
20h  
10h  
08h  
8 Buffers Delay  
7 Buffers Delay (Recommend)  
6 Buffers Delay  
5 Buffers Delay  
4 Buffers Delay  
100b  
73  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
101b  
110b  
111b  
04h  
02h  
01h  
3 Buffers Delay  
2 Buffers Delay  
1 Buffers Delay  
13.9.9 DA – DA Register  
CPU Address: hFFF  
Accessed by CPU and serial interface (RO)  
Always return 8’h DA. Indicate the serial port connection is good.  
13.10 TBI Registers  
Two sets of TBI registers are used for configure the two Gigabit ports if they are operating in TBI mode. These TBI  
registers are located inside the switching chip and they are accessed through the MII command and MII data  
registers.  
13.10.1 Control Register  
MII Address: h00  
Read/Write  
Bit [15]  
Reset PCS logic and all TBI registers  
1 = Reset  
0 = Normal operation  
Bit [14]  
Bit [13]  
Bit [12]  
Reserved. Must be programmed with “0”.  
Speed selection (See bit 6 for complete details)  
Auto Negotiation Enable  
1 = Enable auto-negotiation process  
0 = Disable auto-negotiation process (Default)  
Bit [11:10]  
Bit [9]  
Reserved. Must be programmed with “0”  
Restart Auto Negotiation  
1 = Restart auto-negotiation process  
0 = Normal operation (Default)  
Bit [8:7]  
Bit [6]  
Reserved  
Speed Selection  
-
-
-
-
-
Bit [6][13]  
1 1 = Reserved  
0 =1000 Mb/s (Default)  
1
0
= 100 Mb/s  
= 10 Mb/s  
0
Bit [5:0]  
Reserved. Must be programmed with “0”.  
74  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
13.10.2 Status Register  
MII Address: h01  
Read Only  
Bit [15:9]  
Bit [8]  
Reserved. Always read back as “0”.  
Reserved. Always read back as “1”.  
Reserved. Always read back as “0”.  
Bit [7:6]  
Bit [5]  
Auto-Negotiation Complete  
1 = Auto-negotiation process completed  
0 = Auto-negotiation process not completed  
Bit [4]  
Bit [3]  
Bit [2]  
Reserved. Always read back as “0”  
Reserved. Always read back as “1”  
Link Status  
1 = Link is up.  
0 = Link is down.  
Bit [1]  
Bit [0]  
Reserved. Always read back as “0”.  
Reserved. Always read back as “1”  
13.10.3 Advertisement Register  
MII Address: h04  
Read/Write  
Bit [15]  
Next Page  
1 = Has next page capabilities.  
0 = Do not has next page capabilities (Default)  
Bit [14]  
Reserved. Always read back as “0”. Read Only  
Remote Fault. Default is “0”.  
Bit [13:12]  
Bit [11:9]  
Bit [8:7]  
Bit [6]  
Reserved. Always read back as “0”. Read Only.  
Pause. Default is “00”  
Half Duplex  
1 = Support half duplex (Default)  
0 = Do not support half duplex  
Bit [5]  
Full duplex  
1 = Support full duplex (Default)  
0 = Do not support full duplex  
Bit [4:0]  
Reserved. Always read back as “0”. Read Only.  
75  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
13.10.4 Link Partner Ability Register  
MII Address: h05  
Read Only  
Bit [15]  
Next Page  
1 = Has next page capabilities  
0 = Do not has next page capabilities  
Bit [14]  
Acknowledge  
Remote Fault.  
Bit [13:12]  
Bit [11:9]  
Bit [8:7]  
Bit [6]  
Reserved. Always read back as “0”  
Pause  
Half Duplex  
1 = Support half duplex  
0 = Do not support half duplex  
Bit [5]  
Full duplex  
1 = Support full duplex  
0 = Do not support full duplex  
Bit [4:0]  
Reserved. Always read back as “0”  
13.10.5 Expansion Register  
MII Address: h06  
Read Only  
Bit [15:2]  
Bit [1]  
Reserved. Always read back as “0”  
Page Received  
1 = A new page has been received  
0 = A new page has not been received  
Bit [0]  
Reserved. Always read back as “0”  
13.10.6 Extended Status Register  
MII Address: h15  
Read Only  
Bit [15]  
Bit [14]  
Bit [13:0]  
1000 Full Duplex  
1 = Support 1000 full duplex operation (Default)  
0 = Do not support 1000 full duplex operation  
1000 Half Duplex  
1 = Support 1000 half duplex operation (Default)  
0 = Do not support 1000 half duplex operation  
Reserved. Always read back as “0”  
76  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
14.0 BGA and Ball Signal Descriptions  
14.1 BGA Views (Top-View)  
14.1.1 Encapsulated View  
1
2
3
4
5
6
7
8
9
1 0  
1 1  
1 3  
1 2  
1 6  
1 3  
1 9  
1 4  
3 3  
1 5  
3 6  
1 6  
3 9  
1 7  
4 2  
1 8  
4 5  
1 9  
2 0  
2 1  
K 1  
2 2  
2 3  
2 4  
2 5  
2 6  
2 7  
2 8  
2 9  
L A _ D L A _ D L A _ D L A _ D L A _ D L A _ A L A _ O L A _ A L A _ A L A _ A L A _ A L A _ D L A _ D L A _ D L A _ D L A _ D O E _ C L A _ C T R U N M I R R M I R R  
S T R O T S T O  
A
B
C
S C L S D A  
4
7
1 0  
1 3  
1 5  
4
E 0 _  
8
L K 0 L K 0  
O R 4 O R 1  
B E  
D 0  
U T 7  
L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ A L A _ O L A _ A L A _ A L A _ A L A _ A L A _ D L A _ D L A _ D L A _ D L A _ D O E _ C L A _ C L A _ D M I R R M I R R T R U N R E S E  
T S T O T S T O  
U T 8 U T 3  
1
3
6
9
1 2  
1 4 D S C _ E 1 _  
7
1 2  
1 5  
1 8  
3 2  
3 5  
3 8  
4 1  
4 4  
L K 1 L K 1  
6 2  
O R 5 O R 2  
K 2 R V E D  
L A _ C L A _ D L A _ D L A _ D L A _ D L A _ D L A _ A L A _ O L A _ W T _ M O L A _ A L A _ A L A _ A L A _ A L A _ D L A _ D L A _ D L A _ D O E _ C L A _ C  
T R U N M I R R M I R R A U T O T S T O T S T O T S T O T S T O  
P _ D  
L K  
0
2
5
8
1 1  
3
E _ E _  
D E 1  
1 1  
1 4  
1 7  
2 0  
3 4  
3 7  
4 0  
4 3  
L K 2 L K 2  
K 0  
O R 3 O R 0  
F D U T 1 1 U T 9 U T 4 U T 0  
A G N L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ A L A _ A L A _ W L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D S C A N S C A N T S T O T S T O T S T O T S T O T S T O T S T O  
D
E
F
D
1 7  
1 9  
2 1  
2 3  
2 5  
2 7  
2 9  
3 1  
6
1 0  
E 0 _  
4 9  
5 1  
5 3  
5 5  
5 7  
5 9  
6 1  
6 3  
4 7  
C O L C L K U T 1 4 U T 1 3 U T 1 2 U T 1 0 U T 5 U T 1  
S C A N  
L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ A L A _ A L A _ W L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D R E S E L A _ D  
S C A N T S T O M 2 6 _ M 2 6 _  
L I N K U T 1 5 C R S T X E R  
T S T O T S T O  
U T 6 U T 2  
S C L K  
M O D  
1 6  
1 8  
2 0  
2 2  
2 4  
2 6  
2 8  
3 0  
5
9
E 1 _  
4 8  
5 0  
5 2  
5 4  
5 6  
5 8  
6 0 R V E D 4 6  
E
M 2 6 _  
M 2 6 _  
T X C L  
T X E N  
K
M 2 6 _ M 2 6 _ M 2 6 _  
M T X R X D R X C L  
A V C R E S I S C A N L B _ D L B _ D  
V C C V C C V C C V C C V C C  
C
N _  
E N  
6 3  
6 2  
C L K  
V
K
R E S E  
T O UT  
_
M 2 6 _ M 2 6 _ M 2 6 _  
L B _ C  
L K  
L B _ D L B _ D L B _ D  
M 2 6 _ M 2 6 _  
R X E R C O L  
G
H
J
T X D 1 T X D 1 R X D 1  
4 7 6 1 6 0  
4
5
5
M 2 6 _ M 2 6 _ M 2 6 _ M 2 6 _ M 2 6 _  
L B _ D L B _ D L B _ D L B _ D L B _ D  
4 6 4 5 4 4 5 9 5 8  
T X D 1 T X D 1 R X D 1 R X D 1 R X D 1  
2
3
2
3
4
M 2 6 _ M 2 6 _  
M 2 6 _ M 2 6 _  
L B _ D L B _ D L B _ D L B _ D L B _ D  
4 3 4 2 4 1 5 7 5 6  
M 2 6 _  
R X D 9  
T X D 1 T X D 1  
R X D 1 R X D 1  
0
1
0
1
L B _ D L B _ D L B _ D L B _ D L B _ D  
M 2 6 _ M 2 6 _ M 2 6 _ M 2 6 _ M 2 6 _  
T X D 9 T X D 8 R X D 6 R X D 7 R X D 8  
K
L
V D D V D D  
V D D V D D  
4 0  
3 9  
3 8  
5 5  
5 4  
L B _ D L B _ D L B _ D L B _ D L B _ D  
3 7 3 6 3 5 5 3 5 2  
M 2 6 _ M 2 6 _ M 2 6 _ M 2 6 _ M 2 6 _  
T X D 4 T X D 6 R X D 3 R X D 4 R X D 5  
L B _ D L B _ D L B _ D L B _ D L B _ D  
M 2 6 _ M 2 6 _ M 2 6 _ M 2 6 _ M 2 6 _  
T X D 7 T X D 5 R X D 0 R X D 1 R X D 2  
M
N
P
V D D  
V D D  
V S S V S S V S S V S S V S S V S S V S S  
V S S V S S V S S V S S V S S V S S V S S  
V S S V S S V S S V S S V S S V S S V S S  
V S S V S S V S S V S S V S S V S S V S S  
V S S V S S V S S V S S V S S V S S V S S  
V S S V S S V S S V S S V S S V S S V S S  
V S S V S S V S S V S S V S S V S S V S S  
V D D  
V D D  
3 4  
3 3  
3 2  
5 1  
5 0  
G R E F  
L B _ A L B _ A L B _ A L B _ D L B _ D  
M 2 6 _ M 2 6 _  
_ C L K  
V C C  
V C C  
V C C  
V C C  
V C C  
V C C  
V C C  
V C C  
1 8  
1 9  
2 0  
4 9  
4 8  
T X D 2 T X D 3  
1
G R E F  
L B _ A L B _ A L B _ A L B _ W L B _  
M 2 6 _ M 2 6 _  
M D I O _ C L K  
T X D 0 T X D 1  
0
1 5 1 6 1 7 E 0 _ W E 1 _  
L B _ A L B _ A L B _ A L B _ A L B _ A  
M 2 5 _ M 2 5 _  
C R S T X E R  
M _ C L  
M D C  
K
R
T
1 0  
1 1  
1 2  
1 3  
1 4  
M 2 5 _  
M 2 5 _ M 2 5 _ M 2 5 _  
V C C T X C L  
M T X R X D R X C L  
T X E N  
K C L K  
L B _ A L B _ A L B _ A L B _ A L B _ A  
M 2 5 _  
5
6
7
8
9
V
K
M 2 5 _ M 2 5 _ M 2 5 _  
L B _ O L B _ O T _ M O L B _ D L B _ D  
M 2 5 _ M 2 5 _  
R X E R C O L  
U
V
V D D  
V D D  
V D D  
V D D  
V C C T X D 1 T X D 1 R X D 1  
E 0 _  
E 1 _ D E 0  
3 1  
3 0  
4
5
5
M 2 5 _ M 2 5 _ M 2 5 _ M 2 5 _ M 2 5 _  
L B _ A L B _ O L B _ W L B _ D L B _ D  
T X D 1 T X D 1 R X D 1 R X D 1 R X D 1  
D S C _ E _ E _ 2 9 2 8  
2
3
2
3
4
M 2 5 _ M 2 5 _  
M 2 5 _ M 2 5 _  
L B _ D L B _ A L B _ A L B _ D L B _ D  
M 2 5 _  
R X D 9  
W
Y
T X D 1 T X D 1  
R X D 1 R X D 1  
1 5  
3
4
2 7  
2 6  
0
1
0
1
L B _ D L B _ D L B _ D L B _ D L B _ D  
M 2 5 _ M 2 5 _ M 2 5 _ M 2 5 _ M 2 5 _  
R X D 6 T X D 8 T X D 9 R X D 7 R X D 8  
V D D V D D  
V D D V D D  
1 4 1 3 1 2 2 5 2 4  
L B _ D L B _ D L B _ D L B _ D L B _ D  
M 2 5 _ M 2 5 _ M 2 5 _ M 2 5 _ M 2 5 _  
T X D 6 T X D 7 R X D 3 R X D 4 R X D 5  
A
A
1 1  
1 0  
9
2 3  
2 2  
L B _ D L B _ D L B _ D L B _ D L B _ D  
M 2 5 _ M 2 5 _ M 2 5 _ M 2 5 _ M 2 5 _  
T X D 4 T X D 5 R X D 0 R X D 1 R X D 2  
A
B
8
7
6
2 1  
2 0  
L B _ D L B _ D L B _ D L B _ D L B _ D  
M 2 5 _ M 2 5 _ M 2 3 _ M 2 3 _ M 2 3 _  
T X D 2 T X D 3 C R S R X D 0 R X D 1  
A
C
5
4
3
1 9  
1 8  
L B _ D L B _ D L B _ D L B _ D L B _ D  
M 2 5 _ M 2 5 _ M 2 3 _ M 2 3 _ M 2 3 _  
T X D 0 T X D 1 T X D 1 T X D 0 T X E N  
A
D
V C C V C C V C C V C C V C C  
2
1
0
1 7  
1 6  
M 0 _ T M 0 _ T M 0 _ T M 3 _ T M 3 _ T M 3 _ R M 5 _ T M 5 _ T M 5 _ R M 8 _ T M 8 _ T M 8 _ R M 1 0 _ M 1 0 _ M 1 0 _ M 1 3 _ M 1 6 _ M 1 5 _ M 1 6 _ M 1 5 _ M 1 5 _ M 1 8 _ M 1 8 _ M 1 8 _ M 2 0 _ M 2 0 _ M 2 0 _ M 2 2 _  
X E N X D 0 X D 1 X D 1 X E N X D 0 X D 1 X E N X D 0 X D 1 X E N X D 0 T X D 1 T X E N R X D 0 T X D 1 T X D 0 T X D 1 R X D 1 T X E N R X D 0 T X D 1 T X E N R X D 0 T X D 1 T X E N R X D 0 R X D 1  
A
E
M 0 _ R M 0 _ R M 0 _ C M 3 _ T M 3 _ C M 3 _ R M 5 _ T M 5 _ C M 5 _ R M 8 _ T M 8 _ C M 8 _ R M 1 0 _ M 1 0 _ M 1 0 _ M 1 3 _ M 1 3 _ M 1 3 _ M 1 4 _ M 1 6 R M 1 5 _ M 1 7 _ M 1 7 _ M 1 8 _ M 2 0 _ M 2 0 _ M 2 0 _ M 2 2 _ M 2 2 _  
A F  
X D 1 X D 0  
R S  
X D 0  
R S  
X D 1 X D 0  
R S  
X D 1 X D 0  
R S  
X D 1 T X D 0 C R S R X D 1 T X D 0 C R S R X D 1 C R S X D 0 R X D 1 R X D 0 C R S R X D 1 T X D 0 C R S R X D 1 R X D 0 C R S  
M 1 _ T M 1 _ T M 1 _ T M 2 _ T M 2 _ C M 4 _ T M 4 _ C M 6 _ T M 6 _ C M 7 _ T M 7 _ C M 9 _ T M 9 _ C M 1 1 _ M 1 1 _ M 1 2 _ M 1 2 _ M 1 4 _ M 1 5 _ M 1 6 _ M 1 6 _ M 1 8 _ M 1 8 _ M 1 9 _ M 1 9 _ M 2 1 _ M 2 1 _ M 2 2 _ M 2 2 _  
A
G
X E N X D 0 X D 1 X D 1  
R S  
X D 1  
R S  
X D 1  
R S  
X D 1  
R S  
X D 1  
R S T X D 1 C R S T X D 1 C R S T X D 1 T X D 0 T X D 1 C R S T X D 0 C R S T X D 1 C R S T X D 1 C R S T X E N T X D 0  
M 1 _ R M 1 _ C M 2 _ T M 2 _ R M 4 _ T M 4 _ R M 6 _ T M 6 _ R M 7 _ T M 7 _ R M 9 _ T M 9 _ R M 1 1 _ M 1 1 _ M 1 2 _ M 1 2 _ M 1 4 _ M 1 4 _ M 1 3 _ M 1 5 _ M 1 7 _ M 1 7 _ M 1 9 _ M 1 9 _ M 2 1 _ M 2 1 _ M 2 2 _  
A
H
X D 0  
R S  
X D 0 X D 0 X D 0 X D 0 X D 0 X D 0 X D 0 X D 0 X D 0 X D 0 T X D 0 R X D 0 T X D 0 R X D 0 T X D 0 R X D 0 R X D 0 C R S T X D 0 R X D 1 T X D 0 R X D 0 T X D 0 R X D 0 T X D 1  
M 1 _ R M 2 _ T M 2 _ R M 4 _ T M 4 _ R M 6 _ T M 6 _ R M 7 _ T M 7 _ R M 9 _ T M 9 _ R M 1 1 _ M 1 1 _ M 1 2 _ M 1 2 _ M 1 4 _ M 1 4 _ M 1 6 _ M 1 3 _ M 1 7 _ M 1 7 _ M 1 9 _ M 1 9 _ M 2 1 _ M 2 1 _  
X D 1 X E N X D 1 X E N X D 1 X E N X D 1 X E N X D 1 X E N X D 1 T X E N R X D 1 T X E N R X D 1 T X E N R X D 1 T X E N T X E N T X E N T X D 1 T X E N R X D 1 T X E N R X D 1  
A J  
1
2
3
4
5
6
7
8
9
1 0  
1 1  
1 2  
1 3  
1 4  
1 5  
1 6  
1 7  
1 8  
1 9  
2 0  
2 1  
2 2  
2 3  
2 4  
2 5  
2 6  
2 7  
2 8  
2 9  
77  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
14.2 Ball – Signal Descriptions  
All pins are CMOS type; all Input Pins are 5 Volt tolerance; and all Output Pins are 3.3 CMOS drive.  
14.2.1 Ball Signal Descriptions  
Ball Signal Descriptions Table  
Ball No(s)  
Symbol  
I/O  
Description  
I2C Interface Note: Use I2C and Serial control interface to configure the system  
SCL  
SDA  
Output  
I2C Data Clock  
I2C Data I/O  
A24  
I/O-TS with pull up  
A25  
Serial Control Interface  
STROBE  
Input with weak internal Serial Strobe Pin  
pull up  
A26  
D0  
Input  
Serial Data Input  
B26  
AUTOFD  
Output with pull up  
Serial Data Output (AutoFD)  
Frame Bank A– Data Bit [63:0]  
C25  
Frame Buffer Interface  
LA_D[63:0]  
I/O-TS with pull up  
D20, B21, D19, E19,D18,  
E18, D17, E17, D16, E16,  
D15, E15, D14, E14, D13,  
E13, D21, E21, A18, B18,  
C18, A17, B17, C17, A16,  
B16, C16, A15, B15, C15,  
A14, B14, D9, E9, D8, E8,  
D7, E7, D6, E6, D5, E5, D4,  
E4, D3, E3, D2, E2, A7, B7,  
A6, B6, C6, A5, B5, C5, A4,  
B4, C4, A3, B3, C3, B2, C2  
LA_A[20:3]  
LA_ADSC#  
Output  
Frame Bank A – Address Bit [20:3]  
C14, A13, B13, C13, A12,  
B12, C12, A11, B11, C11,  
D11, E11, A10, B10, D10,  
E10, A8, C7  
Output with pull up  
Frame Bank  
Control  
A
Address Status  
B8  
LA_CLK  
LA_WE#  
Output  
Frame Bank A Clock Input  
C1  
C9  
Output with pull up  
Frame Bank A Write Chip Select for  
one layer SRAM application  
LA_WE0#  
LA_WE1#  
Output with pull up  
Output with pull up  
Frame Bank A Write Chip Select for  
lower layer of two layers SRAM  
application  
D12  
E12  
Frame Bank A Write Chip Select for  
upper layer of two layers SRAM  
application  
78  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Ball Signal Descriptions Table (continued)  
Ball No(s)  
Symbol  
LA_OE#  
I/O  
Description  
Output with pull up  
Output with pull up  
Frame Bank A Read Chip Select for  
one layer SRAM application  
C8  
A9  
LA_OE0#  
LA_OE1#  
LB_D[63:0]  
Frame Bank A Read Chip Select for  
lower layer of two layers SRAM  
application  
Output with pull up  
I/O-TS with pull up.  
Frame Bank A Read Chip Select for  
upper layer of two layers SRAM  
application  
B9  
Frame Bank B– Data Bit [63:0]  
F4, F5, G4, G5, H4, H5, J4,  
J5, K4, K5, L4, L5, M4, M5,  
N4, N5, G3, H1, H2, H3, J1,  
J2, J3, K1, K2, K3, L1, L2,  
L3, M1, M2, M3, U4, U5, V4,  
V5, W4, W5, Y4, Y5, AA4,  
AA5, AB4, AB5, AC4, AC5,  
AD4, AD5, W1, Y1, Y2, Y3,  
AA1, AA2, AA3, AB1, AB2,  
AB3, AC1, AC2, AC3, AD1,  
AD2, AD3  
LB_A[20:3]  
LB_ADSC#  
Output  
Frame Bank B – Address Bit [20:3]  
N3, N2, N1, P3, P2, P1, R5,  
R4, R3, R2, R1, T5, T4, T3,  
T2, T1, W3, W2  
Output with pull up  
Frame Bank  
Control  
B
Address Status  
V1  
LB_CLK  
LB_WE#  
Output  
Frame Bank B Clock Input  
G1  
V3  
Output with pull up  
Frame Bank B Write Chip Select for  
one layer SRAM application  
LB_WE0#  
LB_WE1#  
Output with pull up  
Output with pull up  
Frame Bank B Write Chip Select for  
lower layer of two layers SRAM  
application  
P4  
P5  
Frame Bank B Write Chip Select for  
upper layer of two layers SRAM  
application  
LB_OE#  
Output with pull up  
Output with pull up  
Frame Bank B Read Chip Select for  
one layer SRAM application  
V2  
U1  
LB_OE0#  
Frame Bank B Write Chip Select for  
lower layer of two layers SRAM  
application  
LB_OE1#  
Output with pull up  
Output  
Frame Bank B Write Chip Select for  
upper layer of two layers SRAM  
application  
U2  
Fast Ethernet Access Ports [23:0] RMII  
M_MDC  
MII Management Data Clock  
(Common for all MII Ports [23:0])  
R28  
79  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Ball Signal Descriptions Table (continued)  
Ball No(s)  
Symbol  
M_MDIO  
I/O  
Description  
I/O-TS with pull up  
MII Management Data I/O  
(Common for all MII Ports –[23:0]))  
P28  
R29  
M_CLKI  
Input  
Reference Input Clock  
M[23:0]_RXD[1]  
Input with weak internal Ports [23:0] – Receive Data Bit [1]  
pull up resistors.  
AC29, AE28, AJ27, AF27,  
AJ25, AF24, AH23, AE19,  
AF21, AJ19, AF18, AJ17,  
AJ15, AF15, AJ13, AF12,  
AJ11, AJ9, AF9, AJ7, AF6,  
AJ5, AJ3, AF1  
M[23:0]_RXD[0]  
M[23:0]_CRS_DV  
M[23:0]_TXEN  
M[23:0]_TXD[1]  
M[23:0]_TXD[0]  
Input with weak internal Ports [23:0] – Receive Data Bit [0]  
pull up resistors  
AC28, AF28, AH27, AE27,  
AH25, AE24, AF22, AF20,  
AE21, AH19, AH20, AH17,  
AH15, AE15, AH13, AE12,  
AH11, AH9, AE9, AH7, AE6,  
AH5, AH2, AF2  
Input with weak internal Ports [23:0] – Carrier Sense and  
AC27, AF29, AG27, AF26,  
AG25, AG23, AF23, AG21,  
AH21, AF19, AF17, AG17,  
AG15, AF14, AG13, AF11,  
AG11, AG9, AF8, AG7, AF5,  
AG5, AH3, AF3  
pull down resistors.  
Receive Data Valid  
I/O- TS with pull up, slew  
Ports [23:0] – Transmit Enable  
Strap option for RMII/GPSI  
AD29, AG28, AJ26, AE26,  
AJ24, AE23, AJ22, AJ20,  
AE20, AJ18, AJ21, AJ16,  
AJ14, AE14, AJ12, AE11,  
AJ10, AJ8, AE8, AJ6, AE5,  
AJ4, AG1, AE1  
Output, slew  
Output, slew  
Ports [23:0] – Transmit Data Bit [1]  
Ports [23:0] – Transmit Data Bit [0]  
AD27, AH28, AG26, AE25,  
AG24, AE22, AJ23, AG20,  
AE18, AG18, AE16, AG16,  
AG14, AE13, AG12, AE10,  
AG10, AG8, AE7, AG6, AE4,  
AG4, AG3, AE3  
AD28, AG29, AH26, AF25,  
AH24, AG22, AH22, AE17,  
AG19, AH18, AF16, AH16,  
AH14, AF13, AH12, AF10,  
AH10, AH8, AF7, AH6, AF4,  
AH4, AG2, AE2  
GMII/TBI Gigabit Ethernet Access Ports 0 & 1  
M25_TXD[15:0]  
Transmit Data Bit [15:0]  
[7:0] - GMII  
U26, U25, V26, V25, W26,  
W25, Y27, Y26, AA26, AA25,  
AB26, AB25, AC26, AC25,  
AD26, AD25  
Output  
[9:0] - TBI  
[15:0] - 2G  
80  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Ball Signal Descriptions Table (continued)  
Ball No(s)  
Symbol  
I/O  
Description  
Receive Data Valid  
M25_RX_DV  
M25_RX_ER  
M25_CRS  
Input w/ pull down  
Input w/ pull up  
Input w/ pull down  
Input w/ pull up  
Input w/ pull up  
Input w/ pull up  
T28  
U28  
R25  
U29  
T29  
Receive Error  
Carrier Sense  
Collision Detected  
Receive Clock  
M25_COL  
M25_RXCLK  
M25_RXD[15:0]  
Receive Data Bit [15:0]  
U27, V29, V28, V27, W29,  
W28, W27, Y29, Y28, Y25,  
AA29, AA28, AA27, AB29,  
AB28, AB27  
[7:0] - GMII  
[9:0] - TBI  
[15:0] - 2G  
M25_TX_EN  
M25_TX_ER  
M25_MTXCLK  
M25_ TXCLK  
GREF_CLK0  
M26_TXD[15:0]  
Transmit Data Enable  
Transmit Error  
Output w/ pull up  
Output w/ pull up  
Input w/ pull down  
Output  
T26  
R26  
T27  
T25  
P29  
MII Mode Transmit Clock  
Gigabit Transmit Clock  
Gigabit Reference Clock  
Transmit Data Bit [15:0]  
Input w/ pull up  
G26, G25, H26, H25, J26,  
J25, K25, K26, M25, L26,  
M26, L25, N26, N25, P26,  
P25  
Output  
[7:0] - GMII  
[9:0] - TBI  
[15:0] - 2 G  
M26_RX_DV  
M26_RX_ER  
M26_CRS  
Input w/ pull down  
Input w/ pull up  
Input w/ pull down  
Input w/ pull up  
Input w/ pull up  
Input w/ pull up  
Receive Data Valid  
Receive Error  
F28  
G28  
E25  
G29  
F29  
Carrier Sense  
M26_COL  
Collision Detected  
Receive Clock  
M26_RXCLK  
M26_RXD[15:0]  
Receive Data Bit [15:0]  
G27,H29, H28, H27, J29,  
J28, J27, K29, K28, K27,  
L29, L28, L27, M29, M28,  
M27  
[7:0] - GMII  
[9:0] - TBI  
[15:0] - 2 G  
M26_TX_EN  
M26_TX_ER  
M26_MTXCLK  
M26_ TXCLK  
GREF_CLK1  
Output w/ pull up  
Output w/ pull up  
Input w/ pull down  
Output  
Transmit Data Enable  
Transmit Error  
F26  
E26  
F27  
F25  
N29  
MII Mode Transmit Clock  
Gigabit Transmit Clock  
Gigabit Reference Clock  
Input w/ pull up  
81  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Ball Signal Descriptions Table (continued)  
Ball No(s)  
LED Interface  
Symbol  
I/O  
Description  
LED_CLK/TSTOUT0  
LED_SYN/TSTOUT1  
LED_BIT/TSTOUT2  
I/O- TS with pull up  
I/O- TS with pull up  
I/O- TS with pull up  
I/O- TS with pull up  
LED Serial Interface Output Clock  
C29  
D29  
E29  
B28  
LED Output Data Stream Envelope  
LED Serial Data Output Stream  
G1_RXTX#/TSTOUT  
3
LED for Gigabit port 1 (receive +  
transmit)  
G1_DPCOL#/TSTOU  
T4  
I/O- TS with pull up  
C28  
LED for Gigabit port 1 (full duplex +  
collision)  
G1_LINK#/TSTOUT5  
I/O- TS with pull up  
I/O- TS with pull up  
D28  
E28  
LED for Gigabit port 1  
G2_RXTX#/TSTOUT  
6
LED for Gigabit port 2 (receive +  
transmit)  
G2_DPCOL#/TSTOU  
T7  
I/O- TS with pull up  
A27  
LED for Gigabit port 2 (full duplex +  
collision)  
G2_LINK#/TSTOUT8  
I/O- TS with pull up  
B27  
C27  
LED for Gigabit port 2  
System start operation  
INIT_DONE/TSTOUT I/O- TS with pull up  
9
INIT_START/TSTOU  
T10  
I/O- TS with pull up  
I/O- TS with pull up  
I/O- TS with pull up  
Start initialization  
D27  
C26  
D26  
D25  
D24  
E24  
CHECKSUM_OK/TS  
TOUT11  
EEPROM read OK  
FCB_ERR/TSTOUT1  
2
FCB memory self test fail  
MCT memory self test fail  
Processing memory self test  
Memory self test done  
MCT_ERR/TSTOUT1 I/O- TS with pull up  
3
BIST_IN_PRC/TSTO  
UT14  
I/O- TS with pull up  
BIST_DONE/TSTOU  
T15  
I/O- TS with pull up  
Trunk Enable  
TRUNK0  
TRUNK1  
TRUNK2  
Input w/ weak internal pull Trunk Port Enable  
down resistors  
C22  
Input w/ weak internal pull Trunk Port Enable  
down resistors  
A21  
Input w/ weak internal pull Trunk Port Enable  
down resistors  
B24  
Test Facility  
82  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Ball Signal Descriptions Table (continued)  
Ball No(s)  
Symbol  
T_MODE0  
I/O  
Description  
I/O-TS  
I/O-TS  
Test Pin – Set Mode upon Reset, and  
provides NAND Tree test output  
during test mode (Pull Up)  
U3  
T_MODE1  
Test Pin – Set Mode upon Reset, and  
provides NAND Tree test output  
during test mode (Pull Up)  
C10  
T_MODE1 T_MODE0  
0
0
1
1
0
1
0
NandTree  
Reserved  
Reserved  
Regular  
1
operation  
T_MODE0 and T_MODE1 are used  
for manufacturing tests. The signals  
should both be set to 1 for regular  
operation.  
SCAN_EN  
Input with pull down  
Input with pull down  
Scan Enable  
F3  
0 - Normal mode (unconnected)  
1 - Enables Test mode.  
SCANMODE  
E27  
0 - Normal mode (unconnected)  
System Clock, Power, and Ground Pins  
SCLK  
VDD  
Input  
System Clock at 100 MHz  
+2.5 Volt DC Supply  
E1  
Power  
K12, K13, K17,K18 M10,  
N10, M20, N20, U10, V10,  
U20, V20, Y12, Y13, Y17,  
Y18  
VCC  
VSS  
Power  
+3.3 Volt DC Supply  
Ground  
F13, F14, F15, F16, F17, N6,  
P6, R6, T6, U6, N24, P24,  
R24, T24, U24, AD13, AD14,  
AD15, AD16, AD17  
Power Ground  
M12, M13, M14, M15, M16,  
M17, M18, N12, N13, N14,  
N15, N16, N17, N18, P12,  
P13, P14, P15, P16, P17,  
P18, R12, R13, R14, R15,  
R16, R17, R18, T12, T13,  
T14, T15, T16, T17, T18,  
U12, U13, U14, U15, U16,  
U17, U18, V12, V13, V14,  
V15, V16, V17, V18,  
AVCC  
AGND  
Analog Power  
Analog Ground  
Analog +2.5 Volt DC Supply  
Analog Ground  
F1  
D1  
83  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Ball Signal Descriptions Table (continued)  
Ball No(s) Symbol  
I/O  
Description  
MISC  
SCANCOL  
Input  
Scans the Collision signal of Home  
PHY  
D22  
SCANCLK  
Input/ output  
Clock for scanning Home PHY  
collision and link  
D23  
SCANLINK  
RESIN#  
Input  
Link up signal from Home PHY  
Reset Input  
E23  
Input  
F2  
RESETOUT#  
Reserved  
Output  
I/O-TS  
Reset PHY  
G2  
Reserved Pins. Leave  
unconnected.  
E20, B25  
Bootstrap Pins (Default= pull up, 1= pull up 0= pull down)  
After reset TSTOUT0 to TSTOUT15 are used by the LED interface.  
TSTOUT0  
TSTOUT1  
TSTOUT2  
Default: Active High (1)  
GIGA Link polarity  
C29  
D29  
E29  
0 - Active low  
1 - Active high  
Default: Enable (1)  
RMII MAC Power Saving Enable  
0 - No power saving  
1 - Power saving  
Default: Enable (1)  
Recommend disable  
(0) with pull-down  
Giga Half Duplex Support  
0 - Disable  
1 - Enable  
TSTOUT[4:3]  
TSTOUT4  
C28, B28  
C28  
Reserved  
Default: SBRAM (1)  
Default: SCLK (1)  
Memory is SBRAM/ZBT  
0 - ZBT  
1 – Pipeline SBRAM  
TSTOUT5  
Scan Speed  
D28  
0 - ¼ SCLK(HPNA)  
1 - SCLK  
TSTOUT6  
TSTOUT7  
Reserved  
E28  
A27  
Default: 128 K x 32 or Memory Size  
128 K x 64 (1)  
0 - 256 K x 32 or 256 K x 64  
(4 M total)  
1 - 128 K x 32 or 128 K x 64  
(2 M total)  
84  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Ball Signal Descriptions Table (continued)  
Ball No(s)  
Symbol  
TSTOUT8  
I/O  
Default: Not Installed (1)  
Description  
EEPROM Installed  
B27  
C27  
D27  
C26  
0 - EEPROM installed  
1 - EEPROM not installed  
TSTOUT9  
TSTOUT10  
TSTOUT11  
Default:  
MCT  
FCB  
aging MCT Aging  
enable (1)  
0 - MCT aging disable  
1 - MCT aging enable  
Default:  
aging FCB Aging  
enable (1)  
0 - FCB aging disable  
1 - FCB aging enable  
Default: Timeout reset Timeout Reset  
enable (1)  
0 - Time out reset disable  
1 - Time out reset enable. Issue reset  
if any state machine did not go back  
to idle for 5 Sec.  
TSTOUT12  
TSTOUT13  
Default: Normal (1)  
Test Speed Up  
D26  
D25  
0 - Enable test speed up. Do not use.  
1 - Disable test speed up  
Default: Single depth (1)  
FDB RAM depth (1 or 2 layers)  
0 - Two layers  
1 - One layer  
TSTOUT14  
TSTOUT15  
Reserved.  
D24  
E24  
Default: Normal operation SRAM Test Mode  
0 - Enable test mode  
1 - Normal operation  
G0_TXEN, G0_TXER Default: PCS  
G1_TXEN, G1_TXER Default: PCS  
Giga0  
T26, R26  
F26, E26  
Mode: G0_TXEN G0_TXER  
0
0
MII  
2 G  
GMII  
PCS  
0
1
1
1
0
1
Giga1  
Mode: G1_TXEN G1_TXER  
0
0
MII  
0
1
0
1
2 G  
1
1
GMII  
PCS  
85  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Ball Signal Descriptions Table (continued)  
Ball No(s)  
Symbol  
I/O  
Description  
M[23:0]_TXEN  
Default: RMII  
0 – GPSI  
1 - RMII  
AD29, AG28, AJ26, AE26,  
AJ24, AE23, AJ22, AJ20,  
AE20, AJ18, AJ21, AJ16,  
AJ14, AE14, AJ12, AE11,  
AJ10, AJ8, AE8, AJ6, AE5,  
AJ4, AG1, AE1,  
P_D  
Must be pulled-down  
Default: 111  
C21  
Reserved. Must be pulled-down.  
OE_CLK[2:0]  
Programmable delay for internal  
OE_CLK from SCLK input. The  
OE_CLK is used for generating the  
OE0 and OE1 signals  
C19, B19, A19  
Suggested value is 001.  
LA_CLK[2:0]  
MIRROR[5:0]  
Default: 111  
Programmable delay for LA_CLK and  
LB_CLK from internal OE_CLK. The  
LA_CLK and LB_CLK delay from  
SCLK is the sum of the delay  
programmed in here and the delay in  
P_D[15:13].  
C20, B20, A20  
Suggested value is 011.  
Default: 111111  
Dedicated Port Mirror Mode. The first  
5 bits select the port to be mirrored.  
The last bit selects either ingress or  
egress data.  
B22, A22, C23, B23, A23,  
C24  
Note:  
# = Active low signal  
Input = Input signal  
In-ST = Input signal with Schmitt-Trigger  
Output = Output signal (Tri-State driver)  
Out-OD = Output signal with Open-Drain driver  
I/O-TS = Input & Output signal with Tri-State driver  
I/O-OD = Input & Output signal with Open-Drain driver  
14.3 Ball – Signal Name  
Ball – Signal Name Table  
Ball  
No.  
Signal  
Name  
Ball  
No.  
Signal  
Name  
Signal Name  
Ball No.  
LA_D[63]  
LA_D[62]  
LA_D[61]  
LA_D[60]  
LA_D[59]  
LA_D[58]  
D3  
LA_D[19]  
LA_D[18]  
LA_D[17]  
LA_D[16]  
LA_D[15]  
LA_D[14]  
A9  
B9  
F4  
F5  
G4  
G5  
LA_OE0#  
LA_OE1#  
LB_D[63]  
LB_D[62]  
LB_D[61]  
LB_D[60]  
D20  
E3  
D2  
E2  
A7  
B7  
B21  
D19  
E19  
D18  
E18  
86  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Ball – Signal Name Table (continued)  
Ball  
No.  
Signal  
Name  
Ball  
No.  
Signal  
Name  
Signal Name  
Ball No.  
H4  
LA_D[57]  
LA_D[56]  
LA_D[55]  
LA_D[54]  
LA_D[53]  
LA_D[52]  
LA_D[51]  
LA_D[50]  
LA_D[49]  
LA_D[48]  
LA_D[47]  
LA_D[46]  
LA_D[45]  
LA_D[44]  
LA_D[43]  
LA_D[42]  
LA_D[41]  
LA_D[40]  
LA_D[39]  
LA_D[38]  
LA_D[37]  
LA_D[36]  
LA_D[35]  
LA_D[34]  
LA_D[33]  
LA_D[32]  
LA_D[31]  
LA_D[30]  
LA_D[29]  
LA_D[28]  
A6  
LA_D[13]  
LA_D[12]  
LA_D[11]  
LA_D[10]  
LA_D[9]  
LA_D[8]  
LA_D[7]  
LA_D[6]  
LA_D[5]  
LA_D[4]  
LA_D[3]  
LA_D[2]  
LA_D[1]  
LA_D[0]  
LA_A[20]  
LA_A[19]  
LA_A[18]  
LA_A[17]  
LA_A[16]  
LA_A[15]  
LA_A[14]  
LA_A[13]  
LA_A[12]  
LA_A[11]  
LA_A[10]  
LA_A[9]  
LA_A[8]  
LA_A[7]  
LA_A[6]  
LA_A[5]  
LB_D[59]  
LB_D[58]  
LB_D[57]  
LB_D[56]  
LB_D[55]  
LB_D[54]  
LB_D[53]  
LB_D[52]  
LB_D[51]  
LB_D[50]  
LB_D[49]  
LB_D[48]  
LB_D[47]  
LB_D[46]  
LB_D[45]  
LB_D[44]  
LB_D[43]  
LB_D[42]  
LB_D[41]  
LB_D[40]  
LB_D[39]  
LB_D[38]  
LB_D[37]  
LB_D[36]  
LB_D[35]  
LB_D[34]  
LB_D[33]  
LB_D[32]  
LB_D[31]  
LB_D[30]  
D17  
B6  
H5  
J4  
E17  
D16  
E16  
D15  
E15  
D14  
E14  
D13  
E13  
D21  
E21  
A18  
B18  
C18  
A17  
B17  
C17  
A16  
B16  
C16  
A15  
B15  
C15  
A14  
B14  
D9  
C6  
A5  
J5  
B5  
K4  
K5  
L4  
L5  
M4  
M5  
N4  
N5  
G3  
H1  
H2  
H3  
J1  
C5  
A4  
B4  
C4  
A3  
B3  
C3  
B2  
C2  
C14  
A13  
B13  
C13  
A12  
B12  
C12  
A11  
B11  
C11  
D11  
E11  
A10  
B10  
D10  
E10  
J2  
J3  
K1  
K2  
K3  
L1  
L2  
L3  
M1  
M2  
M3  
U4  
U5  
E9  
D8  
E8  
87  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Ball – Signal Name Table (continued)  
Ball  
No.  
Signal  
Name  
Ball  
No.  
Signal  
Name  
Signal Name  
Ball No.  
V4  
LA_D[27]  
LA_D[26]  
LA_D[25]  
LA_D[24]  
LA_D[23]  
LA_D[22]  
LA_D[21]  
LA_D[20]  
LB_D[21]  
LB_D[20]  
LB_D[19]  
LB_D[18]  
LB_D[17]  
LB_D[16]  
LB_D[15]  
LB_D[14]  
LB_D[13]  
LB_D[12]  
LB_D[11]  
LB_D[10]  
LB_D[9]  
A8  
LA_A[4]  
LB_D[29]  
D7  
C7  
LA_A[3]  
V5  
LB_D[28]  
E7  
B8  
LA_ADSC#  
LA_CLK  
W4  
LB_D[27]  
D6  
C1  
W5  
LB_D[26]  
E6  
C9  
LA_WE#  
Y4  
LB_D[25]  
D5  
D12  
E12  
LA_WE0#  
Y5  
LB_D[24]  
E5  
LA_WE1#  
AA4  
LB_D[23]  
D4  
C8  
LA_OE#  
AA5  
LB_D[22]  
E4  
U2  
LB_OE1#  
AH7  
M[4]_RXD[0]  
M[3]_RXD[0]  
M[2]_RXD[0]  
M[1]_RXD[0]  
M[0]_RXD[0]  
AB4  
AB5  
AC4  
AC5  
AD4  
AD5  
W1  
R28  
P28  
MDC  
AE6  
MDIO  
AH5  
R29  
AC29  
AE28  
AJ27  
AF27  
AJ25  
AF24  
AH23  
AE19  
AF21  
AJ19  
AF18  
AJ17  
AJ15  
AF15  
AJ13  
AF12  
AJ11  
AJ9  
M_CLK  
AH2  
AF2  
M[23]_RXD[1]  
M[22]_RXD[1]  
M[21]_RXD[1]  
M[20]_RXD[1]  
M[19]_RXD[1]  
M[18]_RXD[1]  
M[17]_RXD[1]  
M[16]_RXD[1]  
M[15]_RXD[1]  
M[14]_RXD[1]  
M[13]_RXD[1]  
M[12]_RXD[1]  
M[11]_RXD[1]  
M[10]_RXD[1]  
M[9]_RXD[1]  
M[8]_RXD[1]  
M[7]_RXD[1]  
M[6]_RXD[1]  
AC27  
AF29  
AG27  
AF26  
AG25  
AG23  
AF23  
AG21  
AH21  
AF19  
AF17  
AG17  
AG15  
AF14  
AG13  
AF11  
AG11  
M[23]_CRS_DV  
M[22]_CRS_DV  
M[21]_CRS_DV  
M[20]_CRS_DV  
M[19]_CRS_DV  
M[18]_CRS_DV  
M[17]_CRS_DV  
M[16]_CRS_DV  
M[15]_CRS_DV  
M[14]_CRS_DV  
M[13]_CRS_DV  
M[12]_CRS_DV  
M[11]_CRS_DV  
M[10]_CRS_DV  
M[9]_CRS_DV  
M[8]_CRS_DV  
M[7]_CRS_DV  
Y1  
Y2  
Y3  
AA1  
AA2  
AA3  
AB1  
AB2  
AB3  
AC1  
AC2  
AC3  
AD1  
AD2  
AD3  
LB_D[8]  
LB_D[7]  
LB_D[6]  
LB_D[5]  
LB_D[4]  
LB_D[3]  
LB_D[2]  
LB_D[1]  
LB_D[0]  
88  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Ball – Signal Name Table (continued)  
Ball  
No.  
Signal  
Name  
Ball  
No.  
Signal  
Name  
Signal Name  
Ball No.  
AG9  
LB_A[20]  
LB_A[19]  
LB_A[18]  
LB_A[17]  
LB_A[16]  
LB_A[15]  
LB_A[14]  
LB_A[13]  
LB_A[12]  
LB_A[11]  
LB_A[10]  
LB_A[9]  
AF9  
M[5]_RXD[1]  
M[4]_RXD[1]  
M[3]_RXD[1]  
M[2]_RXD[1]  
M[1]_RXD[1]  
M[0]_RXD[1]  
M[23]_RXD[0]  
M[22]_RXD[0]  
M[21]_RXD[0]  
M[20]_RXD[0]  
M[19]_RXD[0]  
M[18]_RXD[0]  
M[17]_RXD[0]  
M[16]_RXD[0]  
M[15]_RXD[0]  
M[14]_RXD[0]  
M[13]_RXD[0]  
M[12]_RXD[0]  
M[11]_RXD[0]  
M[10]_RXD[0]  
M[9]_RXD[0]  
M[8]_RXD[0]  
M[7]_RXD[0]  
M[6]_RXD[0]  
M[5]_RXD[0]  
M[6]_TXD[0]  
M[5]_TXD[0]  
M[4]_TXD[0]  
M[3]_TXD[0]  
M[2]_TXD[0]  
M[6]_CRS_DV  
N3  
AJ7  
AF8  
M[5]_CRS_DV  
M[4]_CRS_DV  
M[3]_CRS_DV  
M[2]_CRS_DV  
M[1]_CRS_DV  
M[0]_CRS_DV  
M[23]_TXEN  
M[22]_TXEN  
M[21]_TXEN  
M[20]_TXEN  
M[19]_TXEN  
M[18]_TXEN  
M[17]_TXEN  
M[16]_TXEN  
M[15]_TXEN  
M[14]_TXEN  
M[13]_TXEN  
M[12]_TXEN  
M[11]_TXEN  
M[10]_TXEN  
M[9]_TXEN  
N2  
N1  
P3  
AF6  
AG7  
AF5  
AJ5  
AJ3  
AG5  
AH3  
P2  
AF1  
P1  
AC28  
AF28  
AH27  
AE27  
AH25  
AE24  
AF22  
AF20  
AE21  
AH19  
AH20  
AH17  
AH15  
AE15  
AH13  
AE12  
AH11  
AH9  
AF3  
R5  
R4  
R3  
R2  
R1  
T5  
AD29  
AG28  
AJ26  
AE26  
AJ24  
AE23  
AJ22  
AJ20  
AE20  
AJ18  
AJ21  
AJ16  
AJ14  
AE14  
AJ12  
AE11  
AJ10  
AJ8  
LB_A[8]  
T4  
LB_A[7]  
T3  
LB_A[6]  
T2  
LB_A[5]  
T1  
LB_A[4]  
W3  
W2  
V1  
LB_A[3]  
LB_ADSC#  
LB_CLK  
G1  
V3  
LB_WE#  
LB_WE0#  
LB_WE1#  
LB_OE#  
P4  
M[8]_TXEN  
P5  
M[7]_TXEN  
V2  
LB_OE0#  
M[5]_TXEN  
M[4]_TXEN  
M[3]_TXEN  
M[2]_TXEN  
M[1]_TXEN  
AE9  
M[6]_TXEN  
U1  
AE8  
AJ6  
AE5  
AJ4  
AG1  
AH8  
G27  
M26_RXD[15]  
M26_RXD[14]  
M26_RXD[13]  
M26_RXD[12]  
M26_RXD[11]  
AF7  
H29  
AH6  
H28  
AF4  
H27  
AH4  
J29  
89  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Ball – Signal Name Table (continued)  
Ball  
No.  
Signal  
Name  
Ball  
No.  
Signal  
Name  
Signal Name  
Ball No.  
J28  
M[0]_TXEN  
AG2  
M[1]_TXD[0]  
M[0]_TXD[0]  
M25_TXD[15]  
M25_TXD[14]  
M25_TXD[13]  
M25_TXD[12]  
M25_TXD[11]  
M25_TXD[10]  
M25_TXD[9]  
M25_TXD[8]  
M25_TXD[7]  
M25_TXD[6]  
M25_TXD[5]  
M25_TXD[4]  
M25_TXD[3]  
M25_TXD[2]  
M25_TXD[1]  
M25_TXD[0]  
M25_RXD[15]  
M25_RXD[14]  
M25_RXD[13]  
M25_RXD[12]  
M25_RXD[11]  
M25_RXD[10]  
M25_RXD[9]  
M25_RXD[8]  
M25_RXD[7]  
M25_RXD[6]  
M25_RXD[5]  
M25_RXD[4]  
M26_RXD[10]  
M26_RXD[9]  
M26_RXD[8]  
M26_RXD[7]  
M26_RXD[6]  
M26_RXD[5]  
M26_RXD[4]  
M26_RXD[3]  
M26_RXD[2]  
M26_RXD[1]  
M26_RXD[0]  
M26_TXD[15]  
M26_TXD[14]  
M26_TXD[13]  
M26_TXD[12]  
M26_TXD[11]  
M26_TXD[10]  
M26_TXD[9]  
M26_TXD[8]  
M26_TXD[7]  
M26_TXD[6]  
M26_TXD[5]  
M26_TXD[4]  
M26_TXD[3]  
M26_TXD[2]  
M26_TXD[1]  
M26_TXD[0]  
M26_RX_DV  
M26_RX_ER  
M26_CRS  
AE1  
M[23]_TXD[1]  
M[22]_TXD[1]  
M[21]_TXD[1]  
M[20]_TXD[1]  
M[19]_TXD[1]  
M[18]_TXD[1]  
M[17]_TXD[1]  
M[16]_TXD[1]  
M[15]_TXD[1]  
M[14]_TXD[1]  
M[13]_TXD[1]  
M[12]_TXD[1]  
M[11]_TXD[1]  
M[10]_TXD[1]  
M[9]_TXD[1]  
M[8]_TXD[1]  
M[7]_TXD[1]  
M[6]_TXD[1]  
M[5]_TXD[1]  
M[4]_TXD[1]  
M[3]_TXD[1]  
M[2]_TXD[1]  
M[1]_TXD[1]  
M[0]_TXD[1]  
M[23]_TXD[0]  
M[22]_TXD[0]  
M[21]_TXD[0]  
M[20]_TXD[0]  
M[19]_TXD[0]  
AE2  
U26  
J27  
AD27  
AH28  
AG26  
AE25  
AG24  
AE22  
AJ23  
AG20  
AE18  
AG18  
AE16  
AG16  
AG14  
AE13  
AG12  
AE10  
AG10  
AG8  
K29  
K28  
K27  
L29  
L28  
L27  
M29  
M28  
M27  
G26  
G25  
H26  
H25  
J26  
U25  
V26  
V25  
W26  
W25  
Y27  
Y26  
AA26  
AA25  
AB26  
AB25  
AC26  
AC25  
AD26  
AD25  
U27  
J25  
K25  
K26  
M25  
L26  
M26  
L25  
N26  
N25  
P26  
P25  
F28  
G28  
E25  
V29  
AE7  
V28  
AG6  
V27  
AE4  
W29  
W28  
W27  
Y29  
AG4  
AG3  
AE3  
AD28  
AG29  
AH26  
AF25  
AH24  
Y28  
Y25  
AA29  
AA28  
90  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Ball – Signal Name Table (continued)  
Ball  
No.  
Signal  
Name  
Ball  
No.  
Signal  
Name  
Signal Name  
Ball No.  
G29  
M[18]_TXD[0]  
AA27  
AB29  
AB28  
AB27  
R26  
T25  
T26  
T28  
U28  
R25  
U29  
T29  
U18  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
N14  
N15  
N16  
N17  
N18  
P12  
P13  
P14  
P15  
P16  
M25_RXD[3]  
M25_RXD[2]  
M25_RXD[1]  
M25_RXD[0]  
M25_TX_ER  
M25_TXCLK  
M25_TX_EN  
M25_RX_DV  
M25_RX_ER  
M25_CRS  
M25_COL  
M25_RXCLK  
VSS  
M26_COL  
AG22  
AH22  
AE17  
AG19  
AH18  
AF16  
AH16  
AH14  
AF13  
AH12  
AF10  
AH10  
B27  
M[17]_TXD[0]  
F29  
F26  
E26  
F25  
E24  
D24  
D25  
D26  
C26  
D27  
C27  
N12  
N13  
K17  
K18  
M10  
N10  
M20  
N20  
U10  
V10  
U20  
V20  
Y12  
Y13  
Y17  
Y18  
K12  
K13  
M26_RXCLK  
M26_TX_EN  
M26_TX_ER  
M26_TXCLK  
M[16]_TXD[0]  
M[15]_TXD[0]  
M[14]_TXD[0]  
M[13]_TXD[0]  
BIST_DONE/TSTOUT[15]  
M[12]_TXD[0]  
BIST_IN_PRC/TST0UT[14]  
M[11]_TXD[0]  
MCT_ERR/TSTOUT[13]  
M[10]_TXD[0]  
FCB_ERR/TSTOUT[12]  
M[9]_TXD[0]  
CHECKSUM_OK/TSTOUT[11]  
M[8]_TXD[0]  
INIT_START/TSTOUT[10]  
M[7]_TXD[0]  
INIT_DONE/TSTOUT[9]  
G2_LINK#/TSTOUT[8]  
G2_DPCOL#/TSTOUT[7]  
G2_RXTX#/TSTOUT[6]  
G1_LINK#/TSTOUT[5]  
G1_DPCOL#/TSTOUT[4]  
G1_RXTX#/TSTOUT[3]  
LED_BIT/TSTOUT[2]  
LED_SYN/TSTOUT[1]  
LED_CLK/TSTOUT[0]  
GREF_CLK1  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
A27  
VSS  
E28  
VSS  
D28  
VSS  
C28  
VSS  
B28  
VSS  
E29  
VSS  
D29  
VSS  
C29  
VSS  
N29  
GREF_CLK0  
VSS  
P29  
SCAN_EN  
VSS  
F3  
SCLK  
VSS  
E1  
T_MODE0  
VSS  
U3  
T_MODE1  
VSS  
C10  
TRUNK2  
VSS  
B24  
TRUNK1  
VSS  
A21  
TRUNK0  
VSS  
C22  
91  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
Ball – Signal Name Table (continued)  
Ball  
No.  
Signal  
Name  
Ball  
No.  
Signal  
Name  
Signal Name  
Ball No.  
M16  
STROBE  
D0  
C19  
OE_CLK2  
OE_CLK1  
OE_CLK0  
VSS  
VSS  
A26  
B19  
A19  
R13  
R14  
R15  
R16  
R17  
R18  
T12  
T13  
T14  
T15  
T16  
M17  
M18  
F16  
F17  
N6  
VSS  
B26  
C25  
A24  
A25  
F1  
AUTOFD  
SCL  
VSS  
VCC  
SDA  
VSS  
VCC  
AVCC  
VSS  
VCC  
AGND  
VSS  
P6  
VCC  
D1  
SCANCOL  
SCANLINK  
VSS  
R6  
VCC  
D22  
E23  
E27  
N28  
N27  
F2  
VSS  
T6  
VCC  
SCANMODE  
VSS  
U6  
VCC  
VSS  
N24  
P24  
R24  
T24  
U24  
AD13  
AD14  
AD15  
AD16  
AD17  
F13  
F14  
F15  
R12  
B25  
E20  
P18  
VCC  
VSS  
VCC  
RESIN#  
VSS  
VCC  
RESETOUT#  
VSS  
VCC  
G2  
VSS  
VCC  
B22  
A22  
C23  
B23  
A23  
C24  
D23  
T27  
F27  
C20  
B20  
A20  
C21  
T17  
T18  
U12  
U13  
U14  
MIRROR5  
MIRROR4  
VSS  
VCC  
MIRROR3  
MIRROR2  
MIRROR1  
MIRROR0  
SCANCLK  
M25_MTXCLK  
M26_MTXCLK  
LA_CLK2  
LA_CLK1  
LA_CLK0  
P_D  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
U15  
U16  
VSS  
VCC  
U17  
M12  
M13  
M14  
M15  
P17  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VSS  
RESERVED  
RESERVED  
VSS  
VSS  
VSS  
92  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
14.4 AC/DC Timing  
14.4.1 Absolute Maximum Ratings  
Storage Temperature  
-65°C to +150°C  
Operating Temperature  
-40°C to +85°C  
+125°C  
Maximum Junction Temperature  
Supply Voltage VCC with Respect to V  
Supply Voltage VDD with Respect to V  
Voltage on Input Pins  
+3.0 V to +3.6 V  
+2.38 V to +2.75 V  
-0.5 V to (VCC + 0.3 V)  
SS  
SS  
Caution: Stress above those listed may damage the device. Exposure to the Absolute Maximum Ratings for  
extended periods may affect device reliability. Functionality at or above these limits is not implied.  
14.4.2 DC Electrical Characteristics  
VCC = 3.0 V to 3.6 V (3.3v +/- 10%)T  
VDD = 2.5 V +10% - 5%  
= -40°C to +85°C  
AMBIENT  
14.4.3 Recommended Operating Conditions  
Symbol  
fosc  
Parameter Description  
Frequency of Operation  
Min.  
Typ.  
100  
Max.  
Unit  
MHz  
ICC  
Supply Current – @ 100 MHz (VCC =3.3 V)  
Supply Current – @ 100 MHz (VDD =2.5 V)  
Output High Voltage (CMOS)  
450  
mA  
mA  
V
IDD  
1500  
VOH  
VOL  
2.4  
2.0  
Output Low Voltage (CMOS)  
0.4  
V
VIH-TTL  
Input High Voltage (TTL 5 V tolerant)  
VCC +  
2.0  
V
VIL-TTL  
IIL  
Input Low Voltage (TTL 5 V tolerant)  
0.8  
10  
V
Input Leakage Current (0.1 V < VIN < VCC) (all pins  
except those with internal pull-up/pull-down resistors)  
µA  
IOL  
CIN  
COUT  
CI/O  
θja  
Output Leakage Current (0.1 V < VOUT < VCC)  
Input Capacitance  
10  
5
µA  
pF  
Output Capacitance  
5
pF  
I/O Capacitance  
7
pF  
Thermal resistance with 0 air flow  
Thermal resistance with 1 m/s air flow  
Thermal resistance with 2 m/s air flow  
Thermal resistance between junction and case  
Thermal resistance between junction and board  
11.2  
10.2  
8.9  
3.1  
6.6  
C/W  
C/W  
C/W  
C/W  
C/W  
θja  
θja  
θjc  
θjb  
93  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
14.4.4 Typical Reset & Bootstrap Timing Diagram  
RESIN#  
RESETOUT#  
Tri-Stated  
R1  
R3  
Bootstrap Pins  
Outputs  
Inputs  
Outputs  
R2  
Figure 18 - Typical Reset & Bootstrap Timing Diagram  
Symbol  
R1  
Parameter  
Min.  
Typ.  
Note:  
Delay until RESETOUT# is tri-stated  
10 ns  
RESETOUT# state is then determined  
by the external pull-up/down resistor  
R2  
R3  
Bootstrap stabilization  
1 µs  
10 µs  
Bootstrap pins sampled on rising  
a
edge of RESIN#  
RESETOUT# assertion  
2 ms  
Table 13 - Reset & Bootstrap Timing  
a. The TSTOUT[8:0] pins will switch over to the LED interface functionality in 3 SCLK cycles after RESIN# goes high  
94  
Zarlink Semiconductor Inc.  
MVTX2603  
14.5 Local Frame Buffer SBRAM Memory Interface  
14.5.1 Local SBRAM Memory Interface  
Data Sheet  
LA_CLK  
L1  
L2  
LA_D[63:0]  
Figure 19 - Local Memory Interface – Input Setup and Hold Timing  
LA_CLK  
L3-max  
L3-min  
LA_D[63:0]  
L4-max  
L4-min  
LA_A[20:3]  
L6-max  
L6-min  
LA_ADSC#  
L7-max  
L7-min  
LA_WE[1:0]#  
####  
L8-max  
L8-min  
LA_OE[1:0]#  
L9-max  
L9-min  
LA_WE#  
L10-max  
L10-min  
LA_OE#  
Figure 20 - Local Memory Interface - Output Valid Delay Timing  
95  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
-100 MHz  
Symbol  
Parameter  
Min. (ns) Max. (ns)  
Note  
L1  
L2  
L3  
L4  
L6  
L7  
L8  
L9  
L10  
LA_D[63:0] input set-up time  
LA_D[63:0] input hold time  
LA_D[63:0] output valid delay  
LA_A[20:3] output valid delay  
LA_ADSC# output valid delay  
4
1.5  
1.5  
2
7
7
7
7
1
7
5
C = 25 pf  
L
C = 30 pf  
L
1
C = 30 pf  
L
LA_WE[1:0]#output valid delay  
LA_OE[1:0]# output valid delay  
LA_WE# output valid delay  
LA_OE# output valid delay  
1
C = 25 pf  
L
-1  
1
C = 25 pf  
L
C = 25 pf  
L
1
C = 25 pf  
L
Table 14 - AC Characteristics – Local Frame Buffer SBRAM Memory Interface  
96  
Zarlink Semiconductor Inc.  
MVTX2603  
14.6 Local Switch Database SBRAM Memory Interface  
14.6.1 Local SBRAM Memory Interface  
Data Sheet  
LB_CLK  
L1  
L2  
LB_D[63:0]  
Figure 21 - Local Memory Interface – Input Setup and Hold Timing  
LB_CLK  
LB_D[31:0]  
LB_A[21:2]  
L3-max  
L3-min  
L4-max  
L4-min  
L6-max  
L6-min  
LB_ADSC#  
L8-max  
L8-min  
LB_WE[1:0]#  
L9-max  
L9-min  
LB_OE[1:0]#  
L10-max  
L10-min  
LB_WE#  
LB_OE#  
L11-max  
L11-min  
Figure 22 - Local Memory Interface - Output Valid Delay Timing  
97  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
-100 MHz  
Symbol  
Parameter  
Min. (ns) Max. (ns)  
Note  
L1  
L2  
LB_D[63:0] input set-up time  
LB_D[63:0] input hold time  
LB_D[63:0] output valid delay  
LB_A[20:3] output valid delay  
LB_ADSC# output valid delay  
4
1.5  
L3  
1.5  
2
7
7
7
7
1
7
5
C = 25 pf  
L
L4  
C = 30 pf  
L
L6  
1
C = 30 pf  
L
L8  
LB_WE[1:0]#output valid delay  
LB_OE[1:0]# output valid delay  
LB_WE# output valid delay  
LB_OE# output valid delay  
1
C = 25 pf  
L
L9  
-1  
1
C = 25 pf  
L
L10  
L11  
C = 25 pf  
L
1
C = 25 pf  
L
Table 15 - AC Characteristics – Local Switch Database SBRAM Memory Interface  
98  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
14.7 AC Characteristics  
14.7.1 Reduced Media Independent Interface  
M_CLKI  
M6-max  
M6-min  
M[23:0]_TXEN  
M7-max  
M7-min  
M[23:0] _TXD[1:0]  
Figure 23 - AC Characteristics – Reduced Media Independent Interface  
M_CLKI  
M2  
M[23:0]_RXD  
M3  
M4  
M[23:0]_CRS_DV  
M5  
Figure 24 - AC Characteristics – Reduced Media Independent Interface  
-50 MHz  
Symbol  
Parameter  
Note  
Min. (ns)  
Max. (ns)  
M2  
M3  
M4  
M5  
M6  
M7  
M[23:0]_RXD[1:0] Input Setup Time  
M[23:0]_RXD[1:0] Input Hold Time  
M[23:0]_CRS_DV Input Setup Time  
M[23:0]_CRS_DV Input Hold Time  
M[23:0]_TXEN Output Delay Time  
M[23:0]_TXD[1:0] Output Delay Time  
4
1
4
1
2
2
11  
11  
C = 20 pF  
L
C = 20 pF  
L
Table 16 - AC Characteristics – Reduced Media Independent Interface  
99  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
14.7.2 Gigabit Media Independent Interface - Port A  
M25_TXCLK  
G12-max  
G12-min  
M25_TXD [15:0]  
M25_TX_EN]  
M25_TX_ER  
G13-max  
G13-min  
G14-max  
G14-min  
Figure 25 - AC Characteristics- GMII  
M25_RXCLK  
G1  
G3  
G5  
G7  
G2  
G4  
M25_RXD[15:0]  
M25_RX_DV  
M25_RX_ER  
M25_RX_CRS  
G6  
G8  
Figure 26 - AC Characteristics – Gigabit Media Independent Interface  
-125 Mhz  
Symbol  
Parameter  
Note  
Min. (ns)  
Max. (ns)  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
M[25]_RXD[15:0] Input Setup Times  
M[25]_RXD[15:0] Input Hold Times  
M[25]_RX_DV Input Setup Times  
M[25]_RX_DV Input Hold Times  
M[25]_RX_ER Input Setup Times  
M[25]_RX_ER Input Hold Times  
M[25]_CRS Input Setup Times  
M[25]_CRS Input Hold Times  
2
1
2
1
2
1
2
1
Table 17 - AC Characteristics – Gigabit Media Independent Interface  
100  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
-125 Mhz  
Symbol  
Parameter  
Note  
C = 20 pf  
Min. (ns)  
Max. (ns)  
G12  
G13  
G14  
M[25]_TXD[15:0] Output Delay Times  
M[25]_TX_EN Output Delay Times  
M[25]_TX_ER Output Delay Times  
1
1
1
6
6.5  
6
L
C = 20 pf  
L
C = 20 pf  
L
Table 17 - AC Characteristics – Gigabit Media Independent Interface (continued)  
14.7.3 Ten Bit Interface - Port A  
M25_TXCLK  
TIMIN  
M25_TXD [9:0]  
TIMAX  
Figure 27 - Gigabit TBI Interface Transmit Timing  
M25_RXCLK  
M25_COL  
T2  
T2  
M25_RXD[9:0]  
T3  
T3  
Figure 28 - Gigabit TBI Interface Receive Timing  
Symbol  
Parameter  
Min. (ns)  
Max. (ns)  
Note  
T1  
M25_TXD[9:0] Output Delay Time  
1
6
C = 20 pf  
L
Table 18 - Output Delay Timing  
Symbol  
Parameter  
Min. (ns)  
Max. (ns)  
Note  
T2  
T3  
M25_RXD[9:0] Input Setup Time  
M25_RXD[9:0] Input Hold Time  
3
3
Table 19 - Input Setup Timing  
101  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
14.7.4 Gigabit Media Independent Interface - Port B  
M26_TXCLK  
G12-max  
G12-min  
M26_TXD [15:0]  
G13-max  
G13-min  
M26_TX_EN]  
G14-max  
G14-min  
M26_TX_ER  
Figure 29 - AC Characteristics- GMII  
M26_RXCLK  
G1  
G3  
G5  
G7  
G2  
G4  
M26_RXD[15:0]  
M26_RX_DV  
M26_RX_ER  
M26_RX_CRS  
G6  
G8  
Figure 30 - AC Characteristics – Gigabit Media Independent Interface  
-125 Mhz  
Symbol  
Parameter  
Note  
Min. (ns)  
Max. (ns)  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
M[26]_RXD[15:0] Input Setup Times  
M[26]_RXD[15:0] Input Hold Times  
M[26]_RX_DV Input Setup Times  
M[26]_RX_DV Input Hold Times  
M[26]_RX_ER Input Setup Times  
M[26]_RX_ER Input Hold Times  
M[26]_CRS Input Setup Times  
M[26]_CRS Input Hold Times  
2
1
2
1
2
1
2
1
Table 20 - AC Characteristics – Gigabit Media Independent Interface  
102  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
-125 Mhz  
Symbol  
Parameter  
Note  
C = 20 pf  
Min. (ns)  
Max. (ns)  
G12  
G13  
G14  
M[26]_TXD[15:0] Output Delay Times  
M[26]_TX_EN Output Delay Times  
M[26]_TX_ER Output Delay Times  
1
1
1
6
6.5  
6
L
C = 20 pf  
L
C = 20 pf  
L
Table 20 - AC Characteristics – Gigabit Media Independent Interface (continued)  
14.7.5 Ten Bit Interface - Port B  
M26_TXCLK  
TIMIN  
M26_TXD [9:0]  
TIMAX  
Figure 31 - Gigabit TBI Interface Transmit Timing  
M26_RXCLK  
M26_COL  
T2  
T2  
M26_RXD[9:0]  
T3  
T3  
Figure 32 - Gigabit TBI Interface Timing  
Symbol  
Parameter  
Min. (ns)  
Max. (ns)  
Note  
T1  
M26_TXD[9:0] Output Delay Time  
1
6
C = 20 pf  
L
Table 21 - Output Delay Timing  
Symbol  
Parameter  
Min. (ns)  
Max. (ns)  
Note  
T2  
T3  
M26_RXD[9:0] Input Setup Time  
M26_RXD[9:0] Input Hold Time  
3
3
Table 22 - Input Setup Timing  
103  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
14.7.6 LED Interface  
LED_CLK  
LED_SYN  
LED_BIT  
LE5-max  
LE5-min  
LE6-max  
LE6-min  
Figure 33 - AC Characteristics – LED Interface  
Variable FREQ.  
Parameter  
Symbol  
Note  
C = 30 pf  
Min. (ns)  
Max. (ns)  
LE5  
LE6  
LED_SYN Output Valid Delay  
LED_BIT Output Valid Delay  
-1  
-1  
7
7
L
C = 30 pf  
L
Table 23 - AC Characteristics – LED Interface  
14.7.7 SCANLINK SCANCOL Output Delay Timing  
SCANCLK  
C5-max  
C5-min  
SCANLINK  
SCANCOL  
C7-max  
C7-min  
Figure 34 - SCANLINK SCANCOL Output Delay Timing  
SCANCLK  
C1  
C2  
SCANLINK  
C3  
C4  
SCANCOL  
Figure 35 - SCANLINK, SCANCOL Setup Timing  
104  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
-25 MHz  
Symbol  
Parameter  
Note  
Min. (ns) Max. (ns)  
C1  
C2  
C3  
C4  
C5  
C7  
SCANLINK input set-up time  
SCANLINK input hold time  
SCANCOL input setup time  
SCANCOL input hold time  
SCANLINK output valid delay  
SCANCOL output valid delay  
20  
2
20  
1
0
0
10  
10  
C = 30 pf  
L
C = 30 pf  
L
Table 24 - SCANLINK, SCANCOL Timing  
14.7.8 MDIO Input Setup and Hold Timing  
MDC  
D1  
D2  
MDIO  
Figure 36 - MDIO Input Setup and Hold Timing  
MDC  
D3-max  
D3-min  
MDIO  
Figure 37 - MDIO Output Delay Timing  
1 MHz  
Parameter  
Symbol  
Note  
Min. (ns) Max. (ns)  
D1  
D2  
D3  
MDIO input setup time  
10  
2
MDIO input hold time  
MDIO output delay time  
1
20  
C = 50 pf  
L
Table 25 - MDIO Timing  
105  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
2
14.7.9 I C Input Setup Timing  
SCL  
SDA  
S2  
S1  
Figure 38 - I2C Input Setup Timing  
SCL  
S3-max  
S3-min  
SDA  
Figure 39 - I2C Output Delay Timing  
50 KHz  
Symbol  
Parameter  
Note  
Min. (ns) Max. (ns)  
S1  
S2  
SDA input setup time  
SDA input hold time  
SDA output delay time  
20  
1
S3*  
4 usec  
6 usec  
C = 30 pf  
L
* Open Drain Output. Low to High transistor is controlled by external pullup resistor.  
Table 26 - I2C Timing  
106  
Zarlink Semiconductor Inc.  
MVTX2603  
Data Sheet  
14.7.10 Serial Interface Setup Timing  
STROBE  
D4  
D5  
D1  
D1  
D2  
D2  
D0  
Figure 40 - Serial Interface Setup Timing  
STROBE  
D3-max  
D3-min  
AutoFd  
Figure 41 - Serial Interface Output Delay Timing  
Symbol  
Parameter  
Min. (ns) Max. (ns)  
Note  
D1  
D2  
D3  
D4  
D5  
D0 setup time  
D0 hold time  
20  
3 µs  
AutoFd output delay time  
Strobe low time  
1
50  
C = 100 pf  
L
5 µs  
5 µs  
Strobe high time  
Table 27 - Serial Interface Timing  
107  
Zarlink Semiconductor Inc.  
DIMENSION  
MIN  
MAX  
A
A1  
A2  
D
D1  
E
2.20  
0.50  
2.46  
0.70  
1.17 REF  
37.70  
37.30  
37.30  
34.50 REF  
37.70  
E1  
E
E1  
b
e
34.50 REF  
0.60  
0.90  
1.27  
553  
Conforms to JEDEC MS - 034  
e
D
D1  
A2  
b
NOTE:  
1. CONTROLLING DIMENSIONS ARE IN MM  
2. DIMENSION "b" IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER  
3. SEATING PLANE IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.  
4. N IS THE NUMBER OF SOLDER BALLS  
5. NOT TO SCALE.  
6. SUBSTRATE THICKNESS IS 0.56 MM  
Package Code  
Previous package codes:  
ISSUE  
ACN  
DATE  
APPRD.  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable.  
However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such  
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or  
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual  
property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in  
certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the  
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute  
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and  
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does  
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in  
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.  
Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright Zarlink Semiconductor Inc. All Rights Reserved.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

相关型号:

MVTX2603AG2

DATACOM, LAN SWITCHING CIRCUIT, PBGA553, 37.50 X 37.50 MM, 2.33 MM HEIGHT, LEAD FREE, MS-034, HSBGA-553
MICROSEMI

MVTX2604

Managed 24-Port 10/100 Mb + 2 Port 1 Gb Ethernet Switch
ZARLINK

MVTX2604A

MVTX260x Physical Port Control
ETC

MVTX2604AG

Managed 24-Port 10/100 Mb + 2 Port 1 Gb Ethernet Switch
ZARLINK

MVTX2604AG2

LAN Switching Circuit, CMOS, PBGA553, 37.50 X 37.50 MM, 2.33 MM HEIGHT, LEAD FREE, MS-034, HSBGA-553
ZARLINK

MVTX2801

Unmanaged 4-Port 1000 Mbps Ethernet Switch
ZARLINK

MVTX2801A

Unmanaged 4 port Gigabit Ethernet switch
ETC

MVTX2801AG

Unmanaged 4-Port 1000 Mbps Ethernet Switch
ZARLINK

MVTX2802

Managed 4-Port 1000 Mbps Ethernet Switch
ZARLINK

MVTX2802A

Managed 4 port Gigabit Ethernet switch
ETC

MVTX2802AG

Managed 4-Port 1000 Mbps Ethernet Switch
ZARLINK

MVTX2802AG

DATACOM, LAN SWITCHING CIRCUIT, PBGA596, 40 X 40 MM, 2.33 MM HEIGHT, MS-034, HSBGA-596
MICROSEMI