MVTX2801AG [ZARLINK]

Unmanaged 4-Port 1000 Mbps Ethernet Switch; 不受管理的4端口千兆以太网交换机
MVTX2801AG
型号: MVTX2801AG
厂家: ZARLINK SEMICONDUCTOR INC    ZARLINK SEMICONDUCTOR INC
描述:

Unmanaged 4-Port 1000 Mbps Ethernet Switch
不受管理的4端口千兆以太网交换机

以太网
文件: 总106页 (文件大小:1447K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MVTX2801  
Unmanaged 4-Port 1000 Mbps  
Ethernet Switch  
Data Sheet  
October 2003  
Features  
4 Gigabit Ports with GMII and PCS interface  
Ordering Information  
-
Gigabit Port can also support 100/10 Mbps MII  
interface  
MVTX2801AG  
596-pin HSBGA  
High Performance Layer 2 Packet Forwarding  
(11.904M packets per second) and Filtering at  
Full-Wire Speed  
-40°C to +85°C  
Maximum throughput is 4 Gbps non-blocking  
Centralized shared-memory architecture  
Consists of two Memory Domains at 133 MHz  
Provides 2 level dropping precedence with WRED  
mechanism  
-
User controlled thresholds for WRED  
Classification based on layer 2, 3 markings  
-
Frame Buffer Domain: one bank of ZBT-SRAM  
with 1M/2MB total  
-
-
-
VLAN Priority field in VLAN tagged frame.  
DS/TOS field in IP packet  
-
Switch Database Domain with 256K/512K  
SRAM.  
The precedence of above two classifications  
can be programmable  
Up to 64K MAC addresses to provide large node  
aggregation in wiring closet switches  
QoS Support  
Supports IEEE 802.1p/Q Quality of Service with 8  
Priority  
Buffer Management: reserve buffers on per class  
and per port basis  
Traffic Classification  
Classify traffic into 8 transmission priorities per  
port  
Supports Delay bounded, Strict Priority, and WFQ  
SRAM 256/512K  
SW Databasee  
MAC Table  
Frame Data Buffer A  
ZBT-SRAM (1M/2MB)  
VTX2800  
64bit  
FDB Interface  
32bit  
SDB Interface  
LED  
Frame  
Engine  
Search  
Engine  
Scheduler  
Management  
Module  
GMII  
GMII  
GMII  
GMII  
Serial /  
I2C  
/PCS  
/PCS  
/PCS  
/PCS  
Port 0  
Port 1  
Port 2  
Port 3  
Figure 1 - Chip Block Diagram  
1
Zarlink Semiconductor Inc.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright 2003, Zarlink Semiconductor Inc. All Rights Reserved.  
MVTX2801  
Data Sheet  
Port-based Priority: VLAN Priority with Tagged frame can be overwritten by the priority of PVID  
QoS features can be configured on a per port basis Control  
Full Duplex Ethernet IEEE 802.3x Flow Control  
Provides Ethernet Multicast and Broadcast Control  
2 Port Trunking groups, max of 3 ports per group (Trunking can be based on source MAC and/or destination  
MAC and source port)  
LED signals provided by a serial or parallel interface  
Synchronous Serial Interface and I C interface in unmanaged mode.  
Hardware auto-negotiation through serial management interface (MDIO) for Gigabit Ethernet ports, supports  
10/100/1000 Mbps  
2
BIST for internal and external SRAM-ZBT  
I C EEPROM or synchronous serial port for configuration  
Packaged in 596-pin BGA  
2
Description  
The MVTX2800 family is a group of 1000 Mbps non-blocking Ethernet switch chips with on-chip address memory. A  
single chip provides a maximum of eight 1000 Mbps ports and a dedicated CPU interface with a 16/8-bit bus for  
managed and unmanaged switch applications. The MVTX2800 family consists of the following four products:  
MVTX2804 8 Gigabit ports Managed  
MVTX2803 8 Gigabit ports Unmanaged  
MVTX2802 4 Gigabit ports Managed  
MVTX2801 4 Gigabit ports Unmanaged  
The MVTX2801 supports up to 64K MAC addresses to aggregate traffic from multiple wiring closet stacks. The  
centralized shared-memory architecture allows a very high performance packet-forwarding rate of 11.904M packet  
per second at full wire speed. The chip is optimized to provide a low-cost, high performance workgroup, and wiring  
closet, layer 2 switching solution with 4 Gigabit Ethernet ports.  
One Frame Buffer Memory domain utilize cost effective, high-performance ZBT-SRAM with aggregated bandwidth  
of 8.5Gbps to support full wire speed on all external ports simultaneously.  
With Strict priority, Delay Bounded, and WRR transmission scheduling, plus WRED memory congestion scheme,  
the chip provides powerful QoS functions for convergent network multimedia and mission-critical applications. The  
chip provides 8 transmission priorities and 2 level drop precedence. Traffic is assigned its transmission priority and  
dropping precedence based on the frame VLAN Tag priority.  
The MVTX2801 supports port trunking/load sharing on the 1000 Mbps ports with fail-over capability. The port  
trunking/load sharing can be used to group ports between interlinked switches to increase the effective network  
bandwidth.  
In full-duplex mode, IEEE 802.3x flow control is provided. The Physical Coding Sublayer (PCS) is integrated on-  
chip to provide a direct 10-bit GMII interface, or the PCS can be bypassed to provide an interface to existing fiber-  
based Gigabit Ethernet transceivers.  
The MVTX2801 is fabricated using 0.25(µm technology. Inputs, however, are 3.3V tolerant and the outputs are  
capable of directly interfacing to LVTTL levels. The MVTX2801 is packaged in a 596-pin Ball Grid Array package.  
2
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Table of Contents  
1.0 Block Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.1 Frame Data Buffer (FDB) Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.2 Switch Database (SDB) Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.3 GMII/PCS MAC Module (GMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.4 Frame Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.5 Search Engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.6 LED Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.7 Internal Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.0 System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2
2.1 I C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.1.1 Start Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.1.2 Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.1.3 Data Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.1.4 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.1.5 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.1.6 Stop Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.2 Synchronous Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.2.1 Write Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.2.2 Read Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.0 Data Forwarding Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.1 Unicast Data Frame Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.2 Multicast Data Frame Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.0 Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.2 Detailed Memory Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.0 Search Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.1 Search Engine Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.2 Basic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.3 Search, Learning, and Aging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.3.1 MAC Search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.3.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5.3.3 Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5.3.4 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6.0 Frame Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6.1 Data Forwarding Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6.2 Frame Engine Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6.2.1 FCB Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6.2.2 Rx Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
6.2.3 RxDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
6.2.4 TxQ Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
6.3 Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
6.4 TxDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
7.0 Quality of Service and Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
7.1 Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
7.2 Four QoS Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
7.3 Delay Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
7.4 Strict Priority and Best Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
7.5 Weighted Fair Queuing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
7.6 Shaper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
7.7 WRED Drop Threshold Management Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
7.8 Buffer Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
7.8.1 Dropping When Buffers Are Scarce. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
7.9 Flow Control Basics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
7.9.1 Unicast Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
7.9.2 Multicast Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
7.10 Mapping to IETF Diffserv Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
8.0 Port Trunking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
8.1 Features and Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
8.2 Unicast Packet Forwarding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
8.3 Multicast Packet Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
8.4 Preventing Multicast Packets from Looping Back to the Source Trunk. . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
9.0 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
9.2 Serial Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
9.3 Parallel Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
9.4 LED Control Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
10.0 Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
10.1 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
10.2 Group 0 Address - MAC Ports Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
10.2.1 ECR1Pn: Port N Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
10.2.2 ECR2Pn: Port N Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
10.2.3 GGControl 0- Extra GIGA Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
10.2.4 GGControl 1- Extra GIGA Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
10.3 Group 1 Address - VLAN Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
10.3.1 AVTCL - VLAN Type Code Register Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
10.3.2 AVTCH - VLAN Type Code Register High. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
10.3.3 PVMAP00_0 - Port 00 Configuration Register 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
10.3.4 P PVMAP00_3 - Port 00 Configuration Register 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
10.3.5 PVMODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
10.4 Group 2 Address - Port Trunking Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
10.4.1 TRUNK0_MODE - Trunk group 0 and 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
10.4.2 TX_AGE - Tx Queue Aging timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
10.5 Group 4 Address - Search Engine Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
10.5.1 AGETIME_LOW - MAC address aging time Low. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
10.5.2 AGETIME_HIGH -MAC address aging time High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
10.5.3 SE_OPMODE - Search Engine Operation Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
10.6 Group 5 Address - Buffer Control/QOS Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
10.6.1 FCBAT - FCB Aging Timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
10.6.2 QOSC - QOS Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
10.6.3 FCR - Flooding Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
10.6.4 AVPML - VLAN Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
10.6.5 AVPMM - VLAN Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
10.6.6 AVPMH - VLAN Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
10.6.7 TOSPML - TOS Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
10.6.9 TOSPMH - TOS Priority Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
10.6.10 AVDM - VLAN Discard Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
10.6.11 TOSDML - TOS Discard Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
10.6.12 BMRC - Broadcast/Multicast Rate Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
10.6.13 UCC - Unicast Congestion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
10.6.14 MCC - Multicast Congestion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
10.6.15 PRG - Port Reservation for Giga ports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
10.6.16 SFCB - Share FCB Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
10.6.17 C2RS - Class 2 Reserved Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
10.6.18 C3RS - Class 3 Reserved Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
10.6.19 C4RS - Class 4 Reserved Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
4
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
10.6.20 C5RS - Class 5 Reserved Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
10.6.21 C6RS - Class 6 Reserved Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
10.6.22 C7RS - Class 7 Reserved Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
10.6.23 QOSC00 - BYTE_C2_G0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
10.6.24 QOSC01 - BYTE_C3_G0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
10.6.25 QOSC02 - BYTE_C4_G0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
10.6.26 QOSC03 - BYTE_C5_G0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
10.6.27 QOSC04 - BYTE_C6_G0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
10.6.28 QOSC05 - BYTE_C7_G0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
10.6.29 QOSC06 - BYTE_C2_G1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
10.6.30 QOSC07 - BYTE_C3_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
10.6.31 QOSC08 - BYTE_C4_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
10.6.32 QOSC09 - BYTE_C5_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
10.6.33 QOSC0A - BYTE_C6_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
10.6.34 QOSC0B - BYTE_C7_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
10.6.35 QOSC0C - BYTE_C2_G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
10.6.36 QOSC0D - BYTE_C3_G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
10.6.37 QOSC0E - BYTE_C4_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
10.6.38 QOSC0F - BYTE_C5_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
10.6.39 QOSC10 - BYTE_C6_G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
10.6.40 QOSC11 - BYTE_C7_G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
10.6.41 QOSC12 - BYTE_C2_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
10.6.42 QOSC13 - BYTE_C3_G3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
10.6.44 QOSC15 - BYTE_C5_G3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
10.6.45 QOSC16 - BYTE_C6_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
10.6.46 QOSC17 - BYTE_C7_G3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
10.6.47 QOSC33 - CREDIT_C0_G0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
10.6.48 QOSC34 - CREDIT_C1_G0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
10.6.49 QOSC35 - CREDIT_C2_G0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
10.6.50 QOSC36 - CREDIT_C3_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
10.6.51 QOSC37 - CREDIT_C4_G0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
10.6.52 QOSC38 - CREDIT_C5_G0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
10.6.53 QOSC39- CREDIT_C6_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
10.6.54 QOSC3A- CREDIT_C7_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
10.6.55 QOSC3B - CREDIT_C0_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
10.6.56 QOSC3C - CREDIT_C1_G1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
10.6.57 QOSC3D - CREDIT_C2_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
10.6.58 QOSC3E - CREDIT_C3_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
10.6.59 QOSC3F - CREDIT_C4_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
10.6.60 QOSC40 - CREDIT_C5_G1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
10.6.61 QOSC41- CREDIT_C6_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
10.6.62 QOSC42- CREDIT_C7_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
10.6.63 QOSC43 - CREDIT_C0_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
10.6.64 QOSC44 - CREDIT_C1_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
10.6.65 QOSC45 - CREDIT_C2_G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
10.6.66 QOSC46 - CREDIT_C3_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
10.6.67 QOSC47 - CREDIT_C4_G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
10.6.68 QOSC48 - CREDIT_C5_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
10.6.69 QOSC49- CREDIT_C6_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
10.6.70 QOSC4A- CREDIT_C7_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
10.6.71 QOSC4B - CREDIT_C0_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
10.6.72 QOSC4 - CREDIT_C1_G3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
10.6.73 QOSC4D - CREDIT_C2_G3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
10.6.74 QOSC4E - CREDIT_C3_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
5
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
10.6.75 QOSC4F - CREDIT_C4_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
10.6.76 QOSC50 - CREDIT_C5_G3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
10.6.77 QOSC51- CREDIT_C6_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
10.6.78 QOSC52- CREDIT_C7_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
10.6.79 QOSC73 - TOKEN_RATE_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
10.6.80 QOSC74 - TOKEN_LIMIT_G0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
10.6.81 QOSC75 - TOKEN_RATE_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
10.6.82 QOSC76 - TOKEN_LIMIT_G1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
10.6.83 QOSC77 - TOKEN_RATE_G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
10.6.84 QOSC78 - TOKEN_LIMIT_G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
10.6.85 QOSC79 - TOKEN_RATE_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
10.6.86 QOSC7A - TOKEN_LIMIT_G3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
10.6.87 RDRC0 - WRED Rate Control 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
10.6.88 RDRC1 - WRED Rate Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
10.7 Group 6 Address - MISC Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
10.7.1 MII_OP0 - MII Register Option 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
10.7.2 MII_OP1 - MII Register Option 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
10.7.3 FEN - Feature Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
10.7.4 MIIC0 - MII Command Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
10.7.5 MIIC1 - MII Command Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
10.7.6 MIIC2 - MII Command Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
10.7.7 MIIC3 - MII Command Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
10.7.8 MIID0 - MII Data Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
10.7.9 MIID1 - MII Data Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
10.7.10 LED Mode - LED Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
10.7.11 CHECKSUM - EEPROM Checksum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
10.7.12 LED User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
10.7.13 LEDUSER0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
10.7.14 LEDUSER1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
10.7.15 LEDUSER2/LEDSIG2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
10.7.16 LEDUSER3/LEDSIG3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
10.7.17 LEDUSER4/LEDSIG4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
10.7.18 LEDUSER5/LEDSIG5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
10.7.19 LEDUSER6/LEDSIG6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
10.7.20 LEDUSER7/LEDSIG1_0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
10.7.21 MIINP0 - MII Next Page Data Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
10.7.22 MIINP1 - MII Next Page Data Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
10.8 Group F Address - CPU Access Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
10.8.1 GCR-Global Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
10.8.2 DCR-Device Status and Signature Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
10.8.3 DCR01-Giga port status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
10.8.4 DCR23-Giga port status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
10.8.5 DPST - Device Port Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
10.8.6 DTST - Data Read Back Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
11.0 BGA and Ball Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
11.1 BGA Views (Top View). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
11.2 Ball- Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
11.3 Ball Signal Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
11.4 Characteristics and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
11.4.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
11.4.2 DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
11.4.3 Recommended Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
11.5 AC Characteristics and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
11.5.1 Typical Reset & Bootstrap Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
6
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
11.5.2 Local Frame Buffer ZBT SRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
11.5.2.1 Local ZBT SRAM Memory Interface A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
11.5.3 Local Switch Database SBRAM Memory Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
11.5.3.1 Local SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
11.5.4 Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
11.5.5 Gigabit Media Independent Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
11.5.6 PCS Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
11.5.7 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
11.5.8 MDIO Input Setup and Hold Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
2
11.5.9 I C Input Setup Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
11.5.10 Serial Interface Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
7
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
List of Figures  
Figure 1 - Chip Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2
Figure 2 - Data Transfer Format for I C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 3 - SRAM Interface Block Diagram (DMAs for Gigabit Ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 4 - Buffer Partition Scheme Used in the MVTX2801. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 5 - BGA Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 6 - Typical Reset & Bootstrap Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Figure 7 - Local Memory Interface - Input setup and hold timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Figure 8 - Local Memory Interface - Output valid delay timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Figure 9 - Local Memory Interface - Input setup and hold timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Figure 10 - Local Memory Interface - Output valid delay timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Figure 11 - AC Characteristics - Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Figure 12 - AC Characteristics - Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Figure 13 - AC Characteristics- GMII. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Figure 14 - AC Characteristics - Gigabit Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Figure 15 - AC Characteristics - PCS Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Figure 16 - AC Characteristics - PCS Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Figure 17 - AC Characteristics - LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Figure 18 - MDIO Input Setup and Hold Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Figure 19 - MDIO Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
2
Figure 20 - I C Input Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
2
Figure 21 - I C Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Figure 22 - Serial Interface Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Figure 23 - Serial Interface Output Delay Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
8
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
List of Tables  
Table 1 - Two-dimensional World Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 2 - Four QoS configurations per port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 3 - WRED Dropping Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 4 - Mapping between MVTX2801 and IETF Diffserv Classes for Gigabit Ports . . . . . . . . . . . . . . . . . . . . . . 23  
Table 5 - MVTX2801 Features Enabling IETF Diffserv Standards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 6 - Timing diagram for serial mode in LED interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 7 - MVTX2801 Register Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 8 - Ball- Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Table 9 - Ball Signal Name. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Table 10 - Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Table 11 - Reset & Bootstrap Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Table 12 - AC Characteristics - Local frame buffer ZBT-SRAM Memory Interface A. . . . . . . . . . . . . . . . . . . . . . . 96  
Table 13 - AC Characteristics - Local Switch Database SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . 97  
Table 14 - AC Characteristics - Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Table 15 - AC Characteristics - Gigabit Media Independent Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Table 16 - AC Characteristics - PCS Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Table 17 - AC Characteristics - LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Table 18 - MDIO Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
2
Table 19 - I C Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Table 20 - Serial Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
9
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
1.0 Block Functionality  
1.1 Frame Data Buffer (FDB) Interfaces  
The FDB interface supports pipelined ZBT-SRAM memory at 133 MHz. To ensure a non-blocking switch, one  
memory domain is required. Each domain has a 64-bit wide memory bus. At 133 MHz, the aggregate memory  
bandwidth is 8.5 Gbps, which is enough to support 4 Gigabit ports at full wire speed switching. A patent pending  
scheme is used to access the FDB memory. Each slot has one tick to read or write 8 bytes.  
1.2 Switch Database (SDB) Interface  
A pipelined synchronous burst SRAM (SBRAM) memory is used to store the switch database information including  
MAC Table. Search Engine accesses the switch database via SDB interface. The SDB bus has 32-bit wide bus at  
133MHz.  
1.3 GMII/PCS MAC Module (GMAC)  
The GMII/PCS Media Access Control (MAC) module provides the necessary buffers and control interface between  
the Frame Engine (FE) and the external physical device (PHY). The MVTX2801 has two interfaces, GMII or PCS.  
The MAC of the MVTX2801 meets the IEEE 802.3z specification and supports the MII interface. It is able to operate  
10M/100M/1G in Full Duplex mode with a back pressure/flow control mechanism. It has the options to insert Source  
Address/CRC/VLAN ID to each frame. The GMII/PCS Module also supports hot plug detection.  
1.4 Frame Engine  
The main function of the frame engine is to forward a frame to its proper destination port or ports. When a frame  
arrives, the frame engine parses the frame header (64 bytes) and formulates a switching request, which is sent to  
the search engine to resolve the destination port. The arriving frame is moved to the FDB. After receiving a switch  
response from the search engine, the frame engine performs transmission scheduling based on the frame's priority.  
The frame engine forwards the frame to the MAC module when the frame is ready to be sent.  
1.5 Search Engine  
The Search Engine resolves the frame's destination port or ports according to the destination MAC address (L2) by  
searching the database. It also performs MAC learning, priority assignment, and trunking functions.  
1.6 LED Interface  
The LED interface can be operated in a serial mode or a parallel mode. In the serial mode, the LED interface uses  
3 pins for carrying 4 port status signals. In the parallel mode, the interface can drive LEDs by 8 status pins. The LED  
port is shared with bootstrap pins. In order to avoid error when reading the bootstraps, a buffer must be used to  
isolate the LED circuitry from the bootstrap pins during bootstrap cycle (the bootstrap pins are sampled at the rising  
edge of the Reset).  
1.7 Internal Memory  
Several internal tables are required and are described as follows:  
Frame Control Block (FCB) - Each FCB entry contains the control information of the associated frame stored  
in the FDB, e.g. frame size, read/write pointer, transmission priority, etc.  
MCT Link Table - The MCT Link Table stores the linked list of MCT entries that have collisions in the external  
MAC Table.  
10  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
2.0 System Configuration  
The MVTX2801 can be configured by EEPROM (24C02 or compatible) via an I C interface at boot time, or via a  
synchronous serial interface during operation.  
2
2
2.1 I C Interface  
2
The I C interface uses two bus lines, a serial data line (SDA) and a serial clock line (SCL). The SCL line carries the  
control signals that facilitate the transfer of information from EEPROM to the switch. Data transfer is 8-bit serial and  
bi-directional, at 50 Kbps. Data transfer is performed between master and slave IC using a request /  
acknowledgment style of protocol. The master IC generates the timing signals and terminates data transfer. The  
figure below shows the data transfer format.  
SLAVE  
DATA 1  
(8 bits)  
START  
R/W ACK  
ACK  
DATA 2  
ACK DATA M ACK STOP  
ADDRESS  
2
Figure 2 - Data Transfer Format for I C Interface  
2.1.1 Start Condition  
Generated by the master, the MVTX2801. The bus is considered to be busy after the Start condition is generated.  
The Start condition occurs if while the SCL line is High, there is a High-to-Low transition of the SDA line.  
Other than in the Start condition (and Stop condition), the data on the SDA line must be stable during the High period  
2
of SCL. The High or Low state of SDA can only change when SCL is Low. In addition, when the I C bus is free, both  
lines are High.  
2.1.2 Address  
The first byte after the Start condition determines which slave the master will select. The slave in our case is the  
EEPROM. The first seven bits of the first data byte make up the slave address.  
2.1.3 Data Direction  
The eighth bit in the first byte after the Start condition determines the direction (R/W) of the message. A master  
transmitter sets this bit to W; a master receiver sets this bit to R.  
2.1.4 Acknowledgment  
Like all clock pulses, the master generates the acknowledgment-related clock pulse. However, the transmitter  
releases the SDA line (High) during the acknowledgment clock pulse. Furthermore, the receiver must pull down the  
SDA line during the acknowledge pulse so that it remains stable Low during the High period of this clock pulse. An  
acknowledgment pulse follows every byte transfer.  
If a slave receiver does not acknowledge after any byte, then the master generates a Stop condition and aborts the  
transfer.  
If a master receiver does not acknowledge after any byte, then the slave transmitter must release the SDA line to let  
the master generate the Stop condition.  
2.1.5 Data  
After the first byte containing the address, all bytes that follow are data bytes. Each byte must be followed by an  
acknowledge bit. Data is transferred MSB-first.  
11  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
2.1.6 Stop Condition  
Generated by the master. The bus is considered to be free after the Stop condition is generated. The Stop condition  
occurs if while the SCL line is High, there is a Low-to-High transition of the SDA line.  
2
The I C interface serves the function of configuring the MVTX2801 at boot time. The master is the MVTX2801, and  
the slave is the EEPROM memory.  
2.2 Synchronous Serial Interface  
The synchronous serial interface serves the function of configuring the MVTX2801 not at boot time but via a PC. The  
PC serves as master and the MVTX2801 serves as slave. The protocol for the synchronous serial interface is nearly  
2
identical to the I C protocol. The main difference is that there is no acknowledgment bit after each byte of data  
transferred.  
The unmanaged MVTX2801 uses a synchronous serial interface to program the internal registers. To reduce the  
number of signals required, the register address, command and data are shifted in serially through the PS_DI pin.  
PS_STROBE pin is used as the shift clock. PS_DO pin is used as data return path.  
Each command consists of four parts.  
START pulse  
Register Address  
Read or Write command  
Data to be written or read back  
Any command can be aborted in the middle by sending an ABORT pulse to the MVTX2801.  
A START command is detected when PS_DI is sampled high at PS_STROBE - leading edge, and PS_DI is sampled  
low when STROBE- falls.  
An ABORT command is detected when PS_DI is sampled low at PS_STROBE - leading edge, and PS_DI is sampled  
high when PS_STROBE - falls.  
2.2.1 Write Command  
PS-STROBE-  
2 Extra clocks after last  
transfer  
A11  
PS_DI  
A2 ...  
ADDRESS  
D0 D1 D2 D3 D4 D5 D6 D7  
A9  
A10  
A0 A1  
START  
W
COMMAND DATA  
12  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
2.2.2 Read Command  
PS_STROBE-  
R
A10 A11  
A0 A1  
START  
A9  
A2 ...  
PS_DI  
ADDRESS  
COMMAND  
D0 D1  
DATA  
D7  
D2 D3 D4 D5 D6  
PS_DO  
All registers in the MVTX2801 can be modified through this synchronous serial interface.  
3.0 Data Forwarding Protocol  
3.1 Unicast Data Frame Forwarding  
When a frame arrives, it is assigned a handle in memory by the Frame Control Buffer Manager (FCB Manager). An  
FCB handle will always be available, because of advance buffer reservations.  
The memory (ZBT-SRAM) interface is a 64-bit bus, connected to a ZBT-SRAM domain. The Receive DMA (RxDMA)  
is responsible for multiplexing the data and the address. On a port's “turn,” the RxDMA will move 8 bytes (or up to  
the end-of-frame) from the port's associated RxFIFO into memory (Frame Data Buffer, or FDB).  
Once an entire frame has been moved to the FDB, and a good end-of-frame (EOF) has been received, the Rx  
interface makes a switch request. The RxDMA arbitrates among multiple switch requests.  
The switch request consists of the first 64 bytes of a frame, containing among other things, the source and  
destination MAC addresses of the frame. The search engine places a switch response in the switch response queue  
of the frame engine when done. Among other information, the search engine will have resolved the destination port  
of the frame and will have determined that the frame is unicast.  
After processing the switch response, the Transmission Queue Manager (TxQ manager) of the frame engine is  
responsible for notifying the destination port that it has a frame to forward to it. But first, the TxQ manager has to  
decide whether or not to drop the frame, based on global FDB reservations and usage, as well as TxQ occupancy  
at the destination. If the frame is not dropped, then the TxQ manager links the frame's FCB to the correct  
per-port-per-class TxQ. Unicast TxQ's are linked lists of transmission jobs, represented by their associated frames'  
FCB's. There is one linked list for each transmission class for each port. There are 8 classes for each of the 4 Gigabit  
ports - a total of 32 unicast queues.  
The TxQ manager is responsible for scheduling transmission among the queues representing different classes for  
a port. When the port control module determines that there is room in the MAC Transmission FIFO (TxFIFO) for  
another frame, it requests the handle of a new frame from the TxQ manager. The TxQ manager chooses among the  
head-of-line (HOL) frames from the per-class queues for that port, using a Zarlink Semiconductor scheduling  
algorithm.  
13  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
As at the transmit end, each of the 4 ports has time slots devoted solely to reading data from memory at the address  
calculated by port control. The Transmission DMA (TxDMA) is responsible for multiplexing the data and the address.  
On a port's turn, the TxDMA will move 8 bytes (or up to the EOF) from memory into the port's associated TxFIFO.  
After reading the EOF, the port control requests a FCB release for that frame. The TxDMA arbitrates among multiple  
buffer release requests.  
The frame is transmitted from the TxFIFO to the line.  
3.2 Multicast Data Frame Forwarding  
After receiving the switch response, the TxQ manager has to make the dropping decision. A global decision to drop  
can be made, based on global FDB utilization and reservations. If so, then the FCB is released and the frame is  
dropped. In addition, a selective decision to drop can be made, based on the TxQ occupancy at some subset of the  
multicast packet's destinations. If so, then the frame is dropped at some destinations but not others, and the FCB is  
not released. If the frame is not dropped at a particular destination port, then the TxQ manager formats an entry in  
the multicast queue for that port and class. Multicast queues are physical queues (unlike the linked lists for unicast  
frames). There are 4 multicast queues for each of the 4 Gigabit ports.  
During scheduling, the TxQ manager treats the unicast queue and the multicast queue of the same class as one  
logical queue.  
The port control requests a FCB release only after the EOF for the multicast frame has been read by all ports to  
which the frame is destined.  
4.0 Memory Interface  
4.1 Overview  
The figure below illustrates the first part of the ZBT-SRAM interface for the MVTX2801. As shown, a 64 bit bus  
ZBT-SRAM bank A is used for Tx/RxDMA access. Because the clock frequency is 133 MHz, the total memory  
bandwidth is 64-bits x 133 MHz = 8.5 Gbps, for frame data buffer (FDB) access.  
ZBT-SRAM Bank A  
TX DMA  
0-1  
TX DMA  
2-3  
RX DMA  
0-1  
RX DMA  
2-3  
Figure 3 - SRAM Interface Block Diagram (DMAs for Gigabit Ports)  
14  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
4.2 Detailed Memory Information  
Because the memory bus is 64 bits wide, frames are broken into 8-byte granules, written to and read from each  
memory access. In the worst case, a 1-byte-long EOF granule gets written to memory Bank. This means that a  
7-byte segment of memory bus is idle. The scenario results in a maximum 7 bytes of waste per frame, which is  
always acceptable because the interfame gap is 20 bytes.  
5.0 Search Engine  
5.1 Search Engine Overview  
The MVTX2801 search engine is optimized for high throughput searching, with enhanced features to support:  
Up to 64K MAC addresses  
4 groups of port trunking  
Traffic classification into 8 transmission priorities, and 2 drop precedence levels  
5.2 Basic Flow  
Shortly after a frame enters the MVTX2801 and is written to the Frame Data Buffer (FDB), the frame engine  
generates a Switch Request, which is sent to the search engine. The switch request consists of the first 64 bytes of  
the frame, which contain all the necessary information for the search engine to perform its task. When the search  
engine is done, it writes to the Switch Response Queue, and the frame engine uses the information provided in that  
queue for scheduling and forwarding.  
In performing its task, the search engine extracts and compresses the useful information from the 64-byte switch  
request. Among the information extracted are the source and destination MAC addresses, the transmission and  
discard priorities, whether the frame is unicast or multicast. Requests are sent to the external SRAM Switch  
Database to locate the associated entries in the external MCT table.  
When all the information has been collected from external SRAM, the search engine has to compare the MAC  
address on the current entry with the MAC address for which it is searching. If it is not a match, the process is  
repeated on the internal MCT Table. All MCT entries other than the first of each linked list are maintained internal to  
the chip. If the desired MAC address is still not found, then the result is either learning (source MAC address  
unknown) or flooding (destination MAC address unknown).  
If the destination MAC address belongs to a port trunk, then the trunk number is retrieved instead of the port number.  
But on which port of the trunk will the frame be transmitted? This is easily computed using a hash of the source and  
destination MAC addresses.  
When all the information is compiled, the switch response is generated, as stated earlier.  
5.3 Search, Learning, and Aging  
5.3.1 MAC Search  
The search block performs source MAC address and destination MAC address searching. As we indicated earlier,  
if a match is not found, then the next entry in the linked list must be examined, and so on until a match is found or  
the end of the list is reached.  
In port based VLAN mode, a bitmap is used to determine whether the frame should be forwarded to the outgoing  
port. The bitmap is not dynamic. Ports cannot enter and exit groups dynamically.  
The MAC search block is also responsible for updating the source MAC address timestamp, used for aging.  
15  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
5.3.2 Learning  
The learning module learns new MAC addresses and performs port change operations on the MCT database. The  
goal of learning is to update this database as the networking environment changes over time. Learning and port  
change will be performed based on memory slot availability only.  
5.3.3 Aging  
Aging time is controlled by register 400h and 401h.  
The aging module scans and ages MCT entries based on a programmable “age out” time interval. As we indicated  
earlier, the search module updates the source MAC address and VLAN port association timestamps for each frame  
it processes. When an entry is ready to be aged, the entry is removed from the table.  
5.3.4 Data Structure  
The MCT data structure is used for searching for MAC addresses. The structure is maintained by hardware in the  
search engine. The database is essentially a hash table, with collisions resolved by chaining. The database is  
partially external, and partially internal, as described earlier: the first MCT entry of each linked list is always located  
in the external SRAM, and the subsequent MCTs are located internally.  
6.0 Frame Engine  
6.1 Data Forwarding Summary  
Enters the device at the RxMAC, the RxDMA will move the data from the MAC RxFIFO to the FDB. Data is  
moved in 8-byte granules in conjunction with the scheme for the SRAM interface.  
A switch request is sent to the Search Engine. The Search Engine processes the switch request.  
A switch response is sent back to the Frame Engine and indicates whether the frame is unicast or multicast,  
and its destination port or ports.  
A Transmission Scheduling Request is sent in the form of a signal notifying the TxQ manager. Upon  
receiving a Transmission Scheduling Request, the device will format an entry in the appropriate  
Transmission Scheduling Queue (TxSch Q) or Queues. There are 8 TxSch Queues for each Gigabit port,  
one for each priority. Creation of a queue entry either involves linking a new job to the appropriate linked list  
if unicast, or adding an entry to a physical queue if multicast.  
When the port is ready to accept the next frame, the TxQ manager will get the head-of-line (HOL) entry of  
one of the TxSch Qs, according to the transmission scheduling algorithm (so as to ensure per-class quality  
of service). The unicast linked list and the multicast queue for the same port-class pair are treated as one  
logical queue.  
The TxDMA will pull frame data from the memory and forward it granule-by-granule to the MAC TxFIFO of  
the destination port.  
6.2 Frame Engine Details  
This section briefly describes the functions of each of the modules of the MVTX2801 frame engine.  
6.2.1 FCB Manager  
The FCB manager allocates FCB handles to incoming frames, and releases FCB handles upon frame departure.  
The FCB manager is also responsible for enforcing buffer reservations and limits. The default values can be  
determined by referring to Chapter 8. In addition, the FCB manager is responsible for buffer aging, and for linking  
unicast forwarding jobs to their correct TxSch Q. The buffer aging can be enabled or disabled by the bootstrap pin  
and the aging time is defined in register FCBAT.  
16  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
6.2.2 Rx Interface  
The Rx interface is mainly responsible for communicating with the RxMAC. It keeps track of the start and end of  
frame and frame status (good or bad). Upon receiving an end of frame that is good, the Rx interface makes a switch  
request.  
6.2.3 RxDMA  
The RxDMA arbitrates among switch requests from each Rx interface. It also buffers the first 64 bytes of each frame  
for use by the search engine when the switch request has been made.  
6.2.4 TxQ Manager  
First, the TxQ manager checks the per-class queue status and global Reserved resource situation, and using this  
information, makes the frame dropping decision after receiving a switch response. If the decision is not to drop, the  
TxQ manager requests that the FCB manager link the unicast frame's FCB to the correct per-port-per-class TxQ. If  
multicast, the TxQ manager writes to the multicast queue for that port and class. The TxQ manager can also trigger  
source port flow control for the incoming frame's source if that port is flow control enabled. Second, the TxQ manager  
handles transmission scheduling; it schedules transmission among the queues representing different classes for a  
port. Once a frame has been scheduled, the TxQ manager reads the FCB information and writes to the correct port  
control module.  
6.3 Port Control  
The port control module calculates the SRAM read address for the frame currently being transmitted. It also writes  
start of frame information and an end of frame flag to the MAC TxFIFO. When transmission is done, the port control  
module requests that the buffer be released.  
6.4 TxDMA  
The TxDMA multiplexes data and address from port control, and arbitrates among buffer release requests from the  
port control modules.  
7.0 Quality of Service and Flow Control  
7.1 Model  
Quality of service (QoS) is an all-encompassing term for which different people have different interpretations. In this  
chapter, by quality of service assurances, we mean the allocation of chip resources so as to meet the latency and  
bandwidth requirements associated with each traffic class. We do not presuppose anything about the offered traffic  
pattern. If the traffic load is light, then ensuring quality of service is straightforward. But if the traffic load is heavy, the  
MVTX2801 must intelligently allocate resources so as to assure quality of service for high priority data.  
We assume that the network manager knows his applications, such as voice, file transfer, or web browsing, and their  
relative importance. The manager can then subdivide the applications into classes and set up a service contract with  
each. The contract may consist of bandwidth or latency assurances per class. Sometimes it may even reflect an  
estimate of the traffic mix offered to the switch, though this is not required.  
The table below shows examples of QoS applications with eight transmission priorities, including best effort traffic  
for which we provide no bandwidth or latency assurances.  
17  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Example  
Assured  
Low Drop Subclass  
(If class is oversubscribed,  
these packets are the  
last to be dropped.)  
High Drop Subclass  
(If class is oversubscribed,  
these packets are the  
first to be dropped.)  
Class  
Bandwidth  
(user defined)  
Highest transmission  
priorities, P7  
300 Mbps  
200 Mbps  
125 Mbps  
250 Mbps  
80 Mbps  
45 Mbps  
Sample application:  
control information  
Latency < 200 µs  
Highest transmission  
priorities, P6  
Sample applications:  
phone calls;  
Sample application:  
training video;  
Latency < 200 µs  
circuit emulation  
other multimedia  
Middle transmission  
priorities, P5  
Sample application:  
interactive activities  
Sample application:  
non-critical interactive activities  
Latency < 400 µs  
Middle transmission  
priorities, P4  
Sample application:  
web business  
Latency < 800 µs  
Low transmission  
priorities, P3  
Sample application:  
file backups  
Latency < 1600 µs  
Low transmission  
priorities, P2  
Sample application:  
email  
Sample application:  
web research  
Latency < 3200 µs  
Best effort, P1-P0  
TOTAL  
-
Sample application: casual web browsing  
1 Gbps  
Table 1 - Two-dimensional World Traffic  
It is possible that a class of traffic may attempt to monopolize system resources by sending data at a rate in excess  
of the contractually assured bandwidth for that class. A well-behaved class offers traffic at a rate no greater than the  
agreed-upon rate. By contrast, a misbehaving class offers traffic that exceeds the agreed-upon rate. A misbehaving  
class is formed from an aggregation of misbehaving microflows. To achieve high link utilization, a misbehaving class  
is allowed to use any idle bandwidth. However, the quality of service (QoS) received by well-behaved classes must  
never suffer.  
As Table 1 illustrates, each traffic class may have its own distinct properties and applications. As shown, classes  
may receive bandwidth assurances or latency bounds. In the example, P7, the highest transmission class, requires  
that all frames be transmitted within 0.2 ms, and receives 30% of the 1 Gbps of bandwidth at that port.  
Best-effort (P1-P0) traffic forms a lower tier of service that only receives bandwidth when none of the other classes  
have any traffic to offer.  
In addition, each transmission class has two subclasses, high-drop and low-drop. Well-behaved users should not  
lose packets. But poorly behaved users, users who send data at too high a rate, will encounter frame loss, and the  
first to be discarded will be high-drop. Of course, if this is insufficient to resolve the congestion, eventually some  
low-drop frames are dropped as well.  
Table 1 shows that different types of applications may be placed in different boxes in the traffic table. For example,  
web search may fit into the category of high-loss, high-latency-tolerant traffic, whereas VoIP fits into the category of  
low-loss, low-latency traffic.  
18  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
7.2 Four QoS Configurations  
There are four basic pieces to QoS scheduling in the MVTX2801: strict priority (SP), delay bound, weighted fair  
queuing (WFQ), and best effort (BE). Using these four pieces, there are four different modes of operation, as shown  
in Table 2.  
P7  
P6  
P5  
P4  
P3  
P2  
P1  
BE  
BE  
P0  
Op1 (default) Delay Bound  
Op2  
Op3  
Op4  
SP  
Delay Bound  
WFQ  
SP  
WFQ  
Table 2 - Four QoS configurations per port  
The default configuration is six delay-bounded queues and two best-effort queues. The delay bounds per class are  
0.16 ms for P7 and P6, 0.32 ms for P5, 0.64 ms for P4, 1.28 ms for P3, and 2.56 ms for P2. Best effort traffic is only  
served when there is no delay-bounded traffic to be served. P1 has strict priority over P0.  
We have a second configuration in which there are two strict priority queues, four delay bounded queues, and two  
best effort queues. The delay bounds per class are 0.32 ms for P5, 0.64 ms for P4, 1.28 ms for P3, and 2.56 ms for  
P2. If the user is to choose this configuration, it is important that P7-P6 (SP) traffic be either policed or implicitly  
bounded (e.g. if the incoming SP traffic is very light and predictably patterned). Strict priority traffic, if not  
admission-controlled at a prior stage to the MVTX2801, can have an adverse effect on all other classes'  
performance. P7 and P6 are both SP classes, and P7 has strict priority over P6.  
The third configuration contains two strict priority queues and six queues receiving a bandwidth partition via WFQ.  
As in the second configuration, strict priority traffic needs to be carefully controlled.  
In the fourth configuration, all queues are served using a WFQ service discipline  
7.3 Delay Bound  
In the absence of a sophisticated QoS server and signaling protocol, the MVTX2801 may not be assured of the mix  
of incoming traffic ahead of time. To cope with this uncertainty, our delay assurance algorithm dynamically adjusts  
its scheduling and dropping criteria, guided by the queue occupancies and the due dates of their head-of-line (HOL)  
frames. As a result, we assure latency bounds for all admitted frames with high confidence, even in the presence of  
system-wide congestion. Our algorithm identifies misbehaving classes and intelligently discards frames at no  
detriment to well-behaved classes. Our algorithm also differentiates between high-drop and low-drop traffic with a  
weighted random early drop (WRED) approach. Random early dropping prevents congestion by randomly dropping  
a percentage of high-drop frames even before the chip's buffers are completely full, while still largely sparing  
low-drop frames. This allows high-drop frames to be discarded early, as a sacrifice for future low-drop frames.  
Finally, the delay bound algorithm also achieves bandwidth partitioning among classes.  
7.4 Strict Priority and Best Effort  
When strict priority is part of the scheduling algorithm, if a queue has even one frame to transmit, it goes first. Two  
of our four QoS configurations include strict priority queues. The goal is for strict priority classes to be used for IETF  
expedited forwarding (EF), where performance guarantees are required. As we have indicated, it is important that  
strict priority traffic be either policed or implicitly bounded, so as to keep from harming other traffic classes.  
When best effort is part of the scheduling algorithm, a queue only receives bandwidth when none of the other classes  
have any traffic to offer. Two of our four QoS configurations include best effort queues. The goal is for best effort  
19  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
classes to be used for non-essential traffic, because we provide no assurances about best effort performance.  
However, in a typical network setting, much best effort traffic will indeed be transmitted, and with an adequate degree  
of expediency.  
Because we do not provide any delay assurances for best effort traffic, we do not enforce latency by dropping best  
effort traffic. Furthermore, because we assume that strict priority traffic is carefully controlled before entering the  
MVTX2801, we do not enforce a fair bandwidth partition by dropping strict priority traffic. To summarize, dropping to  
enforce quality of service (i.e. bandwidth or delay) does not apply to strict priority or best effort queues. We only drop  
frames from best effort and strict priority queues when global buffer resources become scarce.  
7.5 Weighted Fair Queuing  
In some environments - for example, in an environment in which delay assurances are not required, but precise  
bandwidth partitioning on small time scales is essential (WFQ may be preferable to a delay-bounded scheduling  
discipline). The MVTX2801 provides the user with a WFQ option with the understanding that delay assurances  
cannot be provided if the incoming traffic pattern is uncontrolled. The user sets eight WFQ “weights” such that all  
weights are whole numbers and sum to 64. This provides per-class bandwidth partitioning with error within 2%.  
In WFQ mode, though we do not assure frame latency, the MVTX2801 still retains a set of dropping rules that helps  
to prevent congestion and trigger higher level protocol end-to-end flow control.  
As before, when strict priority is combined with WFQ, we do not have special dropping rules for the strict priority  
queues, because the input traffic pattern is assumed to be carefully controlled at a prior stage. However, we do  
indeed drop frames from SP queues for global buffer management purposes. In addition, queues P1 and P0 are  
treated as best effort from a dropping perspective, though they still are assured a percentage of bandwidth from a  
WFQ scheduling perspective. What this means is that these particular queues are only affected by dropping when  
the global buffer count becomes low.  
7.6 Shaper  
Although traffic shaping is not a primary function of the MVTX2801, the chip does implement a shaper for expedited  
forwarding (EF). Our goal in shaping is to control the peak and average rate of traffic exiting the MVTX2801. Shaping  
is limited to class P6 (the second highest priority). This means that class P6 will be the class used for EF traffic. (By  
contrast, we assume class P7 will be used for control packets only.) If shaping is enabled for P6, then P6 traffic must  
be scheduled using strict priority. With reference to Table 2, only the middle two QoS configurations may be used.  
Peak rate is set using a programmable whole number, no greater than 64 (register QOS-CREDIT_C6_Gn). For  
example, if the setting is 32, then the peak rate for shaped traffic is 32/64 x 1000 Mbps = 500 Mbps. Average rate is  
also a programmable whole number, no greater than 64, and no greater than the peak rate. For example, if the  
setting is 16, then the average rate for shaped traffic is (16/64) x 1000 Mbps = 250 Mbps. As a consequence of the  
above settings in our example, shaped traffic will exit the MVTX2801 at a rate always less than 500 Mbps, and  
averaging no greater than 250 Mbps.  
Also, when shaping is enabled, it is possible for a P6 queue to explode in length if fed by a greedy source. The reason  
is that a shaper is by definition not work-conserving; that is, it may hold back from sending a packet even if the line  
is idle. Though we do have global resource management, we do nothing to prevent this situation locally. We assume  
SP traffic is policed at a prior stage to the MVTX2801.  
7.7 WRED Drop Threshold Management Support  
To avoid congestion, the Weighted Random Early Detection (WRED) logic drops packets according to specified  
parameters. The following table summarizes the behavior of the WRED logic.  
20  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
P7  
P6  
P5  
P4  
P3  
P2  
High Drop Low Drop  
Level 1  
N > 240  
X%  
0%  
|P7| > A |P6| > B |P5| > C |P4| > D |P3| > E |P2| > F KB  
KB KB KB KB KB  
Level 2  
N > 280  
Y%  
Z%  
100%  
Level 3  
N > 320  
100%  
Table 3 - WRED Dropping Scheme  
In the table, |Px| is the byte count in queue Px. The WRED logic has three drop levels, depending on the value of N,  
which is based on the number of bytes in the priority queues. If delay bound scheduling is used, N equals 16|P7| +  
16|P6| + 8|P5| + 4|P4| + 2|P3| + |P2|. If WFQ scheduling is used, N equals |P7| + |P6| + |P5| + |P4| + |P3| + |P2|.  
Each drop level has defined high-drop and low-drop percentages, which indicate the percentage of high-drop and  
low-drop packets that will be dropped at that level. The X, Y, and Z percent parameters can be programmed using  
the registers RDRC0 and RDRC1. Parameters A-F are the byte count thresholds for each priority queue, and are  
also programmable. When using delay bound scheduling, the values selected for A-F also control the approximate  
bandwidth partition among the traffic classes; see application note.  
7.8 Buffer Management  
Because the number of frame data buffer (FDB) slots is a scarce resource, and because we want to ensure that  
one misbehaving source port or class cannot harm the performance of a well-behaved source port or class, we  
introduce the concept of buffer management into the MVTX2801. Our buffer management scheme is designed to  
divide the total buffer space into numerous reserved regions and one shared pool (see Figure 4).  
As shown in the figure, the FDB pool is divided into several parts. A reserved region for temporary frames stores  
frames prior to receiving a switch response. Such a temporary region is necessary, because when the frame first  
enters the MVTX2801, its destination port and class are as yet unknown, and so the decision to drop or not needs  
to be temporarily postponed. This ensures that every frame can be received first before subjecting it to the frame  
drop discipline after classifying.  
Six reserved sections, one for each of the highest six priority classes, ensure a programmable number of FDB slots  
per class. The lowest two classes do not receive any buffer reservation.  
Another segment of the FDB reserves space for each of the 4 ports. These source port buffer reservations are  
programmable. These 8 reserved regions make sure that no well-behaved source port can be blocked by another  
misbehaving source port.  
In addition, there is a shared pool, which can store any type of frame. The registers related to the Buffer  
Management logic are:  
PRG- Port Reservation for Gigabit Ports  
SFCB- Share FCB Size  
C2RS- Class 2 Reserved Size  
C3RS- Class 3 Reserved Size  
C4RS- Class 4 Reserved Size  
C5RS- Class 5 Reserved Size  
C6RS- Class 6 Reserved Size  
C7RS- Class 7 Reserved Size  
21  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Temporary  
Reservation RTMP  
Per-Class Reservations  
Shared Pool S  
R
p7, Rp6 ... Rp2  
Per-Source Reservations 8 . R1G  
Figure 4 - Buffer Partition Scheme Used in the MVTX2801  
7.8.1 Dropping When Buffers Are Scarce  
Summarizing the two examples of local dropping discussed earlier in this chapter:  
If a queue is a delay-bounded queue, we have a multilevel WRED drop scheme, designed to control delay  
and partition bandwidth in case of congestion.  
If a queue is a WFQ-scheduled queue, we have a multilevel WRED drop scheme, designed to prevent  
congestion.  
In addition to these reasons for dropping, the MVTX2801 also drops frames when global buffer space becomes  
scarce. The function of buffer management is to ensure that such droppings cause as little blocking as possible.  
7.9 Flow Control Basics  
Because frame loss is unacceptable for some applications, the MVTX2801 provides a flow control option. When flow  
control is enabled, scarcity of buffer space in the switch may trigger a flow control signal; this signal tells a source  
port, sending a packet to this switch, to temporarily hold off.  
While flow control offers the clear benefit of no packet loss, it also introduces a problem for quality of service. When  
a source port receives an Ethernet flow control signal, all microflows originating at that port, well-behaved or not, are  
halted. A single packet destined for a congested output can block other packets destined for uncongested outputs.  
The resulting head-of-line blocking phenomenon means that quality of service cannot be assured with high  
confidence when flow control is enabled.  
In the MVTX2801, each source port can independently have flow control enabled or disabled. For flow control  
enabled ports, by default all frames are treated as lowest priority during transmission scheduling. This is done so  
that those frames are not exposed to the WRED Dropping scheme. Frames from flow control enabled ports feed to  
only one queue at the destination, the queue of lowest priority. What this means is that if flow control is enabled for  
a given source port, then we can guarantee that no packets originating from that port will be lost, but at the possible  
expense of minimum bandwidth or maximum delay assurances. In addition, these “downgraded” frames may only  
use the shared pool or the per-source reserved pool in the FDB; frames from flow control enabled sources may not  
use reserved FDB slots for the highest six classes (P2-P7).  
The MVTX2801 does provide a system-wide option of permitting normal QoS scheduling (and buffer use) for frames  
22  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
originating from flow control enabled ports. When this programmable option is active, it is possible that some packets  
may be dropped, even though flow control is on. The reason is that intelligent packet dropping is a major component  
of the MVTX2801's approach to ensuring bounded delay and minimum bandwidth for high priority flows.  
7.9.1 Unicast Flow Control  
For unicast frames, flow control is triggered by source port resource availability. Recall that the MVTX2801's buffer  
management scheme allocates a reserved number of FDB slots for each source port. If a programmed number of a  
source port's reserved FDB slots have been used, then flow control Xoff is triggered. Xon is triggered when a port is  
currently being flow controlled, and all of that port's reserved FDB slots have been released.  
Note that the MVTX2801's per-source-port FDB reservations assure that a source port that sends a single frame to  
a congested destination will not be flow controlled.  
7.9.2 Multicast Flow Control  
When port based Vlan is not used, a global buffer counter (64 packets) triggers flow control for multicast frames.  
When the system exceeds a programmable threshold of multicast packets, Xoff is triggered. Xon is triggered when  
the system returns below this threshold. MCC register programs the threshold. When port based Vlan is used, each  
Vlan has a global buffer counter.  
In addition, each source port has an 8-bit port map recording which port or ports of the multicast frame's fanout were  
congested at the time Xoff was triggered. All ports are continuously monitored for congestion, and a port is identified  
as uncongested when its queue occupancy falls below a fixed threshold. When all those ports that were originally  
marked as congested in the port map have become uncongested, then Xon is triggered, and the 8-bit vector is reset  
to zero.  
The MVTX2801 also provides the option of disabling VLAN multicast flow control.  
Note: If port flow control is on, QoS performance will be affected. To determine the most efficient way to program,  
please refer to the QoS Application Note.  
7.10 Mapping to IETF Diffserv Classes  
The mapping between priority classes discussed in this chapter and elsewhere is shown below.  
MVTX2801  
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
IETF  
NM  
EF  
AF0  
AF1  
AF2  
AF3  
BE0  
BE1  
Table 4 - Mapping between MVTX2801 and IETF Diffserv Classes for Gigabit Ports  
As the table illustrates, P7 is used solely for network management (NM) frames. P6 is used for expedited  
forwarding service (EF). Classes P2 through P5 correspond to an assured forwarding (AF) group of size 4. Finally,  
P0 and P1 are two best effort (BE) classes.  
Features of the MVTX2801 that correspond to the requirements of their associated IETF classes are summarized in  
the table below.  
23  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Network management (NM)  
Global buffer reservation for NM and EF  
Shaper for EF traffic  
Option of strict priority scheduling  
No dropping if admission controlled  
and Expedited forwarding (EF)  
Assured forwarding (AF)  
Four AF classes  
Programmable bandwidth partition, with option of  
WFQ service  
Option of delay-bounded service keeps delay  
under fixed levels even if not  
admission-controlled  
Random early discard, with programmable levels  
Global buffer reservation for each AF class  
Best effort (BE)  
Two BE classes  
Service only when other queues are idle means  
that QoS not adversely affected  
Random early discard, with programmable levels  
Traffic from flow control enabled ports  
automatically classified as BE  
Table 5 - MVTX2801 Features Enabling IETF Diffserv Standards  
8.0 Port Trunking  
8.1 Features and Restrictions  
A port group (i.e. trunk) can include up to 4 physical ports, but all of the ports in a group must be in the same  
MVTX2801.  
The MVTX2801 provides several pre-assigned trunk group options, containing as many as 4 ports per group, or  
alternatively, as many as 4 total groups.  
Load distribution among the ports in a trunk for unicast is performed using hashing based on source MAC address  
and destination MAC address. The other options include source MAC address only, destination MAC address only.  
Load distribution for multicast is performed similarly.  
If a VLAN includes any of the ports in a trunk group, all the ports in that trunk group should be in the same VLAN  
member map.  
The MVTX2801 also provides a safe fail-over mode for port trunking automatically. If one of the ports in the trunking  
group goes down, the MVTX2801 will automatically redistribute the traffic over to the remaining ports in the trunk in  
unmanaged mode. In managed mode, the software can perform similar tasks.  
8.2 Unicast Packet Forwarding  
The search engine finds the destination MCT entry, and if the status field says that the destination address found  
belongs to a trunk, then the group number is retrieved instead of the port number. In addition, if the source address  
belongs to a trunk, then the source port's trunk membership register is checked to determine if the address has  
moved.  
A hash key is used to determine the appropriate forwarding port, based on some combination of the source and  
destination MAC addresses for the current packet.  
24  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
The search engine retrieves the VLAN member ports from the VLAN index table, which consists of 4K entries.  
The search engine retrieves the VLAN member ports from the ingress port's VLAN map. Based on the destination  
MAC address, the search engine determines the egress port from the MCT database. If the egress port is a member  
of a trunk group, the packet can be distributed to the other members of that trunk group. The VLAN map is used to  
check whether the egress port is a member of the VLAN, based on the ingress port. If it is a member, the packet is  
forwarded otherwise it is discarded.  
8.3 Multicast Packet Forwarding  
For multicast packet forwarding, the device must determine the proper set of ports from which to transmit the packet  
based on the VLAN index and hash key.  
Two functions are required in order to distribute multicast packets to the appropriate destination ports in a port  
trunking environment.  
Determining one forwarding port per group.  
For multicast packets, all but one port per group, the forwarding port, must be excluded.  
8.4 Preventing Multicast Packets from Looping Back to the Source Trunk  
The search engine needs to prevent a multicast packet from sending to a port that is in the same trunk group with  
the source port. This is because, when we select the primary forwarding port for each group, we do not take the  
source port into account. To prevent this, we simply apply one additional filter, so as to block that forwarding port for  
this multicast packet.  
9.0 LED Interface  
9.1 Introduction  
The MVTX2801 LED block provides two interfaces: a serial output channel, and a parallel time-division interface.  
The serial output channel provides port status information from the MVTX2801 chip in a continuous serial stream.  
This means that a low cost external device must be used to decode the serial data and to drive an LED array for  
display.  
By contrast, the parallel time-division interface supports a glueless LED module. Indeed, the parallel interface can  
directly drive low-current LEDs without any extra logic. The pin LED_PM is used to select serial or parallel mode.  
For some LED signals, the interface also provides a blinking option. Blinking may be enabled for LED signals TxD,  
RxD, COL, and FC (to be described later). The pin LED_BLINK is used to enable blinking, and the blinking frequency  
is around 160 ms.  
9.2 Serial Mode  
In serial mode, the following pins are utilized:  
LED_SYNCO - a sync pulse that defines the boundary between status frames  
LED_CLKO - the clock signal  
LED_DO - a continuous serial stream of data for all status LEDs that repeats once every frame time  
In each cycle (one frame of status information, or one sync pulse), 16x8 bits of data are transmitted on the LED_DO  
signal. The sequence of transmission of data bits is as shown in the figure below:  
25  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
LE_SYNCO  
LE_DO  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
U0  
U1  
U2  
U3  
U4  
U5  
U6  
U7  
info info info info info info info info  
0
1
2
3
4
5
6
7
FC  
TxD  
RxD  
LNK  
SP0  
SP1  
FDX  
COL  
LE_CLKO  
Table 6 - Timing diagram for serial mode in LED interface  
The status bits shown in here are flow control (FC), transmitting data (TxD), receiving data (RxD), link up (LNK),  
speed (SP0 and SP1), full duplex (FDX), and collision (COL). Note that SP[1:0] is defined as 10 for 1 Gbps, 01 for  
100 Mbps, and 00 for 10 Mbps.  
Also note that U0-U7 represent user-defined sub-frames in which additional status information may be embedded.  
We will see later that the MVTX2801 provides registers that can be written by the CPU to indicate this additional  
status information as it becomes available.  
9.3 Parallel Mode  
In parallel mode, the following pins are utilized:  
LED_PORT_SEL[3:0] - indicates which of the 4 Gigabit port status bytes is being read out  
LED_PORT_SEL[7:4] - No use.  
LED_PORT_SEL[9:8] - indicates which of the 2 user-defined status bytes is being read out  
LED_BYTEOUT_[7:0] - provides 8 bits for 4 different port status indicators. Note that these bits are active  
low.  
By default, the system is in parallel mode. In parallel mode, the 10 status bytes are scanned in a continuous loop,  
with one byte read out per clock cycle, and the appropriate port select bit asserted.  
9.4 LED Control Registers  
An LED Control Register can be used for programming the LED clock rate, sample hold time, and pattern in parallel  
mode.  
In addition, the MVTX2801 provides 8 registers called LEDUSER[7:0] for user-defined status bytes. During  
operation, the CPU can write values to these registers, which will be read out to the LED interface output (serial or  
parallel). Only LEDUSER[1:0] are used in parallel mode. The content of the LEDUSER registers will be sent out by  
the LED serial shift logic, or in parallel mode, a byte at a time.  
Because in parallel mode there are only two user-defined registers, LEDUSER[7:2] is shared with LEDSIG[7:2].  
For LEDSIG[j], where j = 2, 3, ..., 6, the corresponding register is used for programming the LED pin  
LED_BYTEOUT_[j]. The format is as follows:  
7
4
3
0
COL  
FDX  
SP1  
SP0  
COL  
FDX  
SP1  
SP0  
26  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Bits [3:0]  
Bits [7:4]  
Signal polarity:  
0: do not invert polarity (high true)  
1: invert polarity  
Signal select:  
0: do not select  
1: select the corresponding bit  
For j = 2, 3, ..., 5, the value of LED_BYTEOUT_[j] equals the logical AND of all selected bits. For j = 6, the value is  
equal to the logical OR. Therefore, the programmable LEDSIG[5:2] registers allow any conjunctive formula including  
any of the 4 status bits (COL, FDX, SP1, SP0) or their negations to be sent to the LED_BYTEOUT_[5:2] pins.  
Similarly, the programmable LEDSIG[6] register allows any disjunctive formula including any of the 4 status bits or  
their negations to be sent to pin LED_BYTEOUT_[6].  
LEDSIG[7] is used for programming both LED_BYTEOUT_[1] and LED_BYTEOUT_[0]. As we will see, it has other  
functions as well. The format is as follows:  
7
4
3
0
GP  
RxD  
TxD  
FC  
P6  
RxD  
TxD  
FC  
Bits [7]  
Global output polarity: this bit controls the output polarity of all LED_BYTEOUT_ and  
LED_PORT_SEL pins. (Default 0)  
- 0: do not invert polarity (LED_BYTEOUT_[7:0] are high activated; LED_PORT_SEL[9:0] are low  
activated)  
- 1: invert polarity (LED_BYTEOUT_[7:0] are low activated; LED_PORT_SEL[9:0] are high activated)  
Bits [6:4]  
Bit [3]  
Signal select:  
- 0: do not select  
- 1: select the corresponding bit  
The value of LED_BYTEOUT_[1] equals the logical OR of all selected bits. (Default 110)  
Polarity control of LED_BYTEOUT_[6]  
(Default 0)  
- 0: do not invert  
- 1: invert  
Bits [2:0]  
Signal select:  
- 0: do not select  
- 1: select the corresponding bit  
The value of LED_BYTEOUT_[0] equals the logical OR of all selected bits. (Default 001)  
27  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
10.0 Register Definition  
10.1 Register Description  
2
CPU  
Addr  
(Hex)  
I C  
Register  
Description  
R/W  
Default  
Notes  
Addr  
(Hex)  
0. ETHERNET Port Control Registers - Substitute [N] with Port number (0..3)  
ECR1P”N”  
Port Control Register 1 for Port N  
Port Control Register 2 for Port N  
Extra Gigabit Port Control -port 0,1  
Extra Gigabit Port Control -port 2,3  
Active Link status port 3:0  
000 + 2N  
001 + 2N  
012  
R/W  
R/W  
R/W  
R/W  
R/W  
000+2N  
001+2N  
N/A  
c0  
00  
00  
00  
00  
ECR2P”N”  
GGCONTROL0  
GGCONTROL1  
ACTIVELINK  
013  
N/A  
016  
N/A  
1. VLAN Control Registers - Substitute [N] with Port number (0..3)  
AVTCL  
VLAN Type Code Register Low  
VLAN Type Code Register High  
Port “N” Configuration Register 0  
Port “N” Configuration Register 3  
VLAN Operating Mode  
100  
R/W  
R/W  
R/W  
R/W  
R/W  
012  
00  
81  
ff  
AVTCH  
101  
013  
PVMAP”N”_0  
102 + 4N  
105 + 4N  
126  
014+4N  
017+4N  
038  
PVMAP”N”_3  
00  
00  
PVMODE  
2. TRUNK Control Registers  
TRUNK0_MODE  
TRUNK1_MODE  
3. CPU Port Configuration  
TX_AGE  
Trunk Group 0 Mode  
Trunk Group 1 Mode  
207  
20E  
R/W  
R/W  
039  
03A  
00  
00  
Transmission Queue Aging Time  
312  
R/W  
03B  
08  
4. Search Engine Configurations  
AGETIME_LOW  
AGETIME_HIGH  
SE_OPMODE  
MAC Address Aging Time Low  
MAC Address Aging Time High  
Search Engine operation mode  
400  
401  
403  
R/W  
R/W  
R/W  
03C  
03D  
NA  
2c  
00  
00  
5. Buffer Control and QOS Control  
FCBAT  
QOSC  
FCB Aging Timer  
500  
501  
502  
503  
504  
505  
506  
507  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
03E  
03F  
040  
041  
042  
043  
044  
045  
ff  
QOS Control  
00  
08  
88  
c6  
fa  
FCR  
Flooding Control Register  
VLAN Priority Map Low  
VLAN Priority Map Middle  
VLAN Priority Map High  
TOS Priority Map Low  
TOS Priority Map Middle  
AVPML  
AVPMM  
AVPMH  
TOSPML  
TOSPMM  
88  
c6  
Table 7 - MVTX2801 Register Description  
28  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
2
CPU  
Addr  
(Hex)  
I C  
Register  
Description  
R/W  
Default  
Notes  
Addr  
(Hex)  
TOSPMH  
AVDM  
TOSDML  
BMRC  
UCC  
TOS Priority Map High  
508  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
046  
fa  
VLAN Discard Map  
TOS Discard Map  
509  
047  
048  
049  
04A  
04B  
04C  
04D  
04E  
04F  
050  
051  
052  
053  
054  
055-084  
NA  
00  
00  
00  
07  
48  
00  
26  
37  
00  
00  
00  
00  
00  
00  
50A  
50B  
50C  
50D  
50E  
50F  
Broadcast/Multicast Rate Control  
Unicast Congestion Control  
Multicast Congestion Control  
Port Reservation for 10/100 Ports  
Port Reservation for Giga Ports  
Share FCB Size  
MCC  
PR100  
PRG  
SFCB  
510  
C2RS  
Class 2 Reserved Size  
Class 3 Reserved Size  
Class 4 Reserved Size  
Class 5 Reserved Size  
Class 6 Reserved Size  
Class 7 Reserved Size  
QOS Control (N=0 - 2F)  
QOS Control (N=30 - 82)  
WRED Rate Control 0  
511  
C3RS  
512  
C4RS  
513  
C5RS  
514  
C6RS  
515  
C7RS  
516  
QOSC”N”  
QOSC”N”  
RDRC0  
RDRC1  
517-546  
547-599  
59A  
59B  
085  
086  
8e  
68  
WRED Rate Control 1  
6. MISC Configuration Register  
MII_OP0  
MII_OP1  
FEN  
MII Register Option 0  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
60B  
60C  
60D  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
0B1  
0B2  
0B3  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0B4  
0C5  
0BB  
0BC  
00  
00  
10  
00  
00  
00  
00  
00  
00  
38  
00  
00  
00  
MII Register Option 1  
Feature Registers  
MIIC0  
MII Command Register 0  
MII Command Register 1  
MII Command Register 2  
MII Command Register 3  
MII Data Register 0  
MIIC1  
MIIC2  
MIIC3  
MIID0  
MIID1  
MII Data Register 1  
RO  
LED  
LED Control Register  
R/W  
R/W  
R/W  
R/W  
CHECKSUM  
LEDUSER0  
LEDUSER1  
EEPROM Checksum Register  
LED User Define Register 0  
LED User Define Register 1  
Table 7 - MVTX2801 Register Description (continued)  
29  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
2
CPU  
Addr  
(Hex)  
I C  
Register  
Description  
R/W  
Default  
Notes  
Addr  
(Hex)  
LEDUSER2  
LED User Define Reg. 2/LED_byte pin 2  
LED User Define Reg. 3/LED_byte pin 3  
LED User Define Reg. 4/LED_byte pin 4  
LED User Define Reg. 5/LED_byte pin 5  
LED User Define Reg. 6/LED_byte pin 6  
60E  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0BD  
80  
33  
32  
20  
40  
61  
LEDUSER3  
LEDUSER4  
LEDUSER5  
LEDUSER6  
LEDUSER7  
60F  
610  
611  
612  
613  
0BE  
0BF  
0C0  
0C1  
0C2  
LED User Define Reg. 7/LED_byte pin 1 &  
0
MIINP0  
MII NEXT PAGE DATA REGISTER0  
MII NEXT PAGE DATA REGISTER1  
614  
615  
R/W  
R/W  
0C3  
0C4  
00  
00  
MIINP1  
E. Test Group Control  
DTSRL  
Test Register Low  
E00  
E01  
E02  
E03  
E04  
E05  
E06  
E07  
E08  
E09  
E0A  
R/W  
R/W  
R/W  
RO  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0B6  
0B7  
0B8  
0B9  
0BA  
00  
01  
00  
DTSRM  
Test Register Medium  
Test Register High  
DTSRH  
TDRB0  
TEST MUX read back register [7:0]  
TEST MUX read back register [15:8]  
Test Counter Register  
MASK Timeout 0  
TDRB1  
RO  
DTCR  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
00  
00  
00  
00  
00  
00  
MASK0  
MASK1  
MASK Timeout 1  
MASK2  
MASK Timeout 2  
MASK3  
MASK Timeout 3  
MASK4  
MASK Timeout 4  
F. Device Configuration Register  
GCR  
Global Control Register  
F00  
F01  
F02  
F03  
F04  
F05  
F06  
F07  
F08  
F09  
F0A  
R/W  
RO  
N/A  
N/A  
NA  
00  
DCR  
Device Status and Signature Register  
Gigabit Port0 Port1 Status Register  
Gigabit Port2 Port3 Status Register  
Gigabit Port4 Port5 Status Register  
Gigabit Port6 Port7 Status Register  
Device Port Status Register  
Data read back register  
DCR01  
DCR23  
DCR45  
DCR67  
DPST  
RO  
RO  
NA  
RO  
NA  
RO  
NA  
R/W  
RO  
N/A  
N/A  
N/A  
N/A  
N/A  
00  
DTST  
PLLCR  
LCLKCR  
BCLKCR  
PLL Control Register  
R/W  
R/W  
R/W  
00  
00  
00  
LCLK Control Register  
BCLK Control Register  
Table 7 - MVTX2801 Register Description (continued)  
30  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
2
CPU  
Addr  
(Hex)  
I C  
Register  
Description  
R/W  
Default  
Notes  
Addr  
(Hex)  
BSTRRB0  
BSTRRB1  
BSTRRB2  
BSTRRB3  
BSTRRB4  
BSTRRB5  
DA  
BOOT STRAP read back register 0  
BOOT STRAP read back register 1  
BOOT STRAP read back register 2  
BOOT STRAP read back register 3  
BOOT STRAP read back register 4  
BOOT STRAP read back register 5  
DA Register  
F0B  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
N/A  
F0C  
F0D  
F0E  
F0F  
F10  
FFF  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
da  
Table 7 - MVTX2801 Register Description (continued)  
Note:  
1. se = Search Engine  
2. fe = Frame Engine  
3. pgs = Port Group01, 23, 45, and 67  
4. mc = MAC Control  
5. tm = timer  
10.2 Group 0 Address - MAC Ports Group  
10.2.1 ECR1Pn: Port N Control Register  
2
I C Address h00+2n; Serial Interface Address: h000+2n (n=0 to 3) (For the 2600 it is different)  
2
Accessed by serial interface and I C (R/W)  
7
6
5
4
3
2
1
0
Sp State  
A-FC  
Port Mode  
Bit [4:0]  
Bit [4:3]  
Port Mode (Default 2'b00)  
- 00 - Automatic Enable Auto-Negotiation - This enables hardware state machine for auto-negotiation.  
- 01 - Limited Disable auto-Negotiation - This disables hardware for speed auto-negotiation. Hardware  
Polls MII for link status.  
- 10 - Link Down - Force link down (disable the port). Does not talk to PHY.  
- 11 - Link Up - Does not talk to PHY. User ERC1 [2:0] for config.  
- 1 - 10Mbps (Default 1'b0)  
- 0 - 100Mbps  
Bit 2 is used only when the port is in MII (10/100) mode.  
Bit [2]  
Bit [1]  
- 1 - Half Duplex (Do not use) (Default 1'b0)  
- 0 - Full Duplex  
31  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
- 1 - Flow Control Off (Default 1'b0)  
- 0 - Flow Control On  
When flow control is on:  
Bit [0]  
In full duplex mode, the MAC transmitter sends Flow Control Frames when necessary. The  
MAC receiver interprets and processes incoming flow control frames. The Flow Control Frame  
Received counter is incremented whenever a flow control frame is received.  
When flow control is off:  
In full duplex mode, the MAC transmitter does not send flow control frames. The MAC receiver  
does not interpret or process the flow control frames. The Flow Control Frame Receiver  
counter is not incremented.  
Bit [5]  
Asymmetric Flow Control Enable.  
- 0 - Disable asymmetric flow control  
- 1 - Enable asymmetric flow control  
When this bit is set, and flow control is on (bit[0] = 0), don't send out a flow control frame. But  
MAC Receiver interprets and process flow control frames. (Default is 0)  
- SS - Spanning tree state (802.1D spanning tree protocol). (Default 2'b11)  
- 00 - Blocking: Frame is dropped  
Bit [7:6]  
- 01 - Listening: Frame is dropped  
- 10 - Learning: Frame is dropped. Source MAC address is learned.  
- 11 - Forwarding: Frame is forwarded. Source MAC address is learned.  
10.2.2 ECR2Pn: Port N Control Register  
2
I C Address: 01+2n; Serial Interface Address:h001+2n (n=0to3)  
Accessed by serial interface (R/W)  
7
6
5
3
2
1
0
Security En  
DisL  
Ftf  
Futf  
Bit[0]:  
Bit[1]:  
Filter untagged frame (Default 0)  
0: Disable  
1: Enable - All untagged frames from this port are discarded or follow security option when  
security is enable  
Filter Tag frame (Default 0)  
0: Disable  
1: Enable - All tagged frames from this port are discarded or follow security option when  
security is enable  
Bit[2]:  
Learning Disable (Default 0)  
0: Learning is enabled on this port  
1: Learning is disabled on this port  
Bit [5:3]  
Reserved  
32  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Bit[7:6]  
Security Enable (Default 00). The MVTX2801 checks the incoming data for one of the following  
conditions:  
If the source MAC address of the incoming packet is in the MAC table and is defined as secure  
address but the ingress port is not the same as the port associated with the MAC address in  
the MAC table.  
A MAC address is defined as secure when its entry at MAC table has static status and bit 0 is  
set to 1. MAC address bit 0 (the first bit transmitted) indicates whether the address is unicast  
or multicast. As source addresses are always unicast bit 0 is not used (always 0). MVTX2801  
uses this bit to define secure MAC addresses.  
If the port is set as learning disable and the source MAC address of the incoming packet is not  
defined in the MAC address table.  
If the port is configured to filter untagged frames and an untagged frame arrives or if the port is  
configured to filter tagged frames and a tagged frame arrives.  
If one of these three conditions occurs, the packet will be handled according to one of the  
following specified options:  
- 00 - Disable port security  
- 01 - Enable port security. Port will be disabled when security violation is detected  
- 10 - N/A  
- 11 - N/A  
10.2.3 GGControl 0- Extra GIGA Port Control  
Serial Interface Address:h012  
Accessed by and serial interface (R/W)  
7
6
5
4
3
2
1
0
MII1  
Rst1  
MII0  
Rst0  
Bit[0]:  
Bit[1]:  
Reset GIGA port 0 (Default is 0)  
- 0: Normal operation  
- 1: Reset Gigabit port 0.  
GIGA port 0 use MII interface (10/100M) (Default is 0)  
- 0: Gigabit port operation at 1000M mode  
- 1: Gigabit port operation at 10/100M mode (MII)  
Bit[3:2]:  
Bit[4]:  
Reserved -Must be '0' (Default 0)  
Reset GIGA port 1 (Default 0)  
- 0: Normal operation  
- 1: Reset Gigabit port 1.  
Bit[5]:  
GIGA port 1 use MII interface (10/100M) (Default 0)  
- 0: Gigabit port operation at 1000M mode  
- 1: Gigabit port operation at 10/100M mode (MII)  
Bit[7:6]:  
Reserved - Must be '0' (Default 0)  
10.2.4 GGControl 1- Extra GIGA Port Control  
Serial Interface Address:h013  
33  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Accessed by CPU and serial interface (R/W)  
7
6
5
4
3
2
1
0
MII3  
Rst3  
MII2  
Rst2  
Bit[0]:  
Bit[1]:  
Reset GIGA port 2 Default is 0  
- 0: Normal operation  
- 1: Reset Gigabit port 2  
GIGA port 2 use MII interface (10/100M) Default is 0  
- 0: Gigabit port operation at 1000M mode  
- 1: Gigabit port operation at 10/100M mode (MII)  
Bit[3:2]:  
Bit[3]:  
Reserved - Must be '0' (Default '0')  
Reserved - Must be '0'  
Bit[4]:  
Reset GIGA port 3 Default is 0  
- 0: Normal operation  
- 1: Reset Gigabit port 3.  
Bit[5]:  
GIGA port 3 use MII interface (10/100M) Default is 0  
- 0: Gigabit port operation at 1000M mode  
- 1: Gigabit port operation at 10/100M mode (MII)  
Bit[7:6]:  
Reserved - Must be '0' (Default '0')  
10.3 Group 1 Address - VLAN Group  
10.3.1 AVTCL - VLAN Type Code Register Low  
2
I C Address h12; Serial Interface Address:h100  
2
Accessed by serial interface and I C (R/W)  
Bit[7:0]:  
VLANType_LOW: Lower 8 bits of the VLAN type code (Default 00)  
10.3.2 AVTCH - VLAN Type Code Register High  
2
I C Address h13; Serial Interface Address:h101  
2
Accessed by serial interface and I C (R/W)  
Bit [7:0]  
VLANType_HIGH: Upper 8 bits of the VLAN type code (Default is 81)  
10.3.3 PVMAP00_0 - Port 00 Configuration Register 0  
2
I C Address h14, Serial Interface Address:h102)  
2
Accessed by serial interface and I C (R/W)  
Port Based VLAN Mode  
34  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
This register indicates the legal egress ports. Example: A “1” on bit 3 means that packets arriving on port 0 can be  
sent to port 3. A “0” on bit 3 means that any packet destined to port 3 will be discarded.  
Bit[3:0]:  
VLAN Mask for ports 3 to 0 (Default F)  
- 0 - Disable  
- 1 - Enable  
Bit[7:4]:  
Reserve (Default F)  
10.3.4 P PVMAP00_3 - Port 00 Configuration Register 3  
2
I C Address h17, Serial Interface Address:h105  
2
Accessed by serial interface and I C (R/W)  
Port Based Mode  
7
6
5
3
2
1
0
FP en  
Drop  
Default TX priority  
FNT  
Reserved  
Bit [1:0]:  
Bit [2]:  
Reserved (Default 0)  
Force untagout (Default 0)  
- 0 Disable  
- 1 Force untag output  
All packets transmitted from this port are untagged. This register is used when this port is  
connected to legacy equipment that does not support VLAN tagging.  
Bit [5:3]:  
Fixed Transmit priority. Used when bit[7] = 1 (Default 0)  
- 000 Transmit Priority Level 0 (Lowest)  
- 001 Transmit Priority Level 1  
- 010 Transmit Priority Level 2  
- 011 Transmit Priority Level 3  
- 100 Transmit Priority Level 4  
- 101 Transmit Priority Level 5  
- 110 Transmit Priority Level 6  
- 111 Transmit Priority Level 7 (Highest)  
Bit [6]:  
Bit [7]:  
Fixed Discard priority (Default 0)  
- 0 - Discard Priority Level 0 (Lowest)  
- 1 - Discard Priority Level 7(Highest)  
Enable Fix Priority (Default 0)  
- 0 Disable fix priority. All frames are analysed. Transmit Priority and Drop Priority are based on  
VLAN Tag, TOS or Logical Port.  
- 1 Transmit Priority and Discard Priority are based on values programmed in bit [6:3]  
Port VLAN Map  
PVMAP00_0,3  
2
I C Address h14, 17; Serial Interface Address:h102, 105)  
See above format  
2
PVMAP01_0,3  
I C Address h18, 1B; Serial Interface Address:h106, 109)  
See above format  
35  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
2
PVMAP02_0,3  
PVMAP03_0,3  
I C Address h1C, 1F; Serial Interface Address:h10A, 10D)  
See above format  
2
I C Address h20,23; Serial Interface Address:h10E, 111)  
See above format  
10.3.5 PVMODE  
2
I C Address: h038, Serial Interface Address:h126  
Accessed by serial interface (R/W)  
7
6
5
4
3
0
MP  
BPDU DM  
Reserved  
Bit [3:0]:  
Bit [4]:  
Reserved  
- Must be '0'  
Disable MAC address 0  
- 0: MAC address 0 is not leaned.  
- 1: MAC address 0 is leaned.  
Bit [5]:  
Force BPDU as multicast frame (Default 0)  
- 1: Enable. BPDU frames (frames with destination MAC address in the range of  
01-80-C2 00-00-00 through 01-80-C2-00-00-0F) are forwarded as multicast  
frames.  
- 0: Disable. Drop frames in this range.  
Bit [6]:  
Bit [7]:  
MAC/PORT  
- 0: Single MAC address per system  
- 1: Single MAC address per port  
Reserved  
10.4 Group 2 Address - Port Trunking Group  
10.4.1 TRUNK0_MODE - Trunk group 0 and 1 mode  
2
I C Address: h039, Serial Interface Address:h207  
2
Accessed by serial interface and I C (R/W)  
Port Selection in unmanaged mode. Trunk group 0 and trunk group 1 are enable accordingly to bit [1:0] when input  
pin P_D[9] = 0 (external pull down).  
7
2
1
0
Port sel  
36  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Bit [1:0]:  
Port member selection for Trunk 0 and 1 in unmanaged mode (Default 2'b00)  
- 00 - Only trunk group 0 is enable. Port 0 and 1 are used for trunk group0  
- 01 - Only trunk group 0 is enable. Port 0,1 and 2 are used for trunk group0  
- 10 - Only trunk group 0 is enable. Port 0,1,2 and 3 are used for trunk group0  
- 11 - Trunk group 0 and 1 are enable. Port 0, 1 used for trunk group0, and port 2 and 3 are used for  
trunk group1  
10.4.2 TX_AGE - Tx Queue Aging timer  
2
I C Address: h03B;Serial Interface Address:h312  
2
Accessed by serial interface and I C (R/W)  
7
6
5
0
Tx Queue Agent  
Bit[4:0]:  
Bit[5]:  
Unit of 100ms (Default 8). Disable transmission queue aging if value is zero.  
Must be set to '0'  
Reserved  
Bit[7:6]:  
10.5 Group 4 Address - Search Engine Group  
10.5.1 AGETIME_LOW - MAC address aging time Low  
2
I C Address h03C; Serial Interface Address:h400  
2
Accessed by serial interface and I C (R/W)  
Bit [7:0] Low byte of the MAC address aging timer. (Default 2c)  
Mac address aging is enable/disable by boot strap T_D[9].  
10.5.2 AGETIME_HIGH -MAC address aging time High  
2
I C Address h03D; Serial Interface Address h401  
2
Accessed by serial interface and I C (R/W)  
Bit [7:0]: High byte of the MAC address aging timer. (Default 00)  
Aging time is based on the following equation:  
{AGETIME_HIGH,AGETIME_LOW} X (# of MAC entries X100µsec)  
Note: the number of entries= 66K when T_D[5] is pull down (SRAM memory size = 512K) and 34K when T_D[5] is  
pull up (SRAM memory size = 256K).  
37  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
10.5.3 SE_OPMODE - Search Engine Operation Mode  
Serial Interface Address:h403  
Accessed by CPU (R/W)  
7
6
5
0
SL  
DMS  
Bit [5:0]:  
Bit [6]:  
Reserved  
Disable MCT speed-up aging (Default 0)  
- 1 - Disable speed-up aging when MCT resource is low.  
- 0 - Enable speed-up aging when MCT resource is low.  
Bit [7]:  
Slow Learning (Default 0)  
- 1- Enable slow learning. Learning is temporary disabled when search demand is high  
- 0 - Learning is performed independent of search demand  
10.6 Group 5 Address - Buffer Control/QOS Group  
10.6.1 FCBAT - FCB Aging Timer  
2
I C Address h03E; Serial Interface Address:h500  
7
0
FCBAT  
Bit [7:0]:  
FCB Aging time. Unit of 1ms. (Default FF)  
FCBAT define the aging time out interval of FCB handle  
10.6.2 QOSC - QOS Control  
2
I C Address h03F; Serial Interface Address:h501  
2
Accessed by serial interface and I C (R/W)  
7
6
5
4
3
1
0
Tos-d  
Tos-p  
VF1c  
fb  
Bit [0]:  
Bit [4]:  
QoS frame lost is OK. Priority will be available for flow control enabled source only when this  
bit is set (Default 0)  
Per VLAN (Port based) Multicast Flow Control (Default 0)  
- 0 - Disable  
- 1 - Enable  
Bit [5]:  
Reserved  
38  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Bit [6]:  
Bit [7]:  
Select TOS bits for Priority (Default 0)  
- 0 - Use TOS [4:2] bits to map the transmit priority  
- 1 - Use TOS [5:3] bits to map the transmit priority  
select TOS bits for Drop (Default 0)  
- 0 - Use TOS [4:2] bits to map the drop priority  
- 1 - Use TOS [5:3] bits to map the drop priority  
10.6.3 FCR - Flooding Control Register  
2
I C Address h040; Serial Interface Address:h502  
2
Accessed by serial interface and I C (R/W)  
7
6
4
3
0
Tos  
TimeBase  
U2MR  
Bit [3:0]:  
Bit [6:4]:  
U2MR: Unicast to Multicast Rate. Units in terms of time base defined in bits [6:4]. This is used  
to limit the amount of flooding traffic. The value in U2MR specifies how many packets are  
allowed to flood within the time specified by bit [6:4]. To disable this function, program U2MR  
to 0.  
(Default = 4'h8)  
TimeBase: (Default = 000)  
- 000 = 10us  
- 001 = 20us  
- 010 = 40us  
- 011 = 80us  
- 100 = 160us  
- 101 = 320us  
- 110 = 640us  
- 111 = 10us, same as 000.  
Bit [7]:  
Select VLAN tag or TOS field (IP packets) to be preferentially picked to map transmit priority  
and drop priority (Default = 0).  
- 0 - Select VLAN tag priority field over TOS field  
- 1 - Select TOS field over VLAN tag priority field  
10.6.4 AVPML - VLAN Priority Map  
2
I C Address h041; Serial Interface Address:h503  
2
Accessed by serial interface and I C (R/W)  
7
6
5
3
2
0
VP2  
VP1  
VP0  
Registers AVPML, AVPMM, and AVPMH allow the eight VLAN priorities to map into eight internal level transmit  
priorities. Under the internal transmit priority, “seven” is the highest priority where as “zero” is the lowest. This  
feature allows the user the flexibility of redefining the VLAN priority field. For example, programming a value of 7  
into bit 2:0 of the AVPML register would map packet VLAN priority) into internal transmit priority 7. The new priority  
is used only inside the 2801. When the packet goes out it carries the original priority.  
39  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Bit [2:0]:  
Bit [5:3]:  
Bit [7:6]:  
Mapped priority of 0 (Default 000)  
Mapped priority of 1 (Default 001)  
Mapped priority of 2 (Default 10)  
10.6.5 AVPMM - VLAN Priority Map  
2
I C Address h042, Serial Interface Address:h504  
2
Accessed by serial interface and I C (R/W)  
7
6
4
3
1
0
VP5  
VP4  
VP3  
VP2  
Map VLAN priority into eight level transmit priorities:  
Bit [0]:  
Mapped priority of 2 (Default 0)  
Mapped priority of 3 (Default 011)  
Mapped priority of 4 (Default 100)  
Mapped priority of 5 (Default 1)  
Bit [3:1]:  
Bit [6:4]:  
Bit [7]:  
10.6.6 AVPMH - VLAN Priority Map  
2
I C Address h043, Serial Interface Address:h505  
2
Accessed by serial interface and I C (R/W)  
7
5
4
2
1
0
VP7  
VP6  
VP5  
Map VLAN priority into eight level transmit priorities:  
Bit [1:0]:  
Bit [4:2]:  
Bit [7:5]:  
Mapped priority of 5 (Default 10)  
Mapped priority of 6 (Default 110)  
Mapped priority of 7 (Default 111)  
10.6.7 TOSPML - TOS Priority Map  
2
I C Address h044, Serial Interface Address:h506  
2
Accessed by serial interface and I C (R/W)  
7
6
5
3
2
0
TP2  
TP1  
TP0  
40  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Map TOS field in IP packet into four level transmit priorities  
Bit [2:0]:  
Bit [5:3]:  
Bit [7:6]:  
Mapped priority when TOS is 0 (Default 000)  
Mapped priority when TOS is 1 (Default 001)  
Mapped priority when TOS is 2 (Default 10)  
10.6.8  
TOSPMM - TOS Priority Map  
2
I C Address h045, Serial Interface Address:h507  
2
Accessed by serial interface and I C (R/W)  
7
6
4
3
1
0
TP5  
TP4  
TP3  
TP2  
Map TOS field in IP packet into four level transmit priorities  
Bit [0]:  
Mapped priority when TOS is 2 (Default 0)  
Mapped priority when TOS is 3 (Default 011)  
Mapped priority when TOS is 4 (Default 100)  
Mapped priority when TOS is 5 (Default 1)  
Bit [3:1]:  
Bit [6:4]:  
Bit [7]:  
10.6.9 TOSPMH - TOS Priority Map  
2
I C Address h046, Serial Interface Address:h508  
2
Accessed by serial interface and I C (R/W)  
7
5
4
2
1
0
TP7  
TP6  
TP5  
Map TOS field in IP packet into four level transmit priorities:  
Bit [1:0]:  
Bit [4:2]:  
Bit [7:5]:  
Mapped priority when TOS is 5 (Default 01)  
Mapped priority when TOS is 6 (Default 110)  
Mapped priority when TOS is 7 (Default 111)  
10.6.10 AVDM - VLAN Discard Map  
2
I C Address h047, Serial Interface Address:h509  
2
Accessed by serial interface and I C (R/W)  
7
6
5
4
3
2
1
FDV1  
0
FDV0  
FDV7  
FDV6  
FDV5  
FDV4  
FDV3  
FDV2  
41  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Map VLAN priority into frame discard when low priority buffer usage is above threshold. Frames with high discard  
(drop) priority will be discarded (dropped) before frames with low drop priority.  
- 0 - Low discard priority  
- 1 - High discard priority  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Bit [3]:  
Bit [4]:  
Bit [5]:  
Bit [6]:  
Bit [7]:  
Frame discard priority for frames with VLAN transmit priority 0 (Default 0)  
Frame discard priority for frames with VLAN transmit priority 1 (Default 0)  
Frame discard priority for frames with VLAN transmit priority 2 (Default 0)  
Frame discard priority for frames with VLAN transmit priority 3 (Default 0)  
Frame discard priority for frames with VLAN transmit priority 4 (Default 0)  
Frame discard priority for frames with VLAN transmit priority 5 (Default 0)  
Frame discard priority for frames with VLAN transmit priority 6 (Default 0)  
Frame discard priority for frames with VLAN transmit priority 7 (Default 0)  
10.6.11 TOSDML - TOS Discard Map  
2
I C Address h048, Serial Interface Address:h50A  
2
Accessed by serial interface and I C (R/W  
)
7
6
5
4
3
2
1
0
FDT7  
FDT6  
FDT5  
FDT4  
FDT3  
FDT2  
FDT1  
FDT0  
Map TOS into frame discard when low priority buffer usage is above threshold  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Bit [3]:  
Bit [4]:  
Bit [5]:  
Bit [6]:  
Bit [7]:  
Frame discard priority for frames with TOS transmit priority 0 (Default 0)  
Frame discard priority for frames with TOS transmit priority 1 (Default 0)  
Frame discard priority for frames with TOS transmit priority 2 (Default 0)  
Frame discard priority for frames with TOS transmit priority 3 (Default 0)  
Frame discard priority for frames with TOS transmit priority 4 (Default 0)  
Frame discard priority for frames with TOS transmit priority 5 (Default 0)  
Frame discard priority for frames with TOS transmit priority 6 (Default 0)  
Frame discard priority for frames with TOS transmit priority 7 (Default 0)  
10.6.12 BMRC - Broadcast/Multicast Rate Control  
2
I C Address h049, Serial Interface Address:h50B  
2
Accessed by serial interface and I C (R/W)  
7
4
3
0
Broadcast Rate  
Multicast Rate  
42  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
This broadcast and multicast rate defines for each port the number of incoming packet allowed to be forwarded  
within a specified time. Once the packet rate is reached, packets will be dropped. To turn off the rate limit, program  
the field to 0.  
Bit [3:0]:  
Bit [7:4]:  
Multicast Rate Control Number of multicast packets allowed within the time  
defined in bits 6 to 4 of the Flooding Control Register (FCR). (Default 0).  
Broadcast Rate Control Number of broadcast packets allowed within the time  
defined in bits 6 to 4 of the Flooding Control Register (FCR). (Default 0)  
10.6.13 UCC - Unicast Congestion Control  
2
I C Address h04A, Serial Interface Address:h50C  
2
Accessed by serial interface and I C (R/W)  
7
0
Unicast congest threshold  
Bit [7:0]:  
Number of frame count. Used for best effort dropping at B% when destination port's best  
effort queue reaches UCC threshold and shared pool is all in use. Granularity 16 frame.  
(Default: h07)  
10.6.14 MCC - Multicast Congestion Control  
2
I C Address h0B7, Serial Interface Address:h50D  
2
Accessed by serial interface and I C (R/W)  
7
5
4
3
0
FC reaction prd  
Multicast congest threshold  
Bit [3:0]:  
In multiples of two. Used for triggering MC flow control when destination port's best effort  
queue reaches MCC threshold. (Default 5'h08)  
Bit [4]:  
Must be 0  
Bit [7:5]:  
Flow control reaction period. ([7:5] 4)+3 usec (Default 3'h2).  
10.6.15 PRG - Port Reservation for Giga ports  
2
I C Address h0B9, Serial Interface Address:h50F  
2
Accessed by serial interface and I C (R/W)  
7
4
3
0
Buffer low thd  
Per source buffer Reservation  
43  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Bit [3:0]:  
Per source buffer reservation. Define the space in the FDB reserved for each port.  
Expressed in multiples of 16 packets. For each packet 1536 bytes are reserved in the  
memory.  
Default: 4'hA for 4MB memory  
4'h6 for 2MB memory  
4'h3 for 1MB memory  
Bits [7:4]:  
Expressed in multiples of 16 packets. Threshold for dropping all best effort frames when  
destination port best effort queues reach UCC threshold and shared pool is all used and  
source port reservation is at or below the PRG[7:4] level. Also the threshold for initiating UC  
flow control.  
Default: 4'h6 for 4MB memory  
4'h2 for 2MB memory  
4'h1 for 1MB memory  
FCB Reservation  
10.6.16 SFCB - Share FCB Size  
2
I C Address h04E), Serial Interface Address:h510  
2
Accessed by serial interface and I C (R/W)  
7
0
Shared buffer size  
Bits [7:0]:  
Expressed in multiples of 8. Buffer reservation for shared pool.  
- (Default 4G & 4M = 8'd62)  
- (Default 4G & 2M = 8'd20)  
- (Default 4G & 1M = 8'd08)  
- (Default 8G & 4M = 8'd150)  
- (Default 8G & 2M = 8'd55)  
- (Default 8G & 1M = 8'd25)  
10.6.17 C2RS - Class 2 Reserved Size  
2
I C Address h04F, Serial Interface Address:h511  
2
Accessed by serial interface and I C (R/W)  
7
0
Class 2 FCB Reservation  
Bits [7:0]:  
Buffer reservation for class 2 (third lowest priority). Granularity 2.  
(Default 8'h00)  
44  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
10.6.18 C3RS - Class 3 Reserved Size  
2
I C Address h050, Serial Interface Address:h512  
2
Accessed by serial interface and I C (R/W)  
7
0
0
0
0
Class 3 FCB Reservation  
Bits [7:0]:  
Buffer reservation for class 3. Granularity 2. (Default 8'h00)  
10.6.19 C4RS - Class 4 Reserved Size  
2
I C Address h051, Serial Interface Address:h513  
2
Accessed by serial interface and I C (R/W)  
7
Class 4 FCB Reservation  
Bits [7:0]:  
Buffer reservation for class 4. Granularity 2. (Default 8'h00)  
10.6.20 C5RS - Class 5 Reserved Size  
2
I C Address h052; Serial Interface Address:h514  
2
Accessed by serial interface and I C (R/W)  
7
Class 5 FCB Reservation  
Bits [7:0]:  
Buffer reservation for class 5. Granularity 2. (Default 8'h00)  
10.6.21 C6RS - Class 6 Reserved Size  
2
I C Address h053; Serial Interface Address:h515  
2
Accessed by serial interface and I C (R/W)  
7
Class 6 FCB Reservation  
Bits [7:0]:  
Buffer reservation for class 6 (second highest priority). Granularity 2.  
(Default 8'h00)  
45  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
10.6.22 C7RS - Class 7 Reserved Size  
2
I C Address h054; Serial Interface Address:h516  
2
Accessed by serial interface and I C (R/W)  
7
0
Class 7 FCB Reservation  
Bits [7:0]:  
Buffer reservation for class 7 (highest priority). Granularity 2.  
(Default 8'h00)  
Classes Byte Gigabit Port 0  
10.6.23 QOSC00 - BYTE_C2_G0  
2
I C Address h055, Serial Interface Address:h517  
Bits [7:0]:  
Byte count threshold for C2 queue WRED (Default 8'h28)  
(1024byte/unit when Delay Bound is used)  
(1024byte/unit when WFQ is used)  
10.6.24 QOSC01 - BYTE_C3_G0  
2
I C Address h056, Serial Interface Address:h518  
Bits [7:0]:  
Byte count threshold for C3 queue WRED (Default 8'h28)  
(512byte/unit when Delay Bound is used)  
(1024byte/unit when WFQ is used)  
10.6.25 QOSC02 - BYTE_C4_G0  
2
I C Address h057, Serial Interface Address:h519  
Bits [7:0]:  
Byte count threshold for C4 queue WRED (Default 8'h28)  
(256byte/unit when Delay Bound is used)  
(1024byte/unit when WFQ is used)  
10.6.26 QOSC03 - BYTE_C5_G0  
2
I C Address h058, Serial Interface Address:h51A  
Bits [7:0]:  
Byte count threshold for C5 queue WRED (Default 8'h28)  
(128byte/unit when Delay Bound is used)  
(1024byte/unit when WFQ is used)  
46  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
10.6.27 QOSC04 - BYTE_C6_G0  
2
I C Address h059, Serial Interface Address:h51B  
Bits [7:0]:  
Byte count threshold for C6 queue WRED (Default 8'h50)  
(64byte/unit when Delay Bound is used)  
(1024byte/unit when WFQ is used)  
10.6.28 QOSC05 - BYTE_C7_G0  
2
I C Address h05A, Serial Interface Address:h51C  
Bits [7:0]:  
Byte count threshold for C6 queue WRED (Default 8'h50)  
(64byte/unit when Delay Bound is used)  
(1024byte/unit when WFQ is used)  
QOSC00 through QOSC05 represent the values F-A in Table 3 for Gigabit port 0. They are per-queue byte  
thresholds for weighted random early drop (WRED). QOSC05 represents A, and QOSC00 represents F.  
Classes Byte Gigabit Port 1  
10.6.29 QOSC06 - BYTE_C2_G1  
2
I C Address h05B, Serial Interface Address:h51D  
Bits [7:0]:  
Byte count threshold for C2 queue WRED (Default 8'h28)  
(1024byte/unit when Delay Bound is used)  
(1024byte/unit when WFQ is used)  
10.6.30 QOSC07 - BYTE_C3_G1  
2
I C Address h05C, Serial Interface Address:h51E  
Bits [7:0]  
Byte count threshold for C3 queue WRED (Default 8'h28)  
(512 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
10.6.31 QOSC08 - BYTE_C4_G1  
2
I C Address h05D, Serial Interface Address:h51F  
Bits [7:0]:  
Byte count threshold for C4 queue WRED (Default 8'h28)  
(256 byte/unit when Delay Bound is used)  
(1024byte/unit when WFQ is used)  
10.6.32 QOSC09 - BYTE_C5_G1  
2
I C Address h05E, Serial Interface Address:h520  
Bits [7:0]:  
Byte count threshold for C5 queue WRED (Default 8'h28)  
(128 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
47  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
10.6.33 QOSC0A - BYTE_C6_G1  
2
I C Address h05F, Serial Interface Address:h521  
Bits [7:0]:  
Byte count threshold for C6 queue WRED (Default 8'h50)  
(64 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
10.6.34 QOSC0B - BYTE_C7_G1  
2
I C Address h060, Serial Interface Address:h522  
Bits [7:0]:  
Byte count threshold for C7 queue WRED (Default 8'h50)  
(64 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
QOSC06 through QOSC0B represent the values F-A in Table 3. They are per-queue byte thresholds for random  
early drop. QOSC0B represents A, and QOSC06 represents F.  
Classes Byte Gigabit Port 2  
10.6.35 QOSC0C - BYTE_C2_G2  
2
I C Address h061, Serial Interface Address:h523  
Bits [7:0]:  
Byte count threshold for C2 queue WRED (Default 8'h28)  
(1024 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
10.6.36 QOSC0D - BYTE_C3_G2  
2
I C Address h062, Serial Interface Address:h524  
Bits [7:0]:  
Byte count threshold for C3 queue WRED (Default 8'h28)  
(512 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
10.6.37 QOSC0E - BYTE_C4_G2  
2
I C Address h063, Serial Interface Address:h525  
Bits [7:0]:  
Byte count threshold for C4 queue WRED (Default 8'h28)  
(256 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
48  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
10.6.38 QOSC0F - BYTE_C5_G2  
2
I C Address h064, Serial Interface Address:h526  
Bits [7:0]:  
Byte count threshold for C5 queue WRED (Default 8'h28)  
(128 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
10.6.39 QOSC10 - BYTE_C6_G2  
2
I C Address h065, Serial Interface Address:h527  
Bits [7:0]:  
Byte count threshold for C6 queue WRED (Default 8'h50)  
(64 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
10.6.40 QOSC11 - BYTE_C7_G2  
2
I C Address h066, Serial Interface Address:h528  
Bits [7:0]:  
Byte count threshold for C7 queue WRED (Default 8'h50)  
(64 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
QOSC0C through QOSC11 represent the values F-A in Table 3 for Gigabit port 2. They are per-queue byte  
thresholds for random early drop. QOSC11 represents A, and QOSC0C represents F.  
Classes Byte Gigabit Port 3  
10.6.41 QOSC12 - BYTE_C2_G3  
2
I C Address h067, Serial Interface Address:h529  
Bits [7:0]:  
Byte count threshold for C2 queue WRED (Default 8'h28)  
(1024 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
10.6.42 QOSC13 - BYTE_C3_G3  
2
I C Address h068, Serial Interface Address:h52A  
Bits [7:0]:  
Byte count threshold for C3 queue WRED (Default 8'h28)  
(512 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
10.6.43  
QOSC14 - BYTE_C4_G3  
2
I C Address h069, Serial Interface Address:h52B  
Bits [7:0]:  
Byte count threshold for C4 queue WRED (Default 8'h28)  
(256 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
49  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
10.6.44 QOSC15 - BYTE_C5_G3  
2
I C Address h06A, Serial Interface Address:h52C  
Bits [7:0]:  
Byte count threshold for C5 queue WRED (Default 8'h28)  
(128 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
10.6.45 QOSC16 - BYTE_C6_G3  
2
I C Address h06B, Serial Interface Address:h52D  
Bits [7:0]:  
Byte count threshold for C6 queue WRED (Default 8'h50)  
(64 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
10.6.46 QOSC17 - BYTE_C7_G3  
2
I C Address h06C, Serial Interface Address:h52E  
Bits [7:0]:  
Byte count threshold for C7 queue WRED (Default 8'h50)  
(64 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
QOSC12 through QOSC17 represent the values F-A in Table 3 for Gigabit port 3. They are per-queue byte  
thresholds for random early drop. QOSC17 represents A, and QOSC12 represents F.  
Classes WFQ Credit Set 0  
10.6.47 QOSC33 - CREDIT_C0_G0  
Serial Interface Address:h54A  
Bits [5:0]:  
Bits [7:6]:  
W0 - Credit register for WFQ. (Default 6'h04)  
Priority type. Define one of the four QoS mode of operation for port 0 (Default 2'00)  
- 00: Option 1  
- 01: Option 2  
- 10: Option 3  
- 11: Option 4  
See table below:  
Queue  
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
Option 1 Bit [7:6] = 2'B00  
Option 2 Bit [7:6] = 2'B01  
Option 3 Bit [7:6] = 2'B10  
Option 4 Bit [7:6] = 2'B11  
Credit for WFQ - Bit [5:0]  
DELAY BOUND  
BE  
BE  
SP  
DELAY BOUND  
SP  
WFQ  
WFQ  
W7  
W6  
W5  
W4  
W3  
W2  
W1  
W0  
50  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
10.6.48 QOSC34 - CREDIT_C1_G0  
Serial Interface Address:h54B  
Bits [7]:  
Bits [6]:  
Bits [5:0]  
Fc_allow  
Flow control allow during WFQ scheme. (Default 1'b1)  
0 = Not support QoS when the Source port Flow control status is on.  
1= Always support QoS)  
Flow control BE Queue only. (Default 1'b1)  
0= DO NOT send any frames if the XOFF is on.  
1= the P7-P2 frames can be sent even the XOFF is ON  
W1 - Credit register. (Default 4'h04)  
Fc_be_only  
Lost_ok  
Egress- for dest fc_status Ingress- for src fc status  
0
0
0
Go to BE Queue if (Src FC or Des FC on) otherwise  
Normal  
0
1
0
0
1
0
Go to BE Queue if (Dest FC on) otherwise Normal  
(WFQ only) Go to BE Queue if (Src FC on) otherwise  
BAD  
1
0
1
1
1
0
1
(WFQ only) Always Normal  
Go to BE Queue if (Src FC on)  
Always Normal  
X
X
10.6.49 QOSC35 - CREDIT_C2_G0  
Serial Interface Address:h54C  
Bits [5:0]  
Bits [7:6]:  
W2 - Credit register. (Default 4'h04)  
Reserved  
10.6.50 QOSC36 - CREDIT_C3_G0  
Serial Interface Address:h54D  
Bits [5:0]  
Bits [7:6]:  
W3 - Credit register. (Default 4'h04)  
Reserved  
10.6.51 QOSC37 - CREDIT_C4_G0  
Serial Interface Address:h54E  
Bits [5:0]  
Bits [7:6]:  
W4 - Credit register. (Default 4'h04)  
Reserved  
51  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
10.6.52 QOSC38 - CREDIT_C5_G0  
Serial Interface Address:h54F  
Bits [5:0]  
Bits [7:6]:  
W5 - Credit register. (Default 5'h8)  
Reserved  
10.6.53 QOSC39- CREDIT_C6_G0  
Serial Interface Address:h550  
Bits [5:0]  
Bits [7:6]:  
W6 - Credit register. (Default 5'h8)  
Reserved  
10.6.54 QOSC3A- CREDIT_C7_G0  
Serial Interface Address:h551  
Bits [5:0]  
Bits [7:6]:  
W7 - Credit register. (Default 5'h10)  
Reserved  
QOSC33 through QOSC3Arepresents the set of WFQ parameters (see section 7.5) for Gigabit port 0. The  
granularity of the numbers (bits [5:0]) is 1, and their sum must be 64. QOSC33 corresponds to W0, and QOSC3A  
corresponds to W7.  
Classes WFQ Credit Port G1  
10.6.55 QOSC3B - CREDIT_C0_G1  
Serial Interface Address:h552  
Bits [5:0]:  
Bits [7:6]:  
W0 - Credit register for WFQ. (Default 6'h04)  
Priority type. Define one of the four QoS mode of operation for port 1 (Default 2'00)  
- 00: Option 1  
- 01: Option 2  
- 10: Option 3  
- 11: Option 4  
See table below:  
Queue  
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
Option 1 Bit [7:6] = 2'B00 DELAY BOUND  
BE  
BE  
Option 2 Bit [7:6] = 2'B01 SP  
Option 3 Bit [7:6] = 2'B10 SP  
DELAY BOUND  
WFQ  
Option 4 Bit [7:6] = 2'B11  
Credit for WFQ - Bit [5:0]  
WFQ  
W7  
W6  
W5  
W4  
W3  
W2  
W1  
W0  
52  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
10.6.56 QOSC3C - CREDIT_C1_G1  
Serial Interface Address:h54B  
Bits [7]:  
Flow control allow during WFQ scheme. (Default 1'b1)  
0 = Not support QoS when the Source port Flow control status is on.  
1= Always support QoS)  
Bits [6]:  
Flow control BE Queue only. (Default 1'b1)  
0= DO NOT send any frames if the XOFF is on.  
1= the P7-P2 frames can be sent even the XOFF is ON  
Bits [5:0]  
Fc_allow  
W1 - Credit register. (Default 4'h04)  
Fc_be_only  
Lost_ok  
Egress- for dest fc_status Ingress- for src  
fc status  
0
0
1
1
X
X
0
0
0
0
1
1
0
1
0
1
0
1
Go to BE Queue if (Src FC or Des FC on) otherwise Normal  
Go to BE Queue if (Dest FC on) otherwise Normal  
(WFQ only) Go to BE Queue if (Src FC on) otherwise BAD  
(WFQ only) Always Normal  
Go to BE Queue if (Src FC on)  
Always Normal  
10.6.57 QOSC3D - CREDIT_C2_G1  
Serial Interface Address:h553  
Bits [5:0]  
Bits [7:6]:  
W2 - Credit register. (Default 4'h04)  
Reserved  
10.6.58 QOSC3E - CREDIT_C3_G1  
Serial Interface Address:h554  
Bits [5:0]  
Bits [7:6]:  
W3 - Credit register. (Default 4'h04)  
Reserved  
10.6.59 QOSC3F - CREDIT_C4_G1  
Serial Interface Address:h555  
Bits [5:0]  
Bits [7:6]:  
W4 - Credit register. (Default 4'h04)  
Reserved  
53  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
10.6.60 QOSC40 - CREDIT_C5_G1  
Serial Interface Address:h556  
Bits [5:0]  
Bits [7:6]:  
W5 - Credit register. (Default 5'h8)  
Reserved  
10.6.61 QOSC41- CREDIT_C6_G1  
Serial Interface Address:h557  
Bits [5:0]  
Bits [7:6]:  
W6 - Credit register. (Default 5'h8)  
Reserved  
10.6.62 QOSC42- CREDIT_C7_G1  
Serial Interface Address:h558  
Bits [5:0]  
Bits [7:6]:  
W7 - Credit register. (Default 5'h10)  
Reserved  
QOSC3B through QOSC42 represents the set of WFQ parameters (see section 7.5) for Gigabit port 1. The  
granularity of the numbers (bits [5:0]) is 1, and their sum must be 64. QOSC3B corresponds to W0, and QOSC42  
corresponds to W7.  
Classes WFQ Credit Port G2  
10.6.63 QOSC43 - CREDIT_C0_G2  
Serial Interface Address:h55A  
Bits [5:0]:  
Bits [7:6]:  
W0 - Credit register for WFQ. (Default 6'h04)  
Priority type. Define one of the four QoS mode of operation for port 2 (Default 2'00)  
- 00: Option 1  
- 01: Option 2  
- 10: Option 3  
- 11: Option 4  
See table below:  
Queue  
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
Option 1 Bit [7:6] = 2'B00  
Option 2 Bit [7:6] = 2'B01  
Option 3 Bit [7:6] = 2'B10  
Option 4 Bit [7:6] = 2'B11  
Credit for WFQ - Bit [5:0]  
DELAY BOUND  
BE  
BE  
SP  
DELAY BOUND  
WFQ  
SP  
WFQ  
W7  
W6  
W5  
W4  
W3  
W2  
W1  
W0  
54  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
10.6.64 QOSC44 - CREDIT_C1_G2  
Serial Interface Address:h55B  
Bits [7]:  
Bits [6]:  
Bits [5:0]  
Flow control allow during WFQ scheme. (Default 1'b1)  
0 = Not support QoS when the Source port Flow control status is on.  
1= Always support QoS)  
Flow control BE Queue only. (Default 1'b1)  
0= DO NOT send any frames if the XOFF is on.  
1= the P7-P2 frames can be sent even the XOFF is ON  
W1 - Credit register. (Default 4'h04)  
Fc_allow  
Fc_be_only  
Lost_ok  
Egress- for dest fc_status Ingress- for src  
fc status  
0
0
1
x
0
0
0
0
0
1
0
1
Go to BE Queue if (Src FC or Des FC on) otherwise Normal  
Go to BE Queue if (Dest FC on) otherwise Normal  
(WFQ only) Go to BE Queue if (Src FC on) otherwise BAD  
(WFQ only)  
Always Normal  
X
X
1
1
0
1
Go to BE Queue if (Src FC on)  
Always Normal  
10.6.65 QOSC45 - CREDIT_C2_G2  
Serial Interface Address:h55C  
Bits [5:0]  
Bits [7:6]:  
W2 - Credit register. (Default 4'h04)  
Reserved  
10.6.66 QOSC46 - CREDIT_C3_G2  
Serial Interface Address:h55D  
Bits [5:0]  
Bits [7:6]:  
W3 - Credit register. (Default 4'h04)  
Reserved  
10.6.67 QOSC47 - CREDIT_C4_G2  
Serial Interface Address:h55E  
Bits [5:0]  
Bits [7:6]:  
W4 - Credit register. (Default 4'h04)  
Reserved  
55  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
10.6.68 QOSC48 - CREDIT_C5_G2  
Serial Interface Address:h55F  
Bits [5:0]  
Bits [7:6]:  
W5 - Credit register. (Default 5'h8)  
Reserved  
10.6.69 QOSC49- CREDIT_C6_G2  
Serial Interface Address:h560  
Bits [5:0]  
Bits [7:6]:  
W6 - Credit register. (Default 5'h8)  
Reserved  
10.6.70 QOSC4A- CREDIT_C7_G2  
Serial Interface Address:h561  
Bits [5:0]  
Bits [7:6]:  
W7 - Credit register. (Default 5'h10)  
Reserved  
QOSC43 through QOSC4Arepresents the set of WFQ parameters (see section 7.5) for Gigabit port 2. The  
granularity of the numbers (bits [5:0]) is 1, and their sum must be 64. QOSC43 corresponds to W0, and QOSC4A  
corresponds to W7.  
Classes WFQ Credit Port G3  
10.6.71 QOSC4B - CREDIT_C0_G3  
Serial Interface Address:h562  
Bits [5:0]:  
Bits [7:6]:  
W0 - Credit register for WFQ. (Default 6'h04)  
Priority type. Define one of the four QoS mode of operation for port 3  
(Default 2'00)  
- 00: Option 1  
- 01: Option 2  
- 10: Option 3  
- 11: Option 4  
See table below  
Queue  
P7 P6 P5 P4 P3 P2 P1 P0  
Option 1 Bit [7:6] = 2'B00  
Option 2 Bit [7:6] = 2'B01  
Option 3 Bit [7:6] = 2'B10  
Option 4 Bit [7:6] = 2'B11  
Credit for WFQ - Bit [5:0]  
DELAY BOUND  
BE  
BE  
SP  
DELAY BOUND  
WFQ  
SP  
WFQ  
W7 W6 W5 W4 W3 W2 W1 W0  
56  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
10.6.72 QOSC4 - CREDIT_C1_G3  
Serial Interface Address:h563  
Bits [7]:  
Bits [6]:  
Bits [5:0]  
Fc_allow  
Flow control allow during WFQ scheme. (Default 1'b1)  
0 = Not support QoS when the Source port Flow control status is on.  
1= Always support QoS)  
Flow control BE Queue only. (Default 1'b1)  
(0= DO NOT send any frames if the XOFF is on.  
(1= the P7-P2 frames can be sent even the XOFF is ON)  
W1 - Credit register. (Default 4'h04)  
Fc_be_only  
Lost_ok  
Egress- for dest fc_status Ingress- for  
src fc status  
0
0
1
1
X
0
0
0
0
1
0
1
0
1
0
Go to BE Queue if (Src FC or Des FC on) otherwise Normal  
Go to BE Queue if (Dest FC on) otherwise Normal  
(WFQ only) Go to BE Queue if (Src FC on) otherwise BAD  
(WFQ only) Always Normal  
Go to BE Queue if (Src FC on)  
X
1
1
Always Normal  
10.6.73 QOSC4D - CREDIT_C2_G3  
Serial Interface Address:h564  
Bits [5:0]  
Bits [7:6]:  
W2 - Credit register. (Default 4'h04)  
Reserved  
10.6.74 QOSC4E - CREDIT_C3_G3  
Serial Interface Address:h565  
Bits [5:0]  
Bits [7:6]:  
W3 - Credit register. (Default 4'h04)  
Reserved  
10.6.75 QOSC4F - CREDIT_C4_G3  
Serial Interface Address:h566  
Bits [5:0]  
Bits [7:6]:  
W4 - Credit register. (Default 4'h04)  
Reserved  
57  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
10.6.76 QOSC50 - CREDIT_C5_G3  
Serial Interface Address:h567  
Bits [5:0]  
Bits [7:6]:  
W5 - Credit register. (Default 5'h8)  
Reserved  
10.6.77 QOSC51- CREDIT_C6_G3  
Serial Interface Address:h568  
Bits [5:0]  
Bits [7:6]:  
W6 - Credit register. (Default 5'h8)  
Reserved  
10.6.78 QOSC52- CREDIT_C7_G3  
Serial Interface Address:h569  
Bits [5:0]  
Bits [7:6]:  
W7 - Credit register. (Default 5'h10)  
Reserved  
QOSC4B through QOSC52 represents the set of WFQ parameters (see section 7.5) for Gigabit port 3. The  
granularity of the numbers (bits [5:0]) is 1, and their sum must be 64. QOSC4B corresponds to W0, and QOSC52  
corresponds to W7.  
Class 6 Shaper Control Port G0  
10.6.79 QOSC73 - TOKEN_RATE_G0  
Serial Interface Address:h58A  
Bits [7:0]  
Bytes allow to transmit every frame time (0.512usec) when regulated by  
Shaper logic. (Default: 8'h08)  
10.6.80 QOSC74 - TOKEN_LIMIT_G0  
Serial Interface Address:h58B  
Bits [7:0]  
Bytes allow to continue transmit out when regulated by Shaper logic.  
(16byte/unit) (Default: 8'hC0)  
QOSC73 and QOSC74 correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC73 is an  
integer less than 64, with granularity 1. QOSC74 is the programmed maximum value of the counter (maximum burst  
size). This value is expressed in multiples of 16. QOSC73 and QOSC74 apply to Gigabit port 0. Register  
QOSC39-CREDIT_C6_G0 programs the peak rate. See QoS application note for more information.  
Class 6 Shaper Control Port G1  
58  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
10.6.81 QOSC75 - TOKEN_RATE_G1  
Serial Interface Address:h58C  
Bits [7:0]  
Bytes allow to transmit every frame time (0.512usec) when regulated by  
Shaper logic. (Default: 8'h08)  
10.6.82 QOSC76 - TOKEN_LIMIT_G1  
Serial Interface Address:h58D  
Bits [7:0]  
Bytes allow to continue transmit out when regulated by Shaper logic.  
(16byte/unit) (Default: 8'hC0)  
QOSC75 and QOSC76 correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC75 is an  
integer less than 64, with granularity 1. QOSC76 is the programmed maximum value of the counter (maximum burst  
size). This value is expressed in multiples of 16. QOSC75 and QOSC76 apply to Gigabit port 1. Register  
QOSC41-CREDIT_C6_G1 programs the peak rate. See QoS application note for more information.  
Class 6 Shaper Control Port G2  
10.6.83 QOSC77 - TOKEN_RATE_G2  
Serial Interface Address:h58E  
Bits [7:0]  
Bytes allow to transmit every frame time (0.512usec) when regulated by  
Shaper logic. (Default: 8'h08)  
10.6.84 QOSC78 - TOKEN_LIMIT_G2  
Serial Interface Address:h58F  
Bits [7:0]  
Bytes allow to continue transmit out when regulated by Shaper logic.  
(16byte/unit) (Default: 8'hC0)  
QOSC77 and QOSC78 correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC77 is an  
integer less than 64, with granularity 1. QOSC78 is the programmed maximum value of the counter (maximum burst  
size). This value is expressed in multiples of 16. QOSC77 and QOSC78 apply to Gigabit port 2. Register  
QOSC49-CREDIT_C6_G2 programs the peak rate. See QoS application note for more information.  
Class 6 Shaper Control Port G3  
10.6.85 QOSC79 - TOKEN_RATE_G3  
Serial Interface Address:h590  
Bits [7:0]  
Bytes allow to transmit every frame time (0.512usec) when regulated by  
Shaper logic. (Default: 8'h08)  
59  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
10.6.86 QOSC7A - TOKEN_LIMIT_G3  
Serial Interface Address:h591  
Bits [7:0]  
Bytes allow to to continue transmit out when regulated by Shaper logic.  
(16byte/unit) (Default: 8’hC0)  
QOSC79 and QOSC7A correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC79 is an  
integer less than 64, with granularity 1. QOSC7A is the programmed maximum value of the counter (maximum burst  
size). This value is expressed in multiples of 16. QOSC79 and QOSC7A apply to Gigabit port 3. Register  
QOSC51-CREDIT_C6_G3 programs the peak rate. See QoS application note for more information.  
10.6.87 RDRC0 - WRED Rate Control 0  
2
I C Address 085, Serial Interface Address:h59A  
2
Accessed by Serial Interface and I C (R/W)  
7
4
3
0
X Rate  
Y Rate  
Bits [7:4]:  
Bits[3:0]:  
Corresponds to the percentage X% in Chapter 7. Used for random early  
drop. Granularity 6.25%. (Default: 4'h8)  
Corresponds to the percentage Y% in Chapter 7. Used for random early  
drop. Granularity 6.25%.(Default: 4'hE)  
10.6.88 RDRC1 - WRED Rate Control 1  
2
I C Address 086, Serial Interface Address:h59B  
2
Accessed by Serial Interface and I C (R/W)  
7
4
3
0
Z Rate  
B Rate  
Bits [7:4]:  
Bits[3:0]:  
Corresponds to the percentage Z% in Chapter 7. Used for random early drop.  
Granularity 6.25%.%. (Default: 4'h6)  
Corresponds to the best effort frame drop percentage B%, when shared pool is all in use and  
destination port best effort queue reaches UCC. Used for random early drop.  
Granularity 6.25%.%. (Default: 4'h8)  
60  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
10.7 Group 6 Address - MISC Group  
10.7.1 MII_OP0 - MII Register Option 0  
2
I C Address h0B1, Serial Interface Address:h600  
2
Accessed by serial interface and I C (R/W)  
7
6
5
4
0
Hfc  
1prst  
NP  
Vendor Spc. Reg Addr  
Bit [7]:  
Half duplex flow control no default enable (Do not use half duplex mode)  
- 0 = Half duplex flow control always enable  
- 1 = Half duplex flow control by negotiation  
Bit[6]:  
Bit [5]  
Link partner reset auto-negotiate disable  
Next page enable  
- 1: enable  
- 0: disable  
Bit[4:0]:  
Vendor specified link status register address (null value means don't use it) (Default 00)  
10.7.2 MII_OP1 - MII Register Option 1  
2
I C Address 0B2, Serial Interface Address:h601  
2
Accessed by serial interface and I C (R/W)  
7
4
3
0
Speed bit location  
Duplex bit location  
Bits[3:0]:  
Bits [7:4]:  
Duplex bit location in vendor specified register  
Speed bit location in vendor specified register (Default 00)  
10.7.3 FEN - Feature Register  
2
I C Address h0B3, Serial Interface Address:h602  
2
Accessed by serial interface and I C (R/W)  
7
6
5
3
2
1
0
DML  
MII  
DS  
61  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Bits [1:0]:  
Bit [2]:  
Reserved  
Support DS EF Code. (Default 0)  
- 0 - Disable  
- 1 - Enable (all ports)  
When 101110 is detected in DS field (TOS[7:2]), the frame priority is set for 110 and drop is  
set for 0.  
Bit [5:3]:  
Bit [6]:  
Reserved  
- 0: Enable MII Management State Machine (Default 0)  
- 1: Disable MII Management State Machine  
- 0: Enable using MCT Link List structure  
- 1: Disable using MCT Link List structure  
Bit [7]:  
10.7.4 MIIC0 - MII Command Register 0  
Serial Interface Address:h603  
Accessed by serial interface (R/W)  
Bit [7:0] MII Data [7:0]  
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY, and no VALID; then  
program MII command.  
10.7.5 MIIC1 - MII Command Register 1  
Serial Interface Address:h604  
Accessed by serial interface (R/W)  
Bit [7:0]  
MII Data [15:8]  
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then  
program MII command.  
10.7.6 MIIC2 - MII Command Register 2  
Serial Interface Address:h605  
Accessed by serial interface (R/W)  
7
6
5
4
0
MII OP  
Register address  
Bits [4:0]:  
Bit [6:5]  
REG_AD - Register PHY Address  
OP - Operation code “10” for read command and “01” for write command  
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then  
program MII command.  
62  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
10.7.7 MIIC3 - MII Command Register 3  
Serial Interface Address:h606  
Accessed by serial interface (R/W)  
7
6
5
4
0
Rdy  
Valid  
PHY address  
Bits [4:0]:  
Bit [6]  
PHY_AD - 5 Bit PHY Address  
VALID - Data Valid from PHY (Read Only)  
Bit [7]  
RDY - Data is returned from PHY (Ready Only)  
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then  
program MII command.  
10.7.8 MIID0 - MII Data Register 0  
Serial Interface Address:h607  
Accessed by serial interface (RO)  
Bit [7:0]  
MII Data [7:0]  
10.7.9 MIID1 - MII Data Register 0  
Serial Interface Address:h608  
Accessed by serial interface (RO)  
Bit [7:0]  
MII Data [15:8]  
10.7.10 LED Mode - LED Control  
2
I C Address:h0B4; Serial Interface Address:h609  
2
Accessed by serial interface and I C (R/W)  
7
6
5
4
3
2
1
0
lpbk  
Out Pattern  
Clock rate  
Hold Time  
Bit[1:0]  
Sample hold time (Default 2'b00)  
2'b00- 8 msec  
2'b01- 16 msec  
2'b10- 32 msec  
2'b11- 64 msec  
63  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Bit[3:2]  
LED clock speed (serial mode) (Default 2'b10)  
2'b00- sclk/128  
2'b01- sclk/256  
2'b10- sclk/1024  
2'b11- sclk/2048  
LED clock speed (parallel mode) (Default 2'b10)  
2'b00- sclk/1024  
2'b01- sclk/4096  
2'b10- sclk/2048  
2'b11- sclk/8192  
Bit[5:4]  
LED indicator out pattern (Default 2'b11)  
2'b00- Normal output, LED signals go straight out, no logical combination  
2'b01- 4 bi-color LED mode  
2'b10- 3 bi-color LED mode  
2'b11- programmable mode  
Normal mode:  
LED_BYTEOUT_[7]:Collision (COL)  
LED_BYTEOUT_[6]:Full duplex (FDX)  
LED_BYTEOUT_[5]:Speed[1] (SP1)  
LED_BYTEOUT_[4]:Speed[0] (SP0)  
LED_BYTEOUT_[3]:Link (LNK)  
LED_BYTEOUT_[2]:Rx (RXD)  
LED_BYTEOUT_[1]:Tx (TXD)  
Bit[5:4]  
cont’d  
LED_BYTEOUT_[0]:Flow Control (FC) 4 bi-color LED mode  
LED_BYTEOUT_[7]:COL  
LED_BYTEOUT_[6]:1000FDX  
LED_BYTEOUT_[5]:1000HDX  
LED_BYTEOUT_[4]:100FDX  
LED_BYTEOUT_[3]:100HDX  
LED_BYTEOUT_[2]:10FDX  
LED_BYTEOUT_[1]:10HDX  
LED_BYTEOUT_[0]:ACT  
Note: All output qualified by Link signal  
3 bi-color LED mode:  
64  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
LED_BYTEOUT_[7]:COL  
LED_BYTEOUT_[6]:LNK  
LED_BYTEOUT_[5]:FC  
LED_BYTEOUT_[4]:SPD1000  
LED_BYTEOUT_[3]:SPD100 LED_BYTEOUT_[2]:FDX  
LED_BYTEOUT_[1]:HDX  
LED_BYTEOUT_[0]:ACT  
Note: All output qualified by Link signal  
Programmable mode:  
LED_BYTEOUT_[7]:Link  
LED_BYTEOUT_[6:0]:Defined by the LEDSIG6 ~ LEDSIG0 programmable  
registers.  
Note: All output qualified by Link signal  
Reserved. Must be '0'  
Bit[6]:  
Bit[7]:  
Enable internal loop back. When this bit is set to '1' all ports work in internal  
loop back mode. For normal operation must be '0'.  
10.7.11 CHECKSUM - EEPROM Checksum  
2
I C Address h0C5, Serial Interface Address:h60B  
2
Accessed by serial interface and I C (R/W)  
Bit [7:0]:  
(Default 00)  
Before requesting that the MVTX2801 updates the EEPROM device, the  
correct checksum needs to be calculated and written into this checksum  
register. The checksum formula is:  
FF  
2
Σ
i = 0  
i C register = 0  
After booting cycle the MVTX2801 calculates the checksum. If the checksum is  
not zeroed the MVTX2801 does not start.  
10.7.12 LED User  
10.7.13 LEDUSER0  
2
I C Address h0BB, Serial Interface Address:h60C  
2
Accessed by serial interface and I C (R/W)  
7
0
LED USER0  
65  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Bit [7:0]:  
(Default 00)  
Content will send out by LED serial logic  
10.7.14 LEDUSER1  
2
I C Address h0BC, Serial Interface Address:h60D  
2
Accessed by serial interface and I C (R/W)  
7
0
LED USER1  
Bit [7:0]:  
(Default 00)  
Content will send out by LED serial logic  
10.7.15 LEDUSER2/LEDSIG2  
2
I C Address h0BD, Serial Interface Address:h60E  
2
Accessed by serial interface and I C (R/W)  
In serial mode:  
7
0
LED USER2  
Bit [7:0]:  
(Default 00)  
Content will be sent out by LED serial shift logic  
In parallel mode: this register is used for programming the LED pin - led_byteout_[2]  
7
4
3
0
SP0  
COL  
FDX  
SP1  
SP0  
COL  
FDX  
SP1  
Bit [3:0]:  
Bit [7:4]  
(Default 4'H0)  
Signal polarity:  
0: not invert polarity (high true)  
1: invert polarity  
(Default 4'H8)  
Signal Select:  
0: not select  
1: select the corresponding bit  
When bits get selected, the led_byteout_[2] = AND (all selected bits)  
66  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
10.7.16 LEDUSER3/LEDSIG3  
2
I C Address:h0BE, Serial Interface Address:h60F  
Access by CPU, serial interface (R/W)  
In serial mode:  
7
0
LED USER3  
Bit [7:0]:  
(Default 8'H33)  
Content will be sent out by LED serial shift logic.  
In parallel mode: this register is used for programming the LED pin - led_byteout_[3]  
7
4
3
0
COL  
FDX  
SP1  
SP0  
COL  
FDX  
SP1  
SP0  
Bit [3:0]:  
Bit [7:4]  
(Default 4'H3)  
Signal polarity:  
0: not invert polarity (high true)  
1: invert polarity  
(Default 4'H3)  
Signal Select:  
0: not select  
1: select the corresponding bit  
When bits get selected, the led_byteout_[3] = AND (all selected bits)  
10.7.17 LEDUSER4/LEDSIG4  
2
I C Address:h0BF, Serial Interface Address:h610  
Access by CPU, serial interface (R/W)  
7
0
LED USER4  
Bit [7:0]  
(Default 8'H32)  
Content will be sent out by LED serial shift logic.  
In parallel mode: this register is used for programming the LED pin - led_byteout_[4]  
7
4
3
0
COL  
FDX  
SP1  
SP0  
COL  
FDX  
SP1  
SP0  
67  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Bit [3:0]  
Bit [7:4]  
(Default 4'H2)  
Signal polarity:  
0: not invert polarity (high true)  
1: invert polarity  
(Default 4'H3)  
Signal Select  
0: not select  
1: select the corresponding bit  
When bits get selected, the led_byteout_[4] = AND (all selected bits)  
10.7.18 LEDUSER5/LEDSIG5  
2
I C Address:h0C0, Serial Interface Address:h611  
Access by CPU, serial interface (R/W)  
7
0
LED USER5  
Bit [7:0]  
(Default 8'H20)  
Content will be sent out by LED serial shift logic.  
In parallel mode: this register is used for programming the LED pin - led_byteout_[5]  
7
4
3
0
COL  
FDX  
SP1  
SP0  
COL  
FDX  
SP1  
SP0  
Bit [3:0]  
Bit [7:4]  
(Default 4'H0)  
Signal polarity:  
0: not invert polarity (high true)  
1: invert polarity  
(Default 4'H2)  
Signal Select:  
0: not select  
1: select the corresponding bit  
When bits get selected, the led_byteout_[5] = AND (all selected bits)  
10.7.19 LEDUSER6/LEDSIG6  
2
I C Address:h0C1, Serial Interface Address:h612  
Access by CPU, serial interface (R/W)  
7
0
LED USER6  
68  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Bit [7:0]  
(Default 8'H40)  
Content will be sent out by LED serial shift logic.  
In parallel mode: this register is used for programming the LED pin - led_byteout_[6]  
7
4
3
0
COL  
FDX  
SP1  
SP0  
COL  
FDX  
SP1  
SP0  
Bit [3:0]  
Bit [7:4]  
(Default 4'B0000)  
Signal polarity:  
0: not invert polarity (high true)  
1: invert polarity  
(Default 4'b0100)  
Signal Select:  
0: not select  
1: select the corresponding bit  
When bits get selected, the led_byteout_[6] = AND (all selected bits), or the  
polarity of led_byteout_[6] is controlled by LEDSIG1_0[3]  
10.7.20 LEDUSER7/LEDSIG1_0  
2
I C Address:h0C2, Serial Interface Address:h613  
Access by CPU, serial interface (R/W)  
7
0
LED USER7  
Bit [7:0]  
(Default 8'H61)  
Content will be sent out by LED serial shift logic.  
In parallel mode: this register is used for programming the LED pin - led_byteout_[2]  
7
4
3
0
GP  
RX  
TX  
FC  
P6  
RX  
TX  
FC  
Bit [7]  
(Default 1'B0)  
Global output polarity: this bit controls the output polarity of all led_byteout_ and led_port_sel pins.  
0: no invert polarity - (led_byteout_[7:0] are high activated, led_port_sel[9:0] are low acti-  
vated)  
1: invert polarity - (led_byteout_[7:0] are low activated, led_port_sel[9:0] are high activated)  
Bit [6:4] (Default 3'B110)  
Signal Select  
0: not select  
1: select the corresponding bit  
When bits get selected, the led_byteout_[6] = OR (all selected bits)  
69  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Bit[3]  
(Default 1'B0)  
Polarity control of led_byteout_[6]  
0: not invert  
1: invert  
Bit [2:0] (Default 3'b001)  
Signal Select:  
0: not select  
1: select the corresponding bit  
When bits get selected, the led_byteout_[0] = OR (all selected bits)  
10.7.21 MIINP0 - MII Next Page Data Register 0  
2
I C Address:h0C3, Serial Interface Address:h614  
Access by CPU and serial interface only (R/W)  
Bit [7:0]  
MII next page Data [7:0]  
10.7.22 MIINP1 - MII Next Page Data Register 1  
2
I C Address:h0C4, Serial Interface Address:h615  
Access by CPU and serial interface only (R/W)  
Bit [7:0]  
MII next page Data [15:8]  
10.8 Group F Address - CPU Access Group  
10.8.1 GCR-Global Control Register  
Serial Interface Address: hF00  
Accessed by serial interface. (R/W)  
7
4
3
2
1
0
Reset  
Bist  
SR  
SC  
Bit [0]:  
Bit[1]:  
Bit[2]:  
Store configuration (Default = 0)  
Write '1' followed by '0' to store configuration into external EEPROM  
Store configuration and reset (Default = 0)  
Write '1' to store configuration into external EEPROM and reset chip  
Start BIST (Default = 0)  
Write '1' followed by '0' to start the device's built-in self-test. The result is  
found in the DCR register.  
Bit[3]:  
Soft Reset (Default = 0)  
Write '1' to reset the chip  
Bit[7:4]:  
Reserved  
70  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
10.8.2 DCR-Device Status and Signature Register  
Serial Interface Address: hF01  
Accessed by serial interface. (RO)  
7
6
5
4
3
2
1
0
Revision  
Signature  
RE  
BinP  
BR  
BW  
2
Bit [0]:  
Bit[1]:  
Bit[2]:  
Bit[3]:  
Bit[5:4]:  
1 - Busy writing configuration to I C  
2
0 - Not Busy writing configuration to I C  
2
1 - Busy reading configuration from I C  
2
0 - Not Busy reading configuration from I C  
1 - BIST in progress  
0 - BIST not running  
1 - RAM Error  
0 - RAM OK  
Device Signature  
00 - 4 Ports Device, non-management mode  
01 - 8 Ports Device, non-management mode  
10 - 4 Ports Device, management mode possible (need to install CPU)  
11 - 8 Ports Device, management mode possible (need to install CPU)  
Bit [7:6]:  
Revision  
10.8.3 DCR01-Giga port status  
Serial Interface Address: hF02  
Accessed by serial interface. (RO)  
7
6
4
3
2
1
0
CIC  
GIGA1  
GIGA0  
Bit [1:0]:  
Bit[3:2]  
Bit [7]  
Giga port 0 strap option  
00 - 100Mb MII mode  
01 - Invalid  
10 - GMII  
11 - PCS  
Giga port 1 strap option  
00 - 100Mb MII mode  
01 - Invalid  
10 - GMII  
11 - PCS  
Chip initialization completed  
Note: DCR01[7], DCR23[7], DCR45[7] and DCR67[7] have the same function.  
71  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
10.8.4 DCR23-Giga port status  
Serial Interface Address: hF03  
Accessed by CPU and serial interface. (RO)  
7
6
4
3
2
1
0
CIC  
GIGA3  
GIGA2  
Bit [1:0]:  
Bit[3:2]  
Bit [7]  
Giga port 2 strap option  
00 - 100Mb MII mode  
01 - Invalid  
10 - GMII  
11 - PCS  
Giga port 3 strap option  
00 - 100Mb MII mode  
01 - Invalid  
10 - GMII  
11 - PCS  
Chip initialization completed  
10.8.5 DPST - Device Port Status Register  
Serial Interface Address:hF06  
Accessed by CPU and serial interface (R/W)  
Bit[2:0]:  
Read back index register. This is used for selecting what to read back from DTST.  
(Default 00)  
3'B000 - Port 0 Operating mode and Negotiation status  
3'B001 - Port 1 Operating mode and Negotiation status  
3'B010 - Port 2 Operating mode and Negotiation status  
3'B011 - Port 3 Operating mode and Negotiation status  
3'B1XX - Reserved  
10.8.6 DTST - Data Read Back Register  
Serial Interface Address: hF07  
Accessed by CPU and serial interface (RO)  
7
6
5
4
3
2
1
0
MD InfoDet SigDet Giga Inkdn FE Fdpx Fc_en  
This register provides various internal information as selected in DPST bit[2:0]  
Bit[0]:  
Bit[1]:  
Flow control enabled  
Full duplex port  
72  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Bit[2]:  
Bit[3]:  
Bit[4]:  
Bit[5]:  
Bit[6]:  
Bit[7]:  
Fast ethernet port (if not giga)  
Link is down  
GIGA port  
Signal detect (when PCS interface mode)  
Pipe signal detected (pipe mode only)  
Module detected (for hot swap purpose)  
73  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
11.0 BGA and Ball Signal Description  
11.1 BGA Views (Top View)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
AVDD  
NC9  
SCAN_EN  
NC7  
S_CLK  
B_A[16] B_A[12]  
B_A[17] B_A[13]  
B_A[7]  
B_A[8]  
B_A[2]  
B_A[3]  
B_A[5]  
B_OE#  
B_D[27] B_D[26]  
DEV_CFG  
NC4  
NC5  
NC3  
A
B
C
D
E
F
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DEV_CF[  
0]  
LA_D[0]  
B_WE# B_D[30]  
B_D[25]  
NC  
NC  
NC  
[1]  
LA_D[1] LA_CLK LA_D[3]  
LA_D[2] LA_D[5] LA_D[9]  
NC6  
B_A[18] B_A[14] B_A[11]  
B_A[4]  
NC2  
B_D[28]  
AVDD  
B_CLK B_D[22]  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC8  
B_A[9]  
B_A[6]  
B_A[10] B_ADSC#  
B_D[29] B_D[24] B_D[18] B_D[21]  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
LA_D[8] LA_D[7] LA_D[6] LA_D[4]  
AGND  
LB_A[20] B_A[15]  
B_D[31]  
VSS  
AGND  
VSS  
B_D[17] B_D[23] B_D[19] B_D[16] B_D[14]  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
LA_D[10] LA_D[11] LA_D[12] LA_D[13] LA_D[14]  
LA_D[15] LA_D[16] LA_D[19] LA_D[18] LA_D[17]  
LA_D[20] LA_D[21] LA_D[22] LA_D[29] LA_D[24]  
VSS  
VDD  
VDD  
VDD  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VDD  
VDD  
NC1  
B_D[9]  
B_D[4]  
B_D[8]  
P_A[1]  
B_D[10] B_D[11] B_D[12]  
VDD  
B_D[20]  
B_D[15]  
B_D[3]  
P_INT#  
P_A[2]  
B_D[6]  
B_D[1]  
P_WE#  
B_D[7]  
B_D[2]  
P_RD#  
G
H
LA_D[23] LA_D[25] LA_D[26] LA_D[27] LA_D[31]  
LA_D[28] LA_D[30] LA_CS0# LA_D[37] LA_D[33]  
VDD  
VDD  
VDD  
VDD  
B_D[13]  
B_D[5]  
J
P_D[15] P_D[11] P_D[12] P_D[13]  
K
LA_CS1# LA_RW# LA_D[32] LA_D[46] LA_D[41]  
LA_D[34] LA_D[35] LA_D[36] LA_D[53] LA_D[48]  
P_CS#  
P_A[0]  
P_D[6]  
P_D[14]  
B_D[0]  
P_D[9]  
P_D[7]  
P_D[3]  
P_D[0]  
P_D[8]  
P_D[4]  
P_D[1]  
P_D[10]  
P_D[5]  
P_D[2]  
L
VCC  
VCC  
M
LA_D[38] LA_D[40] LA_D[42] LA_D[61] LA_D[56]  
LA_D[43] LA_D[44] LA_D[45] LA_A[4] LA_D[39]  
LA_D[49] LA_D[50] LA_D[51] LA_D[52] LA_D[47]  
LA_D[58] LA_D[57] LA_D[55] LA_D[54] LA_A[7]  
LA_D[63] LA_D[62] LA_D[60] LA_D[59] LA_A[11]  
LA_A[6] LA_A[5] LA_A[3] LA_A[14] LA_A[18]  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
N
P
R
T
T_D[15] T_D[11] T_D[12] T_D[13] T_D[14]  
T_D[10]  
T_D[6]  
T_D[5]  
T_D[4]  
T_D[7]  
T_D[2]  
T_D[8]  
T_D[1]  
T_D[9]  
T_D[0]  
S_RST# T_D[3] TMODE[1] TMODE[0] RESOUT#  
G7_RX_E  
U
V
NC[7]  
NC[3]  
NC[6]  
LESYNO# LE_CLK0 LE_DO  
R
G0_TXD[  
G7_RX_D  
LA_A[10] LA_A[9] LA_A[8] LA_A[20]  
1]  
VCC  
VCC  
NC[1]  
NC[6]  
NC[2]  
NC[5]  
NC[0]  
W
Y
V
G0_CRS/ G0_TXD[4  
G7_TX_E  
N
LA_A[15] LA_A[13] LA_A[12]  
NC[4]  
L
]
G0_TXD[  
7]  
G7_RXCL MIITXCK[  
LA_A[19] LA_A[17] LA_A[16] GREFC[0]  
VDD  
VDD  
VDD  
VDD  
NC[0]  
NC[7]  
NC[3]  
G7_COL  
NC[7]  
A A  
A B  
K
7]  
MIITXCK[ G0_TXD[2G0_TXD[0 G0_TXCL G0_TX_E  
0]  
G7_TX_E  
R
NC[5]  
NC[4]  
]
]
K
R
G0_RXCL G0_TXD[5G0_TXD[3 G0_RXD[ G0_RXD[  
G7_CRS/  
L
NC[2]  
NC[0]  
NC[7]  
NC[4]  
NC  
NC[2]  
NC[1]  
NC  
A C  
A D  
A E  
K
]
]
2]  
6]  
G0_RXD[ G0_TX_E  
G0_TXD[6 G0_RX_D  
G7_TXCL  
K
G0_COL  
VSS  
VSS  
VDD  
VSS  
NC  
NC  
0]  
N
]
V
G0_RXD[ G0_RXD[ G0_RXD[ G0_RXD[ G1_TXD[  
VDD  
VDD  
VDD  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VDD  
VDD  
VSS  
NC[6]  
NC[5]  
NC[3]  
NC[1]  
5]  
4]  
3]  
1]  
0]  
G0_RXD[ G0_RX_E  
G1_RXD[ G1_RXD[ G1_RXD[ G2_TXD[0 G2_TXD[7 G2_RXD[ G2_RXD[ G2_RXD[ G3_TXD[1 G3_TXD[6  
G3_RXD[ G3_RXD[  
G3_RXD[ G3_RX_E  
GREFC[1]  
G3_COL  
IND_CM  
NC  
NC[3]  
NC[5]  
NC  
NC[1]  
NC[6]  
NC  
NC[4]  
NC[7]  
NC  
NC[2]  
NC  
NC[4]  
NC[5]  
NC[3]  
NC[6]  
NC[7]  
24  
NC[5]  
NC[1]  
NC[3]  
NC  
NC  
NC[6]  
NC[4]  
NC[1]  
NC  
NC  
NC  
NC  
NC[5]  
NC  
A F  
A G  
A H  
A J  
7]  
R
2]  
5]  
7]  
]
]
2]  
4]  
5]  
]
]
3]  
6]  
4]  
R
G1_TXD[1 G1_TXCL  
G1_TXD[7 G2_TXCL G1_RXD[ G2_TXD[4 G2_TXD[3 G2_RXD[ G2_RXCL G2_RXD[ G2_RX_E G3_TX_E G3_RXD[ G3_RXD[ G3_RXD[  
MIITXCK[  
5]  
G1CRS/L  
M_MDIO  
NC[1]  
NC[3]  
NC[6]  
NC[4]  
NC[7]  
27  
]
K
]
K
4]  
]
]
3]  
K
7]  
R
N
0]  
5]  
7]  
G1_TXD[2 G1_TXD[3 MIITXCK[ G1_RXD[ G1_RXCL  
MIITXCK[ G2_TX_E G2_RXD[ G2_RX_D G3_TXCL G3_TXD[3 G3_TXD[5 G3_RXCL G3_RXD[ G3_RX_D  
G2CRS/L  
NC  
NC[4]  
NC[5]  
NC[6]  
NC[7]  
NC  
NC  
NC  
NC[0]  
NC[2]  
25  
NC[2]  
NC  
]
]
1]  
0]  
K
2]  
N
1]  
V
K
]
]
K
2]  
V
G1_TXD[5 G1_TXD[4 G1_TX_E  
G1_RXD[  
6]  
G2_TXD[2 G2_TXD[6 G2_RXD[ G2_RXD[  
G3_TXD[2 MIITXCK[ G3_TX_E G3_RXD[  
GREFC[3] M_MDC  
G1_COL  
GREFC[2]  
NC[0]  
NC[0]  
NC[2]  
20  
NC  
NC  
NC[0]  
NC[1]  
23  
NC[0]  
NC  
]
]
R
]
]
0]  
6]  
]
3]  
R
1]  
G1_TXD[6 G1_TX_E G1_RXD[ G1_RXD[ G1_RX_D G1_RX_E G2_TXD[1 G2_TXD[5 G2_TX_E  
G3_CRS/ G3_TXD[0 G3_TXD[4 G3_TXD[7  
MIITXCK[  
4]  
MIITXCK[  
6]  
G2_COL  
CM_CLK G4CRS/L NC[2]  
NC[3]  
21  
NC  
NC  
NC  
]
N
1]  
3]  
V
R
]
]
R
L
]
]
]
A K  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
22  
26  
28  
29  
30  
Figure 5 - BGA Diagram  
74  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
11.2 Ball- Signal Descriptions  
All pins are CMOS type; all Input pins are 5 Volt tolerance, and all Output pins are 3.3 CMOS drive.  
Ball No(s)  
Symbol  
I/O  
Description  
Trunk enable  
L30  
TRUNK0_EN  
I/O - TS with pull up  
External pull up or unconnected-  
disable trunk group 0 and 1  
External pull down - enable trunk  
group 0 and 1  
See register TRUNK0_MODE for port  
selection and trunk enable.  
N27  
TRUNK1_EN  
I/O - TS with pull up  
Trunk enable  
External pull up or unconnected -  
disable trunk group 2 and 3  
External pull down - enable trunk  
group 2 and 3  
See register TRUNK1_MODE for port  
selection and trunk enable.  
L29, L28, N26, M30, P_D[8:0]  
M29, M28, N30, N29,  
N28  
I/O - TS with pull up  
Bootstrap function - See bootstrap  
section  
K27, L27, K30, K29,  
RESERVED  
Not used - leave unconnected  
K28, J28, H28  
2
2
I C Interface (0) Note: In unmanaged mode, Use I C and Serial control interface to configure the system  
2
J27  
M26  
SCL  
SDA  
Output  
I/O-TS with pull up  
I C Data Clock  
2
I C Data I/O  
Serial Control Interface  
J29  
PS_STROBE  
PS_DI  
Input with weak internal Serial Strobe Pin  
pull up  
J30  
Input with weak internal Serial Data Input  
pull up  
L26  
PS_DO (AUTOFD)  
Output with pull up  
I/O-TS with pull up  
Serial Data Output (AutoFD)  
Frame Bank A- Data Bit [63:0]  
Frame Buffer Interface  
U1, U2, N4, U3, U4,  
T1, T2, N5, T3, T4,  
M4, R4, R3, R2, R1,  
M5, R5, L4, P3, P2,  
P1, N3, L5, N2, P5,  
N1, K4, M3, M2, M1,  
K5, L3, J5, K2, H4,  
K1, J4, J3, J2, H5, J1,  
H3, H2, H1, G3, G4,  
G5, G2, G1, F5, F4,  
F3, F2, F1, D3, E1,  
E2, E3, D2., E4, C3,  
D1, C1, B2  
LA_D[63:0]  
Table 8 - Ball- Signal Descriptions  
75  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Ball No(s)  
Symbol  
LA_A[19:3]  
I/O  
Description  
AA1, V5, AA2, AA3,  
Y1, V4, Y2, Y3, U5,  
W1, W2, W3, T5, V1,  
V2, P4, V3  
Output  
Frame Bank A - Address Bit [19:3]  
W4  
C2  
K3  
LA_A[20]  
LA_CLK  
LA_CS0#  
Output with pull up  
Output  
Output with pull up  
Frame Bank A - Address Bit [20]  
Frame Bank A Clock Input  
Frame Bank A Low Portion Chip  
Selection  
L1  
LA_CS1#  
Output with pull up  
Frame Bank A High Portion Chip  
Selection  
L2  
LA_RW#  
Output with pull up  
I/O-TS with pull up.  
Frame Bank A Read/Write  
No Connect  
D18, B18, C18, A17, NC  
E17, B17, C17, E16,  
D17, B16, E15, C16,  
D16, D15, E14, C15,  
B15, E13, A15, D14,  
C14, D13, B14, A14,  
C13, E12, B13, A13,  
D12, C12, B12, A12,  
A11, E10, C10, B10,  
E9, A10, D11, D10,  
D8, D9, C9, B9, A9,  
C8, B8, A8, C7, E7,  
D7, B7, E8, A7, D6,  
C6, E6, B6, A6, A5,  
B5, C5, B4,A4  
D22, D20, E20, D21, NC  
A21, D19, B21, C21,  
A20, B20, E19, C20,  
A19, B19, E18, C19,  
A18  
Output  
F
D5  
B11  
E11  
C11  
LB_A[20]  
Output with pull up  
Output  
Output with pull up  
Output with pull up  
Output with pull up  
Bootstrap Pin  
NC  
NC  
NC  
NC  
Switch Database Interface  
E24,B27, D27, C27,  
A27, A28, B30, D28,  
E27, C30, D30, G26,  
E28, D29, E26, E29,  
H26, E30, J26, F30,  
F29, F28, F27, H27,  
G30, G29, K26, G27,  
G28, H30, H29, M27  
B_D[31:0]  
I/O-TS with pull up  
Switch Database Domain  
- Data Bit [31:0]  
Table 8 - Ball- Signal Descriptions (continued)  
76  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Ball No(s)  
Symbol  
I/O  
Description  
C22, B22, A22, E22, B_A[18:2]  
C23, B23, A23, C24,  
D24, D23, B24, A24,  
E23, C25, C26, B25,  
A25  
Output  
Switch Database Address (512K)  
- Address Bit [18:2]  
C29  
D25  
B_CLK  
B_ADSC#  
Output  
Output with pull up  
Switch Database Clock Input  
Switch Database Address Status  
Control  
B26  
A26  
B_WE#  
B_OE#  
Output with pull up  
Output with pull up  
Switch Database Write Chip Select  
Switch Database Read Chip Select  
MII Management Interface  
AJ16  
M_MDC  
Output  
MII Management Data Clock -  
(common for all MII Ports [3:0])  
AG18  
M_MDIO  
I/O-TS with pull up  
MII Management Data I/O -  
(common for all MII Ports -[3:0]))  
2.5Mhz  
GMII / MII Interface (193) Gigabit Ethernet Access Port  
AJ11, AJ6, AF3,AA4  
GREF_CLK [3:0]  
NC  
Input w/ pull up  
Gigabit Reference Clock  
AD29, AK30, AJ22,  
AG17  
AK15  
AF17  
CM_CLK  
IND/CM  
Input w/ pull up  
Input w/ pull up  
Common Clock shared by port G[3:0]  
1: select GREF_CLK[3:0] as clock 0:  
select CM_CLK as clock for all ports  
AJ13, AH7, AH3, AB1 MII TX CLK[3:0]  
Input w/ pull up  
AA30, AK29, AG25,  
NC  
AK18,  
AG16, AF16, AG15,  
AF18, AF15, AH15,  
AJ15, AG14  
G3_RXD[7:0]  
Input w/ pull up  
G[3:0] port - Receive Data Bit [7:0]  
G2_RXD[7:0]  
G1_RXD[7:0]  
AG11, AJ10, AF11,  
AF10, AG9, AF9,  
AH9, AJ9  
AF6, AJ5, AF5, AG6,  
AK4, AF4, AK3, AH4 G0_RXD[7:0]  
AF1, AC5, AE1, AE2,  
AE3, AC4, AE4, AD1  
Table 8 - Ball- Signal Descriptions (continued)  
77  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Ball No(s)  
Symbol  
I/O  
Description  
V26, W29, W30, Y28, NC  
W26, Y29, W27, Y30  
AB26, AE27, AE28,  
AC27, AE29, AC26,  
AE30, AD26  
AK27, AH27, AF26,  
AJ27, AH26, AK25,  
AG26, AJ25  
AG22, AG21, AG20,  
AF22, AK21, AK20,  
AF21, AJ20  
AH16, AH10, AK5,  
G[3:0]_RX_DV  
Input w/ pull down  
Input w/ pull up  
G[3:0]port - Receive Data Valid  
G[3:0]port - Receive Error  
AD5  
W28, AD30, AK28,  
AH22,  
AF19, AG12, AK6,  
G[3:0]_RX_ER  
NC  
AF2  
V27, AD27, AJ28,  
AH23,  
AK11, AH6, AG3, Y4 G[3:0]_CRS/LINK  
Input w/ pull down  
Input w/ pull up  
G[3:0]port - Carrier Sense  
AC30, AJ29, AG23,  
NC  
AK16,  
AF14, AK10, AJ4,  
AD3  
G[3:0]_COL  
NC  
G[3:0]port - Collision Detected  
AA28, AF29, AJ26,  
AJ21,  
AH14, AG10, AH5,  
AC1  
G[3:0]_RXCLK  
NC  
Input w/ pull up  
Output  
G[3:0]port - Receive Clock  
AA29, AF27, AK26,  
AH21,  
AK14, AF13, AH13,  
AK13, AH12, AJ12,  
AF12, AK12  
G3_TXD[7:0]  
G[3:0]port - Transmit Data Bit [7:0]  
AF8, AJ8, AK8, AG7, G2_TXD[7:0]  
AG8, AJ7, AK7, AF7  
AG4, AK1, AJ1, AJ2,  
AH2, AH1, AG1, AE5 G1_TXD[7:0]  
AA5, AD4, AC2, Y5,  
AC3, AB2, W5, AB3  
G0_TXD[7:0]  
Table 8 - Ball- Signal Descriptions (continued)  
78  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Ball No(s)  
Symbol  
I/O  
Description  
AB28, Y26, AB29,  
AB30, AA27, AC28,  
AC29, AA26  
NC  
AE26, AF28, AG30,  
AG28, AG27, AH29,  
AH28, AJ30  
AK24, AJ24, AG24,  
AF24, AH24, AF23,  
AK23, AJ23  
AJ19, AH19, AJ18,  
AH18, AF20, AK17,  
AG19, AJ17  
AG13, AH8, AK2,  
G[3:0]_TX_EN  
NC  
Output w/ pull up  
G[3:0]port - Transmit Data Enable  
AD2  
Y27, AG29, AH25,  
AK19,  
AJ14, AK9, AJ3, AB5 G[3:0]_TX_ER  
Output w/ pull up  
Output  
G[3:0]port - Transmit Error  
AB27, AF30, AF25,  
NC  
AH20,  
AH11, AG5, AG2,  
AB4  
G[3:0]_ TXCLK  
NC  
G[3:0]port - Gigabit Transmit Clock  
AD28, AH30, AK22,  
AH17,  
PMA Interface (193) Gigabit Ethernet Access Port (PCS)  
AJ11, AJ6, AF3,AA4  
GREF_CLK [3:0]  
NC  
Input w/ pull up  
Gigabit Reference Clock  
AD29, AK30, AJ22,  
AG17,  
AK15  
AF17  
CM_CLK  
IND/CM  
Input w/ pull up  
Input w/ pull up  
Common Clock shared by port G[3:0]  
1: select GREF_CLK[3:0] as clock  
0: select CM_CLK as clock for all port  
AG16, AF16, AG15,  
AF18, AF15, AH15,  
AJ15, AG14  
G3_RXD[7:0]  
G2_RXD[7:0]  
Input w/ pull up  
G[3:0]port - PMA Receive Data Bit  
[7:0]  
AG11, AJ10, AF11,  
AF10, AG9, AF9,  
AH9, AJ9  
AF6, AJ5, AF5, AG6, G1_RXD[7:0]  
AK4, AF4, AK3, AH4  
AF1, AC5, AE1, AE2,  
AE3, AC4, AE4, AD1 G0_RXD[7:0]  
Table 8 - Ball- Signal Descriptions (continued)  
79  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Ball No(s)  
Symbol  
I/O  
Description  
V26, W29, W30, Y28, NC  
W26, Y29, W27, Y30  
AB26, AE27, AE28,  
AC27, AE29, AC26,  
AE30, AD26  
AK27, AH27, AF26,  
AJ27, AH26, AK25,  
AG26, AJ25  
AG22, AG21, AG20,  
AF22, AK21, AK20,  
AF21, AJ20  
AH16, AH10, AK5,  
G[3:0]_RX_D[8]  
NC  
Input w/ pull down  
Input w/ pull up  
Input w/ pull up  
Input w/ pull up  
Output  
G[3:0]port - PMA Receive Data Bit [8]  
G[3:0]port - PMA Receive Data Bit [9]  
G[3:0]port - PMA Receive Clock 1  
G[3:0]port - PMA Receive Clock 0  
AD5  
W28, AD30, AK28,  
AH22,  
AF19, AG12, AK6,  
G[3:0]_RX_D[9]  
NC  
AF2  
V27, AD27, AJ28,  
AH23,  
AF14, AK10, AJ4,  
G[3:0]_RXCLK1  
NC  
AD3  
AA28, AF29, AJ26,  
AJ21,  
AH14, AG10, AH5,  
G[3:0]_RXCLK0  
NC  
AC1  
AA29, AF27, AK26,  
AH21,  
AK14, AF13, AH13,  
AK13, AH12, AJ12,  
AF12, AK12  
G3_TXD[7:0]  
G[3:0]port - PMA Transmit Data Bit  
[7:0]  
AF8, AJ8, AK8, AG7, G2_TXD[7:0]  
AG8, AJ7, AK7, AF7  
AG4, AK1, AJ1, AJ2,  
AH2, AH1, AG1, AE5 G1_TXD[7:0]  
AA5, AD4, AC2, Y5,  
AC3, AB2, W5, AB3  
G0_TXD[7:0]  
Table 8 - Ball- Signal Descriptions (continued)  
80  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Ball No(s)  
Symbol  
I/O  
Description  
AB28, Y26, AB29,  
AB30, AA27, AC28,  
AC29, AA26  
NC  
AE26, AF28, AG30,  
AG28, AG27, AH29,  
AH28, AJ30  
AK24, AJ24, AG24,  
AF24, AH24, AF23,  
AK23, AJ23  
AJ19, AH19, AJ18,  
AH18, AF20, AK17,  
AG19, AJ17  
AG13, AH8, AK2,  
G[3:0]_TXD[8]  
NC  
Output w/ pull up  
G[3:0]port - PMA Transmit Data Bit [8]  
G[3:0]port - PMA Transmit Data Bit [9]  
AD2  
Y27, AG29, AH25,  
AK19,  
AJ14, AK9, AJ3, AB5 G[3:0]_TX_D[9]  
Output w/ pull up  
Output  
AB27, AF30, AF25,  
NC  
AH20,  
AH11, AG5, AG2,  
AB4  
G[3:0]_ TXCLK  
NC  
G[3:0]port - PMA Gigabit Transmit  
Clock  
AD28, AH30, AK22,  
AH17,  
Test Facility (3)  
U29  
T_MODE0  
T_MODE1  
SCAN_EN  
I/O-TS with pull up  
I/O-TS with pull up  
Test - Set upon Reset, and provides  
NAND Tree test output during test  
mode  
Use external Pull up for normal  
operation  
Test - Set upon Reset, and provides  
NAND Tree test output during test  
mode.  
U28  
A3  
Use external Pull up for normal  
operation  
Enable test mode  
Input with pull down  
Output  
For normal operation leave it  
unconnected  
LED Interface (serial and parallel)  
R28, T26, R27, T27, T_D[7:0]/  
While resetting, T_D[7,0] are in input  
mode and are used as strapping pins.  
Internal pull up  
U27, T28, T29, T30  
LED_PD[7:0]  
LED_PD - Parallel Led data [7:0]  
Table 8 - Ball- Signal Descriptions (continued)  
81  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Ball No(s)  
Symbol  
T_D[11:8]/  
I/O  
Description  
P27, R26, R30, R29  
Output  
While resetting, T_D[11:8] are in input  
mode and are used as strapping pins.  
Internal pull up  
LED_PT[3:0]  
LED_PR[3:0] - Parallel Led port  
selection [3:0]  
P26, P30, P29, P28, T_D[15:12]/  
LED_PT[7:4]  
Output  
While resetting, T_D[15:12] are in  
input mode and are used as strapping  
pins. Internal pull up  
LED_PR[7:4] - No Meaning  
V29  
V30  
LED_CLK0/  
LED_PT[8]  
Output  
Output  
LED_CLK0 - LED Serial Interface  
Output Clock  
LED_PT[8] - Parallel Led port sel [8]  
LED_BLINK/  
While resetting, LED-BLINK is in input  
mode and is used as strapping pin.  
1: No Blink,  
LED_DO/ LED_PT[9]  
0: Blink. Internal pull up.  
LED_DO - LED Serial Data Output  
Stream  
LED_PT[9] - Parallel Led port sel [9]  
V28  
LED_PM/  
Output with pull up  
While resetting, LED_PM is in input  
mode and is used as strapping pin.  
Internal pull up.  
LED_SYNCO#  
1: Enable parallel interface,  
0: enable serial interface.  
LED_SYNCO# - LED Output Data  
Stream Envelop  
System Clock, Power, and Ground Pins  
A16  
U26  
U30  
B1  
S_CLK  
S_RST#  
RESOUT#  
DEV_CFG[0]  
DEV_CFG[1]  
Input  
Input - ST  
Output  
Input w/ pull down  
Input w/ pull down  
Power core  
System Clock at 133 MHz  
Reset Input  
Reset PHY  
Not used  
Not used  
B28  
AE7, AE9, F10, F21, VDD  
F22, F9, G25, G6,  
J25, J6, K25, K6,  
AA25, AA6, AB25,  
AB6, AD25, AE10,  
AE21, AE22  
+2.5 Volt DC Supply  
Table 8 - Ball- Signal Descriptions (continued)  
82  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Ball No(s)  
Symbol  
I/O  
Description  
V14, V15, V16, V17, VSS  
V18, F16, F24, F25,  
F6, F7, N13, N14,  
N15, N16, N17, N18,  
P13, P14, P15, P16,  
P17, P18, R13, R14,  
R15, R16, R17, R18,  
R25, R6, T13, T14,  
T15, T16, T17, T18,  
T25, T6, U13, U14,  
U15, U16, U17, U18,  
V13, AD6, AE15,  
Ground  
Ground  
AE16, AE24, AE25,  
AE6, F15  
A1, C28  
E5, E25  
AVDD  
AVSS  
VDD  
Power  
Ground  
Power I/O  
Analog +2.5 Volt DC Supply  
Analog Ground  
+3.3 Volt DC Supply  
AE12, AE13, AE14,  
AE17, AE18, AE19,  
F12, F13, F14, F17,  
F18, F19, M25, M6,  
N25, N6, P25, P6,  
U25, U6, V25, V6,  
W25, W6  
Bootstrap Pins (Default= pull up, 1= pull up 0= pull down)  
AD2, AB5  
AK2, AJ3  
AH8, AK9  
AG13.AJ14  
G0_TX_EN,  
Default: PCS  
Default: PCS  
Default: PCS  
Default: PCS  
Giga0  
G0_TX_ER  
Mode: G0_TXEN G0_TXER  
0
0
1
1
0
MII  
1
0
1
Invalid  
GMII  
PCS  
G1_TX_EN,  
G1_TXER  
Giga1  
Mode: G1_TXEN G1_TXER  
0
0
1
1
0
1
0
1
MII  
Invalid  
GMII  
PCS  
G2_TX_EN,  
G2_TX_ER  
Giga2  
Mode: G0_TXEN G0_TXER  
0
0
1
1
0
1
0
1
MII  
Invalid  
GMII  
PCS  
G3_TX_EN,  
G3_TX_ER  
Giga3  
Mode: G0_TXEN G0_TXER  
0
0
1
1
0
1
0
1
MII  
Invalid  
GMII  
PCS  
After reset T_D[15:0] are used by the LED interface  
Table 8 - Ball- Signal Descriptions (continued)  
83  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Ball No(s)  
Symbol  
I/O  
Description  
T30  
T29  
T_D[0]  
T_D[1]  
1
Giga link active status 0 - active low 1 -  
active high  
1
Power saving  
0 - No power saving  
1 - Power saving  
Stop MAC clock if no MAC activity.  
T28  
U27  
T_D[2]  
T_D[3]  
Must be pulled-down  
1
Reserved - Must be pulled-down  
Hot plug port module detection enable  
0 - module detection enable  
1 - module detection disable  
T27  
R27  
T_D[4]  
T_D[5]  
Must be pulled-down  
1
Reserved - Must be pulled-down  
SRAM memory size  
0 - 512K SRAM  
1 - 256K SRAM  
T26  
R28  
T_D[6]  
T_D[7]  
Reserved  
1
FDB memory depth  
1- one memory layer  
0 - two memory layers  
W4, E21  
LA_A[20], LB_A[20]  
11  
FDB memory size  
11 - 2M per bank = 4M total  
10 - 1M per bank = 2M total  
0x - 512K per bank = 1M total  
R29  
R30  
R26  
P27  
T_D[8]  
T_D[9]  
T_D[10]  
T_D[11]  
1
1
1
1
EEPROM installed  
0 - EEPROM is installed  
1 - EEPROM is not installed  
MCT Aging enable  
0 - MCT aging disable  
1 - MCT aging enable  
FCB handle aging enable  
0 - FCB handle aging disable  
1 - FCB handle aging enable  
Timeout reset enable  
0 - timeout reset disable  
1 - timeout reset enable Issue reset if  
any state machine did not go back to  
idle for 5sec.  
P28, 29, 30  
P26  
T_D[14:12]  
T_D[15]  
Reserved  
1
External RAM test 0 - Perform the  
infinite loop of ZBT RAM BIST. Debug  
test only 1 - Regular operation.  
Table 8 - Ball- Signal Descriptions (continued)  
84  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Ball No(s)  
Symbol  
P_D[2:0]  
I/O  
Description  
N30, N29, N28  
111  
ZBT RAM la_clk turning  
3'b000 - control by reg. LCLKCR[2:0]  
3'b001 - delay by method # 0  
3'b010 - delay by method # 1  
3'b011 - delay by method # 2  
3'b100 - delay by method # 3  
3'b101 - delay by method # 4  
3'b110 - delay by method # 5  
3'b111 - delay by method # 6  
- USE THIS METHOD  
M30, M29, M28  
L29, L28, N26  
P_D[5:3]  
P_D[8:6]  
111  
111  
No Use  
SBRAM b_clk turning3'b000 - control  
by BCLKCR[2:0]  
3'b001 - delay by method # 0  
3'b010 - delay by method # 1  
3'b011 - delay by method # 2  
3'b100 - delay by method # 3  
3'b101 - delay by method # 4  
3'b110 - delay by method # 5  
3'b111 - delay by method # 6  
- USE THIS METHOD  
Table 8 - Ball- Signal Descriptions (continued)  
Notes:  
# =  
Active low signal  
Input signal  
Input =  
In-ST =  
Output =  
Out-OD=  
I/O-TS =  
I/O-OD =  
Input signal with Schmitt-Trigger  
Output signal (Tri-State driver)  
Output signal with Open-Drain driver  
Input & Output signal with Tri-State driver  
Input & Output signal with Open-Drain driver  
85  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
11.3 Ball Signal Name  
Ball No.  
A1  
Signal Name  
Ball No.  
Signal Name  
Ball No.  
Y2  
Signal Name  
LA_A[13]  
AVDD  
M1  
M2  
M3  
K4  
N1  
P5  
N2  
L5  
LA_D[34]  
LA_D[35]  
LA_D[36]  
LA_D[37]  
LA_D[38]  
LA_D[39]  
LA_D[40]  
LA_D[41]  
LA_D[42]  
LA_D[43]  
LA_D[44]  
LA_D[45]  
LA_D[46]  
LA_D[47]  
LA_D[48]  
LA_D[49]  
LA_D[50]  
LA_D[51]  
LA_D[52]  
LA_D[53]  
LA_D[54]  
LA_D[55]  
LA_D[56]  
LA_D[57]  
LA_D[58]  
LA_D[59]  
LA_D[60]  
LA_D[61]  
LA_D[62]  
B1  
B2  
C2  
C1  
D1  
C3  
E4  
D2  
E3  
E2  
E1  
D3  
F1  
F2  
F3  
F4  
F5  
G1  
G2  
G5  
G4  
G3  
H1  
H2  
H3  
J1  
DEV_CFG[0]  
LA_D[0]  
LA_CLK  
LA_D[1]  
LA_D[2]  
LA_D[3]  
LA_D[4]  
LA_D[5]  
LA_D[6]  
LA_D[7]  
LA_D[8]  
LA_D[9]  
LA_D[10]  
LA_D[11]  
LA_D[12]  
LA_D[13]  
LA_D[14]  
LA_D[15]  
LA_D[16]  
LA_D[17]  
LA_D[18]  
LA_D[19]  
LA_D[20]  
LA_D[21]  
LA_D[22]  
LA_D[23]  
LA_D[24]  
LA_D[25]  
V4  
LA_A[14]  
LA_A[15]  
LA_A[16]  
LA_A[17]  
LA_A[18]  
LA_A[19]  
LA_A[20]  
Y1  
AA3  
AA2  
V5  
AA1  
W4  
N3  
P1  
P2  
P3  
L4  
Y4  
G0_CRS/LINK  
GREF_CLK[0]  
G0_TXCLK  
G0_TXD[0]  
G0_TXD[1]  
G0_TXD[2]  
MII_TX_CLK[0]  
G0_TXD[3]  
G0_TXD[4]  
G0_TXD[5]  
G0_RXCLK  
G0_COL  
AA4  
AB4  
AB3  
W5  
R5  
M5  
R1  
R2  
R3  
R4  
M4  
T4  
T3  
N5  
T2  
T1  
U4  
U3  
N4  
U2  
AB2  
AB1  
AC3  
Y5  
AC2  
AC1  
AD3  
AD4  
AA5  
AD2  
AB5  
AD1  
AE4  
AC4  
AE3  
AE2  
G0_TXD[6]  
G0_TXD[7]  
G0_TX_EN  
G0_TX_ER  
G0_RXD[0]  
G0_RXD[1]  
G0_RXD[2]  
G0_RXD[3]  
G0_RXD[4]  
H5  
J2  
Table 9 - Ball Signal Name  
86  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Ball No.  
J3  
Signal Name  
LA_D[26]  
Ball No.  
Signal Name  
Ball No.  
AE1  
Signal Name  
G0_RXD[5]  
U1  
LA_D[63]  
J4  
LA_D[27]  
V3  
LA_A[3]  
AC5  
G0_RXD[6]  
K1  
LA_D[28]  
P4  
LA_A[4]  
AF1  
G0_RXD[7]  
H4  
LA_D[29]  
V2  
LA_A[5]  
AD5  
G0_RX_DV  
K2  
LA_D[30]  
V1  
LA_A[6]  
AF2  
G0_RX_ER  
J5  
LA_D[31]  
T5  
LA_A[7]  
AF3  
GREF_CLK[1]  
K3  
LA_CS0#  
W3  
LA_A[8]  
AG2  
G1_TXCLK  
L1  
LA_CS1#  
W2  
LA_A[9]  
AG3  
G1_CRS/LINK  
L2  
LA_RW#  
W1  
LA_A[10]  
AE5  
G1_TXD[0]  
G1_TXD[1]  
G1_TXD[2]  
NC  
L3  
LA_D[32]  
U5  
LA_A[11]  
AG1  
K5  
LA_D[33]  
Y3  
LA_A[12]  
AH1  
AH2  
AJ2  
AJ1  
AK1  
AG4  
AK2  
AH3  
AJ3  
AH4  
AK3  
AF4  
AK4  
AH5  
AJ4  
AG6  
AF5  
AJ5  
AF6  
AK5  
G1_TXD[3]  
G1_TXD[4]  
G1_TXD[5]  
G1_TXD[6]  
G1_TXD[7]  
G1_TX_EN  
MII_TX_CLK[1]  
G1_TX_ER  
G1_RXD[0]  
G1_RXD[1]  
G1_RXD[2]  
G1_RXD[3]  
G1_RXCLK  
G1_COL  
AG10  
AK10  
AJ10  
AG11  
AH10  
AG12  
AK11  
AJ11  
AH11  
AK12  
AF12  
AJ12  
AH12  
AK13  
AJ13  
AH13  
AF13  
AK14  
AG13  
G2_RXCLK  
G2_COL  
AG19  
AK17  
AF20  
AH18  
AJ18  
AK18  
AH19  
AJ19  
AK19  
AH20  
AJ20  
AF21  
AK20  
AH21  
AJ21  
AK21  
AF22  
AG20  
AG21  
NC  
G2_RXD[6]  
G2_RXD[7]  
G2_RX_DV  
G2_RX_ER  
G3_CRS/LINK  
GREF_CLK[3]  
G3_TXCLK  
G3_TXD[0]  
G3_TXD[1]  
G3_TXD[2]  
G3_TXD[3]  
G3_TXD[4]  
MII_TX_CLK[3]  
G3_TXD[5]  
G3_TXD[6]  
G3_TXD[7]  
G3_TX_EN  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
G1_RXD[4]  
G1_RXD[5]  
G1_RXD[6]  
G1_RXD[7]  
G1_RX_DV  
NC  
NC  
NC  
NC  
NC  
Table 9 - Ball Signal Name (continued)  
87  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Ball No.  
AK6  
Signal Name  
G1_RX_ER  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
AJ14  
AH14  
AF14  
AG14  
AK15  
AF17  
AJ15  
AH15  
AF15  
AF18  
AG15  
AF16  
AG16  
AH16  
AF19  
AJ16  
AG18  
AK16  
AG17  
AH17  
AJ17  
AA27  
AB30  
AB29  
Y26  
G3_TX_ER  
G3_RXCLK  
G3_COL  
G3_RXD[0]  
CM_CLK  
IND_CM  
G3_RXD[1]  
G3_RXD[2]  
G3_RXD[3]  
G3_RXD[4]  
G3_RXD[5]  
G3_RXD[6]  
G3_RXD[7]  
G3_RX_DV  
G3_RX_ER  
M_MDC  
M_MDIO  
NC  
AG22  
AH22  
AJ22  
AK22  
AH23  
AG23  
AJ23  
AK23  
AF23  
AH24  
AF24  
AG24  
AJ24  
AK24  
AG25  
AH25  
AF25  
AJ25  
AG26  
AK25  
AK26  
P29  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
AJ6  
GREF_CLK[2]  
G2_TXCLK  
G2_CRS/LINK  
G2_TXD[0]  
G2_TXD[1]  
G2_TXD[2]  
G2_TXD[3]  
G2_TXD[4]  
MII_TX_CLK[2]  
G2_TXD[5]  
G2_TXD[6]  
G2_TXD[7]  
G2_TX_EN  
G2_TX_ER  
G2_RXD[0]  
G2_RXD[1]  
G2_RXD[2]  
G2_RXD[3]  
G2_RXD[4]  
G2_RXD[5]  
NC  
AG5  
AH6  
AF7  
AK7  
AJ7  
AG8  
AG7  
AH7  
AK8  
AJ8  
AF8  
AH8  
AK9  
AJ9  
AH9  
AF9  
AG9  
AF10  
AF11  
AJ26  
AH26  
AJ27  
AF26  
AH27  
AK27  
AK28  
AJ28  
AJ29  
NC  
NC  
NC  
NC  
T_D[13]  
T_D[14]  
T_D[15]  
P_D[0]  
P_D[1]  
P_D[2]  
P_D[3]  
P_D[4]  
P_D[5]  
NC  
NC  
P30  
NC  
NC  
P26  
NC  
NC  
N28  
NC  
AB28  
Y27  
NC  
N29  
NC  
NC  
N30  
NC  
AB27  
AA30  
AA29  
NC  
M28  
NC  
NC  
M29  
NC  
NC  
M30  
Table 9 - Ball Signal Name (continued)  
88  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
Ball No.  
N26  
Signal Name  
P_D[6]  
AK29  
AK30  
AJ30  
AH28  
AH29  
AG27  
AG28  
AH30  
AG30  
AF28  
AE26  
AG29  
AF27  
AF29  
AF30  
AD26  
AE30  
AC26  
AE29  
AC27  
AE28  
AE27  
AB26  
AD30  
AD29  
AD27  
AD28  
AC30  
AA26  
AC29  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
AA28  
Y30  
W27  
Y29  
W26  
Y28  
W30  
W29  
V26  
W28  
V27  
V30  
V29  
V28  
U26  
U30  
U29  
U28  
T30  
T29  
T28  
U27  
T27  
R27  
T26  
R28  
R29  
R30  
R26  
P27  
NC  
NC  
L28  
L29  
N27  
L30  
K28  
K29  
K30  
L27  
K27  
M26  
J27  
J28  
J29  
J30  
L26  
H28  
M27  
H29  
H30  
G28  
G27  
K26  
G29  
G30  
H27  
F27  
F28  
F29  
F30  
P_D[7]  
P_D[8]  
NC  
NC  
TRUNK1_EN  
TRUNK0_EN  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
SDA  
LED_DO  
LED_CLK0  
LED_SYNCO#  
S_RST#  
RESOUT#  
T_MODE[0]  
T_MODE[1]  
T_D[0]  
T_D[1]  
T_D[2]  
T_D[3]  
T_D[4]  
T_D[5]  
T_D[6]  
T_D[7]  
T_D[8]  
T_D[9]  
T_D[10]  
T_D[11]  
SCL  
NC  
PS_STROBE  
PS_DI  
PS_DO  
NC  
B_D[0]  
B_D[1]  
B_D[2]  
B_D[3]  
B_D[4]  
B_D[5]  
B_D[6]  
B_D[7]  
B_D[8]  
B_D[9]  
B_D[10]  
B_D[11]  
B_D[12]  
Table 9 - Ball Signal Name (continued)  
89  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
Ball No.  
J26  
Signal Name  
B_D[13]  
AC28  
E30  
H26  
E29  
E26  
D29  
E28  
G26  
D30  
C30  
E27  
C29  
D28  
B30  
F26  
D26  
A30  
A29  
B29  
E25  
B28  
C28  
A28  
A27  
C27  
D27  
B27  
E24  
D25  
B26  
NC  
P28  
A23  
B23  
C23  
E22  
A22  
B22  
C22  
E21  
D22  
D20  
E20  
D21  
A21  
D19  
B21  
C21  
A20  
B20  
E19  
C20  
A19  
B19  
E18  
C19  
A18  
D18  
B18  
C18  
A17  
T_D[12]  
B_A[12]  
B_A[13]  
B_A[14]  
B_A[15]  
B_A[16]  
B_A[17]  
B_A[18]  
LB_A[20]  
NC  
B_D[14]  
B_D[15]  
B_D[16]  
B_D[17]  
B_D[18]  
B_D[19]  
B_D[20]  
B_D[21]  
B_D[22]  
B_D[23]  
B_CLK  
B_D[24]  
B_D[25]  
NC1  
E14  
C15  
B15  
E13  
A15  
D14  
C14  
D13  
B14  
A14  
C13  
E12  
B13  
A13  
D12  
C12  
B12  
A12  
C11  
E11  
B11  
A11  
E10  
C10  
B10  
E9  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC2  
NC  
NC3  
NC  
NC4  
NC  
NC5  
NC  
AGND  
NC  
DEV_CFG[1]  
AVDD  
NC  
NC  
B_D[26]  
B_D[27]  
B_D[28]  
B_D[29]  
B_D[30]  
B_D[31]  
B_ADSC#  
B_WE#  
NC  
NC  
NC  
NC  
NC  
NC  
A10  
D11  
D10  
NC  
NC  
Table 9 - Ball Signal Name (continued)  
90  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Ball No.  
A26  
Signal Name  
B_OE#  
Ball No.  
Signal Name  
Ball No.  
D8  
Signal Name  
E17  
B17  
C17  
E16  
D17  
A16  
B16  
E15  
C16  
D16  
D15  
P15  
P16  
P17  
P18  
R13  
R14  
R15  
R16  
R17  
R18  
R25  
R6  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
A25  
B25  
C26  
C25  
E23  
A24  
B24  
D23  
D24  
C24  
B7  
B_A[2]  
B_A[3]  
B_A[4]  
B_A[5]  
B_A[6]  
B_A[7]  
B_A[8]  
B_A[9]  
B_A[10]  
B_A[11]  
NC  
NC  
D9  
NC  
C9  
NC  
B9  
NC  
A9  
S_CLK  
NC  
C8  
B8  
NC  
A8  
NC  
C7  
NC  
E7  
NC  
D7  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AE7  
AE9  
F10  
F21  
F22  
F9  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
E8  
NC  
A7  
NC  
D6  
NC  
C6  
NC  
E6  
NC  
B6  
NC  
G25  
G6  
A6  
NC  
A5  
NC  
J25  
J6  
B5  
NC  
C5  
NC  
K25  
K6  
B4  
NC  
D5  
NC  
T13  
T14  
T15  
T16  
T17  
T18  
T25  
AE12  
AE13  
AE14  
AE17  
AE18  
AE19  
F12  
A4  
NC  
A3  
SCAN_EN  
AGND  
NC6  
E5  
C4  
B3  
NC7  
D4  
NC8  
Table 9 - Ball Signal Name (continued)  
91  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
Ball No.  
A2  
Signal Name  
NC9  
Ball No.  
Signal Name  
Ball No.  
F13  
Signal Name  
VCC  
T6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
AD6  
AE15  
AE16  
AE24  
AE25  
AE6  
F15  
F16  
F24  
F25  
F6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
U13  
U14  
U15  
U16  
U17  
U18  
V13  
F14  
F17  
F18  
F19  
M25  
M6  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
N25  
N6  
V14  
V15  
P25  
P6  
V16  
V17  
U25  
U6  
F7  
V18  
N13  
N14  
N15  
N16  
N17  
N18  
P13  
P14  
AA25  
AA6  
AB25  
AB6  
AD25  
AE10  
AE21  
AE22  
V25  
V6  
W25  
W6  
Table 9 - Ball Signal Name (continued)  
92  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
11.4 Characteristics and Timing  
11.4.1 Absolute Maximum Ratings  
o
o
Storage Temperature  
-65 C to +150 C  
o
o
Operating Temperature  
-40 C to +85 C  
o
Maximum Junction Temperature  
Supply Voltage VDD with Respect to VSS  
Supply Voltage VDD with Respect to VSS  
Voltage on Input Pins  
+125 C  
+3.0 V to +3.6 V  
+2.38 V to +2.75 V  
-0.5 V to (VDD + 3.3 V)  
Caution: Stress above those listed may damage the device. Exposure to the Absolute Maximum Ratings for  
extended periods may affect device reliability. Functionality at or above these limits is not implied.  
11.4.2 DC Electrical Characteristics  
o
o
VDD = 3.0 V to 3.6 V (3.3v +/- 10%)  
TAMBIENT = -40 C to +85 C  
VDD = 2.5V +10% - 5%  
93  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
11.4.3 Recommended Operating Conditions  
Symbol  
Parameter Description  
Frequency of Operation  
Min  
Type  
Max  
Unit  
fosc  
133  
MHz  
mA  
I
Supply Current - @ 133 MHz  
(VDD = 3.3V)  
680  
1300  
2.4  
850  
CC  
I
Supply Current - @ 133 MHz  
(VDD = 2.5V)  
1500  
mA  
DD  
V
V
V
V
Output High Voltage (CMOS)  
V
OH  
Output Low Voltage (CMOS)  
0.4  
V
OL  
Input High Voltage (TTL 5V tolerant)  
Input Low Voltage (TTL 5V tolerant)  
2.0  
VDD + 2.0  
V
IH-TTL  
IL-TTL  
0.8  
10  
10  
5
V
I
I
Input Leakage Current (0.1 V < V < VCC)  
µA  
µA  
pF  
pF  
pF  
C/W  
C/W  
C/W  
C/W  
IL  
OL  
IN  
Output Leakage Current (0.1 V < VOUT < VCC)  
Input Capacitance  
C
C
C
IN  
Output Capacitance  
5
OUT  
I/O  
I/O Capacitance  
7
θ
θ
θ
θ
Thermal resistance with 0 air flow  
Thermal resistance with 1 m/s air flow  
Thermal resistance with 2 m/s air flow  
Thermal resistance between junction and case  
11.2  
9.9  
8.7  
3.3  
ja  
ja  
ja  
jc  
Table 10 - Recommended Operating Conditions  
94  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
11.5 AC Characteristics and Timing  
11.5.1 Typical Reset & Bootstrap Timing Diagram  
S_RST#  
RESOUT#  
Tri-Stated  
R1  
R3  
Bootstrap Pins  
Outputs  
Inputs  
Outputs  
R2  
Figure 6 - Typical Reset & Bootstrap Timing Diagram  
Symbol  
Parameter  
Min Typ  
Note:  
R1  
Delay until RESOUT# is tri-stated  
10ns RESOUT# state is then determined by the  
external pull-up/down resistor  
R2  
R3  
Bootstrap stabilization  
1µs 10µs Bootstrap pins sampled on rising edge of  
1
S_RST#  
RESOUT# assertion  
2ms  
Table 11 - Reset & Bootstrap Timing  
1. The T_D[15:0] pins will switch over to the LED interface functionality in 3 SCLK cycles after S_RST# goes high  
95  
Zarlink Semiconductor Inc.  
MVTX2801  
11.5.2 Local Frame Buffer ZBT SRAM Memory Interface  
11.5.2.1 Local ZBT SRAM Memory Interface A  
Data Sheet  
LA_CLK  
L1  
L2  
LA_D[63:0]  
Figure 7 - Local Memory Interface - Input setup and hold timing  
LA_CLK  
LA_D[63:0]  
LA_A[20:3]  
LA_CS[1,0]#  
LA_RW#  
L3-max  
L3-min  
L4-max  
L4-min  
L6-max  
L6-min  
L9-max  
L9-min  
Figure 8 - Local Memory Interface - Output valid delay timing  
(SCLK= 133MHz)  
Parameter  
Symbol  
Min (ns)  
Max (ns)  
Note:  
L1  
L2  
L3  
L4  
L6  
L9  
LA_D[63:0] input set-up time  
LA_D[63:0] input hold time  
LA_D[63:0] output valid delay  
LA_A[20:3] output valid delay  
LA_CS[1:0]# output valid delay  
LA_WE# output valid delay  
2.5  
1
3
5
5
5
5
C = 25pf  
L
3
C = 30pf  
L
3
C = 30pf  
L
3
C = 25pf  
L
Table 12 - AC Characteristics - Local frame buffer ZBT-SRAM Memory Interface A  
96  
Zarlink Semiconductor Inc.  
MVTX2801  
11.5.3 Local Switch Database SBRAM Memory Interface  
11.5.3.1 Local SBRAM Memory Interface  
Data Sheet  
B_CLK  
L1  
L2  
B_D[31:0]  
Figure 9 - Local Memory Interface - Input setup and hold timing  
B_CLK  
B_D[31:0]  
B_A[18:2]  
L3-max  
L3-min  
L4-max  
L4-min  
L6-max  
L6-min  
B_ADSC#  
B_WE#  
L10-max  
L10-min  
L11-max  
L11-min  
B_OE#  
Figure 10 - Local Memory Interface - Output valid delay timing  
(SCLK= 133MHz)  
Symbol  
Parameter  
Min (ns)  
2.5  
Max (ns)  
Note:  
L1  
L2  
L3  
L4  
L6  
B_D[31:0] input set-up time  
B_D[31:0] input hold time  
B_D[31:0] output valid delay  
B_A[18:2] output valid delay  
B_ADSC# output valid delay  
B_WE# output valid delay  
B_OE# output valid delay  
1
3
3
3
3
3
5
C = 25pf  
L
5
5
5
4
C = 30pf  
L
C = 30pf  
L
L10  
L11  
C = 25pf  
L
C = 25pf  
L
Table 13 - AC Characteristics - Local Switch Database SBRAM Memory Interface  
97  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
11.5.4 Media Independent Interface  
MII_TXCLK[3:0]  
M6-max  
M6-min  
G[3:0]_TXEN  
M7-max  
M7-min  
G[3:0] _TXD[3:0]  
Figure 11 - AC Characteristics - Media Independent Interface  
G[3:0]_RXCLK  
M2  
G[3:0]_RXD[3:0]  
M3  
M4  
G[3:0]_CRS_DV  
M5  
Figure 12 - AC Characteristics - Media Independent Interface  
(MII_TXCLK & G_RXCLK = 25MHz)  
Symbol Parameter  
Min (ns)  
Max (ns)  
Note:  
M2  
M3  
M4  
M5  
M6  
M7  
G[3:0]_RXD[3:0] Input Setup Time  
4
1
4
1
3
3
G[3:0]_RXD[3:0] Input Hold Time  
G[3:0]_CRS_DV Input Setup Time  
G[3:0]_CRS_DV Input Hold Time  
G[3:0]_TXEN Output Delay Time  
G[3:0]_TXD[3:0] Output Delay Time  
11  
11  
C = 20 pF  
L
C = 20 pF  
L
Table 14 - AC Characteristics - Media Independent Interface  
98  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
11.5.5 Gigabit Media Independent Interface  
G[3:0]_TXCLK  
G[3:0]_TXD[7:0]  
G[3:0]_TX_EN  
G[3:0]_TX_ER  
G12-max  
G12-min  
G13-max  
G13-min  
G14-max  
G14-min  
Figure 13 - AC Characteristics- GMII  
G[3:0]_RXCLK  
G1  
G3  
G5  
G7  
G2  
G4  
G[3:0]_RXD[7:0]  
G[3:0]_RX_DV  
G[3:0]_RX_ER  
G[3:0]_RX_CRS  
G6  
G8  
Figure 14 - AC Characteristics - Gigabit Media Independent Interface  
(G_RCLK & G_REFCLK = 125MHz)  
Symbol  
Parameter  
Min (ns)  
Max (ns)  
Note:  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G[3:0]_RXD[7:0] Input Setup Times  
G[3:0]_RXD[7:0] Input Hold Times  
G[3:0]_RX_DV Input Setup Times  
G[3:0]_RX_DV Input Hold Times  
G[3:0]_RX_ER Input Setup Times  
G[3:0]_RX_ER Input Hold Times  
G[3:0]_CRS Input Setup Times  
2
1
2
1
2
1
2
Table 15 - AC Characteristics - Gigabit Media Independent Interface  
99  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
(G_RCLK & G_REFCLK = 125MHz)  
G8  
G[3:0]_CRS Input Hold Times  
1
1
1
1
G12  
G13  
G14  
G[3:0]_TXD[7:0] Output Delay Times  
G[3:0]_TX_EN Output Delay Times  
G[3:0]_TX_ER Output Delay Times  
5
5
5
C = 20pf  
L
C = 20pf  
L
C = 20pf  
L
Table 15 - AC Characteristics - Gigabit Media Independent Interface (continued)  
11.5.6 PCS Interface  
G[3:0]_TXCLK  
G30-max  
G30-min  
G[3:0]_TXD[9:0]  
Figure 15 - AC Characteristics - PCS Interface  
G[3:0]_RXCLK1  
G[3:0]_RXCLK  
G[3:0]_RXD[9:0]  
G[3:0]_RX_CRS  
Figure 16 - AC Characteristics - PCS Interface  
(G_RCLK & G_REFCLK =  
125MHz)  
Symbol  
Parameter  
Min (ns)  
Max (ns)  
Note:  
G21  
G[3:0]_RXD[9:0] Input Setup Times ref to  
G_RXCLK  
2
G22  
G23  
G[3:0]_RXD[9:0] Input Hold Times ref to  
G_RXCLK  
1
2
G[3:0]_RXD[9:0] Input Setup Times ref to  
G_RXCLK1  
Table 16 - AC Characteristics - PCS Interface  
100  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
(G_RCLK & G_REFCLK =  
125MHz)  
G24  
G[3:0]_RXD[9:0] Input Hold Times ref to  
G_RXCLK1  
1
G25  
G26  
G30  
G[3:0]_CRS Input Setup Times  
G[3:0]_CRS Input Hold Times  
G[3:0]_TXD[9:0] Output Delay Times  
2
1
1
5
C = 20pf  
L
Table 16 - AC Characteristics - PCS Interface  
11.5.7 LED Interface  
LED_CLK  
LE5-max  
LE5-min  
LED_SYN  
LE6-max  
LE6-min  
LED_BIT  
Figure 17 - AC Characteristics - LED Interface  
Variable FREQ.  
Symbol Parameter  
Min (ns)  
Max (ns)  
Note:  
C = 30pf  
LE5  
LE6  
LED_SYN Output Valid Delay  
LED_BIT Output Valid Delay  
1
1
7
7
L
C = 30pf  
L
Table 17 - AC Characteristics - LED Interface  
101  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
11.5.8 MDIO Input Setup and Hold Timing  
MDC  
D1  
D2  
MDIO  
Figure 18 - MDIO Input Setup and Hold Timing  
MDC  
D3-max  
D3-min  
MDIO  
Figure 19 - MDIO Output Delay Timing  
1MHz  
Symbol  
D1  
Parameter  
Min (ns)  
Max (ns)  
Note:  
MDIO input setup time  
MDIO input hold time  
MDIO output delay time  
10  
2
D2  
D3  
1
20  
C = 50pf  
L
Table 18 - MDIO Timing  
102  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
11.5.9 I2C Input Setup Timing  
SCL  
S1  
S2  
SDA  
2
Figure 20 - I C Input Setup Timing  
SCL  
S3-max  
S3-min  
SDA  
2
Figure 21 - I C Output Delay Timing  
500KHz  
Symbol  
S1  
Parameter  
Min (ns)  
Max (ns)  
Note:  
SDA input setup time  
SDA input hold time  
SDA output delay time  
20  
1
S2  
S3  
1
20  
CL = 30pf  
Open Drain Output. Low to High transistor is controlled by external pullup resistor.  
2
Table 19 - I C Timing  
11.5.10 Serial Interface Setup Timing  
STROBE  
PS_DI  
D4  
D5  
D1  
D1  
D2  
D2  
Figure 22 - Serial Interface Setup Timing  
STROBE  
D3-max  
D3-min  
PS_DO  
Figure 23 - Serial Interface Output Delay Timing  
103  
Zarlink Semiconductor Inc.  
MVTX2801  
Data Sheet  
(SCLK =133 MHz)  
Symbol  
D1  
Parameter  
PS_DI setup time  
Min (ns)  
Max (ns)  
Note:  
20  
10  
D2  
D3  
D4  
D5  
PS_DI hold time  
PS_DO output delay time  
Strobe low time  
1
50  
C = 100pf  
L
5µs  
5µs  
Strobe high time  
Table 20 - Serial Interface Timing  
104  
Zarlink Semiconductor Inc.  
MIN  
MAX  
A
A1  
A2  
D
2.20  
0.50  
1.17 REF  
39.80  
2.46  
0.70  
40.20  
D1  
E
E1  
b
e
34.50 REF  
40.20  
0.90  
39.80  
34.50 REF  
E1  
E
0.60  
1.27  
596  
Conforms to JEDEC MS - 034  
e
D
D1  
A2  
A
A1  
b
NOTE:  
1. CONTROLLING DIMENSIONS ARE IN MM  
2. DIMENSION "b" IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER  
3. SEATING PLANE IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.  
4. N IS THE NUMBER OF SOLDER BALLS  
5. NOT TO SCALE.  
6. SUBSTRATE THICKNESS IS 0.56 MM  
Package Code  
Previous package codes:  
ISSUE  
ACN  
DATE  
APPRD.  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable.  
However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such  
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or  
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual  
property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in  
certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the  
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute  
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and  
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does  
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in  
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.  
Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright Zarlink Semiconductor Inc. All Rights Reserved.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

相关型号:

MVTX2802

Managed 4-Port 1000 Mbps Ethernet Switch
ZARLINK

MVTX2802A

Managed 4 port Gigabit Ethernet switch
ETC

MVTX2802AG

Managed 4-Port 1000 Mbps Ethernet Switch
ZARLINK

MVTX2802AG

DATACOM, LAN SWITCHING CIRCUIT, PBGA596, 40 X 40 MM, 2.33 MM HEIGHT, MS-034, HSBGA-596
MICROSEMI

MVTX2803

Unmanaged 8-Port 1000 Mbps Ethernet Switch
ZARLINK

MVTX2803A

Unmanaged 8 port Gigabit Ethernet switch
ETC

MVTX2803AG

Unmanaged 8-Port 1000 Mbps Ethernet Switch
ZARLINK

MVTX2804

8-Port 1000 Mbps Ethernet Distributed Switch
ZARLINK

MVTX2804AG

8-Port 1000 Mbps Ethernet Distributed Switch
ZARLINK

MVU10-10FFBK

FORK TERMINAL
3M

MVU10-10FX

VINYL INSULATED BRAZED SEAM FORK TERMINAL
3M

MVU10-10R

COPPER ALLOY, TIN FINISH, RING TERMINAL
3M