MVTX2801A [ETC]

Unmanaged 4 port Gigabit Ethernet switch ; 非托管的4端口千兆以太网交换机\n
MVTX2801A
型号: MVTX2801A
厂家: ETC    ETC
描述:

Unmanaged 4 port Gigabit Ethernet switch
非托管的4端口千兆以太网交换机\n

以太网
文件: 总131页 (文件大小:403K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MVTX2801AG  
4-Port 1000 Mbps Ethernet Distributed Switch  
Data Sheet  
DS5748  
Issue 1.1  
May 2002  
Features  
4 Gigabit Ports with GMII and PCS interface  
• Gigabit Port can also support 100/10 Mbps MII  
interface  
Ordering Information  
MVTX2801AG 596-pin BGA  
High Performance Layer 2 Packet Forwarding  
(11.904M packets per second) and Filtering at  
Full-Wire Speed  
-40oC to + 85oC  
WRED mechanism  
• User controlled thresholds for WRED  
Maximum throughput is 4 Gbps non-blocking  
Centralized shared-memory architecture  
Consists of two Memory Domains at 133 MHz  
Classification based on layer 2, 3 markings  
• VLAN Priority field in VLAN tagged frame.  
• DS/TOS field in IP packet  
• Frame Buffer Domain: one bank of ZBT-SRAM with  
1M/2MB total  
• The precedence of above two classifications can be  
programmable  
• Switch Database Domain with 256K/512K SRAM.  
Up to 64K MAC addresses to provide large node  
aggregation in wiring closet switches  
QoS Support  
Supports IEEE 802.1p/Q Quality of Service with 8  
Priority  
Buffer Management: reserve buffers on per class  
and per port basis  
Traffic Classification  
Classify traffic into 8 transmission priorities per  
port  
Port-based Priority: VLAN Priority with Tagged  
frame can be overwritten by the priority of PVID  
Supports Delay bounded, Strict Priority, and  
WFQ  
QoS features can be configured on a per port  
basis Control  
Provides 2 level dropping precedence with  
Full Duplex Ethernet IEEE 802.3x Flow Control  
SRAM 256/512K  
SW Databasee  
MAC Table  
Frame Data Buffer A  
ZBT-SRAM (1M/2MB)  
64bit  
32bit  
VTX2801  
SDB Interface  
LED  
FDB Interface  
Frame  
Engine  
Search  
Engine  
Scheduler  
Management  
Module  
GMII  
/PCS  
Port 0  
GMII  
/PCS  
Port 1  
GMII  
/PCS  
Port 2  
GMII  
/PCS  
Port 3  
Serial/  
I C  
2
Figure 1 - Chip Block Diagram  
SEMICMF.019  
i
MVTX2801AG  
Data Sheet  
Provides Ethernet Multicast and Broadcast Control  
2 Port Trunking groups, max of 3 ports per group (Trunking can be based on source MAC and/or  
destination MAC and source port)  
LED signals provided by a serial or parallel interface  
Synchronous Serial Interface and I2C interface in unmanaged mode.  
Hardware auto-negotiation through serial management interface (MDIO) for Gigabit Ethernet ports,  
supports 10/100/1000 Mbps  
BIST for internal and external SRAM-ZBT  
I2C EEPROM or synchronous serial port for configuration  
Packaged in 596-pin BGA  
Description  
The MVTX2800AG family is a group of 8-port 1000 Mbps non-blocking Ethernet switch chips with on-chip address  
memory. A single chip provides a maximum of eight 1000 Mbps ports and a dedicated CPU interface with a 16/8-bit  
bus for managed and unmanaged switch applications. The VTX2800 family consists of the following four products:  
• VTX2804 8 Gigabit ports Managed  
• VTX2803 8 Gigabit ports Unmanaged  
• VTX2802 4 Gigabit ports Managed  
• VTX2801 4 Gigabit ports Unmanaged  
The MVTX2801AG supports up to 64K MAC addresses to aggregate traffic from multiple wiring closet stacks. The  
centralized shared-memory architecture allows a very high performance packet-forwarding rate of 11.904M packet  
per second at full wire speed. The chip is optimized to provide a low-cost, high performance workgroup, and wiring  
closet, layer 2 switching solution with 4 Gigabit Ethernet ports.  
One Frame Buffer Memory domain utilize cost effective, high-performance ZBT-SRAM with aggregated bandwidth  
of 8.5Gbps to support full wire speed on all external ports simultaneously.  
With Strict priority, Delay Bounded, and WRR transmission scheduling, plus WRED memory congestion scheme,  
the chip provides powerful QoS functions for convergent network multimedia and mission-critical applications. The  
chip provides 8 transmission priorities and 2 level drop precedence. Traffic is assigned its transmission priority and  
dropping precedence based on the frame VLAN Tag priority.  
The MVTX2801AG supports port trunking/load sharing on the 1000 Mbps ports with fail-over capability. The port  
trunking/load sharing can be used to group ports between interlinked switches to increase the effective network  
bandwidth.  
In full-duplex mode, IEEE 802.3x flow control is provided. The Physical Coding Sublayer (PCS) is integrated on-chip  
to provide a direct 10-bit GMII interface, or the PCS can be bypassed to provide an interface to existing fiber-based  
Gigabit Ethernet transceivers.  
The MVTX2801AG is fabricated using 0.25(mm technology. Inputs, however, are 3.3V tolerant and the outputs are  
capable of directly interfacing to LVTTL levels. The MVTX2801AG is packaged in a 596-pin Ball Grid Array package.  
SEMICMF.019  
ii  
Data Sheet  
MVTX2801AG  
Table of Contents  
Features ................................................................................................................................... i  
Traffic Classification ............................................................................................................... i  
Description .............................................................................................................................. ii  
List of Figures ........................................................................................................................ xi  
List of Tables ....................................................................................................................... xiii  
1.0 Block Functionality ......................................................................................................... 15  
1.1 Frame Data Buffer (FDB) Interfaces..........................................................................................................15  
1.2 Switch Database (SDB) Interface..............................................................................................................15  
1.3 GMII/PCS MAC Module (GMAC) ..............................................................................................................15  
1.4 Frame Engine............................................................................................................................................15  
1.5 Search Engine...........................................................................................................................................15  
1.6 LED Interface.............................................................................................................................................15  
1.7 Internal Memory.........................................................................................................................................15  
2.0 System Configuration..................................................................................................... 16  
2.1 I2C Interface ..............................................................................................................................................16  
2.1.1 Start Condition .................................................................................................................................16  
2.1.2 Address............................................................................................................................................16  
2.1.3 Data Direction ..................................................................................................................................16  
2.1.4 Acknowledgment..............................................................................................................................16  
2.1.5 Data .................................................................................................................................................16  
2.1.6 Stop Condition .................................................................................................................................17  
2.2 Synchronous Serial Interface ...................................................................................................................17  
2.2.1 Write Command ..............................................................................................................................17  
2.2.2 Read Command..............................................................................................................................18  
3.0 Data Forwarding Protocol .............................................................................................. 18  
3.1 Unicast Data Frame Forwarding................................................................................................................18  
3.2 Multicast Data Frame Forwarding .............................................................................................................19  
4.0 Memory Interface............................................................................................................. 19  
4.1 Overview....................................................................................................................................................19  
4.2 Detailed Memory Information ....................................................................................................................20  
5.0 Search Engine ................................................................................................................. 20  
5.1 Search Engine Overview...........................................................................................................................20  
5.2 Basic Flow .................................................................................................................................................20  
5.3 Search, Learning, and Aging.....................................................................................................................21  
5.3.1 MAC Search.....................................................................................................................................21  
5.3.2 Learning...........................................................................................................................................21  
5.3.3 Aging................................................................................................................................................21  
5.3.4 Data Structure..................................................................................................................................21  
6.0 Frame Engine................................................................................................................... 22  
6.1 Data Forwarding Summary........................................................................................................................22  
6.2 Frame Engine Details................................................................................................................................22  
6.2.1 FCB Manager..................................................................................................................................22  
6.2.2 Rx Interface.....................................................................................................................................22  
6.2.3 RxDMA............................................................................................................................................22  
6.2.4 TxQ Manager...................................................................................................................................22  
6.3 Port Control ...............................................................................................................................................23  
6.4 TxDMA.......................................................................................................................................................23  
7.0 Quality of Service and Flow Control.............................................................................. 24  
7.1 Model.........................................................................................................................................................24  
7.2 Four QoS Configurations...........................................................................................................................25  
7.3 Delay Bound..............................................................................................................................................25  
SEMICMF.019  
iii  
MVTX2801AG  
Data Sheet  
Table of Contents  
7.4 Strict Priority and Best Effort..................................................................................................................... 26  
7.5 Weighted Fair Queuing ............................................................................................................................. 26  
7.6 Shaper....................................................................................................................................................... 26  
7.7 WRED Drop Threshold Management Support.......................................................................................... 27  
7.8 Buffer Management................................................................................................................................... 27  
7.8.1 Dropping When Buffers Are Scarce ................................................................................................ 28  
7.9 Flow Control Basics .................................................................................................................................. 28  
7.9.1 Unicast Flow Control ....................................................................................................................... 29  
7.9.2 Multicast Flow Control ..................................................................................................................... 29  
7.10 Mapping to IETF Diffserv Classes........................................................................................................... 30  
8.0 Port Trunking ................................................................................................................... 31  
8.1 Features and Restrictions ......................................................................................................................... 31  
8.2 Unicast Packet Forwarding ...................................................................................................................... 31  
8.3 Multicast Packet Forwarding.................................................................................................................... 31  
8.4 Preventing Multicast Packets from Looping Back to the Source Trunk .................................................... 32  
9.0 LED Interface.................................................................................................................... 32  
9.1 Introduction ............................................................................................................................................... 32  
9.2 Serial Mode............................................................................................................................................... 32  
9.3 Parallel Mode ............................................................................................................................................ 33  
9.4 LED Control Registers .............................................................................................................................. 33  
10.0 Register Definition........................................................................................................ 35  
10.1 Register Description................................................................................................................................ 35  
10.2 Group 0 Address - MAC Ports Group ..................................................................................................... 40  
10.2.1 ECR1Pn: Port N Control Register ................................................................................................. 40  
10.2.2 ECR2Pn: Port N Control Register ................................................................................................. 41  
10.2.3 ECRMISC1 - CPU Port Control Register MISC1........................................................................... 42  
10.2.4 ECRMISC2 - CPU Port Control Register MISC2........................................................................... 43  
10.2.5 GGControl 0- Extra GIGA Port Control.......................................................................................... 44  
10.2.6 GGControl 1- Extra GIGA Port Control.......................................................................................... 44  
10.2.7 GGControl 2- Extra GIGA Port Control.......................................................................................... 45  
10.2.8 GGControl 3- Extra GIGA Port Control.......................................................................................... 45  
10.3 Group 1 Address - VLAN Group ............................................................................................................. 45  
10.3.1 AVTCL - VLAN Type Code Register Low...................................................................................... 45  
10.3.2 AVTCH - VLAN Type Code Register High .................................................................................... 46  
10.3.3 PVMAP00_0 - Port 00 Configuration Register 0 .......................................................................... 46  
10.3.4 PVMAP00_1 - Port 00 Configuration Register 1 .......................................................................... 46  
10.3.5 PVMAP00_2 - Port 00 Configuration Register 2 .......................................................................... 46  
10.3.6 PVMAP00_3 - Port 00 Configuration Register 3 .......................................................................... 47  
10.3.7 PVMODE...................................................................................................................................... 48  
10.4 Group 2 Address - Port Trunking Group ................................................................................................. 48  
10.4.1 TRUNK0 - Trunk group 0 Member (Managed Mode Only)............................................................ 48  
10.4.2 TRUNK1 - Trunk group 1 Member (Managed Mode Only)............................................................ 48  
10.4.3 TRUNK2- Trunk group 2 Member (Managed Mode Only)............................................................. 49  
10.4.4 TRUNK3- Trunk group 3 Member (Managed Mode Only)............................................................. 49  
10.4.5 TRUNK_HASH_MODE - Trunk hash mode .................................................................................. 49  
10.4.6 TRUNK0_MODE - Trunk group 0 and 1 mode.............................................................................. 49  
10.4.7 TRUNK0_HASH0 - Trunk group 0 hash result 0,1,2 destination port number .............................. 49  
10.4.8 TRUNK0_HASH1 - Trunk group 0 hash result 2,3,4,5 destination port number ........................... 49  
10.4.9 TRUNK0_HASH2 - Trunk group 0 hash result 5,6,7 destination port number .............................. 50  
10.4.10 TRUNK0_HASH3 - Trunk group 0 hash result 8,9,10 destination port number .......................... 50  
10.4.11 TRUNK0_HASH4 - Trunk group 0 hash result 10,11,12,13 destination port number ................. 50  
10.4.12 TRUNK0_HASH5 - Trunk group 0 hash result 13,14,15 destination port number ...................... 50  
10.4.13 TRUNK1_MODE - Trunk group 1 mode (Unmanaged Mode)..................................................... 50  
SEMICMF.019  
iv  
Data Sheet  
MVTX2801AG  
Table of Contents  
10.4.14 TRUNK1_HASH0 - Trunk group 1 hash result 0, 1, 2 destination port number...........................50  
10.4.15 TRUNK1_HASH1 - Trunk group 1 hash result 2, 3, 4, 5 destination port number.......................50  
10.4.16 TRUNK1_HASH2 - Trunk group 1 hash result 5, 6, 7 destination port number...........................50  
10.4.17 TRUNK1_HASH3 - Trunk group 1 hash result 8, 9, 10 destination port number.........................50  
10.4.18 TRUNK1_HASH4- Trunk group 1 hash result 11, 12, 13 destination port number......................51  
10.4.19 TRUNK1_HASH5 - Trunk group 1 hash result 13, 14, 15 destination port number.....................51  
10.4.20 TRUNK2_HASH0 - Trunk group 2 hash result 0, 1, 2 destination port number...........................51  
10.4.21 TRUNK2_HASH1 - Trunk group 2 hash result 2, 3, 4, 5 destination port number.......................51  
10.4.22 TRUNK2_HASH2 - Trunk group 2 hash result 5, 6, 7 destination port number...........................51  
10.4.23 TRUNK2_HASH3 - Trunk group 2 hash result 8, 9, 10 destination port number.........................51  
10.4.24 TRUNK2_HASH4 - Trunk group 2 hash result 10, 11, 12, 13 destination port number...............51  
10.4.25 TRUNK2_HASH5 - Trunk group 2 hash result 13, 14, 15 destination port number.....................51  
10.4.26 TRUNK3_HASH0 - Trunk group 3 hash result 0, 1, 2 destination port number...........................51  
10.4.27 TRUNK3_HASH1 - Trunk group 3 hash result 2, 3, 4, 5 destination port number.......................51  
10.4.28 TRUNK3_HASH2 - Trunk group 3 hash result 5, 6, 7 destination port number...........................52  
10.4.29 TRUNK3_HASH3 - Trunk group 3 hash result 8, 9, 10 destination port number.........................52  
10.4.30 TRUNK3_HASH4 - Trunk group 3 hash result 10, 11, 12, 13 destination port number...............52  
10.4.31 TRUNK3_HASH5 - Trunk group 3 hash result 13, 14, 15 destination port number.....................52  
10.4.32 Multicast Hash Registers .............................................................................................................52  
10.4.33 Multicast_HASH00 - Multicast hash result0 mask byte [7:0] .......................................................52  
10.4.34 Multicast_HASH01 - Multicast hash result1 mask byte [7:0] .......................................................52  
10.4.35 Multicast_HASH02 - Multicast hash result2 mask byte [7:0] .......................................................52  
10.4.36 Multicast_HASH03 - Multicast hash result3 mask byte [7:0] .......................................................52  
10.4.37 Multicast_HASH04 - Multicast hash result4 mask byte [7:0] .......................................................53  
10.4.38 Multicast_HASH05 - Multicast hash result5 mask byte [7:0] .......................................................53  
10.4.39 Multicast_HASH06 - Multicast hash result6 mask byte [7:0] .......................................................53  
10.4.40 Multicast_HASH07 - Multicast hash result7 mask byte [7:0] .......................................................53  
10.4.41 Multicast_HASH08 - Multicast hash result8 mask byte [7:0] .......................................................53  
10.4.42 Multicast_HASH09 - Multicast hash result9 mask byte [7:0] .......................................................53  
10.4.43 Multicast_HASH10 - Multicast hash result10 mask byte [7:0] .....................................................53  
10.4.44 Multicast_HASH11 - Multicast hash result11 mask byte [7:0] .....................................................54  
10.4.45 Multicast_HASH12 - Multicast hash result12 mask byte [7:0] .....................................................54  
10.4.46 Multicast_HASH13 - Multicast hash result13 mask byte [7:0] .....................................................54  
10.4.47 Multicast_HASH14 - Multicast hash result14 mask byte [7:0] .....................................................54  
10.4.48 Multicast_HASH15 - Multicast hash result15 mask byte [7:0] .....................................................54  
10.4.49 Multicast_HASHML - Multicast hash bit[8] for result7-0...............................................................54  
10.4.50 Multicast_HASHMH - Multicast hash BIT[8] for result 15-8 .........................................................54  
10.5 Group 3 Address - CPU Port Configuration Group..................................................................................55  
10.5.1 MAC0 - CPU Mac address byte 0..................................................................................................55  
10.5.2 MAC1 - CPU Mac address byte 1..................................................................................................55  
10.5.3 MAC2 - CPU Mac address byte 2..................................................................................................55  
10.5.4 MAC3 - CPU Mac address byte 3..................................................................................................55  
10.5.5 MAC4 - CPU Mac address byte 4..................................................................................................55  
10.5.6 MAC5 - CPU Mac address byte 5..................................................................................................55  
10.5.7 INT_MASK0 - Interrupt Mask 0......................................................................................................55  
10.5.8 INT_MASK1 - Interrupt Mask 1......................................................................................................55  
10.5.9 INT_STATUS0 - Masked Interrupt Status Register0 .....................................................................55  
10.5.10 INT_STATUS1 - Masked Interrupt Status Register1 ...................................................................56  
10.5.11 INTP_MASK0 - Interrupt Mask for MAC Port 0,1.........................................................................56  
10.5.12 INTP_MASK1 - Interrupt Mask for MAC Port 2,3.........................................................................56  
10.5.13 INTP_MASK4 - Interrupt Mask for MAC Port 4,5.........................................................................56  
10.5.14 INTP_MASK5 - Interrupt Mask for MAC Port 6,7.........................................................................56  
10.5.15 RQS - Receive Queue Select ......................................................................................................56  
10.5.16 RQSS - Receive Queue Status....................................................................................................56  
10.5.17 TX_AGE - Tx Queue Aging timer.................................................................................................56  
SEMICMF.019  
v
MVTX2801AG  
Data Sheet  
Table of Contents  
10.6 Group 4 Address - Search Engine Group ............................................................................................... 57  
10.6.1 AGETIME_LOW - MAC address aging time Low .......................................................................... 57  
10.6.2 AGETIME_HIGH -MAC address aging time High.......................................................................... 57  
10.6.3 V_AGETIME - VLAN to Port aging time ........................................................................................ 57  
10.6.4 SE_OPMODE - Search Engine Operation Mode .......................................................................... 57  
10.6.5 SCAN - SCAN Control Register .................................................................................................... 58  
10.7 Group 5 Address - Buffer Control/QOS Group........................................................................................ 58  
10.7.1 FCBAT - FCB Aging Timer............................................................................................................ 58  
10.7.2 QOSC - QOS Control .................................................................................................................... 58  
10.7.3 FCR - Flooding Control Register ................................................................................................... 59  
10.7.4 AVPML - VLAN Priority Map.......................................................................................................... 59  
10.7.5 AVPMM - VLAN Priority Map......................................................................................................... 60  
10.7.6 AVPMH - VLAN Priority Map......................................................................................................... 60  
10.7.7 TOSPML - TOS Priority Map......................................................................................................... 60  
10.7.8 TOSPMM - TOS Priority Map ........................................................................................................ 61  
10.7.9 TOSPMH - TOS Priority Map ........................................................................................................ 61  
10.7.10 AVDM - VLAN Discard Map ........................................................................................................ 61  
10.7.11 TOSDML - TOS Discard Map...................................................................................................... 62  
10.7.12 BMRC - Broadcast/Multicast Rate Control .................................................................................. 62  
10.7.13 UCC - Unicast Congestion Control.............................................................................................. 63  
10.7.14 MCC - Multicast Congestion Control ........................................................................................... 63  
10.7.15 PRG - Port Reservation for Giga ports........................................................................................ 64  
10.7.16 SFCB - Share FCB Size.............................................................................................................. 64  
10.7.17 C2RS - Class 2 Reserved Size ................................................................................................... 65  
10.7.18 C3RS - Class 3 Reserved Size ................................................................................................... 65  
10.7.19 C4RS - Class 4 Reserved Size ................................................................................................... 65  
10.7.20 C5RS - Class 5 Reserved Size ................................................................................................... 65  
10.7.21 C6RS - Class 6 Reserved Size ................................................................................................... 66  
10.7.22 C7RS - Class 7 Reserved Size ................................................................................................... 66  
10.7.23 QOSC00 - BYTE_C2_G0 ............................................................................................................ 66  
10.7.24 QOSC01 - BYTE_C3_G0 ............................................................................................................ 66  
10.7.25 QOSC02 - BYTE_C4_G0 ............................................................................................................ 67  
10.7.26 QOSC03 - BYTE_C5_G0 ............................................................................................................ 67  
10.7.27 QOSC04 - BYTE_C6_G0 ............................................................................................................ 67  
10.7.28 QOSC05 - BYTE_C7_G0 ............................................................................................................ 67  
10.7.29 QOSC06 - BYTE_C2_G1 ............................................................................................................ 67  
10.7.30 QOSC07 - BYTE_C3_G1 ........................................................................................................... 68  
10.7.31 QOSC08 - BYTE_C4_G1 ........................................................................................................... 68  
10.7.32 QOSC09 - BYTE_C5_G1 ........................................................................................................... 68  
10.7.33 QOSC0A - BYTE_C6_G1........................................................................................................... 68  
10.7.34 QOSC0B - BYTE_C7_G1........................................................................................................... 68  
10.7.35 QOSC0C - BYTE_C2_G2 .......................................................................................................... 69  
10.7.36 QOSC0D - BYTE_C3_G2 .......................................................................................................... 69  
10.7.37 QOSC0E - BYTE_C4_G2........................................................................................................... 69  
10.7.38 QOSC0F - BYTE_C5_G2........................................................................................................... 69  
10.7.39 QOSC10 - BYTE_C6_G2 ............................................................................................................ 69  
10.7.40 QOSC11 - BYTE_C7_G2 ............................................................................................................ 70  
10.7.41 QOSC12 - BYTE_C2_G3 ........................................................................................................... 70  
10.7.42 QOSC13 - BYTE_C3_G3 ............................................................................................................ 70  
10.7.43 QOSC14 - BYTE_C4_G3 ............................................................................................................ 70  
10.7.44 QOSC15 - BYTE_C5_G3 ............................................................................................................ 70  
10.7.45 QOSC16 - BYTE_C6_G3 ........................................................................................................... 70  
10.7.46 QOSC17 - BYTE_C7_G3 ............................................................................................................ 71  
10.7.47 QOSC18 - BYTE_C2_G4 ........................................................................................................... 71  
10.7.48 QOSC019 - BYTE_C3_G4 .......................................................................................................... 71  
SEMICMF.019  
vi  
Data Sheet  
MVTX2801AG  
Table of Contents  
10.7.49 QOSC1A - BYTE_C4_G4............................................................................................................71  
10.7.50 QOSC1B - BYTE_C5_G4............................................................................................................71  
10.7.51 QOSC1C - BYTE_C6_G4............................................................................................................71  
10.7.52 QOSC1D- BYTE_C7_G4.............................................................................................................72  
10.7.53 QOSC1E- BYTE_C2_G5.............................................................................................................72  
10.7.54 QOSC1F - BYTE_C3_G5 ............................................................................................................72  
10.7.55 QOSC20 - BYTE_C4_G5 ...........................................................................................................72  
10.7.56 QOSC21 - BYTE_C5_G5 ............................................................................................................72  
10.7.57 QOSC22 - BYTE_C6_G5 ............................................................................................................72  
10.7.58 QOSC23 - BYTE_C7_G5 ............................................................................................................72  
10.7.59 QOSC24 - BYTE_C2_G6 ............................................................................................................73  
10.7.60 QOSC25 - BYTE_C3_G6 ............................................................................................................73  
10.7.61 QOSC26 - BYTE_C4_G6 ............................................................................................................73  
10.7.62 QOSC27 - BYTE_C5_G6 ............................................................................................................73  
10.7.63 QOSC28 - BYTE_C6_G6 ............................................................................................................73  
10.7.64 QOSC29 - BYTE_C7_G6 ............................................................................................................73  
10.7.65 QOSC2A - BYTE_C2_G7............................................................................................................73  
10.7.66 QOSC2B - BYTE_C3_G7............................................................................................................73  
10.7.67 QOSC2C - BYTE_C4_G7...........................................................................................................74  
10.7.68 QOSC2D - BYTE_C5_G7............................................................................................................74  
10.7.69 QOSC2E - BYTE_C6_G7............................................................................................................74  
10.7.70 QOSC2F - BYTE_C7_G7 ............................................................................................................74  
10.7.71 QOSC30 - BYTE_C01 .................................................................................................................74  
10.7.72 QOSC31 - BYTE_C02 .................................................................................................................74  
10.7.73 QOSC32 - BYTE_C03 .................................................................................................................75  
10.7.74 QOSC33 - CREDIT_C0_G0 ........................................................................................................75  
10.7.75 QOSC34 - CREDIT_C1_G0 .......................................................................................................75  
10.7.76 QOSC35 - CREDIT_C2_G0 ........................................................................................................76  
10.7.77 QOSC36 - CREDIT_C3_G0 .......................................................................................................76  
10.7.78 QOSC37 - CREDIT_C4_G0 ........................................................................................................76  
10.7.79 QOSC38 - CREDIT_C5_G0 ........................................................................................................76  
10.7.80 QOSC39- CREDIT_C6_G0 .........................................................................................................76  
10.7.81 QOSC3A- CREDIT_C7_G0.........................................................................................................77  
10.7.82 QOSC3B - CREDIT_C0_G1.......................................................................................................77  
10.7.83 QOSC3C - CREDIT_C1_G1.......................................................................................................77  
10.7.84 QOSC3D - CREDIT_C2_G1........................................................................................................78  
10.7.85 QOSC3E - CREDIT_C3_G1........................................................................................................78  
10.7.86 QOSC3F - CREDIT_C4_G1 ........................................................................................................78  
10.7.87 QOSC40 - CREDIT_C5_G1 ........................................................................................................78  
10.7.88 QOSC41- CREDIT_C6_G1 .........................................................................................................78  
10.7.89 QOSC42- CREDIT_C7_G1 .........................................................................................................79  
10.7.90 QOSC43 - CREDIT_C0_G2 .......................................................................................................79  
10.7.91 QOSC44 - CREDIT_C1_G2 .......................................................................................................79  
10.7.92 QOSC45 - CREDIT_C2_G2 ........................................................................................................80  
10.7.93 QOSC46 - CREDIT_C3_G2 .......................................................................................................80  
10.7.94 QOSC47 - CREDIT_C4_G2 ........................................................................................................80  
10.7.95 QOSC48 - CREDIT_C5_G2 .......................................................................................................80  
10.7.96 QOSC49- CREDIT_C6_G2 .........................................................................................................80  
10.7.97 QOSC4A- CREDIT_C7_G2.........................................................................................................81  
10.7.98 QOSC4B - CREDIT_C0_G3.......................................................................................................81  
10.7.99 QOSC4 - CREDIT_C1_G3 ..........................................................................................................81  
10.7.100 QOSC4D - CREDIT_C2_G3.....................................................................................................82  
10.7.101 QOSC4E - CREDIT_C3_G3 ......................................................................................................82  
10.7.102 QOSC4F - CREDIT_C4_G3 ......................................................................................................82  
10.7.103 QOSC50 - CREDIT_C5_G3 ......................................................................................................82  
SEMICMF.019  
vii  
MVTX2801AG  
Data Sheet  
Table of Contents  
10.7.104 QOSC51- CREDIT_C6_G3 ....................................................................................................... 82  
10.7.105 QOSC52- CREDIT_C7_G3 ....................................................................................................... 83  
10.7.106 QOSC53 - CREDIT_C0_G4 ..................................................................................................... 83  
10.7.107 QOSC54 - CREDIT_C1_G4 ...................................................................................................... 83  
10.7.108 QOSC55 - CREDIT_C2_G4 ...................................................................................................... 83  
10.7.109 QOSC56 - CREDIT_C3_G4 ...................................................................................................... 83  
10.7.110 QOSC57 - CREDIT_C4_G4 ...................................................................................................... 83  
10.7.111 QOSC58 - CREDIT_C5_G4 ...................................................................................................... 83  
10.7.112 QOSC59- CREDIT_C6_G4 ....................................................................................................... 83  
10.7.113 QOSC5A- CREDIT_C7_G4....................................................................................................... 84  
10.7.114 QOSC5B - CREDIT_C0_G5..................................................................................................... 84  
10.7.115 QOSC5C - CREDIT_C1_G5 ..................................................................................................... 84  
10.7.116 QOSC5D - CREDIT_C2_G5 ..................................................................................................... 84  
10.7.117 QOSC5E - CREDIT_C3_G5...................................................................................................... 84  
10.7.118 QOSC5F - CREDIT_C4_G5..................................................................................................... 84  
10.7.119 QOSC60 - CREDIT_C5_G5 ...................................................................................................... 84  
10.7.120 QOSC61- CREDIT_C6_G5 ....................................................................................................... 84  
10.7.121 QOSC62- CREDIT_C7_G5 ...................................................................................................... 85  
10.7.122 QOSC63 - CREDIT_C0_G6 ..................................................................................................... 85  
10.7.123 QOSC64 - CREDIT_C1_G6 ...................................................................................................... 85  
10.7.124 QOSC65 - CREDIT_C2_G6 ...................................................................................................... 85  
10.7.125 QOSC66 - CREDIT_C3_G6 ...................................................................................................... 85  
10.7.126 QOSC67 - CREDIT_C4_G6 ...................................................................................................... 85  
10.7.127 QOSC68 - CREDIT_C5_G6 ...................................................................................................... 85  
10.7.128 QOSC69- CREDIT_C6_G6 ....................................................................................................... 85  
10.7.129 QOSC6A- CREDIT_C7_G6....................................................................................................... 86  
10.7.130 QOSC6B - CREDIT_C0_G7..................................................................................................... 86  
10.7.131 QOSC6C - CREDIT_C1_G7 ..................................................................................................... 86  
10.7.132 QOSC6D - CREDIT_C2_G7 ..................................................................................................... 86  
10.7.133 QOSC6E - CREDIT_C3_G7...................................................................................................... 86  
10.7.134 QOSC6F - CREDIT_C4_G7...................................................................................................... 86  
10.7.135 QOSC70 - CREDIT_C5_G7 ...................................................................................................... 86  
10.7.136 QOSC71- CREDIT_C6_G7 ....................................................................................................... 86  
10.7.137 QOSC72- CREDIT_C7_G7 ....................................................................................................... 87  
10.7.138 QOSC73 - TOKEN_RATE_G0 ................................................................................................. 87  
10.7.139 QOSC74 - TOKEN_LIMIT_G0 .................................................................................................. 87  
10.7.140 QOSC75 - TOKEN_RATE_G1 ................................................................................................. 87  
10.7.141 QOSC76 - TOKEN_LIMIT_G1 .................................................................................................. 87  
10.7.142 QOSC77 - TOKEN_RATE_G2.................................................................................................. 88  
10.7.143 QOSC78 - TOKEN_LIMIT_G2 .................................................................................................. 88  
10.7.144 QOSC79 - TOKEN_RATE_G3 ................................................................................................. 88  
10.7.145 QOSC7A - TOKEN_LIMIT_G3.................................................................................................. 88  
10.7.146 QOSC7B - TOKEN_RATE_G4................................................................................................. 88  
10.7.147 QOSC7C - TOKEN_LIMIT_G4.................................................................................................. 89  
10.7.148 QOSC7D - TOKEN_RATE_G5 ................................................................................................ 89  
10.7.149 QOSC7E - TOKEN_LIMIT_G5.................................................................................................. 89  
10.7.150 QOSC7F - TOKEN_RATE_G6................................................................................................. 89  
10.7.151 QOSC80 - TOKEN_LIMIT_G6 .................................................................................................. 89  
10.7.152 QOSC81 - TOKEN_RATE_G7 ................................................................................................. 89  
10.7.153 QOSC82 - TOKEN_LIMIT_G7 .................................................................................................. 90  
10.7.154 RDRC0 - WRED Rate Control 0................................................................................................ 90  
10.7.155 RDRC1 - WRED Rate Control 1............................................................................................... 90  
10.8 Group 6 Address - MISC Group.............................................................................................................. 91  
10.8.1 MII_OP0 - MII Register Option 0 .................................................................................................. 91  
10.8.2 MII_OP1 - MII Register Option 1 .................................................................................................. 91  
SEMICMF.019  
viii  
Data Sheet  
MVTX2801AG  
Table of Contents  
10.8.3 FEN - Feature Register.................................................................................................................91  
10.8.4 MIIC0 - MII Command Register 0 ..................................................................................................92  
10.8.5 MIIC1 - MII Command Register 1 .................................................................................................92  
10.8.6 MIIC2 - MII Command Register 2 .................................................................................................92  
10.8.7 MIIC3 - MII Command Register 3 .................................................................................................93  
10.8.8 MIID0 - MII Data Register 0 ..........................................................................................................93  
10.8.9 MIID1 - MII Data Register 0 ...........................................................................................................93  
10.8.10 LED Mode - LED Control ............................................................................................................94  
10.8.11 DEVICE Mode.............................................................................................................................95  
10.8.12 CHECKSUM - EEPROM Checksum...........................................................................................96  
10.8.13 LED User ....................................................................................................................................96  
10.8.14 LEDUSER0.................................................................................................................................96  
10.8.15 LEDUSER1.................................................................................................................................96  
10.8.16 LEDUSER2/LEDSIG2.................................................................................................................97  
10.8.17 LEDUSER3/LEDSIG3.................................................................................................................97  
10.8.18 LEDUSER4/LEDSIG4..................................................................................................................98  
10.8.19 LEDUSER5/LEDSIG5.................................................................................................................99  
10.8.20 LEDUSER6/LEDSIG6.................................................................................................................99  
10.8.21 LEDUSER7/LEDSIG1_0...........................................................................................................100  
10.8.22 MIINP0 - MII Next Page Data Register 0..................................................................................101  
10.8.23 MIINP1 - MII Next Page Data Register 1...................................................................................101  
10.9 Group F Address - CPU Access Group.................................................................................................101  
10.9.1 GCR-Global Control Register ......................................................................................................101  
10.9.2 DCR-Device Status and Signature Register................................................................................101  
10.9.3 DCR01-Giga port status...............................................................................................................102  
10.9.4 DCR23-Giga port status...............................................................................................................103  
10.9.5 DCR45-Giga port status (useless in MVTX2801) ........................................................................103  
10.9.6 DCR67-Giga port status (useless in MVTX2801) ........................................................................103  
10.9.7 DPST - Device Port Status Register............................................................................................104  
10.9.8 DTST - Data Read Back Register................................................................................................104  
11.0 BGA and Ball Signal Description.............................................................................. 105  
11.1 BGA Views ...........................................................................................................................................105  
11.2 Power and Ground Distribution ............................................................................................................106  
11.3 Ball- Signal Descriptions.......................................................................................................................107  
11.4 Ball Signal Name..................................................................................................................................115  
11.5 AC/DC Timing.......................................................................................................................................121  
11.5.1 Absolute Maximum Ratings ........................................................................................................121  
11.5.2 DC Electrical Characteristics ......................................................................................................121  
11.5.3 Recommended Operation Conditions.........................................................................................121  
11.6 Local Frame Buffer ZBT SRAM Memory Interface...............................................................................122  
11.6.1 Local ZBT SRAM Memory Interface A........................................................................................122  
11.7 Local Switch Database SBRAM Memory Interface ..............................................................................123  
11.7.1 Local SBRAM Memory Interface.................................................................................................123  
11.8 AC Characteristics................................................................................................................................124  
11.8.1 Media Independent Interface ......................................................................................................124  
11.8.2 Gigabit Media Independent Interface...........................................................................................125  
11.8.3 PCS Interface..............................................................................................................................126  
11.8.4 LED Interface..............................................................................................................................127  
11.8.5 MDIO Input Setup and Hold Timing............................................................................................128  
11.8.6 I2C Input Setup Timing.................................................................................................................128  
11.8.7 Serial Interface Setup Timing......................................................................................................129  
12.0 Mechanical Data ......................................................................................................... 130  
12.1 Packaging Information..........................................................................................................................130  
SEMICMF.019  
ix  
MVTX2801AG  
Data Sheet  
Table of Contents  
SEMICMF.019  
x
Data Sheet  
MVTX2801AG  
List of Figures  
Figure 1 - Chip Block Diagram ....................................................................................................i  
Figure 2 - Data Transfer Format for I2C Interface .................................................................... 16  
Figure 3 - Write Command...................................................................................................... 17  
Figure 4 - Read Command...................................................................................................... 18  
Figure 5 - SRAM Interface Block Diagram (DMAs for Gigabit Ports)...................................... 19  
Figure 6 - Buffer Partition Scheme Used in the MVTX2801AG............................................... 28  
Figure 7 - Timing diagram for serial mode in LED interface.................................................... 32  
Figure 8 - Local Memory Interface - Input setup and hold timing.......................................... 122  
Figure 9 - Local Memory Interface - Output valid delay timing.............................................. 122  
Figure 10 - Local Memory Interface - Input setup and hold timing........................................ 123  
Figure 11 - Local Memory Interface - Output valid delay timing............................................ 123  
Figure 12 - AC Characteristics - Media Independent Interface ............................................. 124  
Figure 13 - AC Characteristics - Media Independent Interface ............................................. 124  
Figure 14 - AC Characteristics- GMII .................................................................................... 125  
Figure 15 - AC Characteristics - Gigabit Media Independent Interface................................. 125  
Figure 16 - AC Characteristics - PCS Interface..................................................................... 126  
Figure 17 - AC Characteristics - PCS Interface..................................................................... 126  
Figure 18 - AC Characteristics - LED Interface..................................................................... 127  
Figure 19 - MDIO Input Setup and Hold Timing.................................................................... 128  
Figure 20 - MDIO Output Delay Timing................................................................................. 128  
Figure 21 - I2C Input Setup Timing ........................................................................................ 128  
Figure 22 - I2C Output Delay Timing...................................................................................... 129  
Figure 23 - Serial Interface Setup Timing.............................................................................. 129  
Figure 24 - Serial Interface Output Delay Timing.................................................................. 129  
SEMICMF.019  
xi  
MVTX2801AG  
Data Sheet  
SEMICMF.019  
xii  
Data Sheet  
MVTX2801AG  
List of Tables  
Table 1 - Two-dimensional World Traffic.................................................................................24  
Table 2 - Four QoS configurations per port.............................................................................25  
Table 3 - WRED Dropping Scheme ........................................................................................27  
Table 4 - Mapping between MVTX2801AG and IETF Diffserv Classes for Gigabit Ports.......30  
Table 5 - MVTX2801AG Features Enabling IETF Diffserv Standards ....................................30  
Table 6 - MVTX2801AG Register Description.........................................................................35  
Table 7 - Ball- Signal Descriptions ........................................................................................107  
Table 8 - Ball Signal Name....................................................................................................115  
Table 9 - Recommended Operation Conditions....................................................................121  
Table 10 - AC Characteristics - Local frame buffer ZBT-SRAM Memory Interface A ...........122  
Table 11 - AC Characteristics - Local Switch Database SBRAM Memory Interface.............123  
Table 12 - AC Characteristics - Media Independent Interface ..............................................124  
Table 13 - AC Characteristics - Gigabit Media Independent Interface..................................126  
Table 14 - AC Characteristics - PCS Interface......................................................................127  
Table 15 - AC Characteristics - LED Interface ......................................................................127  
Table 16 - MDIO Timing........................................................................................................128  
Table 17 - I2C Timing.............................................................................................................129  
Table 18 - Serial Interface Timing .........................................................................................130  
SEMICMF.019  
xiii  
MVTX2801AG  
Data Sheet  
SEMICMF.019  
xiv  
Data Sheet  
MVTX2801AG  
1.0  
1.1  
Block Functionality  
Frame Data Buffer (FDB) Interfaces  
The FDB interface supports pipelined ZBT-SRAM memory at 133 MHz. To ensure a non-blocking switch, one  
memory domain is required. Each domain has a 64-bit wide memory bus. At 133 MHz, the aggregate memory  
bandwidth is 8.5 Gbps, which is enough to support 4 Gigabit ports at full wire speed switching. A patent pending  
scheme is used to access the FDB memory. Each slot has one tick to read or write 8 bytes.  
1.2  
Switch Database (SDB) Interface  
A pipelined synchronous burst SRAM (SBRAM) memory is used to store the switch database information including  
MAC Table. Search Engine accesses the switch database via SDB interface. The SDB bus has 32-bit wide bus at  
133MHz.  
1.3  
GMII/PCS MAC Module (GMAC)  
The GMII/PCS Media Access Control (MAC) module provides the necessary buffers and control interface between  
the Frame Engine (FE) and the external physical device (PHY). The MVTX2801AG has two interfaces, GMII or  
PCS. The MAC of the MVTX2801AG meets the IEEE 802.3z specification and supports the MII interface. It is able  
to operate 10M/100M/1G in Full Duplex mode with a back pressure/flow control mechanism. It has the options to  
insert Source Address/CRC/VLAN ID to each frame. The GMII/PCS Module also supports hot plug detection.  
1.4  
Frame Engine  
The main function of the frame engine is to forward a frame to its proper destination port or ports. When a frame  
arrives, the frame engine parses the frame header (64 bytes) and formulates a switching request, which is sent to  
the search engine to resolve the destination port. The arriving frame is moved to the FDB. After receiving a switch  
response from the search engine, the frame engine performs transmission scheduling based on the frame's priority.  
The frame engine forwards the frame to the MAC module when the frame is ready to be sent.  
1.5  
Search Engine  
The Search Engine resolves the frame's destination port or ports according to the destination MAC address (L2) by  
searching the database. It also performs MAC learning, priority assignment, and trunking functions.  
1.6  
LED Interface  
The LED interface can be operated in a serial mode or a parallel mode. In the serial mode, the LED interface uses  
3 pins for carrying 4 port status signals. In the parallel mode, the interface can drive LEDs by 8 status pins. The  
LED port is shared with bootstrap pins. In order to avoid error when reading the bootstraps, a buffer must be used  
to isolate the LED circuitry from the bootstrap pins during bootstrap cycle (the bootstrap pins are sampled at the  
rising edge of the Reset).  
1.7  
Internal Memory  
Several internal tables are required and are described as follows:  
Frame Control Block (FCB) - Each FCB entry contains the control information of the associated frame  
stored in the FDB, e.g. frame size, read/write pointer, transmission priority, etc.  
MCT Link Table - The MCT Link Table stores the linked list of MCT entries that have collisions in the  
external MAC Table.  
SEMICMF.019  
15  
MVTX2801AG  
Data Sheet  
2.0  
System Configuration  
The MVTX2801AG can be configured by EEPROM (24C02 or compatible) via an I2C interface at boot time, or via  
a synchronous serial interface during operation.  
2.1  
I2C Interface  
The I2C interface uses two bus lines, a serial data line (SDA) and a serial clock line (SCL). The SCL line carries the  
control signals that facilitate the transfer of information from EEPROM to the switch. Data transfer is 8-bit serial and  
bi-directional, at 50 Kbps. Data transfer is performed between master and slave IC using a request /  
acknowledgment style of protocol. The master IC generates the timing signals and terminates data transfer. The  
figure below shows the data transfer format.  
SLAVE  
ADDRESS  
DATA 1  
(8 bits)  
START  
R/W ACK  
ACK DATA 2 ACK DATA M ACK STOP  
Figure 2 - Data Transfer Format for I2C Interface  
2.1.1  
Start Condition  
Generated by the master, the MVTX2801AG. The bus is considered to be busy after the Start condition is generated.  
The Start condition occurs if while the SCL line is High, there is a High-to-Low transition of the SDA line.  
Other than in the Start condition (and Stop condition), the data on the SDA line must be stable during the High period  
of SCL. The High or Low state of SDA can only change when SCL is Low. In addition, when the I2C bus is free, both  
lines are High.  
2.1.2  
Address  
The first byte after the Start condition determines which slave the master will select. The slave in our case is the  
EEPROM. The first seven bits of the first data byte make up the slave address.  
2.1.3  
Data Direction  
The eighth bit in the first byte after the Start condition determines the direction (R/W) of the message. A master  
transmitter sets this bit to W; a master receiver sets this bit to R.  
2.1.4  
Acknowledgment  
Like all clock pulses, the master generates the acknowledgment-related clock pulse. However, the transmitter  
releases the SDA line (High) during the acknowledgment clock pulse. Furthermore, the receiver must pull down the  
SDA line during the acknowledge pulse so that it remains stable Low during the High period of this clock pulse. An  
acknowledgment pulse follows every byte transfer.  
If a slave receiver does not acknowledge after any byte, then the master generates a Stop condition and aborts the  
transfer.  
If a master receiver does not acknowledge after any byte, then the slave transmitter must release the SDA line to  
let the master generate the Stop condition.  
2.1.5  
Data  
After the first byte containing the address, all bytes that follow are data bytes. Each byte must be followed by an  
acknowledge bit. Data is transferred MSB-first.  
SEMICMF.019  
16  
Data Sheet  
MVTX2801AG  
2.1.6  
Stop Condition  
Generated by the master. The bus is considered to be free after the Stop condition is generated. The Stop condition  
occurs if while the SCL line is High, there is a Low-to-High transition of the SDA line.  
The I2C interface serves the function of configuring the MVTX2801AG at boot time. The master is the  
MVTX2801AG, and the slave is the EEPROM memory.  
2.2  
Synchronous Serial Interface  
The synchronous serial interface serves the function of configuring the MVTX2801AG not at boot time but via a PC.  
The PC serves as master and the MVTX2801AG serves as slave. The protocol for the synchronous serial interface  
is nearly identical to the I2C protocol. The main difference is that there is no acknowledgment bit after each byte of  
data transferred.  
The unmanaged MVTX2801AG uses a synchronous serial interface to program the internal registers. To reduce  
the number of signals required, the register address, command and data are shifted in serially through the PS_DO  
pin. PS_STROBE- pin is used as the shift clock. PS_DI- pin is used as data return path.  
Each command consists of four parts.  
START pulse  
Register Address  
Read or Write command  
Data to be written or read back  
Any command can be aborted in the middle by sending an ABORT pulse to the MVTX2801AG.  
A START command is detected when PS_DO is sampled high at PS_STROBE - leading edge, and PS_DO is  
sampled low when STROBE- falls.  
An ABORT command is detected when PS_DO is sampled low at PS_STROBE - leading edge, and PS_DO is  
sampled high when PS_STROBE - falls.  
2.2.1  
Write Command  
PS-STROBE-  
2 Extra clocks after last  
transfer  
A11  
PS_DO  
A2 ...  
D0 D1 D2 D3 D4 D5 D6 D7  
A9 A10  
A0 A1  
START  
W
ADDRESS  
COMMAND DATA  
Figure 3 - Write Command  
SEMICMF.019  
17  
MVTX2801AG  
Data Sheet  
2.2.2  
Read Command  
PS_STROBE-  
PS_DO  
R
A0 A1 A2 ...  
A9 A10 A11  
START  
ADDRESS  
COMMAND  
D0 D1  
DATA  
D7  
D2 D3 D4 D5 D6  
PS_DI  
Figure 4 - Read Command  
All registers in the MVTX2801AG can be modified through this synchronous serial interface.  
3.0  
3.1  
Data Forwarding Protocol  
Unicast Data Frame Forwarding  
When a frame arrives, it is assigned a handle in memory by the Frame Control Buffer Manager (FCB Manager). An  
FCB handle will always be available, because of advance buffer reservations.  
The memory (ZBT-SRAM) interface is a 64-bit bus, connected to a ZBT-SRAM domain. The Receive DMA (RxDMA)  
is responsible for multiplexing the data and the address. On a port's “turn,” the RxDMA will move 8 bytes (or up to  
the end-of-frame) from the port's associated RxFIFO into memory (Frame Data Buffer, or FDB).  
Once an entire frame has been moved to the FDB, and a good end-of-frame (EOF) has been received, the Rx  
interface makes a switch request. The RxDMA arbitrates among multiple switch requests.  
The switch request consists of the first 64 bytes of a frame, containing among other things, the source and  
destination MAC addresses of the frame. The search engine places a switch response in the switch response queue  
of the frame engine when done. Among other information, the search engine will have resolved the destination port  
of the frame and will have determined that the frame is unicast.  
After processing the switch response, the Transmission Queue Manager (TxQ manager) of the frame engine is  
responsible for notifying the destination port that it has a frame to forward to it. But first, the TxQ manager has to  
decide whether or not to drop the frame, based on global FDB reservations and usage, as well as TxQ occupancy  
at the destination. If the frame is not dropped, then the TxQ manager links the frame's FCB to the correct  
per-port-per-class TxQ. Unicast TxQ's are linked lists of transmission jobs, represented by their associated frames'  
FCB's. There is one linked list for each transmission class for each port. There are 8 classes for each of the 4 Gigabit  
ports - a total of 32 unicast queues.  
The TxQ manager is responsible for scheduling transmission among the queues representing different classes for  
a port. When the port control module determines that there is room in the MAC Transmission FIFO (TxFIFO) for  
another frame, it requests the handle of a new frame from the TxQ manager. The TxQ manager chooses among the  
head-of-line (HOL) frames from the per-class queues for that port, using a Zarlink Semiconductor scheduling  
algorithm.  
SEMICMF.019  
18  
Data Sheet  
MVTX2801AG  
As at the transmit end, each of the 4 ports has time slots devoted solely to reading data from memory at the address  
calculated by port control. The Transmission DMA (TxDMA) is responsible for multiplexing the data and the  
address. On a port's turn, the TxDMA will move 8 bytes (or up to the EOF) from memory into the port's associated  
TxFIFO. After reading the EOF, the port control requests a FCB release for that frame. The TxDMA arbitrates  
among multiple buffer release requests.  
The frame is transmitted from the TxFIFO to the line.  
3.2  
Multicast Data Frame Forwarding  
After receiving the switch response, the TxQ manager has to make the dropping decision. A global decision to drop  
can be made, based on global FDB utilization and reservations. If so, then the FCB is released and the frame is  
dropped. In addition, a selective decision to drop can be made, based on the TxQ occupancy at some subset of the  
multicast packet's destinations. If so, then the frame is dropped at some destinations but not others, and the FCB  
is not released. If the frame is not dropped at a particular destination port, then the TxQ manager formats an entry  
in the multicast queue for that port and class. Multicast queues are physical queues (unlike the linked lists for  
unicast frames). There are 4 multicast queues for each of the 4 Gigabit ports.  
During scheduling, the TxQ manager treats the unicast queue and the multicast queue of the same class as one  
logical queue.  
The port control requests a FCB release only after the EOF for the multicast frame has been read by all ports to  
which the frame is destined.  
4.0  
4.1  
Memory Interface  
Overview  
The figure below illustrates the first part of the ZBT-SRAM interface for the MVTX2801AG. As shown, a 64 bit bus  
ZBT-SRAM bank A is used for Tx/RxDMA access. Because the clock frequency is 133 MHz, the total memory  
bandwidth is 64-bits x 133 MHz = 8.5 Gbps, for frame data buffer (FDB) access.  
ZBT-SRAM Bank A  
TX DMA  
0-1  
TX DMA  
2-3  
RX DMA  
0-1  
RX DMA  
2-3  
Figure 5 - SRAM Interface Block Diagram (DMAs for Gigabit Ports)  
SEMICMF.019  
19  
MVTX2801AG  
Data Sheet  
4.2  
Detailed Memory Information  
Because the memory bus is 64 bits wide, frames are broken into 8-byte granules, written to and read from each  
memory access. In the worst case, a 1-byte-long EOF granule gets written to memory Bank. This means that a  
7-byte segment of memory bus is idle. The scenario results in a maximum 7 bytes of waste per frame, which is  
always acceptable because the interfame gap is 20 bytes.  
5.0  
5.1  
Search Engine  
Search Engine Overview  
The MVTX2801AG search engine is optimized for high throughput searching, with enhanced features to support:  
Up to 64K MAC addresses  
4 groups of port trunking  
Traffic classification into 8 transmission priorities, and 2 drop precedence levels  
5.2  
Basic Flow  
Shortly after a frame enters the MVTX2801AG and is written to the Frame Data Buffer (FDB), the frame engine  
generates a Switch Request, which is sent to the search engine. The switch request consists of the first 64 bytes of  
the frame, which contain all the necessary information for the search engine to perform its task. When the search  
engine is done, it writes to the Switch Response Queue, and the frame engine uses the information provided in that  
queue for scheduling and forwarding.  
In performing its task, the search engine extracts and compresses the useful information from the 64-byte switch  
request. Among the information extracted are the source and destination MAC addresses, the transmission and  
discard priorities, whether the frame is unicast or multicast. Requests are sent to the external SRAM Switch  
Database to locate the associated entries in the external MCT table.  
When all the information has been collected from external SRAM, the search engine has to compare the MAC  
address on the current entry with the MAC address for which it is searching. If it is not a match, the process is  
repeated on the internal MCT Table. All MCT entries other than the first of each linked list are maintained internal  
to the chip. If the desired MAC address is still not found, then the result is either learning (source MAC address  
unknown) or flooding (destination MAC address unknown).  
If the destination MAC address belongs to a port trunk, then the trunk number is retrieved instead of the port number.  
But on which port of the trunk will the frame be transmitted? This is easily computed using a hash of the source and  
destination MAC addresses.  
When all the information is compiled, the switch response is generated, as stated earlier.  
SEMICMF.019  
20  
Data Sheet  
MVTX2801AG  
5.3  
Search, Learning, and Aging  
5.3.1  
MAC Search  
The search block performs source MAC address and destination MAC address searching. As we indicated earlier,  
if a match is not found, then the next entry in the linked list must be examined, and so on until a match is found or  
the end of the list is reached.  
In port based VLAN mode, a bitmap is used to determine whether the frame should be forwarded to the outgoing  
port. The bitmap is not dynamic. Ports cannot enter and exit groups dynamically.  
The MAC search block is also responsible for updating the source MAC address timestamp, used for aging.  
5.3.2  
Learning  
The learning module learns new MAC addresses and performs port change operations on the MCT database. The  
goal of learning is to update this database as the networking environment changes over time. Learning and port  
change will be performed based on memory slot availability only.  
5.3.3  
Aging  
Aging time is controlled by register 400h and 401h.  
The aging module scans and ages MCT entries based on a programmable “age out” time interval. As we indicated  
earlier, the search module updates the source MAC address and VLAN port association timestamps for each frame  
it processes. When an entry is ready to be aged, the entry is removed from the table.  
5.3.4  
Data Structure  
The MCT data structure is used for searching for MAC addresses. The structure is maintained by hardware in the  
search engine. The database is essentially a hash table, with collisions resolved by chaining. The database is  
partially external, and partially internal, as described earlier: the first MCT entry of each linked list is always located  
in the external SRAM, and the subsequent MCTs are located internally.  
SEMICMF.019  
21  
MVTX2801AG  
Data Sheet  
6.0  
6.1  
Frame Engine  
Data Forwarding Summary  
Enters the device at the RxMAC, the RxDMA will move the data from the MAC RxFIFO to the FDB. Data is  
moved in 8-byte granules in conjunction with the scheme for the SRAM interface.  
A switch request is sent to the Search Engine. The Search Engine processes the switch request.  
A switch response is sent back to the Frame Engine and indicates whether the frame is unicast or multicast,  
and its destination port or ports.  
A Transmission Scheduling Request is sent in the form of a signal notifying the TxQ manager. Upon  
receiving a Transmission Scheduling Request, the device will format an entry in the appropriate  
Transmission Scheduling Queue (TxSch Q) or Queues. There are 8 TxSch Queues for each Gigabit port,  
one for each priority. Creation of a queue entry either involves linking a new job to the appropriate linked list  
if unicast, or adding an entry to a physical queue if multicast.  
When the port is ready to accept the next frame, the TxQ manager will get the head-of-line (HOL) entry of  
one of the TxSch Qs, according to the transmission scheduling algorithm (so as to ensure per-class quality  
of service). The unicast linked list and the multicast queue for the same port-class pair are treated as one  
logical queue.  
The TxDMA will pull frame data from the memory and forward it granule-by-granule to the MAC TxFIFO of  
the destination port.  
6.2  
Frame Engine Details  
This section briefly describes the functions of each of the modules of the MVTX2801AG frame engine.  
6.2.1 FCB Manager  
The FCB manager allocates FCB handles to incoming frames, and releases FCB handles upon frame departure.  
The FCB manager is also responsible for enforcing buffer reservations and limits. The default values can be  
determined by referring to Chapter 8. In addition, the FCB manager is responsible for buffer aging, and for linking  
unicast forwarding jobs to their correct TxSch Q. The buffer aging can be enabled or disabled by the bootstrap pin  
and the aging time is defined in register FCBAT.  
6.2.2  
Rx Interface  
The Rx interface is mainly responsible for communicating with the RxMAC. It keeps track of the start and end of  
frame and frame status (good or bad). Upon receiving an end of frame that is good, the Rx interface makes a switch  
request.  
6.2.3  
RxDMA  
The RxDMA arbitrates among switch requests from each Rx interface. It also buffers the first 64 bytes of each frame  
for use by the search engine when the switch request has been made.  
6.2.4  
TxQ Manager  
First, the TxQ manager checks the per-class queue status and global Reserved resource situation, and using this  
information, makes the frame dropping decision after receiving a switch response. If the decision is not to drop, the  
TxQ manager requests that the FCB manager link the unicast frame's FCB to the correct per-port-per-class TxQ. If  
multicast, the TxQ manager writes to the multicast queue for that port and class. The TxQ manager can also trigger  
source port flow control for the incoming frame's source if that port is flow control enabled. Second, the TxQ manager  
handles transmission scheduling; it schedules transmission among the queues representing different classes for a  
port. Once a frame has been scheduled, the TxQ manager reads the FCB information and writes to the correct port  
control module.  
SEMICMF.019  
22  
Data Sheet  
MVTX2801AG  
6.3  
Port Control  
The port control module calculates the SRAM read address for the frame currently being transmitted. It also writes  
start of frame information and an end of frame flag to the MAC TxFIFO. When transmission is done, the port control  
module requests that the buffer be released.  
6.4  
TxDMA  
The TxDMA multiplexes data and address from port control, and arbitrates among buffer release requests from the  
port control modules.  
SEMICMF.019  
23  
MVTX2801AG  
Data Sheet  
7.0  
7.1  
Quality of Service and Flow Control  
Model  
Quality of service (QoS) is an all-encompassing term for which different people have different interpretations. In this  
chapter, by quality of service assurances, we mean the allocation of chip resources so as to meet the latency and  
bandwidth requirements associated with each traffic class. We do not presuppose anything about the offered traffic  
pattern. If the traffic load is light, then ensuring quality of service is straightforward. But if the traffic load is heavy,  
the MVTX2801AG must intelligently allocate resources so as to assure quality of service for high priority data.  
We assume that the network manager knows his applications, such as voice, file transfer, or web browsing, and their  
relative importance. The manager can then subdivide the applications into classes and set up a service contract with  
each. The contract may consist of bandwidth or latency assurances per class. Sometimes it may even reflect an  
estimate of the traffic mix offered to the switch, though this is not required.  
The table below shows examples of QoS applications with eight transmission priorities, including best effort traffic  
for which we provide no bandwidth or latency assurances.  
Example  
Assured  
Bandwidth  
(user defined)  
Low Drop Subclass  
(If class is oversubscribed,  
these packets are the  
last to be dropped.)  
High Drop Subclass  
(If class is oversubscribed,  
these packets are the  
first to be dropped.)  
Class  
Highest transmission  
priorities, P7  
Latency < 200 ms  
300 Mbps  
200 Mbps  
125 Mbps  
250 Mbps  
80 Mbps  
45 Mbps  
Sample application:  
control information  
Highest transmission  
priorities, P6  
Latency < 200 ms  
Sample applications:  
phone calls;  
circuit emulation  
Sample application:  
training video;  
other multimedia  
Middle transmission  
priorities, P5  
Latency < 400 ms  
Sample application:  
interactive activities  
Sample application:  
non-critical interactive activities  
Middle transmission  
priorities, P4  
Latency < 800 ms  
Sample application:  
web business  
Low transmission  
priorities, P3  
Latency < 1600 ms  
Sample application:  
file backups  
Low transmission  
priorities, P2  
Sample application:  
email  
Sample application:  
web research  
Latency < 3200 ms  
Best effort, P1-P0  
TOTAL  
-
Sample application: casual web browsing  
1 Gbps  
Table 1 - Two-dimensional World Traffic  
It is possible that a class of traffic may attempt to monopolize system resources by sending data at a rate in excess  
of the contractually assured bandwidth for that class. A well-behaved class offers traffic at a rate no greater than the  
agreed-upon rate. By contrast, a misbehaving class offers traffic that exceeds the agreed-upon rate. A misbehaving  
class is formed from an aggregation of misbehaving microflows. To achieve high link utilization, a misbehaving class  
is allowed to use any idle bandwidth. However, the quality of service (QoS) received by well-behaved classes must  
never suffer.  
SEMICMF.019  
24  
Data Sheet  
MVTX2801AG  
As Table 1 illustrates, each traffic class may have its own distinct properties and applications. As shown, classes  
may receive bandwidth assurances or latency bounds. In the example, P7, the highest transmission class, requires  
that all frames be transmitted within 0.2 ms, and receives 30% of the 1 Gbps of bandwidth at that port.  
Best-effort (P1-P0) traffic forms a lower tier of service that only receives bandwidth when none of the other classes  
have any traffic to offer.  
In addition, each transmission class has two subclasses, high-drop and low-drop. Well-behaved users should not  
lose packets. But poorly behaved users, users who send data at too high a rate, will encounter frame loss, and the  
first to be discarded will be high-drop. Of course, if this is insufficient to resolve the congestion, eventually some  
low-drop frames are dropped as well.  
Table 1 shows that different types of applications may be placed in different boxes in the traffic table. For example,  
web search may fit into the category of high-loss, high-latency-tolerant traffic, whereas VoIP fits into the category  
of low-loss, low-latency traffic.  
7.2  
Four QoS Configurations  
There are four basic pieces to QoS scheduling in the MVTX2801AG: strict priority (SP), delay bound, weighted fair  
queuing (WFQ), and best effort (BE). Using these four pieces, there are four different modes of operation, as shown  
in Table 2.  
P7  
P6  
P5  
P4  
P3  
P2  
P1  
BE  
BE  
P0  
Op1 (default) Delay Bound  
Op2  
Op3  
Op4  
SP  
Delay Bound  
WFQ  
SP  
WFQ  
Table 2 - Four QoS configurations per port  
The default configuration is six delay-bounded queues and two best-effort queues. The delay bounds per class are  
0.16 ms for P7 and P6, 0.32 ms for P5, 0.64 ms for P4, 1.28 ms for P3, and 2.56 ms for P2. Best effort traffic is only  
served when there is no delay-bounded traffic to be served. P1 has strict priority over P0.  
We have a second configuration in which there are two strict priority queues, four delay bounded queues, and two  
best effort queues. The delay bounds per class are 0.32 ms for P5, 0.64 ms for P4, 1.28 ms for P3, and 2.56 ms  
for P2. If the user is to choose this configuration, it is important that P7-P6 (SP) traffic be either policed or implicitly  
bounded (e.g. if the incoming SP traffic is very light and predictably patterned). Strict priority traffic, if not  
admission-controlled at a prior stage to the MVTX2801AG, can have an adverse effect on all other classes'  
performance. P7 and P6 are both SP classes, and P7 has strict priority over P6.  
The third configuration contains two strict priority queues and six queues receiving a bandwidth partition via WFQ.  
As in the second configuration, strict priority traffic needs to be carefully controlled.  
In the fourth configuration, all queues are served using a WFQ service discipline  
7.3  
Delay Bound  
In the absence of a sophisticated QoS server and signaling protocol, the MVTX2801AG may not be assured of the  
mix of incoming traffic ahead of time. To cope with this uncertainty, our delay assurance algorithm dynamically  
adjusts its scheduling and dropping criteria, guided by the queue occupancies and the due dates of their  
head-of-line (HOL) frames. As a result, we assure latency bounds for all admitted frames with high confidence, even  
in the presence of system-wide congestion. Our algorithm identifies misbehaving classes and intelligently discards  
SEMICMF.019  
25  
MVTX2801AG  
Data Sheet  
frames at no detriment to well-behaved classes. Our algorithm also differentiates between high-drop and low-drop  
traffic with a weighted random early drop (WRED) approach. Random early dropping prevents congestion by  
randomly dropping a percentage of high-drop frames even before the chip's buffers are completely full, while still  
largely sparing low-drop frames. This allows high-drop frames to be discarded early, as a sacrifice for future low-drop  
frames. Finally, the delay bound algorithm also achieves bandwidth partitioning among classes.  
7.4  
Strict Priority and Best Effort  
When strict priority is part of the scheduling algorithm, if a queue has even one frame to transmit, it goes first. Two  
of our four QoS configurations include strict priority queues. The goal is for strict priority classes to be used for IETF  
expedited forwarding (EF), where performance guarantees are required. As we have indicated, it is important that  
strict priority traffic be either policed or implicitly bounded, so as to keep from harming other traffic classes.  
When best effort is part of the scheduling algorithm, a queue only receives bandwidth when none of the other  
classes have any traffic to offer. Two of our four QoS configurations include best effort queues. The goal is for best  
effort classes to be used for non-essential traffic, because we provide no assurances about best effort performance.  
However, in a typical network setting, much best effort traffic will indeed be transmitted, and with an adequate  
degree of expediency.  
Because we do not provide any delay assurances for best effort traffic, we do not enforce latency by dropping best  
effort traffic. Furthermore, because we assume that strict priority traffic is carefully controlled before entering the  
MVTX2801AG, we do not enforce a fair bandwidth partition by dropping strict priority traffic. To summarize, dropping  
to enforce quality of service (i.e. bandwidth or delay) does not apply to strict priority or best effort queues. We only  
drop frames from best effort and strict priority queues when global buffer resources become scarce.  
7.5  
Weighted Fair Queuing  
In some environments - for example, in an environment in which delay assurances are not required, but precise  
bandwidth partitioning on small time scales is essential (WFQ may be preferable to a delay-bounded scheduling  
discipline). The MVTX2801AG provides the user with a WFQ option with the understanding that delay assurances  
cannot be provided if the incoming traffic pattern is uncontrolled. The user sets eight WFQ “weights” such that all  
weights are whole numbers and sum to 64. This provides per-class bandwidth partitioning with error within 2%.  
In WFQ mode, though we do not assure frame latency, the MVTX2801AG still retains a set of dropping rules that  
helps to prevent congestion and trigger higher level protocol end-to-end flow control.  
As before, when strict priority is combined with WFQ, we do not have special dropping rules for the strict priority  
queues, because the input traffic pattern is assumed to be carefully controlled at a prior stage. However, we do  
indeed drop frames from SP queues for global buffer management purposes. In addition, queues P1 and P0 are  
treated as best effort from a dropping perspective, though they still are assured a percentage of bandwidth from a  
WFQ scheduling perspective. What this means is that these particular queues are only affected by dropping when  
the global buffer count becomes low.  
7.6  
Shaper  
Although traffic shaping is not a primary function of the MVTX2801AG, the chip does implement a shaper for  
expedited forwarding (EF). Our goal in shaping is to control the peak and average rate of traffic exiting the  
MVTX2801AG. Shaping is limited to class P6 (the second highest priority). This means that class P6 will be the class  
used for EF traffic. (By contrast, we assume class P7 will be used for control packets only.) If shaping is enabled for  
P6, then P6 traffic must be scheduled using strict priority. With reference to Table 2, only the middle two QoS  
configurations may be used.  
Peak rate is set using a programmable whole number, no greater than 64 (register QOS-CREDIT_C6_Gn). For  
example, if the setting is 32, then the peak rate for shaped traffic is 32/64 x 1000 Mbps = 500 Mbps. Average rate  
is also a programmable whole number, no greater than 64, and no greater than the peak rate. For example, if the  
setting is 16, then the average rate for shaped traffic is (16/64) x 1000 Mbps = 250 Mbps. As a consequence of the  
SEMICMF.019  
26  
Data Sheet  
MVTX2801AG  
above settings in our example, shaped traffic will exit the MVTX2801AG at a rate always less than 500 Mbps, and  
averaging no greater than 250 Mbps.  
Also, when shaping is enabled, it is possible for a P6 queue to explode in length if fed by a greedy source. The  
reason is that a shaper is by definition not work-conserving; that is, it may hold back from sending a packet even if  
the line is idle. Though we do have global resource management, we do nothing to prevent this situation locally.  
We assume SP traffic is policed at a prior stage to the MVTX2801AG.  
7.7  
WRED Drop Threshold Management Support  
To avoid congestion, the Weighted Random Early Detection (WRED) logic drops packets according to specified  
parameters. The following table summarizes the behavior of the WRED logic.  
P7  
P6  
P5  
P4  
P3  
P2  
High Drop Low Drop  
Level 1  
N > 240  
X%  
Y%  
0%  
|P7| > A |P6| > B |P5| > C |P4| > D |P3| > E |P2| > F KB  
KB KB KB KB KB  
Level 2  
N > 280  
Z%  
Level 3  
N > 320  
100%  
100%  
Table 3 - WRED Dropping Scheme  
In the table, |Px| is the byte count in queue Px. The WRED logic has three drop levels, depending on the value of  
N, which is based on the number of bytes in the priority queues. If delay bound scheduling is used, N equals 16|P7|  
+ 16|P6| + 8|P5| + 4|P4| + 2|P3| + |P2|. If WFQ scheduling is used, N equals |P7| + |P6| + |P5| + |P4| + |P3| + |P2|.  
Each drop level has defined high-drop and low-drop percentages, which indicate the percentage of high-drop and  
low-drop packets that will be dropped at that level. The X, Y, and Z percent parameters can be programmed using  
the registers RDRC0 and RDRC1. Parameters A-F are the byte count thresholds for each priority queue, and are  
also programmable. When using delay bound scheduling, the values selected for A-F also control the approximate  
bandwidth partition among the traffic classes; see application note.  
7.8  
Buffer Management  
Because the number of frame data buffer (FDB) slots is a scarce resource, and because we want to ensure that  
one misbehaving source port or class cannot harm the performance of a well-behaved source port or class, we  
introduce the concept of buffer management into the MVTX2801AG. Our buffer management scheme is designed  
to divide the total buffer space into numerous reserved regions and one shared pool (see Figure 6).  
As shown in the figure, the FDB pool is divided into several parts. A reserved region for temporary frames stores  
frames prior to receiving a switch response. Such a temporary region is necessary, because when the frame first  
enters the MVTX2801AG, its destination port and class are as yet unknown, and so the decision to drop or not  
needs to be temporarily postponed. This ensures that every frame can be received first before subjecting it to the  
frame drop discipline after classifying.  
Six reserved sections, one for each of the highest six priority classes, ensure a programmable number of FDB slots  
per class. The lowest two classes do not receive any buffer reservation.  
Another segment of the FDB reserves space for each of the 4 ports. These source port buffer reservations are  
programmable. These 8 reserved regions make sure that no well-behaved source port can be blocked by another  
misbehaving source port.  
SEMICMF.019  
27  
MVTX2801AG  
Data Sheet  
In addition, there is a shared pool, which can store any type of frame. The registers related to the Buffer  
Management logic are:  
PRG- Port Reservation for Gigabit Ports  
SFCB- Share FCB Size  
C2RS- Class 2 Reserved Size  
C3RS- Class 3 Reserved Size  
C4RS- Class 4 Reserved Size  
C5RS- Class 5 Reserved Size  
C6RS- Class 6 Reserved Size  
C7RS- Class 7 Reserved Size  
Temporary  
Reservation R  
TMP  
Per-Class Reservations  
, R ... R  
Shared Pool S  
R
p7  
p6  
p2  
Per-Source Reservations 8 . R  
1G  
Figure 6 - Buffer Partition Scheme Used in the MVTX2801AG  
7.8.1  
Dropping When Buffers Are Scarce  
Summarizing the two examples of local dropping discussed earlier in this chapter:  
If a queue is a delay-bounded queue, we have a multilevel WRED drop scheme, designed to control delay  
and partition bandwidth in case of congestion.  
If a queue is a WFQ-scheduled queue, we have a multilevel WRED drop scheme, designed to prevent  
congestion.  
In addition to these reasons for dropping, the MVTX2801AG also drops frames when global buffer space becomes  
scarce. The function of buffer management is to ensure that such droppings cause as little blocking as possible.  
7.9  
Flow Control Basics  
Because frame loss is unacceptable for some applications, the MVTX2801AG provides a flow control option. When  
flow control is enabled, scarcity of buffer space in the switch may trigger a flow control signal; this signal tells a  
source port, sending a packet to this switch, to temporarily hold off.  
While flow control offers the clear benefit of no packet loss, it also introduces a problem for quality of service. When  
SEMICMF.019  
28  
Data Sheet  
MVTX2801AG  
a source port receives an Ethernet flow control signal, all microflows originating at that port, well-behaved or not,  
are halted. A single packet destined for a congested output can block other packets destined for uncongested  
outputs. The resulting head-of-line blocking phenomenon means that quality of service cannot be assured with high  
confidence when flow control is enabled.  
In the MVTX2801AG, each source port can independently have flow control enabled or disabled. For flow control  
enabled ports, by default all frames are treated as lowest priority during transmission scheduling. This is done so  
that those frames are not exposed to the WRED Dropping scheme. Frames from flow control enabled ports feed to  
only one queue at the destination, the queue of lowest priority. What this means is that if flow control is enabled for  
a given source port, then we can guarantee that no packets originating from that port will be lost, but at the possible  
expense of minimum bandwidth or maximum delay assurances. In addition, these “downgraded” frames may only  
use the shared pool or the per-source reserved pool in the FDB; frames from flow control enabled sources may not  
use reserved FDB slots for the highest six classes (P2-P7).  
The MVTX2801AG does provide a system-wide option of permitting normal QoS scheduling (and buffer use) for  
frames originating from flow control enabled ports. When this programmable option is active, it is possible that some  
packets may be dropped, even though flow control is on. The reason is that intelligent packet dropping is a major  
component of the MVTX2801AG's approach to ensuring bounded delay and minimum bandwidth for high priority  
flows.  
7.9.1  
Unicast Flow Control  
For unicast frames, flow control is triggered by source port resource availability. Recall that the MVTX2801AG's  
buffer management scheme allocates a reserved number of FDB slots for each source port. If a programmed  
number of a source port's reserved FDB slots have been used, then flow control Xoff is triggered. Xon is triggered  
when a port is currently being flow controlled, and all of that port's reserved FDB slots have been released.  
Note that the MVTX2801AG's per-source-port FDB reservations assure that a source port that sends a single frame  
to a congested destination will not be flow controlled.  
7.9.2  
Multicast Flow Control  
When port based Vlan is not used, a global buffer counter (64 packets) triggers flow control for multicast frames.  
When the system exceeds a programmable threshold of multicast packets, Xoff is triggered. Xon is triggered when  
the system returns below this threshold. MCC register programs the threshold. When port based Vlan is used, each  
Vlan has a global buffer counter.  
In addition, each source port has an 8-bit port map recording which port or ports of the multicast frame's fanout were  
congested at the time Xoff was triggered. All ports are continuously monitored for congestion, and a port is identified  
as uncongested when its queue occupancy falls below a fixed threshold. When all those ports that were originally  
marked as congested in the port map have become uncongested, then Xon is triggered, and the 8-bit vector is reset  
to zero.  
The MVTX2801AG also provides the option of disabling VLAN multicast flow control.  
Note: If port flow control is on, QoS performance will be affected. To determine the most efficient way to program,  
please refer to the QoS Application Note.  
SEMICMF.019  
29  
MVTX2801AG  
Data Sheet  
7.10  
Mapping to IETF Diffserv Classes  
The mapping between priority classes discussed in this chapter and elsewhere is shown below.  
MVTX2801AG  
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
IETF  
NM  
EF  
AF0  
AF1  
AF2  
AF3  
BE0  
BE1  
Table 4 - Mapping between MVTX2801AG and IETF Diffserv Classes for Gigabit Ports  
As the table illustrates, P7 is used solely for network management (NM) frames. P6 is used for expedited forwarding  
service (EF). Classes P2 through P5 correspond to an assured forwarding (AF) group of size 4. Finally, P0 and P1  
are two best effort (BE) classes.  
Features of the MVTX2801AG that correspond to the requirements of their associated IETF classes are summarized  
in the table below.  
Network management (NM)  
and Expedited forwarding (EF)  
Global buffer reservation for NM and EF  
Shaper for EF traffic  
Option of strict priority scheduling  
No dropping if admission controlled  
Assured forwarding (AF)  
Four AF classes  
Programmable bandwidth partition, with option of  
WFQ service  
Option of delay-bounded service keeps delay  
under fixed levels even if not  
admission-controlled  
Random early discard, with programmable levels  
Global buffer reservation for each AF class  
Best effort (BE)  
Two BE classes  
Service only when other queues are idle means  
that QoS not adversely affected  
Random early discard, with programmable levels  
Traffic from flow control enabled ports  
automatically classified as BE  
Table 5 - MVTX2801AG Features Enabling IETF Diffserv Standards  
SEMICMF.019  
30  
Data Sheet  
MVTX2801AG  
8.0  
8.1  
Port Trunking  
Features and Restrictions  
A port group (i.e. trunk) can include up to 4 physical ports, but all of the ports in a group must be in the same  
MVTX2801AG.  
The MVTX2801AG provides several pre-assigned trunk group options, containing as many as 4 ports per group,  
or alternatively, as many as 4 total groups.  
Load distribution among the ports in a trunk for unicast is performed using hashing based on source MAC address  
and destination MAC address. The other options include source MAC address only, destination MAC address only.  
Load distribution for multicast is performed similarly.  
If a VLAN includes any of the ports in a trunk group, all the ports in that trunk group should be in the same VLAN  
member map.  
The MVTX2801AG also provides a safe fail-over mode for port trunking automatically. If one of the ports in the  
trunking group goes down, the MVTX2801AG will automatically redistribute the traffic over to the remaining ports  
in the trunk in unmanaged mode. In managed mode, the software can perform similar tasks.  
8.2  
Unicast Packet Forwarding  
The search engine finds the destination MCT entry, and if the status field says that the destination address found  
belongs to a trunk, then the group number is retrieved instead of the port number. In addition, if the source address  
belongs to a trunk, then the source port's trunk membership register is checked to determine if the address has  
moved.  
A hash key is used to determine the appropriate forwarding port, based on some combination of the source and  
destination MAC addresses for the current packet.  
The search engine retrieves the VLAN member ports from the VLAN index table, which consists of 4K entries.  
The search engine retrieves the VLAN member ports from the ingress port's VLAN map. Based on the destination  
MAC address, the search engine determines the egress port from the MCT database. If the egress port is a member  
of a trunk group, the packet can be distributed to the other members of that trunk group. The VLAN map is used to  
check whether the egress port is a member of the VLAN, based on the ingress port. If it is a member, the packet is  
forwarded otherwise it is discarded.  
8.3  
Multicast Packet Forwarding  
For multicast packet forwarding, the device must determine the proper set of ports from which to transmit the packet  
based on the VLAN index and hash key.  
Two functions are required in order to distribute multicast packets to the appropriate destination ports in a port  
trunking environment.  
Determining one forwarding port per group.  
For multicast packets, all but one port per group, the forwarding port, must be excluded.  
SEMICMF.019  
31  
MVTX2801AG  
Data Sheet  
8.4  
Preventing Multicast Packets from Looping Back to the Source Trunk  
The search engine needs to prevent a multicast packet from sending to a port that is in the same trunk group with  
the source port. This is because, when we select the primary forwarding port for each group, we do not take the  
source port into account. To prevent this, we simply apply one additional filter, so as to block that forwarding port for  
this multicast packet.  
9.0  
9.1  
LED Interface  
Introduction  
The MVTX2801AG LED block provides two interfaces: a serial output channel, and a parallel time-division interface.  
The serial output channel provides port status information from the MVTX2801AG chip in a continuous serial stream.  
This means that a low cost external device must be used to decode the serial data and to drive an LED array for  
display.  
By contrast, the parallel time-division interface supports a glueless LED module. Indeed, the parallel interface can  
directly drive low-current LEDs without any extra logic. The pin LED_PM is used to select serial or parallel mode.  
For some LED signals, the interface also provides a blinking option. Blinking may be enabled for LED signals TxD,  
RxD, COL, and FC (to be described later). The pin LED_BLINK is used to enable blinking, and the blinking frequency  
is around 160 ms.  
9.2  
Serial Mode  
In serial mode, the following pins are utilized:  
LED_SYNCO - a sync pulse that defines the boundary between status frames  
LED_CLKO - the clock signal  
LED_DO - a continuous serial stream of data for all status LEDs that repeats once every frame time  
In each cycle (one frame of status information, or one sync pulse), 16x8 bits of data are transmitted on the LED_DO  
signal. The sequence of transmission of data bits is as shown in the figure below:  
LE_SYNCO  
LE_DO  
P0  
P1  
P2  
P3  
P4  
P5  
info info info info info info info info  
P6  
P7  
U0  
U1  
U2  
U3  
U4  
U5  
U6  
U7  
LE_CLKO  
0
1
2
3
4
5
6
7
FC  
TxD  
RxD  
LNK  
SP0  
SP1  
FDX  
COL  
Figure 7 - Timing diagram for serial mode in LED interface.  
The status bits shown in here are flow control (FC), transmitting data (TxD), receiving data (RxD), link up (LNK),  
speed (SP0 and SP1), full duplex (FDX), and collision (COL). Note that SP[1:0] is defined as 10 for 1 Gbps, 01 for  
100 Mbps, and 00 for 10 Mbps.  
SEMICMF.019  
32  
Data Sheet  
MVTX2801AG  
Also note that U0-U7 represent user-defined sub-frames in which additional status information may be embedded.  
We will see later that the MVTX2801AG provides registers that can be written by the CPU to indicate this additional  
status information as it becomes available.  
9.3  
Parallel Mode  
In parallel mode, the following pins are utilized:  
LED_PORT_SEL[3:0] - indicates which of the 4 Gigabit port status bytes is being read out  
LED_PORT_SEL[7:4] - No use.  
LED_PORT_SEL[9:8] - indicates which of the 2 user-defined status bytes is being read out  
LED_BYTEOUT_[7:0] - provides 8 bits for 4 different port status indicators. Note that these bits are active  
low.  
By default, the system is in parallel mode. In parallel mode, the 10 status bytes are scanned in a continuous loop,  
with one byte read out per clock cycle, and the appropriate port select bit asserted.  
9.4  
LED Control Registers  
An LED Control Register can be used for programming the LED clock rate, sample hold time, and pattern in parallel  
mode.  
In addition, the MVTX2801AG provides 8 registers called LEDUSER[7:0] for user-defined status bytes. During  
operation, the CPU can write values to these registers, which will be read out to the LED interface output (serial or  
parallel). Only LEDUSER[1:0] are used in parallel mode. The content of the LEDUSER registers will be sent out by  
the LED serial shift logic, or in parallel mode, a byte at a time.  
Because in parallel mode there are only two user-defined registers, LEDUSER[7:2] is shared with LEDSIG[7:2].  
For LEDSIG[j], where j = 2, 3, ..., 6, the corresponding register is used for programming the LED pin  
LED_BYTEOUT_[j]. The format is as follows:  
7
4
3
0
COL  
FDX  
SP1  
SP0  
COL  
FDX  
SP1  
SP0  
Bits [3:0]  
Bits [7:4]  
Signal polarity:  
0: do not invert polarity (high true)  
1: invert polarity  
Signal select:  
0: do not select  
1: select the corresponding bit  
For j = 2, 3, ..., 5, the value of LED_BYTEOUT_[j] equals the logical AND of all selected bits. For j = 6, the value is  
equal to the logical OR. Therefore, the programmable LEDSIG[5:2] registers allow any conjunctive formula  
including any of the 4 status bits (COL, FDX, SP1, SP0) or their negations to be sent to the LED_BYTEOUT_[5:2]  
pins. Similarly, the programmable LEDSIG[6] register allows any disjunctive formula including any of the 4 status  
bits or their negations to be sent to pin LED_BYTEOUT_[6].  
LEDSIG[7] is used for programming both LED_BYTEOUT_[1] and LED_BYTEOUT_[0]. As we will see, it has other  
functions as well. The format is as follows:  
SEMICMF.019  
33  
MVTX2801AG  
Data Sheet  
7
4
3
0
GP  
RxD  
TxD  
FC  
P6  
RxD  
TxD  
FC  
Bits [7]  
Global output polarity: this bit controls the output polarity of all LED_BYTEOUT_ and  
LED_PORT_SEL pins. (Default 0)  
- 0: do not invert polarity (LED_BYTEOUT_[7:0] are high activated; LED_PORT_SEL[9:0] are  
low activated)  
- 1: invert polarity (LED_BYTEOUT_[7:0] are low activated; LED_PORT_SEL[9:0] are high  
activated)  
Bits [6:4]  
Signal select:  
- 0: do not select  
- 1: select the corresponding bit  
The value of LED_BYTEOUT_[1] equals the logical OR of all selected bits. (Default  
110)  
Bit [3]  
Polarity control of LED_BYTEOUT_[6]  
(Default 0)  
- 0: do not invert  
- 1: invert  
Bits [2:0]  
Signal select:  
- 0: do not select  
- 1: select the corresponding bit  
The value of LED_BYTEOUT_[0] equals the logical OR of all selected bits. (Default  
001)  
SEMICMF.019  
34  
Data Sheet  
MVTX2801AG  
10.0  
Register Definition  
Register Description  
10.1  
I2C  
Addr  
(Hex)  
CPU  
Addr  
(Hex)  
Register  
Description  
R/W  
Default  
Notes  
0. ETHERNET Port Control Registers - Substitute [N] with Port number (0..7)  
ECR1P”N”  
Port Control Register 1 for Port N (N=0-7)  
Port Control Register 2 for Port N (N=0-7)  
Port Control Misc1  
000 + 2N  
001 + 2N  
010  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
000+2N  
001+2N  
010  
c0  
00  
c0  
00  
00  
00  
00  
00  
00  
ECR2P”N”  
ECRMISC1  
ECRMISC2  
Port Control Misc 2  
011  
011  
GGCONTROL0  
GGCONTROL1  
GGCONTROL2  
GGCONTROL3  
ACTIVELINK  
Extra Gigabit Port Control -port 0,1  
Extra Gigabit Port Control -port 2,3  
Extra Gigabit Port Control -port 4,5  
Extra Gigabit Port Control -port 6,7  
Active Link status port 7:0  
012  
N/A  
013  
N/A  
014  
N/A  
015  
N/A  
016  
N/A  
1. VLAN Control Registers - Substitute [N] with Port number (0..8)  
AVTCL  
VLAN Type Code Register Low  
100  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
012  
00  
81  
ff  
AVTCH  
VLAN Type Code Register High  
101  
013  
PVMAP”N”_0  
PVMAP”N”_1  
PVMAP”N”_2  
PVMAP”N”_3  
PVMODE  
Port “N” Configuration Register 0 (N=0-8)  
Port “N” Configuration Register 1 (N=0-8)  
Port “N” Configuration Register 2 (N=0-8)  
Port “N” Configuration Register 3 (N=0-8)  
VLAN Operating Mode  
102 + 4N  
103 + 4N  
104 + 4N  
105 + 4N  
126  
014+4N  
015+4N  
016+4N  
017+4N  
038  
ef  
00  
00  
00  
2. TRUNK Control Registers  
TRUNK0  
Trunk group 0 Member  
Trunk group 1 Member  
Trunk group 2 Member  
Trunk group 3 Member  
Single ring port map  
Trunk ring port map  
Trunk hash mode  
200  
201  
202  
203  
204  
205  
206  
207  
208  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
039  
NA  
00  
00  
00  
00  
TRUNK1  
TRUNK2  
TRUNK3  
SINGLE_RING  
TRUNK_RING  
TRUNK_HASH_MODE  
TRUNK0_MODE  
TRUNK0_HASH0  
00  
00  
08  
Trunk Group 0 Mode  
Trunk Group 0 Hash 0, 1, 2 Destination  
Port  
TRUNK0_HASH1  
TRUNK0_HASH2  
Trunk Group 0 Hash 2, 3, 4, 5 Destination  
Port  
209  
20A  
R/W  
R/W  
NA  
NA  
82  
20  
Trunk Group 0 Hash 5, 6, 7 Destination  
Port  
Table 6 - MVTX2801AG Register Description  
SEMICMF.019  
35  
MVTX2801AG  
Data Sheet  
CPU  
Addr  
(Hex)  
I2C  
Addr  
(Hex)  
Register  
Description  
R/W  
Default  
Notes  
TRUNK0_HASH3  
TRUNK0_HASH4  
TRUNK0_HASH5  
Trunk Group 0 Hash 8, 9, 10 Destination  
Port  
20B  
R/W  
R/W  
R/W  
NA  
08  
82  
20  
Trunk Group 0 Hash 10, 11, 12, 13  
Destination Port  
20C  
20D  
NA  
NA  
Trunk Group 0 Hash 13, 14, 15 Destination  
Port  
TRUNK1_MODE  
TRUNK1_HASH0  
Trunk Group 1 Mode  
20E  
20F  
R/W  
R/W  
03A  
NA  
00  
08  
Trunk Group 1 Hash 0, 1, 2 Destination  
Port  
TRUNK1_HASH1  
TRUNK1_HASH2  
TRUNK1_HASH3  
TRUNK1_HASH4  
Trunk Group 1 Hash 2, 3, 4, 5 Destination  
Port  
210  
211  
212  
213  
R/W  
R/W  
R/W  
R/W  
NA  
NA  
NA  
NA  
82  
20  
08  
82  
Trunk Group 1 Hash 5, 6, 7 Destination  
Port  
Trunk Group 1 Hash 8, 9, 10 Destination  
Port  
Trunk Group 1 Hash 10, 11, 12, 13  
Destination  
TRUNK1_HASH5  
TRUNK2_HASH0  
Trunk Group 1 Hash 13, 14, 15 Destination 214  
R/W  
R/W  
NA  
NA  
20  
2c  
Trunk Group 2 Hash 0, 1, 2 Destination  
Port  
215  
216  
217  
218  
219  
21A  
21B  
21C  
21D  
21E  
21F  
220  
TRUNK2_HASH1  
TRUNK2_HASH2  
TRUNK2_HASH3  
TRUNK2_HASH4  
TRUNK2_HASH5  
TRUNK3_HASH0  
TRUNK3_HASH1  
TRUNK3_HASH2  
TRUNK3_HASH3  
TRUNK3_HASH4  
TRUNK3_HASH5  
Trunk Group 2 Hash 2, 3, 4, 5 Destination  
Port  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
cb  
b2  
2c  
cb  
b2  
2c  
cb  
b2  
2c  
Bc  
b2  
Trunk Group 2 Hash 5, 6, 7 Destination  
Port  
Trunk Group 2 Hash 8, 9, 10 Destination  
Port  
Trunk Group 2 Hash 10, 11, 12, 13  
Destination Port  
Trunk Group 2 Hash 13, 14, 15 Destination  
Port  
Trunk Group 3 Hash 0, 1, 2 Destination  
Port  
Trunk Group 3 Hash 2, 3, 4, 5 Destination  
Port  
Trunk Group 3 Hash 5, 6, 7 Destination  
Port  
Trunk Group 3 Hash 8, 9, 10 Destination  
Port  
Trunk Group 3 Hash 10, 11, 12, 13  
Destination Port  
Trunk Group 3 Hash 13, 14, 15 Destination  
Port  
Multicast_HASH00  
Multicast_HASH01  
Multicast hash result 0 mask bit[7:0]  
Multicast hash result 1 mask bit[7:0]  
221  
222  
R/W  
R/W  
NA  
NA  
ff  
ff  
Table 6 - MVTX2801AG Register Description (continued)  
SEMICMF.019  
36  
Data Sheet  
MVTX2801AG  
I2C  
Addr  
(Hex)  
CPU  
Addr  
(Hex)  
Register  
Description  
R/W  
Default  
Notes  
Multicast_HASH02  
Multicast_HASH03  
Multicast_HASH04  
Multicast_HASH05  
Multicast_HASH06  
Multicast_HASH07  
Multicast_HASH08  
Multicast_HASH09  
Multicast_HASH10  
Multicast_HASH11  
Multicast_HASH12  
Multicast_HASH13  
Multicast_HASH14  
Multicast_HASH15  
Multicast_HASHML  
Multicast HASHMH  
3. CPU Port Configuration  
MAC0  
Multicast hash result 2 mask bit[7:0]  
Multicast hash result 3 mask bit[7:0]  
Multicast hash result 4 mask bit[7:0]  
Multicast hash result 5 mask bit[7:0]  
Multicast hash result 6 mask bit[7:0]  
Multicast hash result 7 mask bit[7:0]  
Multicast hash result 8 mask bit[7:0]  
Multicast hash result 9 mask bit[7:0]  
Multicast hash result 10 mask bit[7:0]  
Multicast hash result 11 mask bit[7:0]  
Multicast hash result 12 mask bit[7:0]  
Multicast hash result 13 mask bit[7:0]  
Multicast hash result 14 mask bit[7:0]  
Multicast hash result 15 mask bit[7:0]  
Multicast hash bit[8] for result 7-0  
Multicast hash bit[8] for result 15-8  
223  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
NA  
ff  
224  
225  
226  
227  
228  
229  
22A  
22B  
22C  
22D  
22E  
22F  
230  
231  
232  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
ff  
ff  
ff  
ff  
ff  
ff  
fff  
ff  
ff  
ff  
ff  
ff  
ff  
ff  
ff  
CPU MAC Address byte 0  
CPU MAC Address byte 1  
CPU MAC Address byte 2  
CPU MAC Address byte 3  
CPU MAC Address byte 4  
CPU MAC Address byte 5  
Interrupt Mask 0  
300  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
00  
00  
00  
00  
00  
00  
ff  
MAC1  
301  
MAC2  
302  
MAC3  
303  
MAC4  
304  
MAC5  
305  
INT_MASK0  
306  
INT_MASK1  
Interrupt Mask 1  
307  
ff  
INT_MASK2  
Interrupt Mask 2  
308  
ff  
INT_MASK3  
Interrupt Mask 3  
309  
ff  
INT_STATUS0  
INT_STATUS1  
INTP_MASK”N”  
Status of Masked Interrupt Register0  
Status of Masked Interrupt Register1  
30A  
30B  
30C-30F  
RO  
Interrupt Mask for MAC Port 2n, 2n+1  
(n=0-3)  
R/W  
ff  
RQS  
Receive Queue Select  
310  
311  
312  
R/W  
RO  
NA  
NA  
03B  
00  
RQSS  
TX_AGE  
Receive Queue Status  
Transmission Queue Aging Time  
R/W  
08  
Table 6 - MVTX2801AG Register Description (continued)  
SEMICMF.019  
37  
MVTX2801AG  
Data Sheet  
CPU  
Addr  
(Hex)  
I2C  
Addr  
(Hex)  
Register  
Description  
R/W  
Default  
Notes  
4. Search Engine Configurations  
AGETIME_LOW  
AGETIME_HIGH  
V_AGETIME  
MAC Address Aging Time Low  
MAC Address Aging Time High  
VLAN to Port Aging Time  
400  
R/W  
R/W  
R/W  
R/W  
R/W  
03C  
2c  
00  
ff  
401  
402  
403  
404  
03D  
NA  
NA  
NA  
SE_OPMODE  
Search Engine operation mode  
Scan Control Register  
00  
00  
SCAN  
5. Buffer Control and QOS Control  
FCBAT  
QOSC  
FCR  
FCB Aging Timer  
500  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
03E  
03F  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
04A  
04B  
04C  
04D  
04E  
04F  
050  
051  
052  
053  
054  
055-084  
NA  
ff  
QOS Control  
501  
00  
08  
88  
c6  
fa  
Flooding Control Register  
VLAN Priority Map Low  
VLAN Priority Map Middle  
VLAN Priority Map High  
TOS Priority Map Low  
TOS Priority Map Middle  
TOS Priority Map High  
VLAN Discard Map  
502  
AVPML  
AVPMM  
AVPMH  
TOSPML  
TOSPMM  
TOSPMH  
AVDM  
TOSDML  
BMRC  
UCC  
503  
504  
505  
506  
88  
c6  
fa  
507  
508  
509  
00  
00  
00  
07  
48  
00  
26  
37  
00  
00  
00  
00  
00  
00  
TOS Discard Map  
50A  
50B  
50C  
50D  
50E  
50F  
510  
Broadcast/Multicast Rate Control  
Unicast Congestion Control  
Multicast Congestion Control  
Port Reservation for 10/100 Ports  
Port Reservation for Giga Ports  
Share FCB Size  
MCC  
PR100  
PRG  
SFCB  
C2RS  
Class 2 Reserved Size  
Class 3 Reserved Size  
Class 4 Reserved Size  
Class 5 Reserved Size  
Class 6 Reserved Size  
Class 7 Reserved Size  
QOS Control (N=0 - 2F)  
QOS Control (N=30 - 82)  
WRED Rate Control 0  
WRED Rate Control 1  
511  
C3RS  
512  
C4RS  
513  
C5RS  
514  
C6RS  
515  
C7RS  
516  
QOSC”N”  
QOSC”N”  
RDRC0  
RDRC1  
517-546  
547-599  
59A  
59B  
085  
086  
8e  
68  
Table 6 - MVTX2801AG Register Description (continued)  
SEMICMF.019  
38  
Data Sheet  
MVTX2801AG  
I2C  
Addr  
(Hex)  
CPU  
Addr  
(Hex)  
Register  
Description  
R/W  
Default  
Notes  
6. MISC Configuration Register  
MII_OP0  
MII Register Option 0  
600  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
0B1  
00  
00  
10  
00  
00  
00  
00  
00  
00  
38  
00  
00  
00  
00  
80  
33  
32  
20  
40  
61  
MII_OP1  
MII Register Option 1  
601  
602  
603  
604  
605  
606  
607  
608  
609  
60A  
60B  
60C  
60D  
60E  
60F  
610  
611  
612  
613  
0B2  
0B3  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0B4  
0B5  
0C5  
0BB  
0BC  
0BD  
0BE  
0BF  
0C0  
0C1  
0C2  
FEN  
Feature Registers  
MIIC0  
MII Command Register 0  
MIIC1  
MII Command Register 1  
MIIC2  
MII Command Register 2  
MIIC3  
MII Command Register 3  
MIID0  
MII Data Register 0  
MIID1  
MII Data Register 1  
RO  
LED  
LED Control Register  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
DEVICE  
Device id and test  
CHECKSUM  
LEDUSER0  
LEDUSER1  
LEDUSER2  
LEDUSER3  
LEDUSER4  
LEDUSER5  
LEDUSER6  
LEDUSER7  
EEPROM Checksum Register  
LED User Define Register 0  
LED User Define Register 1  
LED User Define Reg. 2/LED_byte pin 2  
LED User Define Reg. 3/LED_byte pin 3  
LED User Define Reg. 4/LED_byte pin 4  
LED User Define Reg. 5/LED_byte pin 5  
LED User Define Reg. 6/LED_byte pin 6  
LED User Define Reg. 7/LED_byte pin 1 &  
0
MIINP0  
MII NEXT PAGE DATA REGISTER0  
MII NEXT PAGE DATA REGISTER1  
614  
615  
R/W  
R/W  
0C3  
0C4  
00  
00  
MIINP1  
E. Test Group Control  
DTSRL  
Test Register Low  
E00  
E01  
E02  
E03  
E04  
E05  
E06  
E07  
E08  
R/W  
R/W  
R/W  
RO  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0B6  
0B7  
0B8  
00  
01  
00  
DTSRM  
DTSRH  
Test Register Medium  
Test Register High  
TDRB0  
TEST MUX read back register [7:0]  
TEST MUX read back register [15:8]  
Test Counter Register  
MASK Timeout 0  
TDRB1  
RO  
DTCR  
R/W  
R/W  
R/W  
R/W  
00  
00  
00  
00  
MASK0  
MASK1  
MASK Timeout 1  
MASK2  
MASK Timeout 2  
Table 6 - MVTX2801AG Register Description (continued)  
SEMICMF.019  
39  
MVTX2801AG  
Data Sheet  
CPU  
Addr  
(Hex)  
I2C  
Addr  
(Hex)  
Register  
Description  
R/W  
Default  
Notes  
MASK3  
MASK Timeout 3  
E09  
R/W  
R/W  
0B9  
00  
00  
MASK4  
MASK Timeout 4  
E0A  
0BA  
F. Device Configuration Register  
GCR  
Global Control Register  
F00  
F01  
F02  
F03  
F04  
F05  
F06  
F07  
F08  
F09  
F0A  
F0B  
F0C  
F0D  
F0E  
F0F  
F10  
FFF  
R/W  
RO  
RO  
RO  
RO  
RO  
R/W  
RO  
R/W  
R/W  
R/W  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
N/A  
N/A  
NA  
00  
DCR  
Device Status and Signature Register  
Gigabit Port0 Port1 Status Register  
Gigabit Port2 Port3 Status Register  
Gigabit Port4 Port5 Status Register  
Gigabit Port6 Port7 Status Register  
Device Port Status Register  
Data read back register  
DCR01  
DCR23  
DCR45  
DCR67  
DPST  
NA  
NA  
NA  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
00  
DTST  
PLLCR  
LCLKCR  
BCLKCR  
BSTRRB0  
BSTRRB1  
BSTRRB2  
BSTRRB3  
BSTRRB4  
BSTRRB5  
DA  
PLL Control Register  
00  
00  
00  
LCLK Control Register  
BCLK Control Register  
BOOT STRAP read back register 0  
BOOT STRAP read back register 1  
BOOT STRAP read back register 2  
BOOT STRAP read back register 3  
BOOT STRAP read back register 4  
BOOT STRAP read back register 5  
DA Register  
da  
Table 6 - MVTX2801AG Register Description (continued)  
1. se = Search Engine  
Note:  
2. fe = Frame Engine  
3. pgs = Port Group01, 23, 45, and 67  
4. mc = MAC Control  
5. tm = timer  
10.2  
Group 0 Address - MAC Ports Group  
ECR1Pn: Port N Control Register  
10.2.1  
I2C Address h00+2n; Serial Interface Address: h000+2n (n=0 to 7) (For the 2600 it is different)  
Accessed by serial interface and I2C (R/W)  
SEMICMF.019  
40  
Data Sheet  
MVTX2801AG  
7
6
5
4
3
2
1
0
Sp State  
A-FC  
Port Mode  
Bit [4:0]  
Bit [4:3]  
Port Mode (Default 2'b00)  
- 00 - Automatic Enable Auto-Negotiation - This enables hardware state machine  
for auto-negotiation.  
- 01 - Limited Disable auto-Negotiation - This disables hardware for speed  
auto-negotiation. Hardware Polls MII for link status.  
- 10 - Link Down - Force link down (disable the port). Does not talk to PHY.  
- 11 - Link Up - Does not talk to PHY. User ERC1 [2:0] for config.  
- 1 - 10Mbps (Default 1'b0)  
Bit [2]  
- 0 - 100Mbps  
Bit 2 is used only when the port is in MII (10/100) mode.  
- 1 - Half Duplex (Do not use) (Default 1'b0)  
- 0 - Full Duplex  
Bit [1]  
Bit [0]  
- 1 - Flow Control Off (Default 1'b0)  
- 0 - Flow Control On  
When flow control is on:  
In full duplex mode, the MAC transmitter sends Flow Control Frames when  
necessary. The MAC receiver interprets and processes incoming flow  
control frames. The Flow Control Frame Received counter is incremented  
whenever a flow control frame is received.  
When flow control is off:  
In full duplex mode, the MAC transmitter does not send flow control frames.  
The MAC receiver does not interpret or process the flow control frames. The  
Flow Control Frame Receiver counter is not incremented.  
Bit [5]  
Asymmetric Flow Control Enable.  
- 0 - Disable asymmetric flow control  
- 1 - Enable asymmetric flow control  
When this bit is set, and flow control is on (bit[0] = 0), don't send out a flow  
control frame. But MAC Receiver interprets and process flow control  
frames. (Default is 0)  
- SS - Spanning tree state (802.1D spanning tree protocol). (Default 2'b11)  
- 00 - Blocking: Frame is dropped  
Bit [7:6]  
- 01 - Listening: Frame is dropped  
- 10 - Learning: Frame is dropped. Source MAC address is learned.  
- 11 - Forwarding: Frame is forwarded. Source MAC address is learned.  
10.2.2  
ECR2Pn: Port N Control Register  
I2C Address: 01+2n; Serial Interface Address:h001+2n (n=0to7)  
Accessed by serial interface (R/W)  
7
0
Security En  
RTsel  
DisL  
Ftf  
Futf  
SEMICMF.019  
41  
MVTX2801AG  
Data Sheet  
Bit[0]:  
Bit[1]:  
Bit[2]:  
Filter untagged frame (Default 0)  
0: Disable  
1: Enable - All untagged frames from this port are discarded or follow  
security option when security is enable  
Filter Tag frame (Default 0)  
0: Disable  
1: Enable - All tagged frames from this port are discarded or follow security  
option when security is enable  
Learning Disable (Default 0)  
0: Learning is enabled on this port  
1: Learning is disabled on this port  
Bit[3]:  
Reserved  
Reserved  
Bit [5:4:]  
Bit[7:6]  
Security Enable (Default 00). The MVTX2801AG checks the incoming data  
for one of the following conditions:  
If the source MAC address of the incoming packet is in the MAC table and is  
defined as secure address but the ingress port is not the same as the port  
associated with the MAC address in the MAC table.  
A MAC address is defined as secure when its entry at MAC table has static  
status and bit 0 is set to 1. MAC address bit 0 (the first bit transmitted)  
indicates whether the address is unicast or multicast. As source addresses  
are always unicast bit 0 is not used (always 0). MVTX2801 uses this bit to  
define secure MAC addresses.  
If the port is set as learning disable and the source MAC address of the  
incoming packet is not defined in the MAC address table.  
If the port is configured to filter untagged frames and an untagged frame  
arrives or if the port is configured to filter tagged frames and a tagged frame  
arrives.  
If one of these three conditions occurs, the packet will be handled according  
to one of the following specified options:  
- 00 - Disable port security  
- 01 - Enable port security. Port will be disabled when security violation is detected  
- 10 - N/A  
- 11 - N/A  
10.2.3  
ECRMISC1 - CPU Port Control Register MISC1  
I2C Address h10, Serial Interface Address:h010  
Access by serial interface and I2C (R/W)  
7
5
0
SS State  
Reserved  
Bit [7:0]  
Reserved  
SEMICMF.019  
42  
Data Sheet  
MVTX2801AG  
10.2.4  
ECRMISC2 - CPU Port Control Register MISC2  
I2C Address h11, Serial Interface Address:h011  
Access by serial interface and I2C (R/W)  
7
0
Security En  
RTsel  
DisL  
Ftf  
Futf  
Bit [7:0]  
Reserved  
SEMICMF.019  
43  
MVTX2801AG  
Data Sheet  
10.2.5  
GGControl 0- Extra GIGA Port Control  
Serial Interface Address:h012  
Accessed by and serial interface (R/W)  
7
5
4
1
0
DFC1  
DI1  
MII1  
Rst1  
DFC0  
DI0  
MII0  
Rst0  
Bit[0]:  
Bit[1]:  
Reset GIGA port 0 (Default is 0)  
- 0: Normal operation  
- 1: Reset Gigabit port 0.  
GIGA port 0 use MII interface (10/100M) (Default is 0)  
- 0: Gigabit port operation at 1000M mode  
- 1: Gigabit port operation at 10/100M mode (MII)  
Bit[2]:  
Bit[3]:  
Bit[4]:  
Reserved -Must be '0' (Default 0)  
Reserved - Must be '0'  
Reset GIGA port 1 (Default 0)  
- 0: Normal operation  
- 1: Reset Gigabit port 1.  
Bit[5]:  
GIGA port 1 use MII interface (10/100M) (Default 0)  
- 0: Gigabit port operation at 1000M mode  
- 1: Gigabit port operation at 10/100M mode (MII)  
Bit[6]:  
Bit[7]:  
Reserved - Must be '0' (Default 0)  
Reserved - Must be '0'  
10.2.6  
GGControl 1- Extra GIGA Port Control  
Serial Interface Address:h013  
Accessed by CPU and serial interface (R/W)  
7
5
4
1
0
DFC3  
DI3  
MII3  
Rst3  
DFC2  
DI2  
MII2  
Rst2  
Bit[0]:  
Bit[1]:  
Reset GIGA port 2 Default is 0  
- 0: Normal operation  
- 1: Reset Gigabit port 2  
GIGA port 2 use MII interface (10/100M) Default is 0  
- 0: Gigabit port operation at 1000M mode  
- 1: Gigabit port operation at 10/100M mode (MII)  
Bit[2]:  
Bit[3]:  
Reserved - Must be '0' (Default '0')  
Reserved - Must be '0'  
SEMICMF.019  
44  
Data Sheet  
MVTX2801AG  
Bit[4]:  
Reset GIGA port 3 Default is 0  
- 0: Normal operation  
- 1: Reset Gigabit port 3.  
Bit[5]:  
GIGA port 3 use MII interface (10/100M) Default is 0  
- 0: Gigabit port operation at 1000M mode  
- 1: Gigabit port operation at 10/100M mode (MII)  
Bit[6]:  
Bit[7]:  
Reserved - Must be '0' (Default '0')  
Reserved - Must be '0'  
10.2.7  
GGControl 2- Extra GIGA Port Control  
Serial Interface Address:h014  
Accessed by CPU and serial interface (R/W)  
7
5
4
1
0
Reserved  
Bit[7:0]:  
Reserve  
10.2.8  
GGControl 3- Extra GIGA Port Control  
Serial Interface Address:h015  
Accessed by CPU and serial interface (R/W)  
7
5
4
1
0
Reserved  
Bit[7:0]:  
Reserve  
10.3  
Group 1 Address - VLAN Group  
10.3.1  
AVTCL - VLAN Type Code Register Low  
I2C Address h12; Serial Interface Address:h100  
Accessed by serial interface and I2C (R/W)  
Bit[7:0]:  
VLANType_LOW: Lower 8 bits of the VLAN type code (Default 00)  
SEMICMF.019  
45  
MVTX2801AG  
Data Sheet  
10.3.2  
AVTCH - VLAN Type Code Register High  
I2C Address h13; Serial Interface Address:h101  
Accessed by serial interface and I2C (R/W)  
Bit [7:0]  
VLANType_HIGH: Upper 8 bits of the VLAN type code (Default is 81)  
10.3.3  
PVMAP00_0 - Port 00 Configuration Register 0  
I2C Address h14, Serial Interface Address:h102)  
Accessed by serial interface and I2C (R/W)  
Port Based VLAN Mode  
This register indicates the legal egress ports. Example: A “1” on bit 3 means that packets arriving on port 0 can be  
sent to port 3. A “0” on bit 3 means that any packet destined to port 3 will be discarded.  
Bit[3:0]:  
Bit[7:4]:  
VLAN Mask for ports 3 to 0 (Default F)  
- 0 - Disable  
- 1 - Enable  
Reserve (Default F)  
10.3.4  
PVMAP00_1 - Port 00 Configuration Register 1  
I2C Address h15, Serial Interface Address:h103  
Accessed by serial interface and I2C (R/W)  
Port Based VLAN Mode  
Bit[0]:  
VLAN Mask for ports 8 (Default 1'B1)  
- 0 - Disable  
- 1 - Enable  
Bit[7:1]:  
Reserved (Default is 7'B1111_111)  
10.3.5  
PVMAP00_2 - Port 00 Configuration Register 2  
I2C Address h16, Serial Interface Address:h104  
Accessed by serial interface and I2C (R/W)  
This registered is unused  
SEMICMF.019  
46  
Data Sheet  
MVTX2801AG  
10.3.6  
PVMAP00_3 - Port 00 Configuration Register 3  
I2C Address h17, Serial Interface Address:h105  
Accessed by serial interface and I2C (R/W)  
Port Based Mode  
7
6
5
3
2
1
0
FP en  
Drop  
Default TX priority  
FNT  
IF  
Reserved  
Bit [1:0]:  
Bit [2]:  
Reserved (Default 0)  
Force untagout (Default 0)  
- 0 Disable  
- 1 Force untag output  
All packets transmitted from this port are untagged. This register is used when this  
port is connected to legacy equipment that does not support VLAN tagging.  
Bit [5:3]:  
Fixed Transmit priority. Used when bit[7] = 1 (Default 0)  
- 000 Transmit Priority Level 0 (Lowest)  
- 001 Transmit Priority Level 1  
- 010 Transmit Priority Level 2  
- 011 Transmit Priority Level 3  
- 100 Transmit Priority Level 4  
- 101 Transmit Priority Level 5  
- 110 Transmit Priority Level 6  
- 111 Transmit Priority Level 7 (Highest)  
Bit [6]:  
Bit [7]:  
Fixed Discard priority (Default 0)  
- 0 - Discard Priority Level 0 (Lowest)  
- 1 - Discard Priority Level 7(Highest)  
Enable Fix Priority (Default 0)  
- 0 Disable fix priority. All frames are analysed. Transmit Priority and Drop Priority  
are based on VLAN Tag, TOS or Logical Port.  
- 1 Transmit Priority and Discard Priority are based on values programmed in bit  
[6:3]  
Port VLAN Map  
PVMAP00_0,1,2,3 I2C Address h14,15,16,17; Serial Interface Address:h102,103,104,105)  
See above format  
PVMAP01_0,1,2,3 I2C Address h18,19,1A,1B; Serial Interface Address:h106,107,108,109)  
See above format  
PVMAP02_0,1,2,3 I2C Address h1C,1D,1E,1F; Serial Interface Address:h10A, 10B, 10C, 10D)  
See above format  
PVMAP03_0,1,2,3 I2C Address h20,21,22,23; Serial Interface Address:h10E, 10F, 110, 111)  
See above format  
SEMICMF.019  
47  
MVTX2801AG  
Data Sheet  
PVMAP04_0,1,2,3 I2C Address h24,25,26,27; Serial Interface Address:h112, 113, 114, 115) (Reserved)  
PVMAP05_0,1,2,3 I2C Address h28,29,2A,2B; Serial Interface Address:h116, 117, 118, 119) (Reserved)  
PVMAP06_0,1,2,3 I2C Address h2C,2D,2E,2F; Serial Interface Address:h11A, 11B, 11C, 11D) (Reserved)  
PVMAP07_0,1,2,3 I2C Address h30,31,32,33; Serial Interface Address:h11E, 11F, 120, 121) (Reserved)  
PVMAP08_0,1,2,3 I2C Address h34,35,36,37; Serial Interface Address:h122, 123, 124, 125) (Reserved)  
10.3.7  
PVMODE  
I2C Address: h038, Serial Interface Address:h126  
Accessed by serial interface (R/W)  
7
4
3
1
0
RO  
MP  
BPDU  
DM Reserved  
Vmod  
Bit [0]:  
Bit [4]:  
Reserved  
- Must be '0'  
Disable MAC address 0  
- 0: MAC address 0 is not leaned.  
- 1: MAC address 0 is leaned.  
Bit [5]:  
Force BPDU as multicast frame (Default 0)  
- 1: Enable. BPDU frames (frames with destination MAC address in the range of  
01-80-C2 00-00-00 through 01-80-C2-00-00-0F) are forwarded as multicast  
frames.  
- 0: Disable. Drop frames in this range.  
Bit [6]:  
Bit [7]:  
MAC/PORT  
- 0: Single MAC address per system  
- 1: Single MAC address per port  
Reserved  
10.4  
Group 2 Address - Port Trunking Group  
10.4.1  
TRUNK0 - Trunk group 0 Member (Managed Mode Only)  
Serial Interface Address:h200  
Accessed by serial interface (R/W)  
Bit [7:0] Reserved  
10.4.2  
TRUNK1 - Trunk group 1 Member (Managed Mode Only)  
Serial Interface Address:h201  
Accessed by serial interface (R/W)  
Bit [7:0] Reserved  
SEMICMF.019  
48  
Data Sheet  
MVTX2801AG  
10.4.3  
TRUNK2- Trunk group 2 Member (Managed Mode Only)  
Serial Interface Address:h202  
Accessed by serial interface (R/W)  
Bit [7:0] Reserved  
10.4.4  
TRUNK3- Trunk group 3 Member (Managed Mode Only)  
Serial Interface Address:h203  
Accessed by serial interface and I2C (R/W)  
Bit [7:0] Reserved  
10.4.5  
TRUNK_HASH_MODE - Trunk hash mode  
Serial Interface Address:h206  
Accessed by serial interface (R/W)  
Bit [7:0] Reserved  
10.4.6  
TRUNK0_MODE - Trunk group 0 and 1 mode  
I2C Address: h039, Serial Interface Address:h207  
Accessed by serial interface and I2C (R/W)  
Port Selection in unmanaged mode. Trunk group 0 and trunk group 1 are enable accordingly to bit [1:0] when input  
pin P_d[9] = 0 (external pull down).  
7
0
Port sel  
Bit [1:0]:  
Port member selection for Trunk 0 and 1 in unmanaged mode (Default 2'b00)  
- 00 - Only trunk group 0 is enable. Port 0 and 1 are used for trunk group0  
- 01 - Only trunk group 0 is enable. Port 0,1 and 2 are used for trunk group0  
- 10 - Only trunk group 0 is enable. Port 0,1,2 and 3 are used for trunk group0  
- 11 - Trunk group 0 and 1 are enable. Port 0, 1 used for trunk group0, and port 2 and 3  
are used for trunk group1  
10.4.7  
TRUNK0_HASH0 - Trunk group 0 hash result 0,1,2 destination port number  
Serial Interface Address:h208  
Reserved  
10.4.8  
TRUNK0_HASH1 - Trunk group 0 hash result 2,3,4,5 destination port number  
Serial Interface Address:h209  
Reserved  
SEMICMF.019  
49  
MVTX2801AG  
Data Sheet  
10.4.9  
TRUNK0_HASH2 - Trunk group 0 hash result 5,6,7 destination port number  
Serial Interface Address:h20A  
Reserved  
10.4.10  
TRUNK0_HASH3 - Trunk group 0 hash result 8,9,10 destination port number  
Serial Interface Address:h20B  
Reserved  
10.4.11  
TRUNK0_HASH4 - Trunk group 0 hash result 10,11,12,13 destination port number  
Serial Interface Address:h20C  
Reserved  
10.4.12  
TRUNK0_HASH5 - Trunk group 0 hash result 13,14,15 destination port number  
Serial Interface Address:h20D  
Reserved  
10.4.13  
TRUNK1_MODE - Trunk group 1 mode (Unmanaged Mode)  
I2C Address h03A; Serial Interface Address:20E  
Accessed by serial interface and I2C (R/W)  
Reserved  
10.4.14  
TRUNK1_HASH0 - Trunk group 1 hash result 0, 1, 2 destination port number  
Serial Interface Address:h20F  
Reserved  
10.4.15  
TRUNK1_HASH1 - Trunk group 1 hash result 2, 3, 4, 5 destination port number  
Serial Interface Address:h210  
Reserved  
10.4.16  
TRUNK1_HASH2 - Trunk group 1 hash result 5, 6, 7 destination port number  
Serial Interface Address:h211  
Reserved  
10.4.17  
TRUNK1_HASH3 - Trunk group 1 hash result 8, 9, 10 destination port number  
Serial Interface Address:h212  
Reserved  
SEMICMF.019  
50  
Data Sheet  
MVTX2801AG  
10.4.18  
TRUNK1_HASH4- Trunk group 1 hash result 11, 12, 13 destination port number  
Serial Interface Address:h213  
Reserved  
10.4.19  
TRUNK1_HASH5 - Trunk group 1 hash result 13, 14, 15 destination port number  
Serial Interface Address:h214  
Reserved  
10.4.20  
TRUNK2_HASH0 - Trunk group 2 hash result 0, 1, 2 destination port number  
Serial Interface Address:h215  
Reserved  
10.4.21  
TRUNK2_HASH1 - Trunk group 2 hash result 2, 3, 4, 5 destination port number  
Serial Interface Address:h216  
Reserved  
10.4.22  
TRUNK2_HASH2 - Trunk group 2 hash result 5, 6, 7 destination port number  
Serial Interface Address:h217  
Reserved  
10.4.23  
TRUNK2_HASH3 - Trunk group 2 hash result 8, 9, 10 destination port number  
Serial Interface Address:h218  
Reserved  
10.4.24  
number  
TRUNK2_HASH4 - Trunk group 2 hash result 10, 11, 12, 13 destination port  
Serial Interface Address:h219  
Reserved  
10.4.25  
TRUNK2_HASH5 - Trunk group 2 hash result 13, 14, 15 destination port number  
Serial Interface Address:h21A  
Reserved  
10.4.26  
TRUNK3_HASH0 - Trunk group 3 hash result 0, 1, 2 destination port number  
Serial Interface Address:h21B  
Reserved  
10.4.27  
TRUNK3_HASH1 - Trunk group 3 hash result 2, 3, 4, 5 destination port number  
Serial Interface Address:h21C  
Reserved  
SEMICMF.019  
51  
MVTX2801AG  
Data Sheet  
10.4.28  
TRUNK3_HASH2 - Trunk group 3 hash result 5, 6, 7 destination port number  
Serial Interface Address:h21D  
Reserved  
10.4.29  
TRUNK3_HASH3 - Trunk group 3 hash result 8, 9, 10 destination port number  
Serial Interface Address:h21E  
Reserved  
10.4.30  
number  
TRUNK3_HASH4 - Trunk group 3 hash result 10, 11, 12, 13 destination port  
Serial Interface Address:h21F  
Reserved  
10.4.31  
TRUNK3_HASH5 - Trunk group 3 hash result 13, 14, 15 destination port number  
Serial Interface Address:h220  
Reserved  
10.4.32  
10.4.33  
Multicast Hash Registers  
Multicast_HASH00 - Multicast hash result0 mask byte [7:0]  
Serial Interface Address:h221  
Accessed by serial interface (R/W)  
Reserved  
10.4.34  
Multicast_HASH01 - Multicast hash result1 mask byte [7:0]  
Serial Interface Address:h222  
Accessed by serial interface (R/W)  
Reserved  
10.4.35  
Multicast_HASH02 - Multicast hash result2 mask byte [7:0]  
Serial Interface Address:h223  
Accessed by serial interface (R/W)  
Reserved  
10.4.36  
Multicast_HASH03 - Multicast hash result3 mask byte [7:0]  
Serial Interface Address:h224  
Accessed by serial interface (R/W)  
Reserved  
SEMICMF.019  
52  
Data Sheet  
MVTX2801AG  
10.4.37  
Multicast_HASH04 - Multicast hash result4 mask byte [7:0]  
Serial Interface Address:h225  
Accessed by serial interface (R/W)  
Reserved  
10.4.38  
Multicast_HASH05 - Multicast hash result5 mask byte [7:0]  
Serial Interface Address:h226  
Accessed by serial interface (R/W)  
Reserved  
10.4.39  
Multicast_HASH06 - Multicast hash result6 mask byte [7:0]  
Serial Interface Address:h227  
Accessed by serial interface (R/W)  
Reserved  
10.4.40  
Multicast_HASH07 - Multicast hash result7 mask byte [7:0]  
Serial Interface Address:h228  
Accessed by serial interface (R/W)  
Reserved  
10.4.41  
Multicast_HASH08 - Multicast hash result8 mask byte [7:0]  
Serial Interface Address:h229  
Accessed by serial interface (R/W)  
Reserved  
10.4.42  
Multicast_HASH09 - Multicast hash result9 mask byte [7:0]  
Serial Interface Address:h22A  
Accessed by serial interface (R/W)  
Reserved  
10.4.43  
Multicast_HASH10 - Multicast hash result10 mask byte [7:0]  
Serial Interface Address:h22B  
Accessed by serial interface (R/W)  
Reserved  
SEMICMF.019  
53  
MVTX2801AG  
Data Sheet  
10.4.44  
Multicast_HASH11 - Multicast hash result11 mask byte [7:0]  
Serial Interface Address:h22C  
Accessed by serial interface (R/W)  
Reserved  
10.4.45  
Multicast_HASH12 - Multicast hash result12 mask byte [7:0]  
Serial Interface Address:h22D  
Accessed by serial interface (R/W)  
Reserved  
10.4.46  
Multicast_HASH13 - Multicast hash result13 mask byte [7:0]  
Serial Interface Address:h22E  
Accessed by serial interface (R/W)  
Reserved  
10.4.47  
Multicast_HASH14 - Multicast hash result14 mask byte [7:0]  
Serial Interface Address:h22F  
Accessed by serial interface (R/W)  
Reserved  
10.4.48  
Multicast_HASH15 - Multicast hash result15 mask byte [7:0]  
Serial Interface Address:h230  
Accessed by serial interface (R/W)  
Reserved  
10.4.49  
Multicast_HASHML - Multicast hash bit[8] for result7-0  
Serial Interface Address:h231  
Accessed by serial interface (R/W)  
Reserved  
10.4.50  
Multicast_HASHMH - Multicast hash BIT[8] for result 15-8  
Serial Interface Address:h232  
Accessed by serial interface (R/W)  
Reserved  
SEMICMF.019  
54  
Data Sheet  
MVTX2801AG  
10.5  
Group 3 Address - CPU Port Configuration Group  
10.5.1  
MAC0 - CPU Mac address byte 0  
Serial Interface Address:h300  
Reserved  
10.5.2  
MAC1 - CPU Mac address byte 1  
Serial Interface Address:h301  
Reserved  
10.5.3  
MAC2 - CPU Mac address byte 2  
Serial Interface Address:h302  
Reserved  
10.5.4  
MAC3 - CPU Mac address byte 3  
Serial Interface Address:h303  
Reserved  
10.5.5  
MAC4 - CPU Mac address byte 4  
Serial Interface Address:h304  
Reserved  
10.5.6  
MAC5 - CPU Mac address byte 5  
Serial Interface Address:h305  
Reserved  
10.5.7  
INT_MASK0 - Interrupt Mask 0  
Serial Interface Address:h306  
Reserved  
10.5.8  
INT_MASK1 - Interrupt Mask 1  
Serial Interface Address:h307  
Reserved  
10.5.9  
INT_STATUS0 - Masked Interrupt Status Register0  
Serial Interface Address:h30A  
Reserved  
SEMICMF.019  
55  
MVTX2801AG  
Data Sheet  
10.5.10  
INT_STATUS1 - Masked Interrupt Status Register1  
Serial Interface Address:h30B  
Reserved  
10.5.11  
INTP_MASK0 - Interrupt Mask for MAC Port 0,1  
Serial Interface Address:h30C  
Reserved  
10.5.12  
INTP_MASK1 - Interrupt Mask for MAC Port 2,3  
Serial Interface Address:h30D  
Reserved  
10.5.13  
INTP_MASK4 - Interrupt Mask for MAC Port 4,5  
Serial Interface Address:h30E  
Reserved  
10.5.14  
INTP_MASK5 - Interrupt Mask for MAC Port 6,7  
Serial Interface Address:h30F  
Reserved  
10.5.15  
RQS - Receive Queue Select  
Serial Interface Address:h310  
Reserved  
10.5.16  
RQSS - Receive Queue Status  
Serial Interface Address:h311  
Reserved  
10.5.17  
TX_AGE - Tx Queue Aging timer  
I2C Address: h03B;Serial Interface Address:h312  
Accessed by serial interface and I2C (R/W)  
7
5
0
Tx Queue Agent  
Bit[4:0]:  
Bit[5]:  
Unit of 100ms (Default 8). Disable transmission queue aging if value is zero.  
Must be set to '0'  
Reserved  
Bit[7:6]:  
SEMICMF.019  
56  
Data Sheet  
MVTX2801AG  
10.6  
Group 4 Address - Search Engine Group  
10.6.1  
AGETIME_LOW - MAC address aging time Low  
I2C Address h03C; Serial Interface Address:h400  
Accessed by serial interface and I2C (R/W)  
Bit [7:0] Low byte of the MAC address aging timer. (Default 2c)  
Mac address aging is enable/disable by boot strap T_d[9].  
10.6.2  
AGETIME_HIGH -MAC address aging time High  
I2C Address h03D; Serial Interface Address h401  
Accessed by serial interface and I2C (R/W)  
Bit [7:0]: High byte of the MAC address aging timer. (Default 00)  
Aging time is based on the following equation:  
{AGETIME_TIME,AGETIME_LOW} X (# of MAC entries X100µsec)  
Note: the number of entries= 66K when T_d[5] is pull down (SRAM memory size = 512K) and 34K when T_d[5] is  
pull up (SRAM memory size = 256K).  
10.6.3  
V_AGETIME - VLAN to Port aging time  
Serial Interface Address h402  
Reserved  
10.6.4  
SE_OPMODE - Search Engine Operation Mode  
Serial Interface Address:h403  
Accessed by CPU (R/W)  
7
6
5
4
3
2
1
0
SL  
DMS  
DA  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Bit [3]:  
Bit [4]:  
Bit [5]:  
Bit [6]:  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Disable MCT speed-up aging (Default 0)  
- 1 - Disable speed-up aging when MCT resource is low.  
- 0 - Enable speed-up aging when MCT resource is low.  
SEMICMF.019  
57  
MVTX2801AG  
Data Sheet  
Bit [7]:  
Slow Learning (Default 0)  
- 1- Enable slow learning. Learning is temporary disabled when search demand is  
high  
- 0 - Learning is performed independent of search demand  
10.6.5  
SCAN - SCAN Control Register  
Serial interface Address h404  
Reserved  
10.7  
Group 5 Address - Buffer Control/QOS Group  
10.7.1  
FCBAT - FCB Aging Timer  
I2C Address h03E; Serial Interface Address:h500  
7
0
FCBAT  
Bit [7:0]:  
FCB Aging time. Unit of 1ms. (Default FF)  
FCBAT define the aging time out interval of FCB handle  
10.7.2  
QOSC - QOS Control  
I2C Address h03F; Serial Interface Address:h501  
Accessed by serial interface and I2C (R/W)  
7
0
Tos-d  
Tos-p  
VF1c  
fb  
Bit [0]:  
Bit [4]:  
QoS frame lost is OK. Priority will be available for flow control enabled  
source only when this bit is set (Default 0)  
Per VLAN (Port based) Multicast Flow Control (Default 0)  
- 0 - Disable  
- 1 - Enable  
Bit [5]:  
Bit [6]:  
Reserved  
Select TOS bits for Priority (Default 0)  
- 0 - Use TOS [4:2] bits to map the transmit priority  
- 1 - Use TOS [5:3] bits to map the transmit priority  
Bit [7]:  
select TOS bits for Drop (Default 0)  
- 0 - Use TOS [4:2] bits to map the drop priority  
- 1 - Use TOS [5:3] bits to map the drop priority  
SEMICMF.019  
58  
Data Sheet  
MVTX2801AG  
10.7.3  
FCR - Flooding Control Register  
I2C Address h040; Serial Interface Address:h502  
Accessed by serial interface and I2C (R/W)  
7
0
Tos  
TimeBase  
U2MR  
Bit [3:0]:  
Bit [6:4]:  
U2MR: Unicast to Multicast Rate. Units in terms of time base defined in bits  
[6:4]. This is used to limit the amount of flooding traffic. The value in U2MR  
specifies how many packets are allowed to flood within the time specified by  
bit [6:4]. To disable this function, program U2MR to 0.  
(Default = 4'h8)  
TimeBase: (Default = 000)  
- 000 = 10us  
- 001 = 20us  
- 010 = 40us  
- 011 = 80us  
- 100 = 160us  
- 101 = 320us  
- 110 = 640us  
- 111 = 10us, same as 000.  
Bit [7]:  
Select VLAN tag or TOS field (IP packets) to be preferentially picked to map  
transmit priority and drop priority (Default = 0).  
- 0 - Select VLAN tag priority field over TOS field  
- 1 - Select TOS field over VLAN tag priority field  
10.7.4  
AVPML - VLAN Priority Map  
I2C Address h041; Serial Interface Address:h503  
Accessed by serial interface and I2C (R/W)  
7
0
Registers AVPML, AVPMM, and AVPMH allow the eight VLAN priorities to map into eight internal level transmit  
priorities. Under the internal transmit priority, “seven” is the highest priority where as “zero” is the lowest. This  
feature allows the user the flexibility of redefining the VLAN priority field. For example, programming a value of 7  
into bit 2:0 of the AVPML register would map packet VLAN priority) into internal transmit priority 7. The new priority  
is used only inside the 2801. When the packet goes out it carries the original priority.  
Bit [2:0]:  
Bit [5:3]:  
Bit [7:6]:  
Mapped priority of 0 (Default 000)  
Mapped priority of 1 (Default 001)  
Mapped priority of 2 (Default 10)  
SEMICMF.019  
59  
MVTX2801AG  
Data Sheet  
10.7.5  
AVPMM - VLAN Priority Map  
I2C Address h042, Serial Interface Address:h504  
Accessed by serial interface and I2C (R/W)  
7
0
Map VLAN priority into eight level transmit priorities:  
Bit [0]:  
Mapped priority of 2 (Default 0)  
Mapped priority of 3 (Default 011)  
Mapped priority of 4 (Default 100)  
Mapped priority of 5 (Default 1)  
Bit [3:1]:  
Bit [6:4]:  
Bit [7]:  
10.7.6  
AVPMH - VLAN Priority Map  
I2C Address h043, Serial Interface Address:h505  
Accessed by serial interface and I2C (R/W)  
7
0
Map VLAN priority into eight level transmit priorities:  
Bit [1:0]:  
Bit [4:2]:  
Bit [7:5]:  
Mapped priority of 5 (Default 10)  
Mapped priority of 6 (Default 110)  
Mapped priority of 7 (Default 111)  
10.7.7  
TOSPML - TOS Priority Map  
I2C Address h044, Serial Interface Address:h506  
Accessed by serial interface and I2C (R/W)  
7
0
Map TOS field in IP packet into four level transmit priorities  
Bit [2:0]:  
Bit [5:3]:  
Bit [7:6]:  
Mapped priority when TOS is 0 (Default 000)  
Mapped priority when TOS is 1 (Default 001)  
Mapped priority when TOS is 2 (Default 10)  
SEMICMF.019  
60  
Data Sheet  
MVTX2801AG  
10.7.8  
TOSPMM - TOS Priority Map  
I2C Address h045, Serial Interface Address:h507  
Accessed by serial interface and I2C (R/W)  
7
0
Map TOS field in IP packet into four level transmit priorities  
Bit [0]:  
Mapped priority when TOS is 2 (Default 0)  
Mapped priority when TOS is 3 (Default 011)  
Mapped priority when TOS is 4 (Default 100)  
Mapped priority when TOS is 5 (Default 1)  
Bit [3:1]:  
Bit [6:4]:  
Bit [7]:  
10.7.9  
TOSPMH - TOS Priority Map  
I2C Address h046, Serial Interface Address:h508  
Accessed by serial interface and I2C (R/W)  
7
0
Map TOS field in IP packet into four level transmit priorities:  
Bit [1:0]:  
Bit [4:2]:  
Bit [7:5]:  
Mapped priority when TOS is 5 (Default 01)  
Mapped priority when TOS is 6 (Default 110)  
Mapped priority when TOS is 7 (Default 111)  
10.7.10  
AVDM - VLAN Discard Map  
I2C Address h047, Serial Interface Address:h509  
Accessed by serial interface and I2C (R/W)  
7
0
Map VLAN priority into frame discard when low priority buffer usage is above threshold. Frames with high discard  
(drop) priority will be discarded (dropped) before frames with low drop priority.  
- 0 - Low discard priority  
- 1 - High discard priority  
SEMICMF.019  
61  
MVTX2801AG  
Data Sheet  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Bit [3]:  
Bit [4]:  
Bit [5]:  
Bit [6]:  
Bit [7]:  
Frame discard priority for frames with VLAN transmit priority 0 (Default 0)  
Frame discard priority for frames with VLAN transmit priority 1 (Default 0)  
Frame discard priority for frames with VLAN transmit priority 2 (Default 0)  
Frame discard priority for frames with VLAN transmit priority 3 (Default 0)  
Frame discard priority for frames with VLAN transmit priority 4 (Default 0)  
Frame discard priority for frames with VLAN transmit priority 5 (Default 0)  
Frame discard priority for frames with VLAN transmit priority 6 (Default 0)  
Frame discard priority for frames with VLAN transmit priority 7 (Default 0)  
10.7.11  
TOSDML - TOS Discard Map  
I2C Address h048, Serial Interface Address:h50A  
Accessed by serial interface and I2C (R/W)  
7
0
Map TOS into frame discard when low priority buffer usage is above threshold  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Bit [3]:  
Bit [4]:  
Bit [5]:  
Bit [6]:  
Bit [7]:  
Frame discard priority for frames with TOS transmit priority 0 (Default 0)  
Frame discard priority for frames with TOS transmit priority 1 (Default 0)  
Frame discard priority for frames with TOS transmit priority 2 (Default 0)  
Frame discard priority for frames with TOS transmit priority 3 (Default 0)  
Frame discard priority for frames with TOS transmit priority 4 (Default 0)  
Frame discard priority for frames with TOS transmit priority 5 (Default 0)  
Frame discard priority for frames with TOS transmit priority 6 (Default 0)  
Frame discard priority for frames with TOS transmit priority 7 (Default 0)  
10.7.12  
BMRC - Broadcast/Multicast Rate Control  
I2C Address h049, Serial Interface Address:h50B  
Accessed by serial interface and I2C (R/W)  
7
0
Broadcast Rate  
Multicast Rate  
This broadcast and multicast rate defines for each port the number of incoming packet allowed to be forwarded  
within a specified time. Once the packet rate is reached, packets will be dropped. To turn off the rate limit, program  
the field to 0.  
SEMICMF.019  
62  
Data Sheet  
MVTX2801AG  
Bit [3:0]:  
Multicast Rate Control Number of multicast packets allowed within the time  
defined in bits 6 to 4 of the Flooding Control Register (FCR). (Default 0).  
Bit [7:4]:  
Broadcast Rate Control Number of broadcast packets allowed within the time  
defined in bits 6 to 4 of the Flooding Control Register (FCR). (Default 0)  
10.7.13  
UCC - Unicast Congestion Control  
I2C Address h04A, Serial Interface Address:h50C  
Accessed by serial interface and I2C (R/W)  
7
0
Unicast congest threshold  
Bit [7:0]:  
Number of frame count. Used for best effort dropping at B% when  
destination port's best effort queue reaches UCC threshold and shared pool  
is all in use. Granularity 16 frame. (Default: h07)  
10.7.14  
MCC - Multicast Congestion Control  
I2C Address h0B7, Serial Interface Address:h50D  
Accessed by serial interface and I2C (R/W)  
7
0
FC reaction prd  
Multicast congest threshold  
Bit [3:0]:  
In multiples of two. Used for triggering MC flow control when destination  
port's best effort queue reaches MCC threshold. (Default 5'h08)  
Bit [4]:  
Must be 0  
Bit [7:5]:  
Flow control reaction period. ([7:5] 4)+3 usec (Default 3'h2).  
SEMICMF.019  
63  
MVTX2801AG  
Data Sheet  
10.7.15  
PRG - Port Reservation for Giga ports  
I2C Address h0B9, Serial Interface Address:h50F  
Accessed by serial interface and I2C (R/W)  
7
0
Buffer low thd  
Per source buffer Reservation  
Bit [3:0]:  
Per source buffer reservation. Define the space in the FDB reserved for  
each port. Expressed in multiples of 16 packets. For each packet 1536  
bytes are reserved in the memory.  
Default: 4'hA for 4MB memory  
4'h6 for 2MB memory  
4'h3 for 1MB memory  
Bits [7:4]:  
Expressed in multiples of 16 packets. Threshold for dropping all best effort  
frames when destination port best effort queues reach UCC threshold and  
shared pool is all used and source port reservation is at or below the  
PRG[7:4] level. Also the threshold for initiating UC flow control.  
Default: 4'h6 for 4MB memory  
4'h2 for 2MB memory  
4'h1 for 1MB memory  
FCB Reservation  
10.7.16  
SFCB - Share FCB Size  
I2C Address h04E), Serial Interface Address:h510  
Accessed by serial interface and I2C (R/W)  
7
0
Shared buffer size  
Bits [7:0]:  
Expressed in multiples of 8. Buffer reservation for shared pool.  
- (Default 4G & 4M = 8'd62)  
- (Default 4G & 2M = 8'd20)  
- (Default 4G & 1M = 8'd08)  
- (Default 8G & 4M = 8'd150)  
- (Default 8G & 2M = 8'd55)  
- (Default 8G & 1M = 8'd25)  
SEMICMF.019  
64  
Data Sheet  
MVTX2801AG  
10.7.17  
C2RS - Class 2 Reserved Size  
I2C Address h04F, Serial Interface Address:h511  
Accessed by serial interface and I2C (R/W)  
7
0
Class 2 FCB Reservation  
Bits [7:0]:  
Buffer reservation for class 2 (third lowest priority). Granularity 2.  
(Default 8'h00)  
10.7.18  
C3RS - Class 3 Reserved Size  
I2C Address h050, Serial Interface Address:h512  
Accessed by serial interface and I2C (R/W)  
7
0
Class 3 FCB Reservation  
Bits [7:0]:  
Buffer reservation for class 3. Granularity 2. (Default 8'h00)  
10.7.19 C4RS - Class 4 Reserved Size  
I2C Address h051, Serial Interface Address:h513  
Accessed by serial interface and I2C (R/W)  
7
0
Class 4 FCB Reservation  
Bits [7:0]:  
Buffer reservation for class 4. Granularity 2. (Default 8'h00)  
10.7.20 C5RS - Class 5 Reserved Size  
I2C Address h052; Serial Interface Address:h514  
Accessed by serial interface and I2C (R/W)  
7
0
Class 5 FCB Reservation  
Bits [7:0]:  
Buffer reservation for class 5. Granularity 2. (Default 8'h00)  
SEMICMF.019  
65  
MVTX2801AG  
Data Sheet  
10.7.21  
C6RS - Class 6 Reserved Size  
I2C Address h053; Serial Interface Address:h515  
Accessed by serial interface and I2C (R/W)  
7
0
Class 6 FCB Reservation  
Bits [7:0]:  
Buffer reservation for class 6 (second highest priority). Granularity 2.  
(Default 8'h00)  
10.7.22  
C7RS - Class 7 Reserved Size  
I2C Address h054; Serial Interface Address:h516  
Accessed by serial interface and I2C (R/W)  
7
0
Class 7 FCB Reservation  
Bits [7:0]:  
Buffer reservation for class 7 (highest priority). Granularity 2.  
(Default 8'h00)  
Classes Byte Gigabit Port 0  
10.7.23  
QOSC00 - BYTE_C2_G0  
I2C Address h055, Serial Interface Address:h517  
Bits [7:0]:  
Byte count threshold for C2 queue WRED (Default 8'h28)  
(1024byte/unit when Delay Bound is used)  
(1024byte/unit when WFQ is used)  
10.7.24  
QOSC01 - BYTE_C3_G0  
I2C Address h056, Serial Interface Address:h518  
Bits [7:0]:  
Byte count threshold for C3 queue WRED (Default 8'h28)  
(512byte/unit when Delay Bound is used)  
(1024byte/unit when WFQ is used)  
SEMICMF.019  
66  
Data Sheet  
MVTX2801AG  
10.7.25  
QOSC02 - BYTE_C4_G0  
I2C Address h057, Serial Interface Address:h519  
Bits [7:0]:  
Byte count threshold for C4 queue WRED (Default 8'h28)  
(256byte/unit when Delay Bound is used)  
(1024byte/unit when WFQ is used)  
10.7.26  
QOSC03 - BYTE_C5_G0  
I2C Address h058, Serial Interface Address:h51A  
Bits [7:0]:  
Byte count threshold for C5 queue WRED (Default 8'h28)  
(128byte/unit when Delay Bound is used)  
(1024byte/unit when WFQ is used)  
10.7.27  
QOSC04 - BYTE_C6_G0  
I2C Address h059, Serial Interface Address:h51B  
Bits [7:0]:  
Byte count threshold for C6 queue WRED (Default 8'h50)  
(64byte/unit when Delay Bound is used)  
(1024byte/unit when WFQ is used)  
10.7.28  
QOSC05 - BYTE_C7_G0  
I2C Address h05A, Serial Interface Address:h51C  
Bits [7:0]:  
Byte count threshold for C6 queue WRED (Default 8'h50)  
(64byte/unit when Delay Bound is used)  
(1024byte/unit when WFQ is used)  
QOSC00 through QOSC05 represent the values F-A in Table 3 for Gigabit port 0. They are per-queue byte  
thresholds for weighted random early drop (WRED). QOSC05 represents A, and QOSC00 represents F.  
Classes Byte Gigabit Port 1  
10.7.29  
QOSC06 - BYTE_C2_G1  
I2C Address h05B, Serial Interface Address:h51D  
Bits [7:0]:  
Byte count threshold for C2 queue WRED (Default 8'h28)  
(1024byte/unit when Delay Bound is used)  
(1024byte/unit when WFQ is used)  
SEMICMF.019  
67  
MVTX2801AG  
Data Sheet  
10.7.30  
QOSC07 - BYTE_C3_G1  
I2C Address h05C, Serial Interface Address:h51E  
Bits [7:0]  
Byte count threshold for C3 queue WRED (Default 8'h28)  
(512 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
10.7.31  
QOSC08 - BYTE_C4_G1  
I2C Address h05D, Serial Interface Address:h51F  
Bits [7:0]:  
Byte count threshold for C4 queue WRED (Default 8'h28)  
(256 byte/unit when Delay Bound is used)  
(1024byte/unit when WFQ is used)  
10.7.32  
QOSC09 - BYTE_C5_G1  
I2C Address h05E, Serial Interface Address:h520  
Bits [7:0]:  
Byte count threshold for C5 queue WRED (Default 8'h28)  
(128 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
10.7.33  
QOSC0A - BYTE_C6_G1  
I2C Address h05F, Serial Interface Address:h521  
Bits [7:0]:  
Byte count threshold for C6 queue WRED (Default 8'h50)  
(64 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
10.7.34  
QOSC0B - BYTE_C7_G1  
I2C Address h060, Serial Interface Address:h522  
Bits [7:0]:  
Byte count threshold for C7 queue WRED (Default 8'h50)  
(64 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
QOSC06 through QOSC0B represent the values F-A in Table 3. They are per-queue byte thresholds for random  
early drop. QOSC0B represents A, and QOSC06 represents F.  
SEMICMF.019  
68  
Data Sheet  
MVTX2801AG  
Classes Byte Gigabit Port 2  
10.7.35  
QOSC0C - BYTE_C2_G2  
I2C Address h061, Serial Interface Address:h523  
Bits [7:0]:  
Byte count threshold for C2 queue WRED (Default 8'h28)  
(1024 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
10.7.36  
QOSC0D - BYTE_C3_G2  
I2C Address h062, Serial Interface Address:h524  
Bits [7:0]:  
Byte count threshold for C3 queue WRED (Default 8'h28)  
(512 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
10.7.37  
QOSC0E - BYTE_C4_G2  
I2C Address h063, Serial Interface Address:h525  
Bits [7:0]:  
Byte count threshold for C4 queue WRED (Default 8'h28)  
(256 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
10.7.38  
QOSC0F - BYTE_C5_G2  
I2C Address h064, Serial Interface Address:h526  
Bits [7:0]:  
Byte count threshold for C5 queue WRED (Default 8'h28)  
(128 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
10.7.39  
QOSC10 - BYTE_C6_G2  
I2C Address h065, Serial Interface Address:h527  
Bits [7:0]:  
Byte count threshold for C6 queue WRED (Default 8'h50)  
(64 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
SEMICMF.019  
69  
MVTX2801AG  
Data Sheet  
10.7.40  
QOSC11 - BYTE_C7_G2  
I2C Address h066, Serial Interface Address:h528  
Bits [7:0]:  
Byte count threshold for C7 queue WRED (Default 8'h50)  
(64 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
QOSC0C through QOSC11 represent the values F-A in Table 3 for Gigabit port 2. They are per-queue byte  
thresholds for random early drop. QOSC11 represents A, and QOSC0C represents F.  
Classes Byte Gigabit Port 3  
10.7.41  
QOSC12 - BYTE_C2_G3  
I2C Address h067, Serial Interface Address:h529  
Bits [7:0]:  
Byte count threshold for C2 queue WRED (Default 8'h28)  
(1024 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
10.7.42  
QOSC13 - BYTE_C3_G3  
I2C Address h068, Serial Interface Address:h52A  
Bits [7:0]:  
Byte count threshold for C3 queue WRED (Default 8'h28)  
(512 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
10.7.43  
QOSC14 - BYTE_C4_G3  
I2C Address h069, Serial Interface Address:h52B  
Bits [7:0]:  
Byte count threshold for C4 queue WRED (Default 8'h28)  
(256 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
10.7.44  
QOSC15 - BYTE_C5_G3  
I2C Address h06A, Serial Interface Address:h52C  
Bits [7:0]:  
Byte count threshold for C5 queue WRED (Default 8'h28)  
(128 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
10.7.45  
QOSC16 - BYTE_C6_G3  
I2C Address h06B, Serial Interface Address:h52D  
Bits [7:0]:  
Byte count threshold for C6 queue WRED (Default 8'h50)  
(64 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
SEMICMF.019  
70  
Data Sheet  
MVTX2801AG  
10.7.46  
QOSC17 - BYTE_C7_G3  
I2C Address h06C, Serial Interface Address:h52E  
Bits [7:0]:  
Byte count threshold for C7 queue WRED (Default 8'h50)  
(64 byte/unit when Delay Bound is used)  
(1024 byte/unit when WFQ is used)  
QOSC12 through QOSC17 represent the values F-A in Table 3 for Gigabit port 3. They are per-queue byte  
thresholds for random early drop. QOSC17 represents A, and QOSC12 represents F.  
Classes Byte Gigabit Port 4 (Useless in MVTX2801)  
10.7.47  
QOSC18 - BYTE_C2_G4  
I2C Address h06D, Serial Interface Address:h52F  
Bits [7:0]:  
Reserved  
10.7.48  
QOSC019 - BYTE_C3_G4  
I2C Address h06E, Serial Interface Address:h530  
Bits [7:0]:  
Reserved  
10.7.49  
QOSC1A - BYTE_C4_G4  
I2C Address h06F, Serial Interface Address:h531  
Bits [7:0]:  
Reserved  
10.7.50  
QOSC1B - BYTE_C5_G4  
I2C Address h070, Serial Interface Address:h532  
Bits [7:0]:  
Reserved  
10.7.51  
QOSC1C - BYTE_C6_G4  
I2C Address h071, Serial Interface Address:h533  
Bits [7:0]:  
Reserved  
SEMICMF.019  
71  
MVTX2801AG  
Data Sheet  
10.7.52  
QOSC1D- BYTE_C7_G4  
I2C Address h072, Serial Interface Address:h534  
Bits [7:0]:  
Reserved  
QOSC18 through QOSC1D are useless in MVTX2801.  
Classes Byte Gigabit Port 5 (useless in MVTX2801)  
10.7.53  
QOSC1E- BYTE_C2_G5  
I2C Address h073, Serial Interface Address:h535  
Bits [7:0]:  
Reserved  
10.7.54  
QOSC1F - BYTE_C3_G5  
I2C Address h074, Serial Interface Address:h536  
Bits [7:0]:  
Reserved  
10.7.55  
QOSC20 - BYTE_C4_G5  
I2C Address h075, Serial Interface Address:h537  
Bits [7:0]:  
Reserved  
10.7.56  
QOSC21 - BYTE_C5_G5  
I2C Address h076, Serial Interface Address:h538  
Bits [7:0]:  
Reserved  
10.7.57  
QOSC22 - BYTE_C6_G5  
I2C Address h077, Serial Interface Address:h539  
Bits [7:0]:  
Reserved  
10.7.58  
QOSC23 - BYTE_C7_G5  
I2C Address h078, Serial Interface Address:h53A  
Bits [7:0]:  
Reserved  
QOSC1E through QOSC23 are useless in MVTX2801.  
SEMICMF.019  
72  
Data Sheet  
MVTX2801AG  
Classes Byte Gigabit Port 6 (useless in MVTX2801)  
10.7.59  
QOSC24 - BYTE_C2_G6  
I2C Address h079, Serial Interface Address:h53B  
Bits [7:0]:  
Reserved  
10.7.60  
QOSC25 - BYTE_C3_G6  
I2C Address h07A, Serial Interface Address:h53C  
Bits [7:0]:  
Reserved  
10.7.61  
QOSC26 - BYTE_C4_G6  
I2C Address h07B, Serial Interface Address:h53D  
Bits [7:0]:  
Reserved  
10.7.62  
QOSC27 - BYTE_C5_G6  
I2C Address h07C, Serial Interface Address:h53E  
Bits [7:0]:  
Reserved  
10.7.63  
QOSC28 - BYTE_C6_G6  
I2C Address h07D, Serial Interface Address:h53F  
Bits [7:0]:  
Reserved  
10.7.64  
QOSC29 - BYTE_C7_G6  
I2C Address h07E, Serial Interface Address:h540  
Bits [7:0]:  
Reserved  
QOSC24 through QOSC29 are useless in MVTX2801.  
Classes Byte Gigabit Port 7 (useless in MVTX2801)  
10.7.65  
QOSC2A - BYTE_C2_G7  
I2C Address h07F, Serial Interface Address:h541  
Bits [7:0]:  
Reserved  
10.7.66  
QOSC2B - BYTE_C3_G7  
I2C Address h080, Serial Interface Address:h542  
Bits [7:0]:  
Reserved  
SEMICMF.019  
73  
MVTX2801AG  
Data Sheet  
10.7.67  
QOSC2C - BYTE_C4_G7  
I2C Address h081, Serial Interface Address:h543  
Bits [7:0]:  
Reserved  
10.7.68  
QOSC2D - BYTE_C5_G7  
I2C Address h082, Serial Interface Address:h544  
Bits [7:0]:  
Reserved  
10.7.69  
QOSC2E - BYTE_C6_G7  
I2C Address h083, Serial Interface Address:h545  
Bits [7:0]:  
Reserved  
10.7.70  
QOSC2F - BYTE_C7_G7  
I2C Address h084, Serial Interface Address:h546  
Bits [7:0]:  
Reserved  
QOSC00 through QOSC05 are useless in MVTX2801.  
Classes Byte Limit CPU  
10.7.71  
QOSC30 - BYTE_C01  
Serial Interface Address:h547  
Bits [7:0]:  
Reserved  
10.7.72  
QOSC31 - BYTE_C02  
Serial Interface Address:h548  
Bits [7:0]:  
Reserved  
SEMICMF.019  
74  
Data Sheet  
MVTX2801AG  
10.7.73  
QOSC32 - BYTE_C03  
Serial Interface Address:h549  
Bits [7:0]:  
Reserved  
Classes WFQ Credit Set 0  
10.7.74  
QOSC33 - CREDIT_C0_G0  
Serial Interface Address:h54A  
Bits [5:0]:  
Bits [7:6]:  
W0 - Credit register for WFQ. (Default 6'h04)  
Priority type. Define one of the four QoS mode of operation for port 0 (Default 2'00)  
- 00: Option 1  
- 01: Option 2  
- 10: Option 3  
- 11: Option 4  
See table below:  
Queue P7  
P6  
P5  
P4  
P3  
P2  
P1  
BE  
BE  
P0  
Option 1 Bit [7:6] = 2'B00 DELAY BOUND  
Option 2 Bit [7:6] = 2'B01  
Option 3 Bit [7:6] = 2'B10  
Option 4 Bit [7:6] = 2'B11  
Credit for WFQ - Bit [5:0]  
SP  
DELAY BOUND  
WFQ  
SP  
WFQ  
W7  
W6  
W5  
W4  
W3  
W2  
W1  
W0  
10.7.75  
QOSC34 - CREDIT_C1_G0  
Serial Interface Address:h54B  
Bits [7]:  
Bits [6]:  
Flow control allow during WFQ scheme. (Default 1'b1)  
0 = Not support QoS when the Source port Flow control status is on.  
1= Always support QoS)  
Flow control BE Queue only. (Default 1'b1)  
0= DO NOT send any frames if the XOFF is on.  
1= the P7-P2 frames can be sent even the XOFF is ON  
Bits [5:0]  
Fc_allow  
W1 - Credit register. (Default 4'h04)  
Fc_be_only  
Lost_ok  
Egress- for dest fc_status Ingress- for src fc status  
0
0
0
Go to BE Queue if (Src FC or Des FC on)  
otherwise Normal  
0
0
1
Go to BE Queue if (Dest FC on) otherwise  
Normal  
SEMICMF.019  
75  
MVTX2801AG  
Data Sheet  
1
0
0
(WFQ only) Go to BE Queue if (Src FC on)  
otherwise BAD  
1
0
1
1
1
0
1
(WFQ only) Always Normal  
Go to BE Queue if (Src FC on)  
Always Normal  
X
X
10.7.76  
QOSC35 - CREDIT_C2_G0  
Serial Interface Address:h54C  
Bits [5:0]  
Bits [7:6]:  
W2 - Credit register. (Default 4'h04)  
Reserved  
10.7.77  
QOSC36 - CREDIT_C3_G0  
Serial Interface Address:h54D  
Bits [5:0]  
Bits [7:6]:  
W3 - Credit register. (Default 4'h04)  
Reserved  
10.7.78  
QOSC37 - CREDIT_C4_G0  
Serial Interface Address:h54E  
Bits [5:0]  
Bits [7:6]:  
W4 - Credit register. (Default 4'h04)  
Reserved  
10.7.79  
QOSC38 - CREDIT_C5_G0  
Serial Interface Address:h54F  
Bits [5:0]  
Bits [7:6]:  
W5 - Credit register. (Default 5'h8)  
Reserved  
10.7.80  
QOSC39- CREDIT_C6_G0  
Serial Interface Address:h550  
Bits [5:0]  
Bits [7:6]:  
W6 - Credit register. (Default 5'h8)  
Reserved  
SEMICMF.019  
76  
Data Sheet  
MVTX2801AG  
10.7.81  
QOSC3A- CREDIT_C7_G0  
Serial Interface Address:h551  
Bits [5:0]  
Bits [7:6]:  
W7 - Credit register. (Default 5'h10)  
Reserved  
QOSC33 through QOSC3Arepresents the set of WFQ parameters (see section 7.5) for Gigabit port 0. The  
granularity of the numbers (bits [5:0]) is 1, and their sum must be 64. QOSC33 corresponds to W0, and QOSC3A  
corresponds to W7.  
Classes WFQ Credit Port G1  
10.7.82  
QOSC3B - CREDIT_C0_G1  
Serial Interface Address:h552  
Bits [5:0]:  
Bits [7:6]:  
W0 - Credit register for WFQ. (Default 6'h04)  
Priority type. Define one of the four QoS mode of operation for port 1 (Default 2'00)  
- 00: Option 1  
- 01: Option 2  
- 10: Option 3  
- 11: Option 4  
See table below:  
Queue P7  
P6  
P5  
P4  
P3  
P2  
P1  
BE  
BE  
P0  
Option 1 Bit [7:6] = 2'B00 DELAY BOUND  
Option 2 Bit [7:6] = 2'B01 SP  
Option 3 Bit [7:6] = 2'B10 SP  
Option 4 Bit [7:6] = 2'B11 WFQ  
DELAY BOUND  
WFQ  
Credit for WFQ - Bit [5:0]  
W7  
W6  
W5  
W4  
W3  
W2  
W1  
W0  
10.7.83  
QOSC3C - CREDIT_C1_G1  
Serial Interface Address:h54B  
Bits [7]:  
Bits [6]:  
Bits [5:0]  
Flow control allow during WFQ scheme. (Default 1'b1)  
0 = Not support QoS when the Source port Flow control status is on.  
1= Always support QoS)  
Flow control BE Queue only. (Default 1'b1)  
0= DO NOT send any frames if the XOFF is on.  
1= the P7-P2 frames can be sent even the XOFF is ON  
W1 - Credit register. (Default 4'h04)  
SEMICMF.019  
77  
MVTX2801AG  
Data Sheet  
Fc_allow  
Fc_be_only  
Lost_ok  
Egress- for dest fc_status Ingress- for src  
fc status  
0
0
0
Go to BE Queue if (Src FC or Des FC on) otherwise  
Normal  
0
1
0
0
1
0
Go to BE Queue if (Dest FC on) otherwise Normal  
(WFQ only) Go to BE Queue if (Src FC on) otherwise  
BAD  
1
X
X
0
1
1
1
0
1
(WFQ only) Always Normal  
Go to BE Queue if (Src FC on)  
Always Normal  
10.7.84  
QOSC3D - CREDIT_C2_G1  
Serial Interface Address:h553  
Bits [5:0]  
Bits [7:6]:  
W2 - Credit register. (Default 4'h04)  
Reserved  
10.7.85  
QOSC3E - CREDIT_C3_G1  
Serial Interface Address:h554  
Bits [5:0]  
Bits [7:6]:  
W3 - Credit register. (Default 4'h04)  
Reserved  
10.7.86  
QOSC3F - CREDIT_C4_G1  
Serial Interface Address:h555  
Bits [5:0]  
Bits [7:6]:  
W4 - Credit register. (Default 4'h04)  
Reserved  
10.7.87  
QOSC40 - CREDIT_C5_G1  
Serial Interface Address:h556  
Bits [5:0]  
Bits [7:6]:  
W5 - Credit register. (Default 5'h8)  
Reserved  
10.7.88  
QOSC41- CREDIT_C6_G1  
Serial Interface Address:h557  
Bits [5:0]  
Bits [7:6]:  
W6 - Credit register. (Default 5'h8)  
Reserved  
SEMICMF.019  
78  
Data Sheet  
MVTX2801AG  
10.7.89  
QOSC42- CREDIT_C7_G1  
Serial Interface Address:h558  
Bits [5:0]  
Bits [7:6]:  
W7 - Credit register. (Default 5'h10)  
Reserved  
QOSC3B through QOSC42 represents the set of WFQ parameters (see section 7.5) for Gigabit port 1. The  
granularity of the numbers (bits [5:0]) is 1, and their sum must be 64. QOSC3B corresponds to W0, and QOSC42  
corresponds to W7.  
Classes WFQ Credit Port G2  
10.7.90  
QOSC43 - CREDIT_C0_G2  
Serial Interface Address:h55A  
Bits [5:0]:  
Bits [7:6]:  
W0 - Credit register for WFQ. (Default 6'h04)  
Priority type. Define one of the four QoS mode of operation for port 2 (Default 2'00)  
- 00: Option 1  
- 01: Option 2  
- 10: Option 3  
- 11: Option 4  
See table below:  
Queue P7  
P6  
P5  
P4  
P3  
P2  
P1  
BE  
BE  
P0  
Option 1 Bit [7:6] = 2'B00  
Option 2 Bit [7:6] = 2'B01  
Option 3 Bit [7:6] = 2'B10  
Option 4 Bit [7:6] = 2'B11  
Credit for WFQ - Bit [5:0]  
DELAY BOUND  
SP  
DELAY BOUND  
WFQ  
SP  
WFQ  
W7  
W6  
W5  
W4  
W3  
W2  
W1  
W0  
10.7.91  
QOSC44 - CREDIT_C1_G2  
Serial Interface Address:h55B  
Bits [7]:  
Bits [6]:  
Bits [5:0]  
Flow control allow during WFQ scheme. (Default 1'b1)  
0 = Not support QoS when the Source port Flow control status is on.  
1= Always support QoS)  
Flow control BE Queue only. (Default 1'b1)  
0= DO NOT send any frames if the XOFF is on.  
1= the P7-P2 frames can be sent even the XOFF is ON  
W1 - Credit register. (Default 4'h04)  
SEMICMF.019  
79  
MVTX2801AG  
Data Sheet  
Fc_allow  
Fc_be_only  
Lost_ok  
Egress- for dest fc_status Ingress- for src  
fc status  
0
0
0
Go to BE Queue if (Src FC or Des FC on) otherwise  
Normal  
0
1
0
0
1
0
Go to BE Queue if (Dest FC on) otherwise Normal  
(WFQ only) Go to BE Queue if (Src FC on) otherwise  
BAD  
x
0
1
(WFQ only)  
Always Normal  
X
X
1
1
0
1
Go to BE Queue if (Src FC on)  
Always Normal  
10.7.92  
QOSC45 - CREDIT_C2_G2  
Serial Interface Address:h55C  
Bits [5:0]  
Bits [7:6]:  
W2 - Credit register. (Default 4'h04)  
Reserved  
10.7.93  
QOSC46 - CREDIT_C3_G2  
Serial Interface Address:h55D  
Bits [5:0]  
Bits [7:6]:  
W3 - Credit register. (Default 4'h04)  
Reserved  
10.7.94  
QOSC47 - CREDIT_C4_G2  
Serial Interface Address:h55E  
Bits [5:0]  
Bits [7:6]:  
W4 - Credit register. (Default 4'h04)  
Reserved  
10.7.95  
QOSC48 - CREDIT_C5_G2  
Serial Interface Address:h55F  
Bits [5:0]  
Bits [7:6]:  
W5 - Credit register. (Default 5'h8)  
Reserved  
10.7.96  
QOSC49- CREDIT_C6_G2  
Serial Interface Address:h560  
Bits [5:0]  
Bits [7:6]:  
W6 - Credit register. (Default 5'h8)  
Reserved  
SEMICMF.019  
80  
Data Sheet  
MVTX2801AG  
10.7.97  
QOSC4A- CREDIT_C7_G2  
Serial Interface Address:h561  
Bits [5:0]  
Bits [7:6]:  
W7 - Credit register. (Default 5'h10)  
Reserved  
QOSC43 through QOSC4Arepresents the set of WFQ parameters (see section 7.5) for Gigabit port 2. The  
granularity of the numbers (bits [5:0]) is 1, and their sum must be 64. QOSC43 corresponds to W0, and QOSC4A  
corresponds to W7.  
Classes WFQ Credit Port G3  
10.7.98  
QOSC4B - CREDIT_C0_G3  
Serial Interface Address:h562  
Bits [5:0]:  
Bits [7:6]:  
W0 - Credit register for WFQ. (Default 6'h04)  
Priority type. Define one of the four QoS mode of operation for port 3  
(Default 2'00)  
- 00: Option 1  
- 01: Option 2  
- 10: Option 3  
- 11: Option 4  
See table below:  
Queue P7 P6 P5 P4 P3 P2 P1 P0  
Option 1 Bit [7:6] = 2'B00  
Option 2 Bit [7:6] = 2'B01  
Option 3 Bit [7:6] = 2'B10  
Option 4 Bit [7:6] = 2'B11  
Credit for WFQ - Bit [5:0]  
DELAY BOUND  
BE  
BE  
SP  
DELAY BOUND  
WFQ  
SP  
WFQ  
W7 W6 W5 W4 W3 W2 W1 W0  
10.7.99  
QOSC4 - CREDIT_C1_G3  
Serial Interface Address:h563  
Bits [7]:  
Bits [6]:  
Bits [5:0]  
Flow control allow during WFQ scheme. (Default 1'b1)  
0 = Not support QoS when the Source port Flow control status is on.  
1= Always support QoS)  
Flow control BE Queue only. (Default 1'b1)  
(0= DO NOT send any frames if the XOFF is on.  
(1= the P7-P2 frames can be sent even the XOFF is ON)  
W1 - Credit register. (Default 4'h04)  
SEMICMF.019  
81  
MVTX2801AG  
Data Sheet  
Fc_allow  
Fc_be_only  
Lost_ok  
Egress- for dest fc_status Ingress- for  
src fc status  
0
0
0
Go to BE Queue if (Src FC or Des FC on) otherwise  
Normal  
0
1
0
0
1
0
Go to BE Queue if (Dest FC on) otherwise Normal  
(WFQ only) Go to BE Queue if (Src FC on) otherwise  
BAD  
1
0
1
1
0
(WFQ only) Always Normal  
Go to BE Queue if (Src FC on)  
Always Normal  
X
X
1
1
10.7.100  
QOSC4D - CREDIT_C2_G3  
Serial Interface Address:h564  
Bits [5:0]  
Bits [7:6]:  
W2 - Credit register. (Default 4'h04)  
Reserved  
10.7.101  
QOSC4E - CREDIT_C3_G3  
Serial Interface Address:h565  
Bits [5:0]  
Bits [7:6]:  
W3 - Credit register. (Default 4'h04)  
Reserved  
10.7.102  
QOSC4F - CREDIT_C4_G3  
Serial Interface Address:h566  
Bits [5:0]  
Bits [7:6]:  
W4 - Credit register. (Default 4'h04)  
Reserved  
10.7.103  
QOSC50 - CREDIT_C5_G3  
Serial Interface Address:h567  
Bits [5:0]  
Bits [7:6]:  
W5 - Credit register. (Default 5'h8)  
Reserved  
10.7.104  
QOSC51- CREDIT_C6_G3  
Serial Interface Address:h568  
Bits [5:0]  
Bits [7:6]:  
W6 - Credit register. (Default 5'h8)  
Reserved  
SEMICMF.019  
82  
Data Sheet  
MVTX2801AG  
10.7.105  
QOSC52- CREDIT_C7_G3  
Serial Interface Address:h569  
Bits [5:0]  
Bits [7:6]:  
W7 - Credit register. (Default 5'h10)  
Reserved  
QOSC4B through QOSC52 represents the set of WFQ parameters (see section 7.5) for Gigabit port 3. The  
granularity of the numbers (bits [5:0]) is 1, and their sum must be 64. QOSC4B corresponds to W0, and QOSC52  
corresponds to W7.  
Classes WFQ Credit Port G4 (useless in MVTX2801)  
10.7.106  
QOSC53 - CREDIT_C0_G4  
Serial Interface Address:h56A  
Bits [7:0]:  
Reserved  
10.7.107  
QOSC54 - CREDIT_C1_G4  
Serial Interface Address:h56B  
Bits [7:0]:  
Reserved  
10.7.108  
QOSC55 - CREDIT_C2_G4  
Serial Interface Address:h56C  
Bits [7:0]  
Reserved  
10.7.109  
QOSC56 - CREDIT_C3_G4  
Serial Interface Address:h56D  
Bits [7:0]  
Reserved  
10.7.110  
QOSC57 - CREDIT_C4_G4  
Serial Interface Address:h56E  
Bits [7:0]  
Reserved  
10.7.111  
QOSC58 - CREDIT_C5_G4  
Serial Interface Address:h56F  
Bits [7:0]  
Reserved  
10.7.112  
QOSC59- CREDIT_C6_G4  
Serial Interface Address:h570  
Bits [7:0]  
Reserved  
SEMICMF.019  
83  
MVTX2801AG  
Data Sheet  
10.7.113  
QOSC5A- CREDIT_C7_G4  
Serial Interface Address:h571  
Bits [7:0]  
Reserved  
QOSC53 through QOSC5A are useless in MVTX2801.  
Classes WFQ Credit Port G5 (useless in MVTX2801)  
10.7.114  
QOSC5B - CREDIT_C0_G5  
Serial Interface Address:h572  
Bits [7:0]:  
Reserved  
10.7.115  
QOSC5C - CREDIT_C1_G5  
Serial Interface Address:h573  
Bits [7:0]:  
Reserved  
10.7.116  
QOSC5D - CREDIT_C2_G5  
Serial Interface Address:h574  
Bits [7:0]  
Reserved  
10.7.117  
QOSC5E - CREDIT_C3_G5  
Serial Interface Address:h575  
Bits [7:0]  
Reserve  
10.7.118  
QOSC5F - CREDIT_C4_G5  
Serial Interface Address:h576  
Bits [7:0]  
Reserved  
10.7.119  
QOSC60 - CREDIT_C5_G5  
Serial Interface Address:h577  
Bits [7:0]  
Reserved  
10.7.120  
QOSC61- CREDIT_C6_G5  
Serial Interface Address:h578  
Bits [7:0]  
Reserved  
SEMICMF.019  
84  
Data Sheet  
MVTX2801AG  
10.7.121  
QOSC62- CREDIT_C7_G5  
Serial Interface Address:h579  
Bits [7:0] Reserved  
QOSC5B through QOSC62 are useless.  
Classes WFQ Credit Port G6 (useless in MVTX2801)  
10.7.122  
QOSC63 - CREDIT_C0_G6  
Serial Interface Address:h57A  
Bits [7:0]:  
Reserved  
10.7.123  
QOSC64 - CREDIT_C1_G6  
Serial Interface Address:h57B  
Bits [7:0]:  
Reserved  
10.7.124  
QOSC65 - CREDIT_C2_G6  
Serial Interface Address:h57C  
Bits [7:0]  
Reserved  
10.7.125  
QOSC66 - CREDIT_C3_G6  
Serial Interface Address:h57D  
Bits [7:0]  
Reserved  
10.7.126  
QOSC67 - CREDIT_C4_G6  
Serial Interface Address:h57E  
Bits [7:0]  
Reserved  
10.7.127  
QOSC68 - CREDIT_C5_G6  
Serial Interface Address:h57F  
Bits [7:0]  
Reserved  
10.7.128  
QOSC69- CREDIT_C6_G6  
Serial Interface Address:h580  
Bits [7:0]  
Reserved  
SEMICMF.019  
85  
MVTX2801AG  
Data Sheet  
10.7.129  
QOSC6A- CREDIT_C7_G6  
Serial Interface Address:h581  
Bits [7:0]  
Reserved  
QOSC63 through QOSC6A are useless in MVTX2801  
Classes WFQ Credit Port G7 (useless in MVTX2801)  
10.7.130  
QOSC6B - CREDIT_C0_G7  
Serial Interface Address:h582  
Bits [7:0]:  
Reserved  
10.7.131  
QOSC6C - CREDIT_C1_G7  
Serial Interface Address:h583  
Bits [7:0]:  
Reserved  
10.7.132  
QOSC6D - CREDIT_C2_G7  
Serial Interface Address:h584  
Bits [7:0]  
Reserved  
10.7.133  
QOSC6E - CREDIT_C3_G7  
Serial Interface Address:h585  
Bits [7:0]  
Reserved  
10.7.134  
QOSC6F - CREDIT_C4_G7  
Serial Interface Address:h586  
Bits [7:0]  
Reserved  
10.7.135  
QOSC70 - CREDIT_C5_G7  
Serial Interface Address:h587  
Bits [7:0]  
Reserved  
10.7.136  
QOSC71- CREDIT_C6_G7  
Serial Interface Address:h588  
Bits [7:0]  
Reserved  
SEMICMF.019  
86  
Data Sheet  
MVTX2801AG  
10.7.137  
QOSC72- CREDIT_C7_G7  
Serial Interface Address:h589  
Bits [5:0]  
Reserved  
QOSC6B through QOSC72 are useless in MVTX2801  
Class 6 Shaper Control Port G0  
10.7.138  
QOSC73 - TOKEN_RATE_G0  
Serial Interface Address:h58A  
Bits [7:0]  
Bytes allow to transmit every frame time (0.512usec) when regulated by  
Shaper logic. (Default: 8'h08)  
10.7.139  
QOSC74 - TOKEN_LIMIT_G0  
Serial Interface Address:h58B  
Bits [7:0]  
Bytes allow to continue transmit out when regulated by Shaper logic.  
(16byte/unit) (Default: 8'hC0)  
QOSC73 and QOSC74 correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC73 is an  
integer less than 64, with granularity 1. QOSC74 is the programmed maximum value of the counter (maximum burst  
size). This value is expressed in multiples of 16. QOSC73 and QOSC74 apply to Gigabit port 0. Register  
QOSC39-CREDIT_C6_G0 programs the peak rate. See QoS application note for more information.  
Class 6 Shaper Control Port G1  
10.7.140  
QOSC75 - TOKEN_RATE_G1  
Serial Interface Address:h58C  
Bits [7:0]  
Bytes allow to transmit every frame time (0.512usec) when regulated by  
Shaper logic. (Default: 8'h08)  
10.7.141  
QOSC76 - TOKEN_LIMIT_G1  
Serial Interface Address:h58D  
Bits [7:0]  
Bytes allow to continue transmit out when regulated by Shaper logic.  
(16byte/unit) (Default: 8'hC0)  
QOSC75 and QOSC76 correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC75 is an  
integer less than 64, with granularity 1. QOSC76 is the programmed maximum value of the counter (maximum burst  
size). This value is expressed in multiples of 16. QOSC75 and QOSC76 apply to Gigabit port 1. Register  
QOSC41-CREDIT_C6_G1 programs the peak rate. See QoS application note for more information.  
SEMICMF.019  
87  
MVTX2801AG  
Data Sheet  
Class 6 Shaper Control Port G2  
10.7.142  
QOSC77 - TOKEN_RATE_G2  
Serial Interface Address:h58E  
Bits [7:0]  
Bytes allow to transmit every frame time (0.512usec) when regulated by  
Shaper logic. (Default: 8'h08)  
10.7.143  
QOSC78 - TOKEN_LIMIT_G2  
Serial Interface Address:h58F  
Bits [7:0]  
Bytes allow to continue transmit out when regulated by Shaper logic.  
(16byte/unit) (Default: 8'hC0)  
QOSC77 and QOSC78 correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC77 is an  
integer less than 64, with granularity 1. QOSC78 is the programmed maximum value of the counter (maximum burst  
size). This value is expressed in multiples of 16. QOSC77 and QOSC78 apply to Gigabit port 2. Register  
QOSC49-CREDIT_C6_G2 programs the peak rate. See QoS application note for more information.  
Class 6 Shaper Control Port G3  
10.7.144  
QOSC79 - TOKEN_RATE_G3  
Serial Interface Address:h590  
Bits [7:0]  
Bytes allow to transmit every frame time (0.512usec) when regulated by  
Shaper logic. (Default: 8'h08)  
10.7.145  
QOSC7A - TOKEN_LIMIT_G3  
Serial Interface Address:h591  
Bits [7:0]  
Bytes allow to continue transmit out when regulated by Shaper logic.  
(16byte/unit) (Default: 8'hC0)  
QOSC79 and QOSC7A correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC79 is an  
integer less than 64, with granularity 1. QOSC7A is the programmed maximum value of the counter (maximum burst  
size). This value is expressed in multiples of 16. QOSC79 and QOSC7A apply to Gigabit port 3. Register  
QOSC51-CREDIT_C6_G3 programs the peak rate. See QoS application note for more information.  
Class 6 Shaper Control Port G4 (useless in MVTX2801)  
10.7.146  
QOSC7B - TOKEN_RATE_G4  
Serial Interface Address:h592  
Bits [7:0]  
Reserved  
SEMICMF.019  
88  
Data Sheet  
MVTX2801AG  
10.7.147  
QOSC7C - TOKEN_LIMIT_G4  
Serial Interface Address:h593  
Bits [7:0]  
Reserved  
QOSC7B and QOSC7C are useless in MVTX2801  
Class 6 Shaper Control Port G5 (useless in MVTX2801)  
10.7.148  
QOSC7D - TOKEN_RATE_G5  
Serial Interface Address:h594  
Bits [7:0]  
Reserved  
10.7.149  
QOSC7E - TOKEN_LIMIT_G5  
Serial Interface Address:h595  
Bits [7:0]  
Reserved  
QOSC7D and QOSC7E are useless in MVTX2801.  
Class 6 Shaper Control Port G6 (useless in MVTX2801)  
10.7.150  
QOSC7F - TOKEN_RATE_G6  
Serial Interface Address:h596  
Bits [7:0]  
Reserved  
10.7.151  
QOSC80 - TOKEN_LIMIT_G6  
Serial Interface Address:h597  
Bits [7:0]  
Reserved  
QOSC7F and QOSC80 are useless in MVTX2801.  
Class 6 Shaper Control Port G7 useless in MVTX2801  
10.7.152  
QOSC81 - TOKEN_RATE_G7  
Serial Interface Address:h598  
Bits [7:0]  
Reserved  
SEMICMF.019  
89  
MVTX2801AG  
Data Sheet  
10.7.153  
QOSC82 - TOKEN_LIMIT_G7  
Serial Interface Address:h599  
Bits [7:0]  
QOSC81 and QOSC82 are useless in MVTX2801  
10.7.154 RDRC0 - WRED Rate Control 0  
Reserved  
I2C Address 085, Serial Interface Address:h59A  
Accessed by Serial Interface and I2C (R/W)  
7
0
X Rate  
Y Rate  
Bits [7:4]:  
Bits[3:0]:  
Corresponds to the percentage X% in Chapter 7. Used for random early  
drop. Granularity 6.25%. (Default: 4'h8)  
Corresponds to the percentage Y% in Chapter 7. Used for random early  
drop. Granularity 6.25%.(Default: 4'hE)  
10.7.155  
RDRC1 - WRED Rate Control 1  
I2C Address 086, Serial Interface Address:h59B  
Accessed by Serial Interface and I2C (R/W)  
7
0
Z Rate  
B Rate  
Bits [7:4]:  
Bits[3:0]:  
Corresponds to the percentage Z% in Chapter 7. Used for random early  
drop. Granularity 6.25%.%. (Default: 4'h6)  
Corresponds to the best effort frame drop percentage B%, when shared  
pool is all in use and destination port best effort queue reaches UCC. Used  
for random early drop. Granularity 6.25%.%. (Default: 4'h8)  
SEMICMF.019  
90  
Data Sheet  
MVTX2801AG  
10.8  
Group 6 Address - MISC Group  
10.8.1  
MII_OP0 - MII Register Option 0  
I2C Address h0B1, Serial Interface Address:h600  
Accessed by serial interface and I2C (R/W)  
7
6
5
4
0
Hfc  
1prst  
NP  
Vendor Spc. Reg Addr  
Bit [7]:  
Half duplex flow control no default enable (Do not use half duplex mode)  
- 0 = Half duplex flow control always enable  
- 1 = Half duplex flow control by negotiation  
Bit[6]:  
Bit [5]  
Link partner reset auto-negotiate disable  
Next page enable  
- 1: enable  
- 0: disable  
Bit[4:0]:  
Vendor specified link status register address (null value means don't use it)  
(Default 00)  
10.8.2  
MII_OP1 - MII Register Option 1  
I2C Address 0B2, Serial Interface Address:h601  
Accessed by serial interface and I2C (R/W)  
7
4
3
0
Speed bit location  
Duplex bit location  
Bits[3:0]:  
Bits [7:4]:  
Duplex bit location in vendor specified register  
Speed bit location in vendor specified register (Default 00)  
10.8.3  
FEN - Feature Register  
I2C Address h0B3, Serial Interface Address:h602  
Accessed by serial interface and I2C (R/W)  
7
0
DML  
MII  
Rp  
IP Mul  
V-Sp  
DS  
RC  
SC  
Bits [0]:  
Bits[1]:  
Reserved  
Reserved  
SEMICMF.019  
91  
MVTX2801AG  
Data Sheet  
Bit [2]:  
Support DS EF Code. (Default 0)  
- 0 - Disable  
- 1 - Enable (all ports)  
When 101110 is detected in DS field (TOS[7:2]), the frame priority is set for  
110 and drop is set for 0.  
Bit [3]:  
Bit [4]:  
Bit [5]:  
Bit [6]:  
Reserved  
Reserved  
Reserved  
- 0: Enable MII Management State Machine (Default 0)  
- 1: Disable MII Management State Machine  
- 0: Enable using MCT Link List structure  
- 1: Disable using MCT Link List structure  
Bit [7]:  
10.8.4  
MIIC0 - MII Command Register 0  
Serial Interface Address:h603  
Accessed by serial interface (R/W)  
Bit [7:0] MII Data [7:0]  
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY, and no VALID; then  
program MII command.  
10.8.5  
MIIC1 - MII Command Register 1  
Serial Interface Address:h604  
Accessed by serial interface (R/W)  
Bit [7:0]  
MII Data [15:8]  
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then  
program MII command.  
10.8.6  
MIIC2 - MII Command Register 2  
Serial Interface Address:h605  
Accessed by serial interface (R/W)  
7
0
MII OP  
Register address  
Bits [4:0]:  
Bit [6:5]  
REG_AD - Register PHY Address  
OP - Operation code “10” for read command and “01” for write command  
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then  
program MII command.  
SEMICMF.019  
92  
Data Sheet  
MVTX2801AG  
10.8.7  
MIIC3 - MII Command Register 3  
Serial Interface Address:h606  
Accessed by serial interface (R/W)  
7
0
Rdy  
Valid  
PHY address  
Bits [4:0]:  
PHY_AD - 5 Bit PHY Address  
Bit [6]  
Bit [7]  
VALID - Data Valid from PHY (Read Only)  
RDY - Data is returned from PHY (Ready Only)  
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then  
program MII command.  
10.8.8  
MIID0 - MII Data Register 0  
Serial Interface Address:h607  
Accessed by serial interface (RO)  
Bit [7:0]  
MII Data [7:0]  
10.8.9  
MIID1 - MII Data Register 0  
Serial Interface Address:h608  
Accessed by serial interface (RO)  
Bit [7:0]  
MII Data [15:8]  
SEMICMF.019  
93  
MVTX2801AG  
Data Sheet  
10.8.10  
LED Mode - LED Control  
I2C Address:h0B4; Serial Interface Address:h609  
Accessed by serial interface and I2C (R/W)  
7
0
lpbk  
Elpbk  
Clock rate  
Hold Time  
Se  
Bit[1:0]  
Bit[3:2]  
Sample hold time (Default 2'b00)  
2'b00- 8 msec  
2'b01- 16 msec  
2'b10- 32 msec  
2'b11- 64 msec  
LED clock speed (serial mode) (Default 2'b10)  
2'b00- sclk/128  
2'b01- sclk/256  
2'b10- sclk/1024  
2'b11- sclk/2048  
LED clock speed (parallel mode) (Default 2'b10)  
2'b00- sclk/1024  
2'b01- sclk/4096  
2'b10- sclk/2048  
2'b11- sclk/8192  
Bit[5:4]  
LED indicator out pattern (Default 2'b11)  
2'b00- Normal output, LED signals go straight out, no logical combination  
2'b01- 4 bi-color LED mode  
2'b10- 3 bi-color LED mode  
2'b11- programmable mode  
Normal mode:  
LED_BYTEOUT_[7]:Collision (COL)  
LED_BYTEOUT_[6]:Full duplex (FDX)  
LED_BYTEOUT_[5]:Speed[1] (SP1)  
LED_BYTEOUT_[4]:Speed[0] (SP0)  
LED_BYTEOUT_[3]:Link (LNK)  
LED_BYTEOUT_[2]:Rx (RXD)  
LED_BYTEOUT_[1]:Tx (TXD)  
SEMICMF.019  
94  
Data Sheet  
MVTX2801AG  
Bit[5:4]  
cont’d  
LED_BYTEOUT_[0]:Flow Control (FC) 4 bi-color LED mode  
LED_BYTEOUT_[7]:COL  
LED_BYTEOUT_[6]:1000FDX  
LED_BYTEOUT_[5]:1000HDX  
LED_BYTEOUT_[4]:100FDX  
LED_BYTEOUT_[3]:100HDX  
LED_BYTEOUT_[2]:10FDX  
LED_BYTEOUT_[1]:10HDX  
LED_BYTEOUT_[0]:ACT  
Note: All output qualified by Link signal  
3 bi-color LED mode:  
LED_BYTEOUT_[7]:COL  
LED_BYTEOUT_[6]:LNK  
LED_BYTEOUT_[5]:FC  
LED_BYTEOUT_[4]:SPD1000  
LED_BYTEOUT_[3]:SPD100 LED_BYTEOUT_[2]:FDX  
LED_BYTEOUT_[1]:HDX  
LED_BYTEOUT_[0]:ACT  
Note: All output qualified by Link signal  
Programmable mode:  
LED_BYTEOUT_[7]:Link  
LED_BYTEOUT_[6:0]:Defined by the LEDSIG6 ~ LEDSIG0 programmable  
registers.  
Note: All output qualified by Link signal  
Reserved. Must be '0'  
Bit[6]:  
Bit[7]:  
Enable internal loop back. When this bit is set to '1' all ports work in internal  
loop back mode. For normal operation must be '0'.  
10.8.11  
DEVICE Mode  
I2C Address h0B5; Serial Interface Address:h60a  
Accessed by serial interface and I2C (R/W)  
7
3
2
0
Device ID  
Bit[2:0]:  
Bit [7:3]:  
Reserved  
DEVICE ID (Default 0). This is for stacking operation. This is the stack ID  
for loop topology.  
SEMICMF.019  
95  
MVTX2801AG  
Data Sheet  
10.8.12  
CHECKSUM - EEPROM Checksum  
I2C Address h0C5, Serial Interface Address:h60B  
Accessed by serial interface and I2C (R/W)  
Bit [7:0]:  
(Default 00)  
Before requesting that the MVTX2801AG updates the EEPROM device, the  
correct checksum needs to be calculated and written into this checksum  
register. The checksum formula is:  
FF  
S
i2C register = 0  
i = 0  
After booting cycle the MVTX2801AG calculates the checksum. If the checksum is  
not zeroed the MVTX2801AG does not start.  
10.8.13  
10.8.14  
LED User  
LEDUSER0  
I2C Address h0BB, Serial Interface Address:h60C  
Accessed by serial interface and I2C (R/W)  
7
0
LED USER0  
Bit [7:0]:  
(Default 00)  
Content will send out by LED serial logic  
10.8.15  
LEDUSER1  
I2C Address h0BC, Serial Interface Address:h60D  
Accessed by serial interface and I2C (R/W)  
7
0
LED USER1  
Bit [7:0]:  
(Default 00)  
Content will send out by LED serial logic  
SEMICMF.019  
96  
Data Sheet  
MVTX2801AG  
10.8.16  
LEDUSER2/LEDSIG2  
I2C Address h0BD, Serial Interface Address:h60E  
Accessed by serial interface and I2C (R/W)  
In serial mode:  
7
0
LED USER2  
Bit [7:0]:  
(Default 00)  
Content will be sent out by LED serial shift logic  
In parallel mode: this register is used for programming the LED pin - led_byteout_[2]  
7
4
3
0
COL  
FDX  
SP1  
SP0  
COL  
FDX  
SP1  
SP0  
Bit [3:0]:  
Bit [7:4]  
(Default 4'H0)  
Signal polarity:  
0: not invert polarity (high true)  
1: invert polarity  
(Default 4'H8)  
Signal Select:  
0: not select  
1: select the corresponding bit  
When bits get selected, the led_byteout_[2] = AND (all selected bits)  
10.8.17  
LEDUSER3/LEDSIG3  
I2C Address:h0BE, Serial Interface Address:h60F  
Access by CPU, serial interface (R/W)  
In serial mode:  
7
0
LED USER3  
Bit [7:0]:  
(Default 8'H33)  
Content will be sent out by LED serial shift logic.  
SEMICMF.019  
97  
MVTX2801AG  
Data Sheet  
In parallel mode: this register is used for programming the LED pin - led_byteout_[3]  
7
4
3
0
COL  
FDX  
SP1  
SP0  
COL  
FDX  
SP1  
SP0  
Bit [3:0]:  
(Default 4'H3)  
Signal polarity:  
0: not invert polarity (high true)  
1: invert polarity  
Bit [7:4]  
(Default 4'H3)  
Signal Select:  
0: not select  
1: select the corresponding bit  
When bits get selected, the led_byteout_[3] = AND (all selected bits)  
LEDUSER4/LEDSIG4  
10.8.18  
I2C Address:h0BF, Serial Interface Address:h610  
Access by CPU, serial interface (R/W)  
7
0
LED USER4  
Bit [7:0]  
(Default 8'H32)  
Content will be sent out by LED serial shift logic.  
In parallel mode: this register is used for programming the LED pin - led_byteout_[4]  
7
4
3
0
COL  
FDX  
SP1  
SP0  
COL  
FDX  
SP1  
SP0  
Bit [3:0]  
Bit [7:4]  
(Default 4'H2)  
Signal polarity:  
0: not invert polarity (high true)  
1: invert polarity  
(Default 4'H3)  
Signal Select  
0: not select  
1: select the corresponding bit  
When bits get selected, the led_byteout_[4] = AND (all selected bits)  
SEMICMF.019  
98  
Data Sheet  
MVTX2801AG  
10.8.19  
LEDUSER5/LEDSIG5  
I2C Address:h0C0, Serial Interface Address:h611  
Access by CPU, serial interface (R/W)  
7
0
LED USER5  
Bit [7:0]  
(Default 8'H20)  
Content will be sent out by LED serial shift logic.  
In parallel mode: this register is used for programming the LED pin - led_byteout_[5]  
7
4
3
0
COL  
FDX  
SP1  
SP0  
COL  
FDX  
SP1  
SP0  
Bit [3:0]  
Bit [7:4]  
(Default 4'H0)  
Signal polarity:  
0: not invert polarity (high true)  
1: invert polarity  
(Default 4'H2)  
Signal Select:  
0: not select  
1: select the corresponding bit  
When bits get selected, the led_byteout_[5] = AND (all selected bits)  
10.8.20  
LEDUSER6/LEDSIG6  
I2C Address:h0C1, Serial Interface Address:h612  
Access by CPU, serial interface (R/W)  
7
0
LED USER6  
Bit [7:0]  
(Default 8'H40)  
Content will be sent out by LED serial shift logic.  
In parallel mode: this register is used for programming the LED pin - led_byteout_[6]  
7
4
3
0
COL  
FDX  
SP1  
SP0  
COL  
FDX  
SP1  
SP0  
Bit [3:0]  
(Default 4'B0000)  
Signal polarity:  
0: not invert polarity (high true)  
1: invert polarity  
SEMICMF.019  
99  
MVTX2801AG  
Data Sheet  
Bit [7:4]  
(Default 4'b0100)  
Signal Select:  
0: not select  
1: select the corresponding bit  
When bits get selected, the led_byteout_[6] = AND (all selected bits), or the  
polarity of led_byteout_[6] is controlled by LEDSIG1_0[3]  
10.8.21  
LEDUSER7/LEDSIG1_0  
I2C Address:h0C2, Serial Interface Address:h613  
Access by CPU, serial interface (R/W)  
7
0
LED USER7  
Bit [7:0]  
(Default 8'H61)  
Content will be sent out by LED serial shift logic.  
In parallel mode: this register is used for programming the LED pin - led_byteout_[2]  
7
4
3
0
GP  
RX  
TX  
FC  
P6  
RX  
TX  
FC  
Bit [7]  
(Default 1'B0)  
Global output polarity: this bit controls the output polarity of all led_byteout_ and  
led_port_sel pins.  
0: no invert polarity - (led_byteout_[7:0] are high activated, led_port_sel[9:0]  
are low activated)  
1: invert polarity - (led_byteout_[7:0] are low activated, led_port_sel[9:0] are  
high activated)  
Bit [6:4]  
(Default 3'B110)  
Signal Select  
0: not select  
1: select the corresponding bit  
When bits get selected, the led_byteout_[6] = OR (all selected bits)  
Bit[3]  
(Default 1'B0)  
Polarity control of led_byteout_[6]  
0: not invert  
1: invert  
Bit [2:0]  
(Default 3'b001)  
Signal Select:  
0: not select  
1: select the corresponding bit  
When bits get selected, the led_byteout_[0] = OR (all selected bits)  
SEMICMF.019  
100  
Data Sheet  
MVTX2801AG  
10.8.22  
MIINP0 - MII Next Page Data Register 0  
I2C Address:h0C3, Serial Interface Address:h614  
Access by CPU and serial interface only (R/W)  
Bit [7:0]  
MII next page Data [7:0]  
10.8.23  
MIINP1 - MII Next Page Data Register 1  
I2C Address:h0C4, Serial Interface Address:h615  
Access by CPU and serial interface only (R/W)  
Bit [7:0]  
MII next page Data [15:8]  
10.9  
Group F Address - CPU Access Group  
GCR-Global Control Register  
10.9.1  
Serial Interface Address: hF00  
Accessed by serial interface. (R/W)  
7
0
Init  
Reset  
Bist  
SR  
SC  
Bit [0]:  
Bit[1]:  
Bit[2]:  
Store configuration (Default = 0)  
Write '1' followed by '0' to store configuration into external EEPROM  
Store configuration and reset (Default = 0)  
Write '1' to store configuration into external EEPROM and reset chip  
Start BIST (Default = 0)  
Write '1' followed by '0' to start the device's built-in self-test. The result is  
found in the DCR register.  
Bit[3]:  
Soft Reset (Default = 0)  
Write '1' to reset the chip  
Bit[4]:  
Reserved  
Reserved  
Bit[5:7]:  
10.9.2  
DCR-Device Status and Signature Register  
Serial Interface Address: hF01  
Accessed by serial interface. (RO)  
7
0
Revision  
Signature  
RE  
BinP  
BR  
BW  
SEMICMF.019  
101  
MVTX2801AG  
Data Sheet  
Bit [0]:  
Bit[1]:  
Bit[2]:  
Bit[3]:  
Bit[5:4]:  
1 - Busy writing configuration to I2C  
0 - Not Busy writing configuration to I2C  
1 - Busy reading configuration from I2C  
0 - Not Busy reading configuration from I2C  
1 - BIST in progress  
0 - BIST not running  
1 - RAM Error  
0 - RAM OK  
Device Signature  
00 - 4 Ports Device, non-management mode  
01 - 8 Ports Device, non-management mode  
10 - 4 Ports Device, management mode possible (need to install CPU)  
11 - 8 Ports Device, management mode possible (need to install CPU)  
Bit [7:6]:  
Revision  
10.9.3  
DCR01-Giga port status  
Serial Interface Address: hF02  
Accessed by serial interface. (RO)  
7
3
2
1
0
CIC  
GIGA1  
GIGA0  
Bit [1:0]:  
Bit[3:2]  
Bit [7]  
Giga port 0 strap option  
00 - 100Mb MII mode  
01 - Invalid  
10 - GMII  
11 - PCS  
Giga port 1 strap option  
00 - 100Mb MII mode  
01 - Invalid  
10 - GMII  
11 - PCS  
Chip initialization completed  
Note: DCR01[7], DCR23[7], DCR45[7] and DCR67[7] have the same function.  
SEMICMF.019  
102  
Data Sheet  
MVTX2801AG  
10.9.4  
DCR23-Giga port status  
Serial Interface Address: hF03  
Accessed by CPU and serial interface. (RO)  
7
3
2
1
0
CIC  
GIGA3  
GIGA2  
Bit [1:0]:  
Bit[3:2]  
Bit [7]  
Giga port 2 strap option  
00 - 100Mb MII mode  
01 - Invalid  
10 - GMII  
11 - PCS  
Giga port 3 strap option  
00 - 100Mb MII mode  
01 - Invalid  
10 - GMII  
11 - PCS  
Chip initialization completed  
10.9.5  
DCR45-Giga port status (useless in MVTX2801)  
Serial Interface Address: hF04  
Accessed by CPU and serial interface. (RO)  
7
3
2
1
0
Reserved  
10.9.6  
DCR67-Giga port status (useless in MVTX2801)  
Serial Interface Address: hF05  
Accessed by CPU and serial interface. (RO)  
7
3
2
1
0
Reserved  
SEMICMF.019  
103  
MVTX2801AG  
Data Sheet  
10.9.7  
DPST - Device Port Status Register  
Serial Interface Address:hF06  
Accessed by CPU and serial interface (R/W)  
Bit[2:0]:  
Read back index register. This is used for selecting what to read back from DTST.  
(Default 00)  
3'B000 - Port 0 Operating mode and Negotiation status  
3'B001 - Port 1 Operating mode and Negotiation status  
3'B010 - Port 2 Operating mode and Negotiation status  
3'B011 - Port 3 Operating mode and Negotiation status  
3'B100 - Reserved  
3'B101 - Reserved  
3'B110 - Reserved  
3'B111 - Reserved  
10.9.8  
DTST - Data Read Back Register  
Serial Interface Address: hF07  
Accessed by CPU and serial interface (RO)  
7
0
MD InfoDet SigDet Giga Inkdn FE Fdpx Fc_en  
This register provides various internal information as selected in DPST bit[2:0]  
Bit[0]:  
Bit[1]:  
Bit[2]:  
Bit[3]:  
Bit[4]:  
Bit[5]:  
Bit[6]:  
Bit[7]:  
Flow control enabled  
Full duplex port  
Fast ethernet port (if not giga)  
Link is down  
GIGA port  
Signal detect (when PCS interface mode)  
Pipe signal detected (pipe mode only)  
Module detected (for hot swap purpose)  
SEMICMF.019  
104  
Data Sheet  
MVTX2801AG  
11.0  
11.1  
BGA and Ball Signal Description  
BGA Views  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
NC NC NC NC NC NC NC NC NC NC NC NC  
NC NC NC NC NC  
A
B
C
D
E
AVD NC9 SCA  
N_EN  
S_CL  
K
B_A[1B_A[1B_A[7B_A[2B_OEB_D[ B_D[ NC4 NC3  
6] 2] 27] 26]  
D
]
]
#
NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC  
DEV_ LA_D NC7  
CF[0] [0]  
B_A[1B_A[1B_A[8B_A[3B_W B_D[ DEV_ NC5 B_D[25  
7] 3] E# 30] CFG[  
]
]
]
NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC  
LA_D LA_C LA_D NC6  
[1] LK [3]  
B_A[1B_A[1B_A[1B_A[5B_A[4B_D[ AVD B_CL B_D[22  
8]  
4]  
1]  
]
]
28]  
D
K
]
NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC  
LA_D LA_D LA_D NC8  
[2] [5] [9]  
B_A[9B_A[1B_AD NC2 B_D[ B_D[ B_D[ B_D[21  
]
0] SC# 29] 24] 18]  
]
NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC  
LA_D LA_D LA_D LA_D AGN  
[8] [7] [6] [4]  
LB_A[B_A[1B_A[6B_D[ AGN B_D[ B_D[ B_D[ B_D[ B_D[14  
20] 5]  
D
]
31]  
D
17] 23] 19] 16]  
]
F
G
H
J
LA_D LA_D LA_D LA_D LA_D VSS VSS  
[10] [11] [12] [13] [14]  
VDD VDD  
VD33 VD33 VD33 VSS VSS VD33 VD33 VD33  
VDD VDD  
VSS VSS NC1 B_D[ B_D[ B_D[ B_D[12  
9] 10] 11]  
]
LA_D LA_D LA_D LA_D LA_D VDD  
[15] [16] [19] [18] [17]  
VDD B_D[ B_D[ B_D[ B_D[ B_D[7]  
20] 4]
 
3] 6]  
LA_D LA_D LA_D LA_D LA_D  
[20] [21] [22] [29] [24]  
B_D[ B_D[ P_IN B_D[ B_D[2]  
15] 8]
 
T# 1]  
LA_D LA_D LA_D LA_D LA_D VDD  
[23] [25] [26] [27] [31]  
VDD B_D[ P_A[1P_A[2P_W P_RD#  
13] E#  
]
]
K
L
LA_D LA_D LA_C LA_D LA_D VDD  
[28] [30] S0# [37] [33]  
VDD B_D[ P_D[ P_D[ P_D[ P_D[13  
5] 15] 11] 12]  
]
LA_C LA_R LA_D LA_D LA_D  
S1# W# [32] [46] [41]  
P_CS P_D[ P_D[ P_D[ P_D[10  
14] 7] 8]  
#
]
M
LA_D LA_D LA_D LA_D LA_D VD33  
[34] [35] [36] [53] [48]  
VD33 P_A[ B_D[ P_D[ P_D[ P_D[5]  
0] 0] 3] 4]  
N
P
LA_D LA_D LA_D LA_D LA_D VD33  
[38] [40] [42] [61] [56]  
VSS VSS VSS VSS VSS VSS  
VSS VSS VSS VSS VSS VSS  
VD33 P_D[ P_D[ P_D[ P_D[ P_D[2]  
6] 9] 0] 1]  
LA_D LA_D LA_D LA_A[LA_D VD33  
VD33 T_D[ T_D[1T_D[1T_D[1T_D[14  
15] 1] 2] 3]  
[43] [44] [45] 4]  
[39]  
]
R
T
LA_D LA_D LA_D LA_D LA_D VSS  
[49] [50] [51] [52] [47]  
VSS VSS VSS VSS VSS VSS  
VSS VSS VSS VSS VSS VSS  
VSS T_D[ T_D[5T_D[7T_D[8T_D[9]  
10]  
]
]
]
LA_D LA_D LA_D LA_D LA_A VSS  
[58] [57] [55] [54] [7]  
VSS T_D[ T_D[4T_D[2T_D[1T_D[0]  
6]  
]
]
]
U
V
LA_D LA_D LA_D LA_D LA_A VD33  
[63] [62] [60] [59] [11]  
VSS VSS VSS VSS VSS VSS  
VSS VSS VSS VSS VSS VSS  
VD33 S_RST_D[3TMO TMO RESO  
T# DE[1] DE[0] UT#  
]
LA_A[LA_A[LA_A[LA_A[LA_A VD33  
VD33 NC[7] G7_RLESY LE_C LE_DO  
X_ER NO# LK0  
6]  
5]  
3]  
14] [18]  
W
Y
LA_A[LA_A[LA_A[LA_A[G0_T VD33  
10] 9] 8] 20] XD[1]  
VD33 NC[3] NC[1] G7_RNC[6] NC[5]  
X_DV  
LA_A[LA_A[LA_A[G0_CG0_T  
15] 13] 12] RS/L
 
XD[4]  
NC[6] G7_T NC[4] NC[2] NC[0]  
X_EN  
A A  
A B  
LA_A[LA_A[LA_A[GRE G0_T VDD  
19] 17] 16] FC[0] XD[7]  
VDD NC[0] NC[3] G7_CG7_RMIITX  
OL XCLK CK[7]  
MIITXG0_T G0_T G0_T G0_T VDD  
CK[0] XD[2] XD[0] XCLK X_ER  
VDD NC[7] G7_T NC[7] NC[5] NC[4]  
X_ER  
A C  
A D  
A E  
G0_RG0_T G0_T G0_RG0_R  
XCL
K
X
D[5] XD[3] XD[2] XD[6]  
NC[2] NC[4] NC[2] NC[1] G7_CR  
S/L  
G0_RG0_T G0_CG0_T G0_R VSS  
XD[0] X_EN OL XD[6] X_DV  
VDD NC[0] NC G7_T NC NC  
XCLK  
G0_RG0_R G0_RG0_RG1_T VSS VDD  
XD[5] XD[4] XD[3] XD[1] XD[0]  
VDD VDD  
VD33 VD33 VD33 VSS VSS VD33 VD33 VD33  
VDD VDD  
VSS VSS NC[7] NC[6] NC[5] NC[3] NC[1]  
A F  
A G  
G0_RG0_R GRE G1_RG1_RG1_R G2_T G2_T G2_RG2_R G2_RG3_T G3_T G3_C G3_RG3_RIND_ G3_R G3_RNC[3] NC[1] NC[4] NC[2] NC[4] NC NC[5] NC NC[6] NC NC  
XD[7] X_ER FC[1] XD[2] XD[5] XD[7] XD[0] XD[7] XD[2] XD[4] XD[5] XD[1] XD[6] OL XD[3] XD[6] CM XD[4] X_ER  
G1_T G1_T G1C G1_T G2_T G1_R G2_T G2_T G2_RG2_R G2_RG2_RG3_T G3_R G3_RG3_RNC M_M NC[1] NC[5] NC[6] NC[7] NC NC[5] MIITXNC[1] NC[3] NC[4] NC NC[5]  
XD[1] XCLK RS/L XD[7] XCLKXD[4] XD[4] XD[3] XD[3] XCLK XD[7] X_ER X_EN XD[0] XD[5] XD[7]  
DIO  
CK[5]  
A H  
AJ  
G1_T G1_T MIITXG1_RG1_RG2C MIITXG2_T G2_RG2_R G3_T G3_T G3_T G3_R G3_RG3_RNC NC[4] NC[6] NC NC NC NC NC[3] NC NC[3] NC[6] NC[1] NC[2] NC  
XD[2] XD[3] CK[1] XD[0] XCLKRS/L CK[2] X_EN XD[1] X_DV XCLKXD[3] XD[5] XCLK XD[2] X_DV  
G1_T G1_T G1_T G1_CG1_RGRE G2_T G2_T G2_RG2_R GRE G3_T MIITXG3_T G3_RM_M NC[0] NC[5] NC[7] NC[0] NC NC NC[0] NC[6] NC[0] NC NC[4] NC NC NC[0]  
XD[5] XD[4] X_ER OL XD[6] FC[2] XD[2] XD[6] XD[0] XD[6] FC[3] XD[2] CK[3] X_ER XD[1] DC  
A K  
G1_T G1_T G1_RG1_RG1_RG1_R G2_T G2_T G2_T G2_C G3_CG3_T G3_T G3_T CM_ G4C NC[2] MIITXNC NC[2] NC[3] NC NC[1] NC[7] NC[2] NC NC[7] NC MIITXNC  
XD[6] X_EN XD[1] XD[3] X_DVX_ER XD[1] XD[5] X_EROL RS/L XD[0] XD[4] XD[7] CLK RS/L  
CK[4]  
CK[6]  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
SEMICMF.019  
105  
MVTX2801AG  
Data Sheet  
11.2  
Power and Ground Distribution  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
NC  
NC NC NC NC NC NC NC NC NC NC NC  
NC NC NC NC NC  
AAVDD NC9 SCA  
N_EN  
S_CL  
K
B_A[ B_A[ B_A[ B_A[ B_OEB_D[ B_D[ NC4 NC3  
16] 12] 7] 2] 27] 26]  
#
NC  
NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC  
BDEV_CLA_D NC7  
B_A[ B_A[ B_A[ B_A[ B_W B_D[ DEV_ NC5 B_D[  
17] 13] 8] 3] E# 30] CFG[ 25]  
F[0]  
CLA_D[1LA_C LA_D NC6  
LK [3]  
DLA_D[2LA_D LA_D NC8  
[5] [9]  
ELA_D[8LA_D LA_D LA_D[ AGN  
[7] [6] 4]  
FLA_D[1LA_D LA_D LA_D[ LA_D VSS VSS  
0] [11] [12] 13] [14]  
GLA_D[1LA_D LA_D LA_D[ LA_D VDD  
[0]  
NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC  
B_A[ B_A[ B_A[ B_A[ B_A[ B_D[ AVD B_CL B_D[  
18] 14] 11] 5] 4] 28] 22]  
]
D
K
NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC  
B_A[ B_A[ B_AD NC2 B_D[ B_D[ B_D[ B_D[  
9] 10] SC# 29] 24] 18] 21]  
]
NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC  
LB_A B_A[ B_A[ B_D[ AGN B_D[ B_D[ B_D[ B_D[ B_D[  
[20] 15] 6]  
]
D
31]  
VSS VSS NC1 B_D[ B_D[ B_D[ B_D[  
9] 10] 11] 12]  
VDD B_D[ B_D[ B_D[ B_D[ B_D[  
20] 4] 3] 6] 7]  
B_D[ B_D[ P_IN B_D[ B_D[  
15] 8] T# 1] 2]  
VDD B_D[ P_A[ P_A[ P_W P_RD  
13] 1] 2] E#  
VDD B_D[ P_D[ P_D[ P_D[ P_D[  
5] 15] 11] 12] 13]  
P_CS P_D[ P_D[ P_D[ P_D[  
14] 7] 8] 10]  
VD33 P_A[ B_D[ P_D[ P_D[ P_D[  
0] 0] 3] 4] 5]  
VD33 P_D[ P_D[ P_D[ P_D[ P_D[  
6] 9] 0] 1] 2]  
D
17] 23] 19] 16] 14]  
VDD VDD  
VD33 VD33 VD33 VSS VSS VD33 VD33 VD33  
VDD VDD  
5] [16] [19] 18] [17]  
HLA_D[2LA_D LA_D LA_D[ LA_D  
0] [21] [22] 29] [24]  
JLA_D[2LA_D LA_D LA_D[ LA_D VDD  
3] [25] [26] 27] [31]  
#
KLA_D[2LA_D LA_C LA_D[ LA_D VDD  
8] [30] S0# 37] [33]  
LLA_CS LA_R LA_D LA_D[ LA_D  
1# W# [32] 46] [41]  
#
MLA_D[3LA_D LA_D LA_D[ LA_D VD33  
4] [35] [36] 53] [48]  
NLA_D[3LA_D LA_D LA_D[ LA_D VD33  
8] [40] [42] 61] [56]  
VSS VSS VSS VSS VSS VSS  
VSS VSS VSS VSS VSS VSS  
VSS VSS VSS VSS VSS VSS  
VSS VSS VSS VSS VSS VSS  
VSS VSS VSS VSS VSS VSS  
VSS VSS VSS VSS VSS VSS  
PLA_D[4LA_D LA_D LA_A[ LA_D VD33  
3] [44] [45] 4] [39]  
VD33 T_D[ T_D[ T_D[ T_D[ T_D[  
15] 11] 12] 13] 14]  
RLA_D[4LA_D LA_D LA_D[ LA_D VSS  
9] [50] [51] 52] [47]  
VSS T_D[ T_D[ T_D[ T_D[ T_D[  
10] 5]  
VSS T_D[ T_D[ T_D[ T_D[ T_D[  
6] 4] 2] 1] 0]  
VD33 S_RS T_D[ TMO TMO RES  
T# 3] DE[1] DE[0] OUT#  
VD33 NC[7] G7_R LESY LE_C LE_D  
7]  
8]  
9]  
TLA_D[5LA_D LA_D LA_D[ LA_A VSS  
8] [57] [55] 54] [7]  
ULA_D[6LA_D LA_D LA_D[ LA_A VD33  
3] [62] [60] 59] [11]  
VLA_A[6 LA_A LA_A LA_A[ LA_A VD33  
[5] [3] 14] [18]  
]
X_ER NO# LK0  
O
W LA_A[1 LA_A LA_A LA_A[ G0_T VD33  
0] [9] [8] 20] XD[1]  
VD33 NC[3] NC[1] G7_R NC[6] NC[5]  
X_DV  
YLA_A[1 LA_A LA_A G0_C G0_T  
5] [13] [12] RS/L XD[4]  
NC[6] G7_T NC[4] NC[2] NC[0]  
X_EN  
AALA_A[1 LA_A LA_A GREF G0_T VDD  
9] [17] [16] C[0] XD[7]  
VDD NC[0] NC[3] G7_C G7_R MIITX  
OL XCLK CK[7]  
ABMIITX G0_T G0_T G0_T G0_T VDD  
CK[0] XD[2] XD[0] XCLK X_ER  
VDD NC[7] G7_T NC[7] NC[5] NC[4]  
X_ER  
ACG0_RXG0_T G0_T G0_R G0_R  
NC[2] NC[4] NC[2] NC[1] G7_C  
RS/L  
CLK  
XD[5] XD[3] XD[2] XD[6]  
ADG0_RXG0_T G0_C G0_T G0_R VSS  
D[0] X_EN OL XD[6] X_DV  
VDD NC[0] NC G7_T NC NC  
XCLK  
AEG0_RXG0_R G0_R G0_R G1_T VSS VDD  
D[5] XD[4] XD[3] XD[1] XD[0]  
VDD VDD  
VD33 VD33 VD33 VSS VSS VD33 VD33 VD33  
VDD VDD  
VSS VSS NC[7] NC[6] NC[5] NC[3] NC[1]  
AFG0_RXG0_R GRE G1_R G1_R G1_R G2_T G2_T G2_R G2_R G2_R G3_T G3_T G3_C G3_R G3_R IND_ G3_R G3_R NC[3] NC[1] NC[4] NC[2] NC[4] NC NC[5] NC NC[6] NC NC  
D[7] X_ER FC[1] XD[2] XD[5] XD[7] XD[0] XD[7] XD[2] XD[4] XD[5] XD[1] XD[6] OL XD[3] XD[6] CM XD[4] X_ER  
AGG1_TX G1_T G1C G1_T G2_T G1_R G2_T G2_T G2_R G2_R G2_R G2_R G3_T G3_R G3_R G3_R NC M_M NC[1] NC[5] NC[6] NC[7] NC NC[5] MIITX NC[1] NC[3] NC[4] NC NC[5]  
D[1] XCLK RS/L XD[7] XCLK XD[4] XD[4] XD[3] XD[3] XCLK XD[7] X_ER X_EN XD[0] XD[5] XD[7] DIO CK[5]  
AHG1_TX G1_T MIITXG1_R G1_R G2C MIITX G2_T G2_R G2_R G3_T G3_T G3_T G3_R G3_R G3_R NC NC[4] NC[6] NC NC NC NC NC[3] NC NC[3] NC[6] NC[1] NC[2] NC  
D[2] XD[3] CK[1] XD[0] XCLK RS/L CK[2] X_EN XD[1] X_DV XCLK XD[3] XD[5] XCLK XD[2] X_DV  
AJG1_TX G1_T G1_T G1_C G1_R GRE G2_T G2_T G2_R G2_R GRE G3_T MIITX G3_T G3_R M_M NC[0] NC[5] NC[7] NC[0] NC NC NC[0] NC[6] NC[0] NC NC[4] NC NC NC[0]  
D[5] XD[4] X_ER OL XD[6] FC[2] XD[2] XD[6] XD[0] XD[6] FC[3] XD[2] CK[3] X_ER XD[1] DC  
AKG1_TX G1_T G1_R G1_R G1_R G1_R G2_T G2_T G2_T G2_C G3_C G3_T G3_T G3_T CM_ G4C NC[2] MIITX NC NC[2] NC[3] NC NC[1] NC[7] NC[2] NC NC[7] NC MIITXNC  
D[6]  
X_EN XD[1] XD[3] X_DV X_ER XD[1] XD[5] X_ER OL RS/L XD[0] XD[4] XD[7] CLK RS/L  
CK[4]  
CK[6]  
SEMICMF.019  
106  
Data Sheet  
MVTX2801AG  
11.3  
Ball- Signal Descriptions  
All pins are CMOS type; all Input pins are 5 Volt tolerance, and all Output pins are 3.3 CMOS drive.  
Ball No(s)  
Symbol  
P_DATA[15:11]  
I/O  
Description  
K27, L27, K30, K29, K28  
L30  
I/O-TS with pull up  
I/O - TS with pull up  
Not used - leave unconnected  
P_DATA[10]  
P_DATA[9]  
P_DATA[8:0]  
Trunk enable  
External pull up or unconnected-  
disable trunk group 0 and 1  
External pull down - enable trunk group  
0 and 1  
See register TRUNK0_MODE for port  
selection and trunk enable.  
N27  
I/O - TS with pull up  
Trunk enable  
External pull up or unconnected -  
disable trunk group 2 and 3  
External pull down - enable trunk group  
2 and 3  
See register TRUNK1_MODE for port  
selection and trunk enable.  
L29, L28, N26, M30, M29,  
M28, N30, N29, N28  
I/O - TS with pull up  
Bootstrap function - See bootstrap  
section  
J28  
P_A[2]  
Input  
Not used - leave unconnected  
Not used - leave unconnected  
H28  
P_INT#  
Output  
2
2
I C Interface (0) Note: In unmanaged mode, Use I C and Serial control interface to configure the system  
2
J27  
SCL  
SDA  
Output  
I C Data Clock  
2
M26  
I/O-TS with pull up  
I C Data I/O  
Serial Control Interface  
J29  
PS_STROBE  
PS_DO  
Input with weak internal pull  
up  
Serial Strobe Pin  
L26  
Input with weak internal pull  
up  
Serial Data Input  
J30  
PS_DI (AUTOFD)  
Output with pull up  
Serial Data Output (AutoFD)  
Frame Buffer Interface  
U1, U2, N4, U3, U4, T1, T2, LA_D[63:0]  
N5, T3, T4, M4, R4, R3,  
I/O-TS with pull up  
Frame Bank A- Data Bit [63:0]  
R2, R1, M5, R5, L4, P3,  
P2, P1, N3, L5, N2, P5, N1,  
K4, M3, M2, M1, K5, L3,  
J5, K2, H4, K1, J4, J3, J2,  
H5, J1, H3, H2, H1, G3,  
G4, G5, G2, G1, F5, F4,  
F3, F2, F1, D3, E1, E2, E3,  
D2., E4, C3, D1, C1, B2  
AA1, V5, AA2, AA3, Y1,  
V4, Y2, Y3, U5, W1, W2,  
W3, T5, V1, V2, P4, V3  
LA_A[19:3]  
Output  
Frame Bank A - Address Bit [19:3]  
W4  
C2  
K3  
LA_A[20]  
LA_CLK  
LA_CS0#  
Output with pull up  
Output  
Frame Bank A - Address Bit [20]  
Frame Bank A Clock Input  
Output with pull up  
Frame Bank A Low Portion Chip  
Selection  
L1  
L2  
LA_CS1#  
LA_RW#  
Output with pull up  
Frame Bank A High Portion Chip  
Selection  
Output with pull up  
Frame Bank A Read/Write  
Table 7 - Ball- Signal Descriptions  
SEMICMF.019  
107  
MVTX2801AG  
Data Sheet  
Ball No(s)  
Symbol  
I/O  
Description  
D18, B18, C18, A17, E17,  
B17, C17, E16, D17, B16,  
E15, C16, D16, D15, E14,  
C15, B15, E13, A15, D14,  
C14, D13, B14, A14, C13,  
E12, B13, A13, D12, C12,  
B12, A12, A11, E10, C10,  
B10, E9, A10, D11, D10,  
D8, D9, C9, B9, A9, C8,  
B8, A8, C7, E7, D7, B7, E8,  
A7, D6, C6, E6, B6, A6, A5,  
B5, C5, B4,A4  
NC  
I/O-TS with pull up.  
No Connect  
D22, D20, E20, D21, A21,  
D19, B21, C21, A20, B20,  
E19, C20, A19, B19, E18,  
C19, A18  
NC  
Output  
F
LB_A[20]  
NC  
Output with pull up  
Output  
Bootstrap Pin  
D5  
B11  
NC  
Output with pull up  
Output with pull up  
Output with pull up  
E11  
NC  
C11  
NC  
Switch Database Interface  
E24,B27, D27, C27, A27,  
A28, B30, D28, E27, C30,  
D30, G26, E28, D29, E26,  
E29, H26, E30, J26, F30,  
F29, F28, F27, H27, G30,  
G29, K26, G27, G28, H30,  
H29, M27  
B_D[31:0]  
I/O-TS with pull up  
Switch Database Domain  
- Data Bit [31:0]  
C22, B22, A22, E22, C23,  
B23, A23, C24, D24, D23,  
B24, A24, E23, C25, C26,  
B25, A25  
B_A[18:2]  
B_CLK  
Output  
Switch Database Address (512K)  
- Address Bit [18:2]  
C29  
D25  
Output  
Switch Database Clock Input  
B_ADSC#  
Output with pull up  
Switch Database Address Status  
Control  
B26  
B_WE#  
B_OE#  
Output with pull up  
Output with pull up  
Switch Database Write Chip Select  
Switch Database Read Chip Select  
A26  
MII Management Interface  
AJ16  
M_MDC  
M_MDIO  
Output  
MII Management Data Clock -  
(common for all MII Ports [3:0])  
AG18  
I/O-TS with pull up  
MII Management Data I/O -  
(common for all MII Ports -[3:0]))  
2.5Mhz  
GMII / MII Interface (193) Gigabit Ethernet Access Port  
AJ11, AJ6, AF3,AA4  
AD29, AK30, AJ22, AG17  
AK15  
GREF_CLK [3:0]  
NC  
Input w/ pull up  
Gigabit Reference Clock  
CM_CLK  
IND/CM  
Input w/ pull up  
Input w/ pull up  
Common Clock shared by port G[3:0]  
AF17  
1: select GREF_CLK[3:0] as clock 0:  
select CM_CLK as clock for all ports  
AJ13, AH7, AH3, AB1  
MII TX CLK[3:0]  
Input w/ pull up  
AA30, AK29, AG25, AK18, NC  
Table 7 - Ball- Signal Descriptions (continued)  
SEMICMF.019  
108  
Data Sheet  
MVTX2801AG  
Ball No(s)  
Symbol  
I/O  
Input w/ pull up  
Description  
AG16, AF16, AG15, AF18, G3_RXD[7:0]  
AF15, AH15, AJ15, AG14  
G[3:0] port - Receive Data Bit [7:0]  
AG11, AJ10, AF11, AF10,  
AG9, AF9, AH9, AJ9  
G2_RXD[7:0]  
AF6, AJ5, AF5, AG6, AK4, G1_RXD[7:0]  
AF4, AK3, AH4  
AF1, AC5, AE1, AE2, AE3, G0_RXD[7:0]  
AC4, AE4, AD1  
V26, W29, W30, Y28, W26, NC  
Y29, W27, Y30  
AB26, AE27, AE28, AC27,  
AE29, AC26, AE30, AD26  
AK27, AH27, AF26, AJ27,  
AH26, AK25, AG26, AJ25  
AG22, AG21, AG20, AF22,  
AK21, AK20, AF21, AJ20  
AH16, AH10, AK5, AD5  
W28, AD30, AK28, AH22,  
AF19, AG12, AK6, AF2  
V27, AD27, AJ28, AH23,  
AK11, AH6, AG3, Y4  
G[3:0]_RX_DV  
Input w/ pull down  
Input w/ pull up  
Input w/ pull down  
Input w/ pull up  
Input w/ pull up  
Output  
G[3:0]port - Receive Data Valid  
G[3:0]port - Receive Error  
G[3:0]_RX_ER  
NC  
G[3:0]_CRS/LINK  
G[3:0]port - Carrier Sense  
AC30, AJ29, AG23, AK16, NC  
AF14, AK10, AJ4, AD3  
AA28, AF29, AJ26, AJ21,  
AH14, AG10, AH5, AC1  
G[3:0]_COL  
G[3:0]port - Collision Detected  
G[3:0]port - Receive Clock  
G[3:0]port - Transmit Data Bit [7:0]  
NC  
G[3:0]_RXCLK  
AA29, AF27, AK26, AH21, NC  
AK14, AF13, AH13, AK13, G3_TXD[7:0]  
AH12, AJ12, AF12, AK12  
AF8, AJ8, AK8, AG7, AG8, G2_TXD[7:0]  
AJ7, AK7, AF7  
AG4, AK1, AJ1, AJ2, AH2, G1_TXD[7:0]  
AH1, AG1, AE5  
AA5, AD4, AC2, Y5, AC3,  
AB2, W5, AB3  
G0_TXD[7:0]  
AB28, Y26, AB29, AB30, NC  
AA27, AC28, AC29, AA26  
AE26, AF28, AG30, AG28,  
AG27, AH29, AH28, AJ30  
AK24, AJ24, AG24, AF24,  
AH24, AF23, AK23, AJ23  
AJ19, AH19, AJ18, AH18,  
AF20, AK17, AG19, AJ17  
AG13, AH8, AK2, AD2  
Y27, AG29, AH25, AK19,  
AJ14, AK9, AJ3, AB5  
G[3:0]_TX_EN  
Output w/ pull up  
Output w/ pull up  
Output  
G[3:0]port - Transmit Data Enable  
G[3:0]port - Transmit Error  
NC  
G[3:0]_TX_ER  
NC  
AB27, AF30, AF25, AH20,  
AH11, AG5, AG2, AB4  
G[3:0]_ TXCLK  
G[3:0]port - Gigabit Transmit Clock  
AD28, AH30, AK22, AH17, NC  
Table 7 - Ball- Signal Descriptions (continued)  
SEMICMF.019  
109  
MVTX2801AG  
Data Sheet  
Ball No(s)  
Symbol  
I/O  
Description  
PMA Interface (193) Gigabit Ethernet Access Port (PCS)  
AJ11, AJ6, AF3,AA4 GREF_CLK [3:0]  
AD29, AK30, AJ22, AG17, NC  
Input w/ pull up  
Gigabit Reference Clock  
AK15  
AF17  
CM_CLK  
IND/CM  
Input w/ pull up  
Input w/ pull up  
Common Clock shared by port G[3:0]  
1: select GREF_CLK[3:0] as clock  
0: select CM_CLK as clock for all port  
AG16, AF16, AG15, AF18, G3_RXD[7:0]  
AF15, AH15, AJ15, AG14  
Input w/ pull up  
G[3:0]port - PMA Receive Data Bit [7:0]  
AG11, AJ10, AF11, AF10, G2_RXD[7:0]  
AG9, AF9, AH9, AJ9  
AF6, AJ5, AF5, AG6, AK4, G1_RXD[7:0]  
AF4, AK3, AH4  
AF1, AC5, AE1, AE2, AE3, G0_RXD[7:0]  
AC4, AE4, AD1  
V26, W29, W30, Y28, W26, NC  
Y29, W27, Y30  
AB26, AE27, AE28, AC27,  
AE29, AC26, AE30, AD26  
AK27, AH27, AF26, AJ27,  
AH26, AK25, AG26, AJ25  
AG22, AG21, AG20, AF22,  
AK21, AK20, AF21, AJ20  
AH16, AH10, AK5, AD5  
W28, AD30, AK28, AH22,  
AF19, AG12, AK6, AF2  
V27, AD27, AJ28, AH23,  
AF14, AK10, AJ4, AD3  
AA28, AF29, AJ26, AJ21,  
AH14, AG10, AH5, AC1  
G[3:0]_RX_D[8]  
NC  
Input w/ pull down  
Input w/ pull up  
Input w/ pull up  
Input w/ pull up  
Output  
G[3:0]port - PMA Receive Data Bit [8]  
G[3:0]port - PMA Receive Data Bit [9]  
G[3:0]port - PMA Receive Clock 1  
G[3:0]port - PMA Receive Clock 0  
G[3:0]port - PMA Transmit Data Bit [7:0]  
G[3:0]_RX_D[9]  
NC  
G[3:0]_RXCLK1  
NC  
G[3:0]_RXCLK0  
AA29, AF27, AK26, AH21, NC  
AK14, AF13, AH13, AK13, G3_TXD[7:0]  
AH12, AJ12, AF12, AK12  
AF8, AJ8, AK8, AG7, AG8, G2_TXD[7:0]  
AJ7, AK7, AF7  
AG4, AK1, AJ1, AJ2, AH2, G1_TXD[7:0]  
AH1, AG1, AE5  
AA5, AD4, AC2, Y5, AC3,  
AB2, W5, AB3  
G0_TXD[7:0]  
AB28, Y26, AB29, AB30, NC  
AA27, AC28, AC29, AA26  
AE26, AF28, AG30, AG28,  
AG27, AH29, AH28, AJ30  
AK24, AJ24, AG24, AF24,  
AH24, AF23, AK23, AJ23  
AJ19, AH19, AJ18, AH18,  
AF20, AK17, AG19, AJ17  
AG13, AH8, AK2, AD2  
G[3:0]_TXD[8]  
NC  
Output w/ pull up  
G[3:0]port - PMA Transmit Data Bit [8]  
Y27, AG29, AH25, AK19,  
Table 7 - Ball- Signal Descriptions (continued)  
SEMICMF.019  
110  
Data Sheet  
MVTX2801AG  
Ball No(s)  
Symbol  
G[3:0]_TX_D[9]  
I/O  
Description  
AJ14, AK9, AJ3, AB5  
AB27, AF30, AF25, AH20,  
AH11, AG5, AG2, AB4  
Output w/ pull up  
G[3:0]port - PMA Transmit Data Bit [9]  
NC  
G[3:0]_ TXCLK  
Output  
G[3:0]port - PMA Gigabit Transmit  
Clock  
AD28, AH30, AK22, AH17, NC  
Test Facility (3)  
U29  
U28  
A3  
T_MODE0  
I/O-TS with pull up  
Test - Set upon Reset, and provides  
NAND Tree test output during test  
mode  
Use external Pull up for normal  
operation  
T_MODE1  
SCAN_EN  
I/O-TS with pull up  
Input with pull down  
Test - Set upon Reset, and provides  
NAND Tree test output during test  
mode.  
Use external Pull up for normal  
operation  
Enable test mode  
For normal operation leave it  
unconnected  
LED Interface (serial and parallel)  
R28, T26, R27, T27, U27,  
T28, T29, T30  
T_D[7:0]/ LE_PD[7:0]  
Output  
Output  
While resetting, T_D[7,0] are in input  
mode and are used as strapping pins.  
Internal pull up  
LE_PD - Parallel Led data [7:0]  
P27, R26, R30, R29  
P26, P30, P29, P28,  
T_D[11:8]/ LE_PT[3:0]  
While resetting, T_D[11:8] are in input  
mode and are used as strapping pins.  
Internal pull up  
LED_PR[3:0] - Parallel Led port  
selection [3:0]  
T_D[15:12]/ LE_PT[7:4]  
LE_CLK0/ LE_PT[8]  
Output  
While resetting, T_D[15:12] are in input  
mode and are used as strapping pins.  
Internal pull up  
LED_PR[7:4] - No Meaning  
V29  
V30  
Output  
Output  
LE_CLK0 - LED Serial Interface Output  
Clock  
LE_PT[8] - Parallel Led port sel [8]  
LED_BLINK/ LE_DO/  
LE_PT[9]  
While resetting, LED-BLINK is in input  
mode and is used as strapping pin.  
1: No Blink,  
0: Blink. Internal pull up.  
LE_DO - LED Serial Data Output  
Stream  
LE_PT[9] - Parallel Led port sel [9]  
V28  
LED_PM/ LE_SYNCO#  
Output with pull up  
While resetting, LED_PM is in input  
mode and is used as strapping pin.  
Internal pull up.  
1: Enable parallel interface,  
0: enable serial interface.  
LE_SYNCO# - LED Output Data  
Stream Envelop  
System Clock, Power, and Ground Pins  
A16  
U26  
U30  
S_CLK  
Input  
System Clock at 133 MHz  
Reset Input  
S_RST#  
RESOUT#  
Input - ST  
Output  
Reset PHY  
Table 7 - Ball- Signal Descriptions (continued)  
SEMICMF.019  
111  
MVTX2801AG  
Data Sheet  
Ball No(s)  
Symbol  
DEV_CFG[0]  
I/O  
Description  
B1  
Input w/ pull down  
Input w/ pull down  
Power core  
Not used  
Not used  
B28  
DEV_CFG[1]  
VDD  
AE7, AE9, F10, F21, F22,  
F9, G25, G6, J25, J6, K25,  
K6, AA25, AA6, AB25,  
AB6, AD25, AE10, AE21,  
AE22  
+2.5 Volt DC Supply  
V14, V15, V16, V17, V18, VSS  
F16, F24, F25, F6, F7, N13,  
N14, N15, N16, N17, N18,  
P13, P14, P15, P16, P17,  
P18, R13, R14, R15, R16,  
R17, R18, R25, R6, T13,  
T14, T15, T16, T17, T18,  
T25, T6, U13, U14, U15,  
U16, U17, U18, V13, AD6,  
AE15, AE16, AE24, AE25,  
AE6, F15  
Ground  
Ground  
A1, C28  
E5, E25  
AVDD  
AVSS  
Power  
Analog DC Supply  
Analog Ground  
Ground  
Power I/O  
AE12, AE13, AE14, AE17, VDD33  
AE18, AE19, F12, F13,  
F14, F17, F18, F19, M25,  
M6, N25, N6, P25, P6,  
U25, U6, V25, V6, W25,  
W6  
+3.3 Volt DC Supply  
Bootstrap Pins (Default= pull up, 1= pull up 0= pull down)  
AD2  
G0_TX_EN  
Default: PCS  
Giga0  
Mode: G0_TXEN G0_TXER  
0
0
1
1
0
MII  
Invalid  
1
0
1
GMII  
PCS  
AB5  
AK2  
G0_TX_ER  
G1_TX_EN  
Default: PCS  
Default: PCS  
Giga1  
Mode: G1_TXEN G1_TXER  
0
0
1
1
0
1
0
1
MII  
Invalid  
GMII  
PCS  
AJ3  
G1_TXER  
Default: PCS  
Default: PCS  
AH8  
G2_TX_EN  
Giga2  
Mode: G0_TXEN G0_TXER  
0
0
1
1
0
1
0
1
MII  
Invalid  
GMII  
PCS  
AK9  
G2_TX_ER  
G3_TX_EN  
Default: PCS  
Default: PCS  
AG13  
Giga3  
Mode: G0_TXEN G0_TXER  
0
0
1
1
0
1
0
1
MII  
Invalid  
GMII  
PCS  
AJ14  
G3_TX_ER  
Default: PCS  
Table 7 - Ball- Signal Descriptions (continued)  
SEMICMF.019  
112  
Data Sheet  
MVTX2801AG  
Ball No(s)  
Symbol  
I/O  
Description  
After reset T_d[15:0] are used by the LED interface  
T30  
T29  
T_d[0]  
T_d[1]  
1
1
Giga link active status 0 - active low 1 -  
active high  
Power saving  
0 - No power saving  
1 - Power saving  
Stop MAC clock if no MAC activity.  
T28  
U27  
T_d[2]  
T_d[3]  
1
1
- Must be 0 (Use external pull down)  
Hot plug port module detection enable  
0 - module detection enable  
1 - module detection disable  
T27  
R27  
T_d[4]  
T_d[5]  
1
1
- Must be 0 (Use external pull down)  
SRAM memory size  
0 - 512K SRAM  
1 - 256K SRAM  
T26  
T_d[6]  
1
CPU Port mode  
0 - 8 bit cpu data bus  
1 - 16 bit cpu data bus  
R28  
T_d[7]  
1
FDB memory depth  
1- one memory layer  
0 - two memory layers  
W4, E21  
La_a[20], Lb_a[20]  
11  
FDB memory size  
11 - 2M per bank = 4M total  
10 - 1M per bank = 2M total  
0x - 512K per bank = 1M total  
R29  
R30  
R26  
P27  
T_d[8]  
1
1
1
1
EEPROM installed  
0 - EEPROM is installed  
1 - EEPROM is not installed  
T_d[9]  
MCT Aging enable  
0 - MCT aging disable  
1 - MCT aging enable  
T_d[10]  
T_d[11]  
FCB handle aging enable  
0 - FCB handle aging disable  
1 - FCB handle aging enable  
Timeout reset enable  
0 - timeout reset disable  
1 - timeout reset enable Issue reset if  
any state machine did not go back to  
idle for 5sec.  
P28  
P29  
T_d[12]  
T_d[13]  
1
1
Speed-up test  
0 - enable test speed up. DO NOT  
USE.  
1 - disable test speed up  
Enable debounce for strobe signal  
0 - disable debounce on strobe signal  
using 1msec clock - DO NOT USE.  
1 - enable debounce on strobe signal  
P30  
P26  
T_d[14]  
T_d[15]  
1
1
CPU installed  
0 - CPU installed.  
1 - CPU is not installed.  
External RAM test 0 - Perform the  
infinite loop of ZBT RAM BIST. Debug  
test only 1 - Regular operation.  
Table 7 - Ball- Signal Descriptions (continued)  
SEMICMF.019  
113  
MVTX2801AG  
Data Sheet  
Ball No(s)  
Symbol  
I/O  
Description  
N30, N29, N28  
P_d[2:0]  
111  
ZBT RAM la_clk turning  
3'b000 - control by reg. LCLKCR[2:0]  
3'b001 - delay by method # 0  
3'b010 - delay by method # 1  
3'b011 - delay by method # 2  
3'b100 - delay by method # 3  
3'b101 - delay by method # 4  
3'b110 - delay by method # 5  
3'b111 - delay by method # 6  
- USE THIS METHOD  
M30, M29, M28  
L29, L28, N26  
P_d[5:3]  
P_d[8:6]  
111  
111  
No Use  
SBRAM b_clk turning3'b000 - control by  
BCLKCR[2:0]  
3'b001 - delay by method # 0  
3'b010 - delay by method # 1  
3'b011 - delay by method # 2  
3'b100 - delay by method # 3  
3'b101 - delay by method # 4  
3'b110 - delay by method # 5  
3'b111 - delay by method # 6  
- USE THIS METHOD  
Table 7 - Ball- Signal Descriptions (continued)  
Notes:  
# =  
Active low signal  
Input signal  
Input =  
In-ST =  
Output =  
Input signal with Schmitt-Trigger  
Output signal (Tri-State driver)  
Out-OD=  
I/O-TS =  
I/O-OD =  
Output signal with Open-Drain driver  
Input & Output signal with Tri-State driver  
Input & Output signal with Open-Drain driver  
SEMICMF.019  
114  
Data Sheet  
11.4  
MVTX2801AG  
Ball Signal Name  
Ball No.  
Signal Name  
Ball No.  
M1  
Signal Name  
LA_D[34]  
Ball No.  
Y2  
Signal Name  
A1  
B1  
B2  
C2  
C1  
D1  
C3  
E4  
D2  
E3  
E2  
E1  
D3  
F1  
F2  
F3  
F4  
F5  
G1  
G2  
G5  
G4  
G3  
H1  
H2  
H3  
J1  
AVDD  
LA_A[13]  
DEV_CFG[0]  
LA_D[0]  
M2  
M3  
K4  
N1  
P5  
N2  
L5  
LA_D[35]  
LA_D[36]  
LA_D[37]  
LA_D[38]  
LA_D[39]  
LA_D[40]  
LA_D[41]  
LA_D[42]  
LA_D[43]  
LA_D[44]  
LA_D[45]  
LA_D[46]  
LA_D[47]  
LA_D[48]  
LA_D[49]  
LA_D[50]  
LA_D[51]  
LA_D[52]  
LA_D[53]  
LA_D[54]  
LA_D[55]  
LA_D[56]  
LA_D[57]  
LA_D[58]  
LA_D[59]  
LA_D[60]  
LA_D[61]  
LA_D[62]  
LA_D[63]  
LA_A[3]  
V4  
LA_A[14]  
Y1  
LA_A[15]  
LA_CLK  
LA_D[1]  
AA3  
AA2  
V5  
LA_A[16]  
LA_A[17]  
LA_D[2]  
LA_A[18]  
LA_D[3]  
AA1  
W4  
LA_A[19]  
LA_D[4]  
LA_A[20]  
LA_D[5]  
N3  
P1  
P2  
P3  
L4  
Y4  
G0_CRS/LINK  
GREF_CLK[0]  
G0_TXCLK  
G0_TXD[0]  
G0_TXD[1]  
G0_TXD[2]  
MII_TX_CLK[0]  
G0_TXD[3]  
G0_TXD[4]  
G0_TXD[5]  
G0_RXCLK  
G0_COL  
LA_D[6]  
AA4  
AB4  
AB3  
W5  
LA_D[7]  
LA_D[8]  
LA_D[9]  
LA_D[10]  
LA_D[11]  
LA_D[12]  
LA_D[13]  
LA_D[14]  
LA_D[15]  
LA_D[16]  
LA_D[17]  
LA_D[18]  
LA_D[19]  
LA_D[20]  
LA_D[21]  
LA_D[22]  
LA_D[23]  
LA_D[24]  
LA_D[25]  
LA_D[26]  
LA_D[27]  
LA_D[28]  
LA_D[29]  
LA_D[30]  
R5  
M5  
R1  
R2  
R3  
R4  
M4  
T4  
T3  
N5  
T2  
T1  
U4  
U3  
N4  
U2  
U1  
V3  
P4  
V2  
V1  
AB2  
AB1  
AC3  
Y5  
AC2  
AC1  
AD3  
AD4  
AA5  
AD2  
AB5  
AD1  
AE4  
AC4  
AE3  
AE2  
AE1  
AC5  
AF1  
AD5  
AF2  
G0_TXD[6]  
G0_TXD[7]  
G0_TX_EN  
G0_TX_ER  
G0_RXD[0]  
G0_RXD[1]  
G0_RXD[2]  
G0_RXD[3]  
G0_RXD[4]  
G0_RXD[5]  
G0_RXD[6]  
G0_RXD[7]  
G0_RX_DV  
G0_RX_ER  
H5  
J2  
J3  
J4  
K1  
H4  
K2  
LA_A[4]  
LA_A[5]  
LA_A[6]  
Table 8 - Ball Signal Name  
SEMICMF.019  
115  
MVTX2801AG  
Data Sheet  
Ball No.  
Signal Name  
Ball No.  
T5  
Signal Name  
LA_A[7]  
Ball No.  
AF3  
Signal Name  
J5  
LA_D[31]  
GREF_CLK[1]  
K3  
LA_CS0#  
W3  
LA_A[8]  
AG2  
G1_TXCLK  
L1  
LA_CS1#  
W2  
LA_A[9]  
AG3  
G1_CRS/LINK  
L2  
LA_RW#  
W1  
LA_A[10]  
AE5  
G1_TXD[0]  
G1_TXD[1]  
G1_TXD[2]  
NC  
L3  
LA_D[32]  
U5  
LA_A[11]  
AG1  
K5  
LA_D[33]  
Y3  
LA_A[12]  
AH1  
AH2  
AJ2  
AJ1  
AK1  
AG4  
AK2  
AH3  
AJ3  
AH4  
AK3  
AF4  
AK4  
AH5  
AJ4  
AG6  
AF5  
AJ5  
AF6  
AK5  
AK6  
AJ6  
AG5  
AH6  
AF7  
AK7  
AJ7  
AG8  
AG7  
AH7  
G1_TXD[3]  
G1_TXD[4]  
G1_TXD[5]  
G1_TXD[6]  
G1_TXD[7]  
G1_TX_EN  
MII_TX_CLK[1]  
G1_TX_ER  
G1_RXD[0]  
G1_RXD[1]  
G1_RXD[2]  
G1_RXD[3]  
G1_RXCLK  
G1_COL  
AG10  
AK10  
AJ10  
AG11  
AH10  
AG12  
AK11  
AJ11  
AH11  
AK12  
AF12  
AJ12  
AH12  
AK13  
AJ13  
AH13  
AF13  
AK14  
AG13  
AJ14  
AH14  
AF14  
AG14  
AK15  
AF17  
AJ15  
AH15  
AF15  
AF18  
G2_RXCLK  
G2_COL  
AG19  
AK17  
AF20  
AH18  
AJ18  
AK18  
AH19  
AJ19  
AK19  
AH20  
AJ20  
AF21  
AK20  
AH21  
AJ21  
AK21  
AF22  
AG20  
AG21  
AG22  
AH22  
AJ22  
AK22  
AH23  
AG23  
AJ23  
AK23  
AF23  
AH24  
NC  
G2_RXD[6]  
G2_RXD[7]  
G2_RX_DV  
G2_RX_ER  
G3_CRS/LINK  
GREF_CLK[3]  
G3_TXCLK  
G3_TXD[0]  
G3_TXD[1]  
G3_TXD[2]  
G3_TXD[3]  
G3_TXD[4]  
MII_TX_CLK[3]  
G3_TXD[5]  
G3_TXD[6]  
G3_TXD[7]  
G3_TX_EN  
G3_TX_ER  
G3_RXCLK  
G3_COL  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
G1_RXD[4]  
G1_RXD[5]  
G1_RXD[6]  
G1_RXD[7]  
G1_RX_DV  
G1_RX_ER  
GREF_CLK[2]  
G2_TXCLK  
G2_CRS/LINK  
G2_TXD[0]  
G2_TXD[1]  
G2_TXD[2]  
G2_TXD[3]  
G2_TXD[4]  
MII_TX_CLK[2]  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
G3_RXD[0]  
CM_CLK  
NC  
NC  
IND_CM  
NC  
G3_RXD[1]  
G3_RXD[2]  
G3_RXD[3]  
G3_RXD[4]  
NC  
NC  
NC  
NC  
Table 8 - Ball Signal Name (continued)  
SEMICMF.019  
116  
Data Sheet  
MVTX2801AG  
Ball No.  
Signal Name  
G2_TXD[5]  
Ball No.  
AG15  
Signal Name  
G3_RXD[5]  
Ball No.  
AF24  
Signal Name  
AK8  
NC  
AJ8  
G2_TXD[6]  
AF16  
AG16  
AH16  
AF19  
AJ16  
AG18  
AK16  
AG17  
AH17  
AJ17  
AA27  
AB30  
AB29  
Y26  
G3_RXD[6]  
G3_RXD[7]  
G3_RX_DV  
G3_RX_ER  
M_MDC  
M_MDIO  
NC  
AG24  
AJ24  
AK24  
AG25  
AH25  
AF25  
AJ25  
AG26  
AK25  
AK26  
P29  
NC  
AF8  
G2_TXD[7]  
NC  
AH8  
G2_TX_EN  
NC  
AK9  
G2_TX_ER  
NC  
AJ9  
G2_RXD[0]  
NC  
AH9  
G2_RXD[1]  
NC  
AF9  
G2_RXD[2]  
G2_RXD[3]  
G2_RXD[4]  
G2_RXD[5]  
NC  
NC  
AG9  
NC  
NC  
AF10  
AF11  
AJ26  
AH26  
AJ27  
AF26  
AH27  
AK27  
AK28  
AJ28  
AJ29  
AK29  
AK30  
AJ30  
AH28  
AH29  
AG27  
AG28  
AH30  
AG30  
AF28  
AE26  
AG29  
AF27  
AF29  
AF30  
NC  
NC  
NC  
NC  
NC  
T_D[13]  
T_D[14]  
T_D[15]  
P_D[0]  
P_D[1]  
P_D[2]  
P_D[3]  
P_D[4]  
P_D[5]  
P_D[6]  
P_D[7]  
P_D[8]  
P_D[9]  
P_D[10]  
P_D[11]  
P_D[12]  
P_D[13]  
P_D[14]  
P_D[15]  
P_A[0]  
P_A[1]  
P_A[2]  
P_WE#  
P_RD#  
NC  
NC  
P30  
NC  
NC  
P26  
NC  
NC  
N28  
N29  
N30  
M28  
M29  
M30  
N26  
L28  
NC  
AB28  
Y27  
NC  
NC  
NC  
NC  
AB27  
AA30  
AA29  
AA28  
Y30  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
W27  
Y29  
NC  
L29  
NC  
NC  
N27  
L30  
NC  
W26  
Y28  
NC  
NC  
NC  
K28  
NC  
W30  
W29  
V26  
NC  
K29  
NC  
NC  
K30  
NC  
NC  
L27  
NC  
W28  
V27  
NC  
K27  
NC  
NC  
M26  
J27  
NC  
V30  
LE_DO  
LE_CLK0  
LE_SYNCO#  
S_RST#  
NC  
V29  
J28  
NC  
V28  
J29  
NC  
U26  
J30  
Table 8 - Ball Signal Name (continued)  
SEMICMF.019  
117  
MVTX2801AG  
Data Sheet  
Ball No.  
AD26  
Signal Name  
Ball No.  
U30  
Signal Name  
RESOUT#  
Ball No.  
L26  
Signal Name  
NC  
P_CS#  
AE30  
AC26  
AE29  
AC27  
AE28  
AE27  
AB26  
AD30  
AD29  
AD27  
AD28  
AC30  
AA26  
AC29  
AC28  
E30  
NC  
U29  
U28  
T30  
T29  
T28  
U27  
T27  
R27  
T26  
R28  
R29  
R30  
R26  
P27  
P28  
A23  
B23  
C23  
E22  
A22  
B22  
C22  
E21  
D22  
D20  
E20  
D21  
A21  
D19  
B21  
C21  
A20  
B20  
E19  
T_MODE[0]  
T_MODE[1]  
T_D[0]  
T_D[1]  
T_D[2]  
T_D[3]  
T_D[4]  
T_D[5]  
T_D[6]  
T_D[7]  
T_D[8]  
T_D[9]  
T_D[10]  
T_D[11]  
T_D[12]  
B_A[12]  
B_A[13]  
B_A[14]  
B_A[15]  
B_A[16]  
B_A[17]  
B_A[18]  
LB_A[20]  
NC  
H28  
M27  
H29  
H30  
G28  
G27  
K26  
G29  
G30  
H27  
F27  
F28  
F29  
F30  
J26  
P_INT#  
B_D[0]  
B_D[1]  
B_D[2]  
B_D[3]  
B_D[4]  
B_D[5]  
B_D[6]  
B_D[7]  
B_D[8]  
B_D[9]  
B_D[10]  
B_D[11]  
B_D[12]  
B_D[13]  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
B_D[14]  
B_D[15]  
B_D[16]  
B_D[17]  
B_D[18]  
B_D[19]  
B_D[20]  
B_D[21]  
B_D[22]  
B_D[23]  
B_CLK  
B_D[24]  
B_D[25]  
NC1  
E14  
C15  
B15  
E13  
A15  
D14  
C14  
D13  
B14  
A14  
C13  
E12  
B13  
A13  
D12  
C12  
B12  
A12  
C11  
H26  
NC  
E29  
NC  
E26  
NC  
D29  
NC  
E28  
NC  
G26  
NC  
D30  
NC  
C30  
NC  
E27  
NC  
NC  
C29  
NC  
NC  
D28  
NC  
NC  
B30  
NC  
NC  
F26  
NC  
NC  
D26  
NC2  
NC  
NC  
A30  
NC3  
NC  
NC  
A29  
NC4  
NC  
NC  
B29  
NC5  
NC  
NC  
E25  
AGND  
NC  
NC  
Table 8 - Ball Signal Name (continued)  
SEMICMF.019  
118  
Data Sheet  
MVTX2801AG  
Ball No.  
Signal Name  
DEV_CFG[1]  
Ball No.  
C20  
Signal Name  
Ball No.  
E11  
Signal Name  
B28  
C28  
A28  
A27  
C27  
D27  
B27  
E24  
D25  
B26  
A26  
A25  
B25  
C26  
C25  
E23  
A24  
B24  
D23  
D24  
C24  
B7  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
AVDD  
B_D[26]  
B_D[27]  
B_D[28]  
B_D[29]  
B_D[30]  
B_D[31]  
B_ADSC#  
B_WE#  
B_OE#  
B_A[2]  
B_A[3]  
B_A[4]  
B_A[5]  
B_A[6]  
B_A[7]  
B_A[8]  
B_A[9]  
B_A[10]  
B_A[11]  
NC  
A19  
B19  
E18  
C19  
A18  
D18  
B18  
C18  
A17  
E17  
B17  
C17  
E16  
D17  
A16  
B16  
E15  
C16  
D16  
D15  
P15  
P16  
P17  
P18  
R13  
R14  
R15  
R16  
R17  
R18  
R25  
R6  
B11  
A11  
E10  
C10  
B10  
E9  
NC  
NC  
NC  
NC  
NC  
NC  
A10  
D11  
D10  
D8  
NC  
NC  
NC  
NC  
D9  
NC  
C9  
NC  
B9  
NC  
A9  
NC  
S_CLK  
NC  
C8  
NC  
B8  
NC  
NC  
A8  
NC  
NC  
C7  
NC  
NC  
E7  
NC  
NC  
D7  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AE7  
AE9  
F10  
F21  
F22  
F9  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VD33  
VD33  
E8  
NC  
A7  
NC  
D6  
NC  
C6  
NC  
E6  
NC  
B6  
NC  
G25  
G6  
A6  
NC  
A5  
NC  
J25  
J6  
B5  
NC  
C5  
NC  
K25  
K6  
B4  
NC  
D5  
NC  
T13  
T14  
AE12  
AE13  
A4  
NC  
Table 8 - Ball Signal Name (continued)  
SEMICMF.019  
119  
MVTX2801AG  
Data Sheet  
Ball No.  
A3  
Signal Name  
Ball No.  
T15  
Signal Name  
Ball No.  
AE14  
Signal Name  
SCAN_EN  
AGND  
NC6  
NC7  
NC8  
NC9  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VD33  
VD33  
VD33  
VD33  
VD33  
VD33  
VD33  
VD33  
VD33  
VD33  
VD33  
VD33  
VD33  
VD33  
VD33  
VD33  
VD33  
VD33  
VD33  
VD33  
VD33  
VD33  
E5  
T16  
AE17  
AE18  
AE19  
F12  
F13  
F14  
F17  
F18  
F19  
M25  
M6  
C4  
T17  
B3  
T18  
D4  
T25  
A2  
T6  
AD6  
AE15  
AE16  
AE24  
AE25  
AE6  
F15  
F16  
F24  
F25  
F6  
U13  
U14  
U15  
U16  
U17  
U18  
V13  
V14  
V15  
V16  
V17  
V18  
AA25  
AA6  
AB25  
AB6  
AD25  
AE10  
AE21  
AE22  
N25  
N6  
P25  
P6  
U25  
U6  
F7  
N13  
N14  
N15  
N16  
N17  
N18  
P13  
P14  
V25  
V6  
W25  
W6  
Table 8 - Ball Signal Name (continued)  
SEMICMF.019  
120  
Data Sheet  
MVTX2801AG  
11.5  
AC/DC Timing  
11.5.1  
Absolute Maximum Ratings  
Storage Temperature  
-65oC to +150oC  
-40oC to +85oC  
+3.0 V to +3.6 V  
Operating Temperature  
Supply Voltage VDD33 with Respect to VSS  
Supply Voltage VDD with Respect to VSS  
Voltage on Input Pins  
+2.38 V to +2.75 V  
-0.5 V to (VDD33 + 3.3 V)  
Caution: Stress above those listed may damage the device. Exposure to the Absolute Maximum Ratings for  
extended periods may affect device reliability. Functionality at or above these limits is not implied.  
11.5.2  
DC Electrical Characteristics  
VDD33 = 3.0 V to 3.6 V (3.3v +/- 10%)  
VDD = 2.5V +10% - 5%  
TAMBIENT = -40oC to +85oC  
11.5.3  
Recommended Operation Conditions  
Preliminary  
Symbol  
Parameter Description  
Unit  
Min  
Type  
133  
Max  
fosc  
IDD1  
Frequency of Operation  
MHz  
mA  
Supply Current - @ 133 MHz  
(VDD33 = 3.3V)  
680  
850  
IDD2  
Supply Current - @ 133 MHz  
(VDD = 2.5V)  
1300  
1500  
mA  
VOH  
Output High Voltage (CMOS)  
VDD33 - 0.5  
V
VOL  
Output Low Voltage (CMOS)  
0.5  
V
VIH-TTL  
VIL-TTL  
IIH-5VT  
Input High Voltage (TTL 5V tolerant)  
Input Low Voltage (TTL 5V tolerant)  
VDD33 x 70%  
VDD33 + 2.0  
VDD33 x 30%  
10  
V
V
Input Leakage Current (0.1 V < VIN  
VDD33)  
<
mA  
IIL-5VT  
Output Leakage Current  
(0.1 V < VOUT < VDD33)  
mA  
CIN  
Input Capacitance  
Output Capacitance  
I/O Capacitance  
5
5
7
pF  
pF  
pF  
COUT  
CI/O  
Table 9 - Recommended Operation Conditions  
SEMICMF.019  
121  
MVTX2801AG  
Data Sheet  
11.6  
Local Frame Buffer ZBT SRAM Memory Interface  
11.6.1  
Local ZBT SRAM Memory Interface A  
LA_CLK  
L1  
L2  
LA_D[63:0]  
Figure 8 - Local Memory Interface - Input setup and hold timing  
LA_CLK  
L3-max  
L3-min  
LA_D[63:0]  
L4-max  
L4-min  
LA_A[20:3]  
L6-max  
L6-min  
LA_CS[1,0]#  
L9-max  
L9-min  
LA_RW#  
Figure 9 - Local Memory Interface - Output valid delay timing  
(SCLK= 133MHz)  
Parameter  
Symbol  
Min (ns)  
Max (ns)  
Note:  
L1  
L2  
L3  
L4  
L6  
L9  
LA_D[63:0] input set-up time  
LA_D[63:0] input hold time  
LA_D[63:0] output valid delay  
LA_A[20:3] output valid delay  
LA_CS[1:0]# output valid delay  
LA_WE# output valid delay  
2.5  
1
3
5
5
5
5
CL = 25pf  
CL = 30pf  
CL = 30pf  
CL = 25pf  
3
3
3
Table 10 - AC Characteristics - Local frame buffer ZBT-SRAM Memory Interface A  
SEMICMF.019  
122  
Data Sheet  
MVTX2801AG  
11.7  
Local Switch Database SBRAM Memory Interface  
11.7.1  
Local SBRAM Memory Interface  
B_CLK  
L1  
L2  
B_D[31:0]  
Figure 10 - Local Memory Interface - Input setup and hold timing  
B_CLK  
L3-max  
L3-min  
B_D[31:0]  
L4-max  
L4-min  
B_A[18:2]  
L6-max  
L6-min  
B_ADSC#  
L10-max  
L10-min  
B_WE#  
L11-max  
L11-min  
B_OE#  
Figure 11 - Local Memory Interface - Output valid delay timing  
(SCLK= 133MHz)  
Symbol  
Parameter  
Min (ns)  
2.5  
Max (ns)  
Note:  
L1  
B_D[31:0] input set-up time  
B_D[31:0] input hold time  
B_D[31:0] output valid delay  
B_A[18:2] output valid delay  
B_ADSC# output valid delay  
B_WE# output valid delay  
B_OE# output valid delay  
L2  
1
3
3
3
3
3
L3  
5
CL = 25pf  
CL = 30pf  
CL = 30pf  
CL = 25pf  
CL = 25pf  
L4  
5
5
5
4
L6  
L10  
L11  
Table 11 - AC Characteristics - Local Switch Database SBRAM Memory Interface  
SEMICMF.019  
123  
MVTX2801AG  
Data Sheet  
11.8  
AC Characteristics  
11.8.1  
Media Independent Interface  
MII_TXCLK[3:0]  
M6-max  
M6-min  
G[3:0]_TXEN  
M7-max  
M7-min  
G[3:0] _TXD[3:0]  
Figure 12 - AC Characteristics - Media Independent Interface  
G[3:0]_RXCLK  
M2  
G[3:0]_RXD[3:0]  
M3  
M4  
G[3:0]_CRS_DV  
M5  
Figure 13 - AC Characteristics - Media Independent Interface  
(MII_TXCLK & G_RXCLK = 25MHz)  
Symbol Parameter  
Min (ns)  
Max (ns)  
Note:  
M2  
M3  
M4  
M5  
M6  
M7  
G[3:0]_RXD[3:0] Input Setup Time  
G[3:0]_RXD[3:0] Input Hold Time  
G[3:0]_CRS_DV Input Setup Time  
G[3:0]_CRS_DV Input Hold Time  
G[3:0]_TXEN Output Delay Time  
G[3:0]_TXD[3:0] Output Delay Time  
4
1
4
1
3
3
11  
11  
CL = 20 pF  
CL = 20 pF  
Table 12 - AC Characteristics - Media Independent Interface  
SEMICMF.019  
124  
Data Sheet  
MVTX2801AG  
11.8.2  
Gigabit Media Independent Interface  
G[3:0]_TXCLK  
G[3:0]_TXD[7:0]  
G[3:0]_TX_EN  
G[3:0]_TX_ER  
G12-max  
G12-min  
G13-max  
G13-min  
G14-max  
G14-min  
Figure 14 - AC Characteristics- GMII  
G[3:0]_RXCLK  
G1  
G3  
G5  
G7  
G2  
G4  
G[3:0]_RXD[7:0]  
G[3:0]_RX_DV  
G[3:0]_RX_ER  
G[3:0]_RX_CRS  
G6  
G8  
Figure 15 - AC Characteristics - Gigabit Media Independent Interface  
SEMICMF.019  
125  
MVTX2801AG  
Data Sheet  
(G_RCLK & G_REFCLK = 125MHz)  
Min (ns) Max (ns)  
Symbol  
Parameter  
Note:  
G1  
G[3:0]_RXD[7:0] Input Setup Times  
G[3:0]_RXD[7:0] Input Hold Times  
G[3:0]_RX_DV Input Setup Times  
G[3:0]_RX_DV Input Hold Times  
G[3:0]_RX_ER Input Setup Times  
G[3:0]_RX_ER Input Hold Times  
G[3:0]_CRS Input Setup Times  
G[3:0]_CRS Input Hold Times  
2
1
2
1
2
1
2
1
1
1
1
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G12  
G13  
G14  
G[3:0]_TXD[7:0] Output Delay Times  
G[3:0]_TX_EN Output Delay Times  
G[3:0]_TX_ER Output Delay Times  
5
5
5
CL = 20pf  
CL = 20pf  
CL = 20pf  
Table 13 - AC Characteristics - Gigabit Media Independent Interface  
11.8.3  
PCS Interface  
G[3:0]_TXCLK  
G30-max  
G30-min  
G[3:0]_TXD[9:0]  
Figure 16 - AC Characteristics - PCS Interface  
G[3:0]_RXCLK1  
G[3:0]_RXCLK  
G[3:0]_RXD[9:0]  
G[3:0]_RX_CRS  
Figure 17 - AC Characteristics - PCS Interface  
SEMICMF.019  
126  
Data Sheet  
MVTX2801AG  
(G_RCLK & G_REFCLK =  
125MHz)  
Min (ns)  
2
Symbol  
Parameter  
Max (ns)  
Note:  
G21  
G[3:0]_RXD[9:0] Input Setup Times ref to  
G_RXCLK  
G22  
G23  
G24  
G[3:0]_RXD[9:0] Input Hold Times ref to  
G_RXCLK  
1
2
1
G[3:0]_RXD[9:0] Input Setup Times ref to  
G_RXCLK1  
G[3:0]_RXD[9:0] Input Hold Times ref to  
G_RXCLK1  
G25  
G26  
G30  
G[3:0]_CRS Input Setup Times  
G[3:0]_CRS Input Hold Times  
G[3:0]_TXD[9:0] Output Delay Times  
2
1
1
5
CL = 20pf  
Table 14 - AC Characteristics - PCS Interface  
11.8.4  
LED Interface  
LED_CLK  
LE5-max  
LE5-min  
LED_SYN  
LE6-max  
LE6-min  
LED_BIT  
Figure 18 - AC Characteristics - LED Interface  
Variable FREQ.  
Symbol Parameter  
Min (ns)  
Max (ns)  
Note:  
LE5  
LE6  
LED_SYN Output Valid Delay  
LED_BIT Output Valid Delay  
1
1
7
7
CL = 30pf  
CL = 30pf  
Table 15 - AC Characteristics - LED Interface  
SEMICMF.019  
127  
MVTX2801AG  
Data Sheet  
11.8.5  
MDIO Input Setup and Hold Timing  
MDC  
D1  
D2  
MDIO  
Figure 19 - MDIO Input Setup and Hold Timing  
MDC  
D3-max  
D3-min  
MDIO  
Figure 20 - MDIO Output Delay Timing  
1MHz  
Symbol Parameter  
Min (ns) Max (ns) Note:  
D1  
D2  
D3  
MDIO input setup time  
MDIO input hold time  
MDIO output delay time  
10  
2
1
20  
CL = 50pf  
Table 16 - MDIO Timing  
2
11.8.6  
I C Input Setup Timing  
SCL  
SDA  
S1  
S2  
Figure 21 - I2C Input Setup Timing  
SEMICMF.019  
128  
Data Sheet  
MVTX2801AG  
SCL  
SDA  
S3-max  
S3-min  
Figure 22 - I2C Output Delay Timing  
500KHz  
Symbol  
S1  
Parameter  
Min (ns)  
Max (ns)  
Note:  
SDA input setup time  
SDA input hold time  
SDA output delay time  
20  
1
S2  
S3  
1
20  
CL = 30pf  
Open Drain Output. Low to High transistor is controlled by external pullup resistor.  
Table 17 - I2C Timing  
11.8.7  
Serial Interface Setup Timing  
STROBE  
D4  
D5  
D1  
D1  
D2  
D2  
PS_DI  
Figure 23 - Serial Interface Setup Timing  
STROBE  
D3-max  
D3-min  
PS_DO  
Figure 24 - Serial Interface Output Delay Timing  
SEMICMF.019  
129  
MVTX2801AG  
Data Sheet  
Note:  
(SCLK =133 MHz)  
Min (ns)  
Symbol  
Parameter  
Max (ns)  
D1  
D2  
D3  
D4  
D5  
PS_DI setup time  
PS_DI hold time  
20  
10  
PS_DO output delay time  
Strobe low time  
1
50  
CL = 100pf  
5ms  
5ms  
Strobe high time  
Table 18 - Serial Interface Timing  
12.0  
12.1  
Mechanical Data  
Packaging Information  
596 PIN BGA Packaging Diagram. 40 x 40 mm  
SEMICMF.019  
130  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. trading as Zarlink Semiconductor or its subsidiaries (collectively  
“Zarlink”) is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the  
application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may  
result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under  
patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified  
that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property  
rights owned by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the  
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute  
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and  
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does  
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in  
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.  
Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in an I2C System, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Zarlink and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright 2002, Zarlink Semiconductor Inc. All Rights Reserved.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

相关型号:

MVTX2801AG

Unmanaged 4-Port 1000 Mbps Ethernet Switch
ZARLINK

MVTX2802

Managed 4-Port 1000 Mbps Ethernet Switch
ZARLINK

MVTX2802A

Managed 4 port Gigabit Ethernet switch
ETC

MVTX2802AG

Managed 4-Port 1000 Mbps Ethernet Switch
ZARLINK

MVTX2802AG

DATACOM, LAN SWITCHING CIRCUIT, PBGA596, 40 X 40 MM, 2.33 MM HEIGHT, MS-034, HSBGA-596
MICROSEMI

MVTX2803

Unmanaged 8-Port 1000 Mbps Ethernet Switch
ZARLINK

MVTX2803A

Unmanaged 8 port Gigabit Ethernet switch
ETC

MVTX2803AG

Unmanaged 8-Port 1000 Mbps Ethernet Switch
ZARLINK

MVTX2804

8-Port 1000 Mbps Ethernet Distributed Switch
ZARLINK

MVTX2804AG

8-Port 1000 Mbps Ethernet Distributed Switch
ZARLINK

MVU10-10FFBK

FORK TERMINAL
3M

MVU10-10FX

VINYL INSULATED BRAZED SEAM FORK TERMINAL
3M