MVTX2604AG [ZARLINK]

Managed 24-Port 10/100 Mb + 2 Port 1 Gb Ethernet Switch; 网管24端口10/100兆+ 2端口1 Gb以太网交换机
MVTX2604AG
型号: MVTX2604AG
厂家: ZARLINK SEMICONDUCTOR INC    ZARLINK SEMICONDUCTOR INC
描述:

Managed 24-Port 10/100 Mb + 2 Port 1 Gb Ethernet Switch
网管24端口10/100兆+ 2端口1 Gb以太网交换机

网络接口 电信电路 以太网 局域网(LAN)标准
文件: 总173页 (文件大小:1994K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MVTX2604  
Managed 24-Port 10/100 Mb + 2 Port 1 Gb  
Ethernet Switch  
Data Sheet  
February 2004  
Features  
Integrated Single-Chip 10/100/1000 Mbps  
Ordering Information  
Ethernet Switch  
24 10/100 Mbps Autosensing, Fast Ethernet  
Ports with RMII or Serial Interface (7WS). Each  
port can independently use one of the two  
interfaces  
MVTX2604AG  
553 Pin HSBGA  
-40°C to 85°C  
2 Gigabit Ports with GMII, PCS, 10/100 and  
Provides port based and ID tagged VLAN  
support (IEEE 802.1Q), up to 255 VLANs  
Supports IP Multicast with IGMP snooping  
stacking (2 G per port) interface options per port  
Stacking port supports hot swap in managed  
configuration  
Supports spanning tree with CPU, on per port or  
Supports 8/16-bit CPU interface in managed  
mode  
per VLAN basis  
Packet Filtering and Port Security  
Serial interface in unmanaged mode  
• Static address filtering for source and/or destination  
MAC  
• Static MAC address not subject to aging  
Supports two Frame Buffer Memory domains with  
SRAM at 100 MHz  
Supports memory size 2 MB, or 4 MB  
Secure mode freezes MAC address learning  
• For 24 + 2, two SRAM domains (2 MB or 4 MB) are  
required.  
Each port may independently use this mode  
Full Duplex Ethernet IEEE 802.3x Flow Control  
Backpressure flow control for Half Duplex ports  
• For 24 + 2 stacking (2 G per stacking port), two ZBT  
domains (2 MB or 4 MB) are required  
Supports Ethernet multicasting and broadcasting  
Applies centralized shared memory architecture  
Up to 64 K MAC addresses  
and flooding control  
Supports per-system option to enable flow  
control for best effort frames even on QoS-  
enabled ports  
Maximum throughput is 6.4 Gbps non-blocking  
High performance packet forwarding (19.047 M  
packets per second) at full wire speed  
Frame Data Buffer A  
SRAM (1 M / 2 M)  
Frame Data Buffer B  
SRAM (1 M / 2 M)  
FDB Interface  
LED  
Search  
Engine  
MCT  
Link  
Frame Engine  
FCB  
GMII/  
PCS  
Port  
24  
GMII/  
24 x 10 / 100  
Management  
Module  
16-bit  
PCS  
Port  
25  
RMII  
Parallel /  
Ports 0 - 23  
Serial  
Figure 1 - MVTX2604 System Block Diagram  
1
Zarlink Semiconductor Inc.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright 2003-2004, Zarlink Semiconductor Inc. All Rights Reserved.  
MVTX2604  
Data Sheet  
Traffic Classification  
• 4 transmission priorities for Fast Ethernet ports with 2 dropping levels  
• Classification based on:  
- Port based priority  
- VLAN Priority field in VLAN tagged frame  
- DS/TOS field in IP packet  
- UDP/TCP logical ports: 8 hard-wired and 8 programmable ports, including one programmable range  
The precedence of the above classifications is programmable  
QoS Support  
• Supports IEEE 802.1p/Q Quality of Service with 4 transmission priority queues with delay bounded, strict priority, and  
WFQ service disciplines  
• Provides 2 levels of dropping precedence with WRED mechanism  
• User controls the WRED thresholds  
• Buffer management: per class and per port buffer reservations  
• Port-based priority: VLAN priority in a tagged frame can be overwritten by the priority of Port VLAN ID  
3 port trunking groups, one for the 2 Gigabit ports, and two groups for 10/100 ports, with up to 4 10/100  
ports per group  
Load sharing among trunked ports can be based on source MAC and/or destination MAC. The Gigabit  
trunking group has one more option, based on source port  
Port Mirroring to any two ports of 0-23 in managed mode or to a dedicated mirroring port or port 23 in  
unmanaged mode  
Full set of LED signals provided by a serial interface, or 6 LED signals dedicated to Gigabit port status only  
(without serial interface)  
Built-in MIB statistics counters  
Recognizes Simple Bandwidth Management (SBM) and Resource Reservation Protocol (RSVP) packets  
and forwards to CPU  
Hardware auto-negotiation through serial management interface (MDIO) for Ethernet ports  
Built-in reset logic triggered by system malfunction  
Built-in self test for internal and external SRAM  
2
I C EEPROM for configuration  
553 BGA package  
2
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Description  
The MVTX2604 is a high density, low cost, high performance, non-blocking Ethernet switch chip. A single chip  
provides 24 ports at 10/100 Mbps, 2 ports at 1000 Mbps and a CPU interface for managed and unmanaged switch  
applications. The Gigabit ports can also support 10/100 M and 2 G stacking modes.  
The chip supports up to 64 K MAC addresses and up to 255 port-based Virtual LANs (VLANs). The centralized  
shared memory architecture permits a very high performance packet forwarding rate at up to 9.524 M packets per  
second at full wire speed. The chip is optimized to provide low-cost, high-performance workgroup switching.  
Two Frame Buffer Memory domains utilize cost-effective, high-performance synchronous SRAM with aggregate  
bandwidth of 12.8 Gbps to support full wire speed on all ports simultaneously. In the 24+2 stacking (2 G per  
stacking port) configuration, 2 ZBT domains are needed.  
With delay bounded, strict priority, and/or WFQ transmission scheduling, and WRED dropping schemes, the  
MVTX2604 provides powerful QoS functions for various multimedia and mission-critical applications. The chip  
provides 4 transmission priorities (8 priorities per Gigabit port) and 2 levels of dropping precedence. Each packet is  
assigned a transmission priority and dropping precedence based on the VLAN priority field in a VLAN tagged  
frame, or the DS/TOS field, or the UDP/TCP logical port fields in IP packets. The MVTX2604 recognizes a total of  
16 UDP/TCP logical ports, 8 hard-wired and 8 programmable (including one programmable range).  
The MVTX2604 supports 3 groups of port trunking/load sharing. One group is dedicated to the two Gigabit ports,  
and the other two groups to 10/100 ports, where each 10/100 group can contain up to 4 ports. Port trunking/load  
sharing can be used to group ports between interlinked switches to increase the effective network bandwidth.  
In half-duplex mode all ports support backpressure flow control to minimize the risk of losing data during long  
activity bursts. In full-duplex mode, IEEE 802.3x flow control is provided. The MVTX2604 also supports a per-  
system option to enable flow control for best effort frames, even on QoS-enabled ports.  
The Physical Coding Sublayer (PCS) is integrated on-chip to provide a direct 10-bit interface for connection to  
SERDES chips. The PCS can be bypassed to provide a GMII interface.  
Statistical information for SNMP and the Remote Monitoring Management Information Base (RMON MIB) are  
collected independently for all ports. Access to these statistical counters/registers is provided via the CPU interface.  
SNMP Management frames can be received and transmitted via the CPU interface creating a complete network  
management solution.  
The MVTX2604 is fabricated using 0.25 micron technology. Inputs, however, are 3.3 V tolerant, and the outputs are  
capable of directly interfacing to LVTTL levels. The MVTX2604 is packaged in a 553-pin Ball Grid Array package.  
3
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Table of Contents  
1.0 Bock Functionality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
1.1 Frame Data Buffer (FDB) Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
1.2 GMII/PCS MAC Module (GMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
1.3 Physical Coding Sublayer (PCS) Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
1.4 10/100 MAC Module (RMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
1.5 CPU Interface Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
1.6 Management Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
1.7 Frame Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
1.8 Search Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
1.9 LED Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
1.10 Internal Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.0 System Configuration (Stand-alone and Stacking) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.1 Management and Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.2 Managed Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.3 Register Configuration, Frame Transmission, and Frame Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.3.1 Register Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.3.2 Rx/Tx of Standard Ethernet Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.3.3 Control Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.4 Unmanaged Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2.5 I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2.5.1 Start Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2.5.2 Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2.5.3 Data Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2.5.4 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2.5.5 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2.5.6 Stop Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2.6 Synchronous Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2.6.1 Write Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2.6.2 Read Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2.7 Stacking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.0 MVTX2604 Data Forwarding Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.1 Unicast Data Frame Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.2 Multicast Data Frame Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.3 Frame Forwarding To and From CPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.0 Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.2 ZBT Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.3 Detailed Memory Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.4 Memory Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
5.0 Search Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
5.1 Search Engine Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
5.2 Basic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
5.3 Search, Learning, and Aging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
5.3.1 MAC Search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
5.3.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
5.3.3 Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
5.3.4 VLAN Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
5.4 MAC Address Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
5.5 Quality of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
5.6 Priority Classification Rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
5.7 Port and Tag Based VLAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
5.7.1 Port-Based VLAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
4
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Table of Contents  
5.7.2 Tag-Based VLAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
5.8 Memory Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
6.0 Frame Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.1 Data Forwarding Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.2 Frame Engine Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
6.2.1 FCB Manager. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
6.2.2 Rx Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
6.2.3 RxDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
6.2.4 TxQ Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
6.3 Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
6.4 TxDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
7.0 Quality of Service and Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
7.1 Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
7.2 Four QoS Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
7.3 Delay Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
7.4 Strict Priority and Best Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
7.5 Weighted Fair Queuing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
7.6 Shaper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
7.7 Rate Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
7.8 WRED Drop Threshold Management Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
7.9 Buffer Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
7.9.1 Dropping When Buffers Are Scarce. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
7.10 MVTX2604 Flow Control Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
7.10.1 Unicast Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
7.10.2 Multicast Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
7.11 Mapping to IETF Diffserv Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
8.0 Port Trunking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
8.1 Features and Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
8.2 Unicast Packet Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
8.3 Multicast Packet Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
8.4 Unmanaged Trunking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
9.0 Port Mirroring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
9.1 Port Mirroring Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
9.2 Setting Registers for Port Mirroring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
10.0 TBI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
10.1 TBI Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
11.0 GPSI (7WS) Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
11.1 GPSI connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
11.2 SCAN LINK and SCAN COL interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
12.0 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
12.1 LED Interface Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
12.2 Port Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
12.3 LED Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
13.0 Hardware Statistics Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
13.1 Hardware Statistics Counters List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
13.2 IEEE 802.3 HUB Management (RFC 1516) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
13.2.1 Event Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
13.2.1.1 Readablectet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
13.2.1.2 ReadableFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
13.2.1.3 FCSErrors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
13.2.1.4 AlignmentErrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
5
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Table of Contents  
13.2.1.5 FrameTooLongs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
13.2.1.6 ShortEvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
13.2.1.7 Runts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
13.2.1.8 Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
13.2.1.9 LateEvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
13.2.1.10 VeryLongEvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
13.2.1.11 DataRateMisatches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
13.2.1.12 AutoPartitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
13.2.1.13 TotalErrors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
13.3 IEEE – 802.1 Bridge Management (RFC 1286) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
13.3.1 Event Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
13.3.1.1 InFrames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
13.3.1.2 OutFrames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
13.3.1.3 InDiscards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
13.3.1.4 DelayExceededDiscards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
13.3.1.5 MtuExceededDiscards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
13.4 RMON – Ethernet Statistic Group (RFC 1757) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
13.4.1 Event Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
13.4.1.1 Drop Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
13.4.1.2 Octets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
13.4.1.3 BroadcastPkts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
13.4.1.4 MulticastPkts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
13.4.1.5 CRCAlignErrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
13.4.1.6 UndersizePkts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
13.4.1.7 OversizePkts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
13.4.1.8 Fragments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
13.4.1.9 Jabbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
13.4.1.10 Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
13.4.1.11 Packet Count for Different Size Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
13.5 Miscellaneous Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
14.0 Register Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
14.1 MVTX2604 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
14.2 Directly Accessed Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
14.2.1 INDEX_REG0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
14.2.2 INDEX_REG1 (only needed for 8-bit mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
14.2.3 DATA_FRAME_REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
14.2.4 CONTROL_FRAME_REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
14.2.5 COMMAND&STATUS Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
14.2.6 Interrupt Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
14.2.7 Control Command Frame Buffer1 Access Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
14.2.8 Control Command Frame Buffer2 Access Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
14.3 Indirectly Accessed registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
14.4 Group 0 Address MAC Ports Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
14.4.1 ECR1Pn: Port N Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
14.4.2 ECR2Pn: Port N Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
14.4.3 GGControl – Extra GIGA Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
14.5 Group 1 Address VLAN Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
14.5.1 AVTCL – VLAN Type Code Register Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
14.5.2 AVTCH – VLAN Type Code Register High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
14.5.3 PVMAP00_0 – Port 00 Configuration Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
14.5.4 PVMAP00_1 – Port 00 Configuration Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
14.5.5 PVMAP00_2 – Port 00 Configuration Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
6
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Table of Contents  
14.5.6 PVMAP00_3 – Port 00 Configuration Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
14.6 Port Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
14.6.1 PVMODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
14.6.2 PVROUTE 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
14.6.3 PVROUTE1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
14.6.4 PVROUTE2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
14.6.5 PVROUTE3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
14.6.6 PVROUTE4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
14.6.7 PVROUTE5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
14.6.8 PVROUTE6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
14.6.9 PVROUTE7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
14.7 Group 2 Address Port Trunking Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
14.7.1 TRUNK0_L – Trunk group 0 Low (Managed mode only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
14.7.2 TRUNK0_M – Trunk group 0 Medium (Managed mode only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
14.7.3 TRUNK0_H – Trunk group 0 High (Managed mode only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
14.7.4 TRUNK0_MODE– Trunk group 0 mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
14.7.5 TRUNK0_HASH0 – Trunk group 0 hash result 0 destination port number . . . . . . . . . . . . . . . . . . 78  
14.7.6 TRUNK0_HASH1 – Trunk group 0 hash result 1 destination port number . . . . . . . . . . . . . . . . . . 78  
14.7.7 TRUNK0_HASH2 – Trunk group 0 hash result 2 destination port number . . . . . . . . . . . . . . . . . . 78  
14.7.8 TRUNK0_HASH3 – Trunk group 0 hash result 3 destination port number . . . . . . . . . . . . . . . . . . 79  
14.7.9 TRUNK1_L – Trunk group 1 Low (Managed mode only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
14.7.10 TRUNK1_M – Trunk group 1 Medium (Managed mode only) . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
14.7.11 TRUNK1_H – Trunk group 1 High (Managed mode only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
14.7.12 TRUNK1_MODE – Trunk group 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
14.7.13 TRUNK1_HASH0 – Trunk group 1 hash result 0 destination port number . . . . . . . . . . . . . . . . . 80  
14.7.14 TRUNK1_HASH1 – Trunk group 1 hash result 1 destination port number . . . . . . . . . . . . . . . . . 80  
14.7.15 TRUNK1_HASH2 – Trunk group 1 hash result 2 destination port number . . . . . . . . . . . . . . . . . 80  
14.7.16 TRUNK1_HASH3 – Trunk group 1 hash result 3 destination port number . . . . . . . . . . . . . . . . . 80  
14.7.17 TRUNK2_MODE – Trunk group 2 mode (Gigabit ports 1 and 2). . . . . . . . . . . . . . . . . . . . . . . . . 80  
14.7.18 TRUNK2_HASH0 – Trunk group 2 hash result 0 destination port number . . . . . . . . . . . . . . . . . 81  
14.7.19 TRUNK2_HASH1 – Trunk group 2 hash result 1 destination port number . . . . . . . . . . . . . . . . . 81  
14.7.20 Multicast Hash Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
14.7.20.1 Multicast_HASH0-1 – Multicast hash result 0 mask byte 1. . . . . . . . . . . . . . . . . . . . . . . . 82  
14.7.20.2 Multicast_HASH0-2 – Multicast hash result 0 mask byte 2. . . . . . . . . . . . . . . . . . . . . . . . 82  
14.7.20.3 Multicast_HASH0-3 – Multicast hash result 0 mask byte 3. . . . . . . . . . . . . . . . . . . . . . . . 82  
14.7.20.4 Multicast_HASH1-0 – Multicast hash result 1 mask byte 0. . . . . . . . . . . . . . . . . . . . . . . . 82  
14.7.20.5 Multicast_HASH1-1 – Multicast hash result 1 mask byte 1. . . . . . . . . . . . . . . . . . . . . . . . 82  
14.7.20.6 Multicast_HASH1-2 – Multicast hash result 1 mask byte 2. . . . . . . . . . . . . . . . . . . . . . . . 82  
14.7.20.7 Multicast_HASH1-3 – Multicast hash result 1 mask byte 3. . . . . . . . . . . . . . . . . . . . . . . . 82  
14.7.20.8 Multicast_HASH2-0 – Multicast hash result 2 mask byte 0. . . . . . . . . . . . . . . . . . . . . . . . 83  
14.7.20.9 Multicast_HASH2-1 – Multicast hash result 2 mask byte 1. . . . . . . . . . . . . . . . . . . . . . . . 83  
14.7.20.10 Multicast_HASH2-2 – Multicast hash result 2 mask byte 2. . . . . . . . . . . . . . . . . . . . . . . 83  
14.7.20.11 Multicast_HASH2-3 – Multicast hash result 2 mask byte 3. . . . . . . . . . . . . . . . . . . . . . . 83  
14.7.20.12 Multicast_HASH3-0 – Multicast hash result 3 mask byte 0. . . . . . . . . . . . . . . . . . . . . . . 83  
14.7.20.13 Multicast_HASH3-1 – Multicast hash result 3 mask byte 1. . . . . . . . . . . . . . . . . . . . . . . 83  
14.7.20.14 Multicast_HASH3-2 – Multicast hash result 3 mask byte 2. . . . . . . . . . . . . . . . . . . . . . . 83  
14.7.20.15 Multicast_HASH3-3 – Multicast hash result 3 mask byte 3. . . . . . . . . . . . . . . . . . . . . . . 84  
14.8 Group 3 Address CPU Port Configuration Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
14.8.1 MAC0 – CPU Mac address byte 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
14.8.2 MAC1 – CPU Mac address byte 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
14.8.3 MAC2 – CPU Mac address byte 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
14.8.4 MAC3 – CPU Mac address byte 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
7
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Table of Contents  
14.8.5 MAC4 – CPU Mac address byte 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
14.8.6 MAC5 – CPU Mac address byte 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
14.8.7 INT_MASK0 – Interrupt Mask 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
14.8.8 INTP_MASK0 – Interrupt Mask for MAC Port 0,1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
14.8.9 INTP_MASK1 – Interrupt Mask for MAC Port 2,3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
14.8.10 INTP_MASK2 – Interrupt Mask for MAC Port 4,5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
14.8.11 INTP_MASK3 – Interrupt Mask for MAC Port 6,7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
14.8.12 INTP_MASK4 – Interrupt Mask for MAC Port 8,9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
14.8.13 INTP_MASK5 – Interrupt Mask for MAC Port 10,11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
14.8.14 INTP_MASK6 – Interrupt Mask for MAC Port 12,13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
14.8.15 INTP_MASK7 – Interrupt Mask for MAC Port 14,15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
14.8.16 INTP_MASK8 – Interrupt Mask for MAC Port 16,17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
14.8.17 NTP_MASK9 – Interrupt Mask for MAC Port 18,19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
14.8.18 INTP_MASK10 – Interrupt Mask for MAC Port 20,21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
14.8.19 INTP_MASK11 – Interrupt Mask for MAC Port 22,23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
14.8.20 INTP_MASK12 – Interrupt Mask for MAC Port G1,G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
14.8.21 RQS – Receive Queue Select CPU Address:h323). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
14.8.22 RQSS – Receive Queue Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
14.8.23 TX_AGE – Tx Queue Aging timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
14.9 Group 4 Address Search Engine Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
14.9.1 AGETIME_LOW – MAC address aging time Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
14.9.2 AGETIME_HIGH –MAC address aging time High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
14.9.3 V_AGETIME – VLAN to Port aging time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
14.9.4 SE_OPMODE – Search Engine Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
14.9.5 SCAN – SCAN Control Register (default 00). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
14.10 Group 5 Address Buffer Control/QOS Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
14.10.1 FCBAT – FCB Aging Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
14.10.2 QOSC – QOS Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
14.10.3 FCR – Flooding Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
14.10.4 AVPML – VLAN Tag Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
14.10.5 AVPMM – VLAN Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
14.10.6 AVPMH – VLAN Priority Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
14.10.7 TOSPML – TOS Priority Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
14.10.8 TOSPMM – TOS Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
14.10.9 TOSPMH – TOS Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
14.10.10 AVDM – VLAN Discard Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
14.10.11 TOSDML – TOS Discard Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
14.10.12 BMRC - Broadcast/Multicast Rate Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
14.10.13 UCC – Unicast Congestion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
14.10.14 MCC – Multicast Congestion Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
14.10.15 PR100 – Port Reservation for 10/100 ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
14.10.16 PRG – Port Reservation for Giga ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
14.10.17 SFCB – Share FCB Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
14.10.18 C2RS – Class 2 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
14.10.19 C3RS – Class 3 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
14.10.20 C4RS – Class 4 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
14.10.21 C5RS – Class 5 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
14.10.22 C6RS – Class 6 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
14.10.23 C7RS – Class 7 Reserve Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
14.10.24 QOSCn - Classes Byte Limit Set 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
14.10.25 Classes Byte Limit Set 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
14.10.26 Classes Byte Limit Set 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
8
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Table of Contents  
14.10.27 Classes Byte Limit Set 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
14.10.28 Classes Byte Limit Giga Port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
14.10.29 Classes Byte Limit Giga Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
14.10.30 Classes WFQ Credit Set 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
14.10.31 Classes WFQ Credit Set 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
14.10.32 Classes WFQ Credit Set 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
14.10.33 Classes WFQ Credit Set 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
14.10.34 Classes WFQ Credit Port G1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
14.10.35 Classes WFQ Credit Port G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
14.10.36 Class 6 Shaper Control Port G1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
14.10.37 Class 6 Shaper Control Port G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
14.10.38 RDRC0 – WRED Rate Control 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
14.10.39 RDRC1 – WRED Rate Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
14.10.40 User Defined Logical Ports and Well Known Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
14.10.40.1 USER_PORT0_(0~7) – User Define Logical Port (0~7) . . . . . . . . . . . . . . . . . . . . . . . . 105  
14.10.40.2 USER_PORT_[1:0]_PRIORITY - User Define Logic Port 1 and 0 Priority . . . . . . . . . . 105  
14.10.40.3 USER_PORT_[3:2]_PRIORITY - User Define Logic Port 3 and 2 Priority . . . . . . . . . . 106  
14.10.40.4 USER_PORT_[5:4]_PRIORITY - User Define Logic Port 5 and 4 Priority . . . . . . . . . . 106  
14.10.40.5 USER_PORT_[7:6]_PRIORITY - User Define Logic Port 7 and 6 Priority . . . . . . . . . . 106  
14.10.40.6 USER_PORT_ENABLE[7:0] – User Define Logic 7 to 0 Port Enables . . . . . . . . . . . . . 106  
14.10.40.7 WELL_KNOWN_PORT[1:0] PRIORITY- Well Known Logic Port 1 and 0 Priority . . . . 106  
14.10.40.8 WELL_KNOWN_PORT[3:2] PRIORITY- Well Known Logic Port 3 and 2 Priority . . . . 107  
14.10.40.9 WELL_KNOWN_PORT [5:4] PRIORITY- Well Known Logic Port 5 and 4 Priority . . . . 107  
14.10.40.10 WELL_KNOWN_PORT [7:6] PRIORITY- Well Known Logic Port 7 and 6 Priority . . . 107  
14.10.40.11 WELL KNOWN_PORT_ENABLE [7:0] – Well Known Logic 7 to 0 Port Enables . . . . 108  
14.10.40.12 RLOWL – User Define Range Low Bit 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
14.10.40.13 RLOWH – User Define Range Low Bit 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
14.10.40.14 RHIGHL – User Define Range High Bit 7:0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
14.10.40.15 RHIGHH – User Define Range High Bit 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
14.10.40.16 RPRIORITY – User Define Range Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
14.10.41 CPUQOSC123. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
14.11 Group 6 Address MISC Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
14.11.1 MII_OP0 – MII Register Option 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
14.11.2 MII_OP1 – MII Register Option 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
14.11.3 FEN – Feature Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
14.11.4 MIIC0 – MII Command Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
14.11.5 MIIC1 – MII Command Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
14.11.6 MIIC2 – MII Command Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
14.11.7 MIIC3 – MII Command Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
14.11.8 MIID0 – MII Data Register 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
14.11.9 MIID1 – MII Data Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
14.11.10 LED Mode – LED Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
14.11.11 DEVICE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
14.11.12 CHECKSUM - EEPROM Checksum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
14.12 Group 7 Address Port Mirroring Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
14.12.1 MIRROR1_SRC - Port Mirror source port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
14.12.2 MIRROR1_DEST – Port Mirror destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
14.12.3 MIRROR2_SRC – Port Mirror source port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
14.12.4 MIRROR2_DEST – Port Mirror destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
14.13 Group F Address CPU Access Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
14.13.1 GCR-Global Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
14.13.2 DCR-Device Status and Signature Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
9
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Table of Contents  
14.3.13 DCR1-Giga port status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
14.3.14 DPST – Device Port Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
14.3.15 DTST – Data read back register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
14.3.16 DA – DA Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
14.4 TBI Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
14.4.1 Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
14.4.2 Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
14.4.3 Advertisement Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
14.4.4 Link Partner Ability Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
14.4.5 Expansion Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
14.4.6 Extended Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
15.0 BGA and Ball Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
15.1 BGA Views (Top-View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
15.1.1 Encapsulated view in unmanaged mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
15.1.2 Encapsulated view in managed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
15.2 Ball – Signal Descriptions in Managed Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
15.2.1 Ball Signal Descriptions in Managed Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
15.2.2 Ball – Signal Descriptions in Unmanaged Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
15.3 Ball – Signal Name in Unmanaged Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
15.4 Ball – Signal Name in Managed Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
15.5 AC/DC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
15.5.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
15.5.2 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
15.5.3 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
15.5.4 Typical Reset & Bootstrap Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
15.5.5 Typical CPU Timing Diagram for a CPU Write Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
15.5.6 Typical CPU Timing Diagram for a CPU Read Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
15.6 Local Frame Buffer SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
15.6.1 Local SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
15.7 Local Switch Database SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
15.7.1 Local SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
15.8 AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
15.8.1 Reduced Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
15.8.2 Gigabit Media Independent Interface - Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
15.8.3 Ten Bit Interface - Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
15.8.4 Gigabit Media Independent Interface - Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
15.8.5 Ten Bit Interface - Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
15.8.6 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
15.8.7 SCANLINK SCANCOL Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
15.9 MDIO Input Setup and Hold Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
15.9.1 I2C Input Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
15.9.2 Serial Interface Setup Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
10  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
List of Figures  
Figure 1 - MVTX2604 System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 2 - Overview of the MVTX2604 CPU Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 3 - Data Transfer Format for I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 4 - MVTX2604 SRAM Interface Block Diagram (DMAs for 10/1000 Ports Only) . . . . . . . . . . . . . . . . . . . . 24  
Figure 5 - Priority Classification Rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 6 - Memory Configuration For: 2 Banks, 1 Layer, 2 MB Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 7 - Memory Configuration For: 2 Banks, 2 Layers, 4 MB Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 8 - Memory Configuration For: 2 Banks, 1 Layer, 4 MB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 9 - Memory Configuration For: 2 Banks, 2 Layers, 4 MB Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 10 - Memory Configuration For: 2 Banks, 1 Layer, 4 MB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 11 - Buffer Partition Scheme Used to Implement MVTX2604 AG Buffer Management . . . . . . . . . . . . . . . 41  
Figure 12 - TBI Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 13 - GPSI (7WS) Mode Connection Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 14 - SCAN LINK and SCAN COLLISON Status Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 15 - Timing Diagram of LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 16 - Typical Reset & Bootstrap Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Figure 17 - Typical CPU Timing Diagram for a CPU Write Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Figure 18 - Typical CPU Timing Diagram for a CPU Read Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Figure 19 - Local Memory Interface – Input Setup and Hold Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Figure 20 - Local Memory Interface - Output Valid Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Figure 21 - Local Memory Interface – Input Setup and Hold Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Figure 22 - Local Memory Interface - Output Valid Delay Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Figure 23 - AC Characteristics – Reduced Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Figure 24 - AC Characteristics – Reduced Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Figure 25 - AC Characteristics- GMII. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Figure 26 - AC Characteristics – Gigabit Media Independent Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Figure 27 - Gigabit TBI Interface Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
Figure 28 - Gigabit TBI Interface Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
Figure 29 - AC Characteristics- GMII. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
Figure 30 - AC Characteristics – Gigabit Media Independent Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Figure 31 - Gigabit TBI Interface Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Figure 32 - Gigabit TBI Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
Figure 33 - AC Characteristics – LED Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Figure 34 - SCANLINK SCANCOL Output Delay Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Figure 35 - SCANLINK, SCANCOL Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Figure 36 - MDIO Input Setup and Hold Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Figure 37 - MDIO Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Figure 38 - I2C Input Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Figure 39 - I2C Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Figure 40 - Serial Interface Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Figure 41 - Serial Interface Output Delay Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
11  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
List of Tables  
Table 1 - VLAN Index Mapping Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 2 - LAN Index Port Association Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 3 - PVMAP Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 4 - Supported Memory Configurations (SBRAM Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 5 - Supported Memory Configurations (ZBT Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 6 - Options for Memory Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 7 - Two-dimensional World Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 8 - Four QoS Configurations for a 10/100 Mbps Port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 9 - Four QoS Configurations for a Gigabit Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 10 - WRED Drop Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 11 - Mapping between MVTX2604 and IETF Diffserv Classes for Gigabit Ports . . . . . . . . . . . . . . . . . . . . . 43  
Table 12 - Mapping between MVTX2604 and IETF Diffserv Classes for 10/100 Ports . . . . . . . . . . . . . . . . . . . . . 43  
Table 13 - MVTX2604 Features Enabling IETF Diffserv Standards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 14 - Reset & Bootstrap Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Table 15 - AC Characteristics – Local Frame Buffer SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Table 16 - AC Characteristics – Local Switch Database SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . 163  
Table 17 - AC Characteristics – Reduced Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Table 18 - AC Characteristics – Gigabit Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Table 19 - Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
Table 20 - Input Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
Table 21 - AC Characteristics – Gigabit Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Table 22 - Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
Table 23 - Input Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
Table 24 - AC Characteristics – LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Table 25 - SCANLINK, SCANCOL Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Table 26 - MDIO Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Table 27 - I2C Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Table 28 - Serial Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
12  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
1.0 Bock Functionality  
1.1 Frame Data Buffer (FDB) Interfaces  
The FDB interface supports pipelined synchronous burst SRAM (SBRAM) memory at 100 MHz. To ensure a non-  
blocking switch two memory domains are required. Each domain has a 64 bit wide memory bus. At 100 MHz, the  
aggregate memory bandwidth is 12.8 Gbps which is enough to support 24 10/100 Mbps and 2 Gigabit ports at full  
wire speed switching. For 24 + 2 stacking application, pipelined ZBT-SRAM memory running at 125 MHz is  
required.  
The Switching Database is also located in the external SRAM; it is used for storing MAC addresses and their  
physical port number. It is duplicated and stored in both memory domains. Therefore, when the system updates the  
contents of the switching database it has to write the entry to both domains at the same time.  
1.2 GMII/PCS MAC Module (GMAC)  
The GMII/PCS Media Access Control (MAC) module provides the necessary buffers and control interface between  
the Frame Engine (FE) and the external physical device (PHY).  
The MVTX2604 GMAC implements both GMII and MII interface, which offers a simple migration from 10/100 to 1 G.  
The GMAC of the MVTX2604 meets the IEEE 802.3Z specification. It is able to operate in 10 M/100 M either Half or  
Full Duplex mode with a back pressure/flow control mechanism or in 1G Full duplex mode with flow control  
mechanism. Furthermore, it will automatically retransmit upon collision for up to 16 total transmissions. PHY  
addresses for GMAC are 01h and 02h.  
For fiber optics media, the MVTX2604 implements the Physical Code Sublayer (PCS) interface. The PCS includes  
an 8B10B encoder and decoder, auto-negotiation and Ten Bit Interface (TBI)  
1.3 Physical Coding Sublayer (PCS) Interface  
For the MVTX2604, the 1000BASE-X PCS Interface is designed internally and may be utilized in the absence of a  
GMII. The PCS incorporates all the functions required by the GMII to include encoding (decoding) 8B GMII data to  
(from) 8B/10B TBI format for PHY communication and generating Collision Detect (COL) signals for half-duplex  
mode. It also manages the Auto negotiation process by informing the management entity that the PHY is ready for  
communications. The on-chip TBI may be disabled if TBI exists within the Gigabit PHY. The TBI interface provides  
a uniform interface for all 1000 Mbps PHY implementations.  
The PCS comprises the PCS Transmit, Synchronization, PCS Receive and Auto negotiation processes for  
1000BASE-X.  
The PCS Transmit process sends the TBI signals TXD [9:0] to the physical medium and generates the GMII  
Collision Detect (COL) signal based on whether a reception is occurring simultaneously with transmission.  
Additionally, the Transmit process generates an internal “transmitting” flag and monitors Auto negotiation to  
determine whether to transmit data or to reconfigure the link.  
The PCS Synchronization process determines whether or not the receive channel is operational.  
The PCS Receive process generates RXD [7:0] on the GMII from the TBI data [9:0], and the internal “receiving” flag  
for use by the Transmit processes.  
The PCS Auto negotiation process allows the MVTX2604 to exchange configuration information between two  
devices that share a link segment and to automatically configure the link for the appropriate speed of operation for  
both devices.  
15  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
1.4 10/100 MAC Module (RMAC)  
The 10/100 Media Access Control module provides the necessary buffers and control interface between the Frame  
Engine (FE) and the external physical device (PHY). The MVTX2604 has two interfaces, RMII or Serial (only for  
10 M). The 10/100 MAC of the MVTX2604 device meets the IEEE 802.3 specification. It is able to operate in either  
Half or Full Duplex mode with a back pressure/flow control mechanism. In addition, it will automatically retransmit  
upon collision for up to 16 total transmissions. The PHY addresses for 24 10/100 MAC are from 08h to 1Fh.  
1.5 CPU Interface Module  
One extra port is dedicated to the CPU via the CPU interface module. The CPU interface utilizes a 16/8-bit bus in  
2
managed mode (Bootstrap pin TSTOUT6 makes the selection). It also supports a serial and an I C interface, which  
provides an easy way to configure the system if unmanaged.  
1.6 Management Module  
The CPU can send a control frame to access or configure the internal network management database. The  
Management Module decodes the control frame and executes the functions requested by the CPU.  
1.7 Frame Engine  
The main function of the frame engine is to forward a frame to its proper destination port or ports. When a frame  
arrives, the frame engine parses the frame header (64 bytes) and formulates a switching request which is sent to  
the search engine to resolve the destination port. The arriving frame is moved to the FDB. After receiving a switch  
response from the search engine, the frame engine performs transmission scheduling based on the frame’s priority.  
The frame engine forwards the frame to the MAC module when the frame is ready to be sent.  
1.8 Search Engine  
The Search Engine resolves the frame’s destination port or ports according to the destination MAC address (L2) or  
IP multicast address (IP multicast packet) by searching the database. It also performs MAC learning, priority  
assignment and trunking functions.  
1.9 LED Interface  
The LED interface provides a serial interface for carrying 24 + 2 port status signals. It can also provide direct status  
pins (6) for the two Gigabit ports.  
1.10 Internal Memory  
Several internal tables are required and are described as follows:  
Frame Control Block (FCB) - Each FCB entry contains the control information of the associated frame  
stored in the FDB, e.g., frame size, read/write pointer, transmission priority, etc.  
Network Management (NM) Database - The NM database contains the information in the statistics counters  
and MIB.  
MAC address Control Table (MCT) Link Table - The MCT Link Table stores the linked list of MCT entries that  
have collisions in the external MAC Table.  
Note that the external MAC table is located in the external SRAM Memory.  
16  
Zarlink Semiconductor Inc.  
MVTX2604  
2.0 System Configuration (Stand-alone and Stacking)  
2.1 Management and Configuration  
Data Sheet  
Two modes are supported in the MVTX2604: managed and unmanaged. In managed mode, the MVTX2604 uses  
an 8 or 16 bit CPU interface very similar to the Industry Standard Architecture (ISA) specification. In unmanaged  
2
mode, the MVTX2604 has no CPU but can be configured by EEPROM using an I C interface at bootup, or via a  
synchronous serial interface otherwise.  
2.2 Managed Mode  
In managed mode, the MVTX2604 uses an 8 or 16 bit CPU interface very similar to the ISA bus. The MVTX2604  
CPU interface provides for easy and effective management of the switching system. Figure 2 provides an overview  
of the CPU interface.  
INDEX REG 1  
(Addr = 001)  
INDEX REG 0  
(Addr = 000)  
FRAME DATA REG  
(Addr = 011)  
CONFIG  
CONTROL  
BLOCK REG  
DATA REG  
(Addr = 010)  
8/16 bit internal  
data bus  
8 bit internal  
data bus  
8/16 bit internal  
data bus  
16 bit internal  
address bus  
CPU  
FRAME  
TRANSMIT  
FIFO  
CONTROL  
COMMAND  
FRAME  
CONTROL  
CPU  
FRAME  
RECEIVE  
FIFO  
INTERNAL  
COMMAND  
FRAME  
CONFIGURE  
REGISTERS  
RECEIVE  
FIFO  
TRANSMIT  
FIFO  
1 AND 2  
SYNOCHRONOUS  
SERIAL  
INTERFACE  
Figure 2 - Overview of the MVTX2604 CPU Interface  
2.3 Register Configuration, Frame Transmission, and Frame Reception  
2.3.1 Register Configuration  
The MVTX2604 has many programmable parameters, covering such functions as QoS weights, VLAN control and  
port mirroring setup. In managed mode, the CPU interface provides an easy way of configuring these parameters.  
The parameters are contained in 8-bit configuration registers. The MVTX2604 allows indirect access to these  
registers, as follows:  
If operating in 8 bits-interface mode, two “index” registers (addresses 000 and 001) need to be written to  
indicate the desired 8-bit register address. In 16-bit mode, only one register (address 000) needs to be  
written for the desired 16-bit register address.  
17  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
To indirectly configure the register addressed by the two index registers, a “configure data” register (address  
010) must be written with the desired 8-bit data.  
Similarly, to read the value in the register addressed by the two index registers, the “configure data” register  
can now simply be read.  
In summary, access to the many internal registers is carried out simply by directly accessing only three registers –  
two registers to indicate the address of the desired parameter, and one register to read or write a value. Of course,  
because there is only one bus master, there can never be any conflict between reading and writing the  
configuration registers.  
2.3.2 Rx/Tx of Standard Ethernet Frames  
The CPU interface is also responsible for receiving and transmitting standard Ethernet frames to and from the CPU.  
To transmit a frame from the CPU:  
The CPU writes a “data frame” register (address 011) with the data it wants to transmit (minimum 64 bytes).  
After writing all the data, it then writes the frame size, destination port number and frame status.  
The MVTX2604 forwards the Ethernet frame to the desired destination port, no longer distinguishing the fact  
that the frame originated from the CPU.  
To receive a frame into the CPU:  
The CPU receives an interrupt when an Ethernet frame is available to be received.  
Frame information arrives first in the data frame register. This includes source port number, frame size and  
VLAN tag.  
The actual data follows the frame information. The CPU uses the frame size information to read the frame  
out.  
In summary, receiving and transmitting frames to and from the CPU is a simple process that uses one direct access  
register only.  
2.3.3 Control Frames  
In addition to standard Ethernet frames described in the preceding section, the CPU is also called upon to handle  
special “Control frames,” generated by the MVTX2604 and sent to the CPU. These proprietary frames are related  
to such tasks as statistics collection, MAC address learning and aging etc. All Control frames are up to 40 bytes  
long. Transmitting and receiving these frames is similar to transmitting and receiving Ethernet frames, except that  
the register accessed is the “Control frame data” register (address 111).  
Specifically, there are eight types of control frames generated by the CPU and sent to the MVTX2604:  
Memory read request  
Memory write request  
Learn MAC address  
Delete MAC address  
Search MAC address  
Learn IP Multicast address  
Delete IP Multicast address  
Search IP Multicast address  
Note: Memory read and write requests by the CPU may include VLAN table, spanning tree, statistic counters and  
similar updates.  
In addition, there are nine types of Control frames generated by the MVTX2604 and sent to the CPU:  
Interrupt CPU when statistics counter rolls over  
18  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Response to memory read request from CPU  
Learn MAC address  
Delete MAC address  
Delete IP Multicast address  
New VLAN port  
Age out VLAN port  
Response to search MAC address request from CPU  
Response to search IP Multicast address request from CPU  
The format of the Control Frame is described in the processor interface application note.  
2.4 Unmanaged Mode  
2
In unmanaged mode, the MVTX2604 can be configured by EEPROM (24C02 or compatible) via an I C interface at  
boot time, or via a synchronous serial interface during operation.  
2.5 I2C Interface  
2
The I C interface uses two bus lines, a serial data line (SDA) and a serial clock line (SCL). The SCL line carries the  
control signals that facilitate the transfer of information from EEPROM to the switch. Data transfer is 8-bit serial and  
bidirectional at 50 Kbps. Data transfer is performed between master and slave IC using a request /  
acknowledgment style of protocol. The master IC generates the timing signals and terminates data transfer.  
Figure 3 depicts the data transfer format.  
START  
SLAVE ADDRESS  
R/W  
ACK  
DATA 1 (8 bits)  
ACK  
DATA 2  
ACK  
DATA M  
ACK  
STOP  
2
Figure 3 - Data Transfer Format for I C Interface  
2.5.1 Start Condition  
Generated by the master (in our case, the MVTX2604). The bus is considered to be busy after the Start condition is  
generated. The Start condition occurs if while the SCL line is High, there is a High-to-Low transition of the SDA line.  
Other than in the Start condition (and Stop condition), the data on the SDA line must be stable during the High  
2
period of SCL. The High or Low state of SDA can only change when SCL is Low. In addition, when the I C bus is  
free, both lines are High.  
2.5.2 Address  
The first byte after the Start condition determines which slave the master will select. The slave in our case is the  
EEPROM. The first seven bits of the first data byte make up the slave address.  
2.5.3 Data Direction  
The eighth bit in the first byte after the Start condition determines the direction (R/W) of the message. A master  
transmitter sets this bit to W; a master receiver sets this bit to R.  
2.5.4 Acknowledgment  
Like all clock pulses, the acknowledgment-related clock pulse is generated by the master. However, the transmitter  
releases the SDA line (High) during the acknowledgment clock pulse. Furthermore, the receiver must pull down the  
SDA line during the acknowledge pulse so that it remains stable Low during the High period of this clock pulse. An  
acknowledgment pulse follows every byte transfer.  
19  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
If a slave receiver does not acknowledge after any byte, then the master generates a Stop condition and aborts the  
transfer.  
If a master receiver does not acknowledge after any byte, then the slave transmitter must release the SDA line to let  
the master generate the Stop condition.  
2.5.5 Data  
After the first byte containing the address, all bytes that follow are data bytes. Each byte must be followed by an  
acknowledge bit. Data is transferred MSB first.  
2.5.6 Stop Condition  
Generated by the master. The bus is considered to be free after the Stop condition is generated. The Stop condition  
occurs if while the SCL line is High, there is a Low-to-High transition of the SDA line.  
2
The I C interface serves the function of configuring the MVTX2604 at boot time. The master is the MVTX2604 and  
the slave is the EEPROM memory.  
2.6 Synchronous Serial Interface  
The synchronous serial interface serves the function of configuring the MVTX2604, not at boot time, but via a PC.  
The PC serves as master and the MVTX2604 serves as slave. The protocol for the synchronous serial interface is  
2
nearly identical to the I C protocol. The main difference is that there is no acknowledgment bit after each byte of  
data transferred.  
The unmanaged MVTX2604 uses a synchronous serial interface to program the internal registers. To reduce the  
number of signals required, the register address, command and data are shifted in serially through the D0 pin.  
STROBE- pin is used as the shift clock. AUTOFD- pin is used as data return path.  
Each command consists of four parts.  
START pulse  
Register Address  
Read or Write command  
Data to be written or read back  
Any command can be aborted in the middle by sending a ABORT pulse to the MVTX2600AG.  
A START command is detected when D0 is sampled high when STROBE- rise and D0 is sampled low when  
STROBE- fall.  
An ABORT command is detected when D0 is sampled low when STROBE- rise and D0 is sampled high when  
STROBE- fall.  
20  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
2.6.1 Write Command  
STROBE-  
2 extra clock cycles after  
lasttraloftl
nsfer  
D0  
A0 A1  
A
2
... A9 A10 A11  
D0 D1 D2 D3 D4 D5 D6 D7  
W
START  
ADDRESS  
COMMAND  
DATA  
2.6.2 Read Command  
STROBE-  
R
COMMAND  
D0 D1  
A0 A1 A2  
...  
A9 A10 A11  
D0  
START  
ADDRESS  
DATA  
D4  
D7  
D5 D6  
AUTOFD-  
D2 D3  
All registers in MVTX2600AG can be modified through this synchronous serial interface.  
2.7 Stacking  
The MVTX2604 supports expanded port count by providing stacking capabilities. The Gigabit port is used as the  
link between boxes, and each Gigabit port can be accelerated to 2 Gpbs if desired (in conjunction with ZBT memory  
domains at 125 MHz). If both Gigabit ports are used for this purpose, this provides a total of 4 Gbps of bandwidth  
between devices.  
In addition to a standard back-to-back configuration of devices, the MVTX2604 also provides more powerful  
stacking alternatives:  
Unidirectional ring configuration. Up to 32 devices. Devices are connected by one Gigabit link, which can be  
accelerated to 2 Gbps, if desired. Flow control cannot be enabled in this configuration, because of the  
inherent inefficiency in sending flow control messages upstream in a unidirectional ring.  
Bidirectional ring configuration. Up to 32 devices. Devices are connected by two Gigabit links, forming two  
rings, one clockwise and one counter clockwise. The total outgoing bandwidth can be as much as 4 Gbps.  
Flow control may be enabled in this configuration. The outgoing direction of a packet (clockwise or counter  
clockwise) is selected using a hash key for load distribution. The hash key can be a function of source MAC  
address, destination MAC address, both MAC addresses, or source port. This configuration provides fault-  
tolerance when one of the stacking links fail.  
21  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
. . .  
MVTX2600  
MVTX2600  
MVTX2600  
Cascade Stacking configuration. Up to 32 devices. Devices are connected to form a list configuration.  
Devices are connected by two Gigabit links, except the two devices at both ends, where one Gigabit port is  
used as an uplink port. Flow control may be enabled in this configuration.  
. . .  
MVTX2600  
MVTX2600  
MVTX2600  
3.0 MVTX2604 Data Forwarding Protocol  
3.1 Unicast Data Frame Forwarding  
When a frame arrives, it is assigned a handle in memory by the Frame Control Buffer Manager (FCB Manager). An  
FCB handle will always be available because of advance buffer reservations.  
The memory (SRAM) interface consists of two 64-bit buses, connected to two SRAM banks, A and B. The Receive  
DMA (RxDMA) is responsible for multiplexing the data and the address. On a port’s “turn,” the RxDMA will move 8  
bytes (or up to the end-of-frame) from the port’s associated RxFIFO into memory (Frame Data Buffer, or FDB).  
Once an entire frame has been moved to the FDB, and a good end-of-frame (EOF) has been received, the Rx  
interface makes a switch request. The RxDMA arbitrates among multiple switch requests.  
The switch request consists of the first 64 bytes of a frame, containing among other things, the source and  
destination MAC addresses of the frame. The search engine places a switch response in the switch response  
queue of the frame engine when done. Among other information, the search engine will have resolved the  
destination port of the frame and will have determined that the frame is unicast.  
After processing the switch response, the Transmission Queue Manager (TxQ manager) of the frame engine is  
responsible for notifying the destination port that it has a frame to forward to it. But first, the TxQ manager has to  
decide whether or not to drop the frame, based on global FDB reservations and usage, as well as TxQ occupancy  
at the destination. If the frame is not dropped, then the TxQ manager links the frame’s FCB to the correct per-port-  
per-class TxQ. Unicast TxQ’s are linked lists of transmission jobs, represented by their associated frames’ FCB’s.  
There is one linked list for each transmission class for each port. There are 4 transmission classes for each of the  
24 10/100 ports and 8 classes for each of the two Gigabit ports – a total of 112 unicast queues.  
The TxQ manager is responsible for scheduling transmission among the queues representing different classes for a  
port. When the port control module determines that there is room in the MAC Transmission FIFO (TxFIFO) for  
another frame, it requests the handle of a new frame from the TxQ manager. The TxQ manager chooses among  
the head-of-line (HOL) frames from the per-class queues for that port using a Zarlink Semiconductor scheduling  
algorithm.  
22  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
The Transmission DMA (TxDMA) is responsible for multiplexing the data and the address. On a port’s turn, the  
TxDMA will move 8 bytes (or up to the EOF) from memory into the port’s associated TxFIFO. After reading the EOF,  
the port control requests a FCB release for that frame. The TxDMA arbitrates among multiple buffer release  
requests.  
The frame is transmitted from the TxFIFO to the line.  
3.2 Multicast Data Frame Forwarding  
After receiving the switch response, the TxQ manager has to make the dropping decision. A global decision to drop  
can be made, based on global FDB utilization and reservations. If so, then the FCB is released and the frame is  
dropped. In addition, a selective decision to drop can be made, based on the TxQ occupancy at some subset of  
the multicast packet’s destinations. If so, then the frame is dropped at some destinations but not others and the  
FCB is not released.  
If the frame is not dropped at a particular destination port, then the TxQ manager formats an entry in the multicast  
queue for that port and class. Multicast queues are physical queues (unlike the linked lists for unicast frames).  
There are 2 multicast queues for each of the 24 10/100 ports. The queue with higher priority has room for 32 entries  
and the queue with lower priority has room for 64 entries. There are 4 multicast queues for each of the two Gigabit  
ports. The size of the queues are: 32 entries (higher priority queue), 32 entries, 32 entries and 64 entries (lower  
priority queue). There is one multicast queue for every two priority classes. For the 10/100 ports to map the 8  
transmit priorities into 2 multicast queues, the 2 LSB are discarded. For the gigabit ports to map the 8 transmit  
priorities into 4 multicast queues, the LSB are discarded.  
During scheduling, the TxQ manager treats the unicast queue and the multicast queue of the same class as one  
logical queue. The older head of line of the two queues is forwarded first.  
The port control requests a FCB release only after the EOF for the multicast frame has been read by all ports to  
which the frame is destined.  
3.3 Frame Forwarding To and From CPU  
Frame forwarding from the CPU port to a regular transmission port is nearly the same as forwarding between  
transmission ports. The only difference is that the physical destination port must be indicated in addition to the  
destination MAC address.  
Frame forwarding to the CPU port is nearly the same as forwarding to a regular transmission port. The only  
difference is in frame scheduling. Instead of using the patent-pending Zarlink Semiconductor scheduling algorithms,  
scheduling for the CPU port is simply based on strict priority. That is, a frame in a high priority queue will always be  
transmitted before a frame in a lower priority queue. There are four output queues to the CPU and one receive  
queue.  
4.0 Memory Interface  
4.1 Overview  
The MVTX2604 provides two 64-bit wide SRAM banks, SRAM Bank A and SRAM Bank B with a 64-bit bus  
connected to each. Each DMA can read and write from both bank A and bank B. The following figure provides an  
overview of the MVTX2604 SRAM banks.  
23  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
SRAM  
SRAM  
TX DMA  
0-7  
TX DMA  
8-15  
TX DMA  
16-23  
RX DMA  
0-7  
RX DMA  
8-15  
RX DMA  
16-23  
Figure 4 - MVTX2604 SRAM Interface Block Diagram (DMAs for 10/1000 Ports Only)  
4.2 ZBT Support  
The MVTX2604 supports Zero Bus Turnaround (ZBT). ZBT is a synchronous SRAM architecture that is optimized  
for networking and telecommunications applications. It can significantly increase the switch’s internal bandwidth  
when compared to standard Pipeline SyncBurst SRAM.  
The ZBT architecture is optimized for switching and other applications with highly random READs and WRITEs.  
ZBT SRAMs eliminate all idle cycles when turning the data bus around from a WRITE operation to a READ  
operation (or vice versa). This feature results in dramatic performance improvements in systems that have such  
traffic patterns (that is, frequent and random read and write access to the SRAM).  
Please refer to the ZBT Application Note for further details.  
4.3 Detailed Memory Information  
Because the bus for each bank is 64 bits wide, frames are broken into 8-byte granules, written to and read from  
memory. The first 8-byte granule gets written to Bank A, the second 8-byte granule gets written to Bank B and so on  
in alternating fashion. When reading frames from memory, the same procedure is followed, first from A, then from B  
and so on.  
The reading and writing from alternating memory banks can be performed with minimal waste of memory  
bandwidth. What’s the worst case? For any speed port, in the worst case, a 1-byte-long EOF granule gets written  
to Bank A. This means that a 7-byte segment of Bank A bandwidth is idle, and furthermore, the next 8-byte  
segment of Bank B bandwidth is idle, because the first 8 bytes of the next frame will be written to Bank A, not B.  
This scenario results in a maximum 15 bytes of waste per frame, which is always acceptable because the  
interframe gap is 20 bytes.  
The CPU management port gets treated like any other port, reading and writing to alternating memory banks  
starting with Bank A. The VLAN Index Mapping Table and Mac Address Table are duplicated in Bank A and B.  
When the CPU writes an entry to the VLAN Index Mapping Table it has to write the same data in bank A and bank  
B. Search engine data is written to both banks in parallel. In this way, a search engine read operation can be  
performed by either bank at any time without a problem.  
24  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
4.4 Memory Requirements  
To speed up searching and decrease memory latency, the external MAC address database is duplicated in both  
memory banks. To support 64 K MAC address, 4 MB memory is required. When VLAN support is enabled, 512  
entries of the MAC address table are used for storing the VLAN ID at VLAN Index Mapping Table.  
Up to 2 K Ethernet frame buffers are supported and they will use 3 MB of memory. Each frame uses 1536 bytes.  
The maximum system memory requirement is 4 MB. If less memory is desired, the configuration can scale down.  
Memory Configuration  
Bank A  
1 M  
Bank B  
1 M  
Tag based VLAN  
Frame Buffer  
1 K  
Max MAC Address  
Disable  
Enable  
Disable  
Enable  
32 K  
1 M  
2 M  
2 M  
1 M  
2 M  
2 M  
1 K  
2 K  
2 K  
31.5 K  
64 K  
63.5 K  
Memory Map  
25  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
5.0 Search Engine  
5.1 Search Engine Overview  
The MVTX2604 search engine is optimized for high throughput searching, with enhanced features to support:  
Up to 64 K MAC addresses  
Up to 255 VLAN and IP Multicast groups  
3 groups of port trunking (1 for the two Gigabit ports and 2 others)  
Traffic classification into 4 (or 8 for Gigabit) transmission priorities and 2 drop precedence levels  
Packet filtering  
Security  
IP Multicast  
Flooding, Broadcast, Multicast Storm Control  
MAC address learning and aging  
5.2 Basic Flow  
Shortly after a frame enters the MVTX2604 and is written to the Frame Data Buffer (FDB), the frame engine  
generates a Switch Request, which is sent to the search engine. The switch request consists of the first 64 bytes of  
the frame, which contain all the necessary information for the search engine to perform its task. When the search  
engine is done, it writes to the Switch Response Queue and the frame engine uses the information provided in that  
queue for scheduling and forwarding.  
In performing its task, the search engine extracts and compresses the useful information from the 64-byte switch  
request. Among the information extracted are the source and destination MAC addresses, the transmission and  
discard priorities, whether the frame is unicast or multicast and VLAN ID. Requests are sent to the external SRAM  
to locate the associated entries in the external hash table.  
When all the information has been collected from external SRAM, the search engine has to compare the MAC  
address on the current entry with the MAC address for which it is searching. If it is not a match, the process is  
repeated on the internal MCT Table. All MCT entries other than the first of each linked list are maintained internal to  
the chip. If the desired MAC address is still not found, then the result is either learning (source MAC address  
unknown) or flooding (destination MAC address unknown).  
In addition, VLAN information is used to select the correct set of destination ports for the frame (for multicast), or to  
verify that the frame’s destination port is associated with the VLAN (for unicast).  
If the destination MAC address belongs to a port trunk, then the trunk number is retrieved instead of the port  
number. But on which port of the trunk will the frame be transmitted? This is easily computed using a hash of the  
source and destination MAC addresses.  
When all the information is compiled, the switch response is generated, as stated earlier. The search engine also  
interacts with the CPU with regard to learning and aging.  
5.3 Search, Learning, and Aging  
5.3.1 MAC Search  
The search block performs source MAC address and destination MAC address (or destination IP address for IP  
multicast) searching. As we indicated earlier, if a match is not found, then the next entry in the linked list must be  
examined and so on until a match is found or the end of the list is reached.  
In tag based VLAN mode, if the frame is unicast, and the destination port is not a member of the correct VLAN, then  
the frame is dropped; otherwise, the frame is forwarded. If the frame is multicast, this same table is used to indicate  
26  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
all the ports to which the frame will be forwarded. Moreover, if port trunking is enabled, this block selects the  
destination port (among those in the trunk group).  
In port based VLAN mode, a bitmap is used to determine whether the frame should be forwarded to the outgoing  
port. The main difference in this mode is that the bitmap is not dynamic. Ports cannot enter and exit groups  
because of real-time learning made by a CPU.  
The MAC search block is also responsible for updating the source MAC address timestamp and the VLAN port  
association timestamp, used for aging.  
5.3.2 Learning  
The learning module learns new MAC addresses and performs port change operations on the MCT database. The  
goal of learning is to update this database as the networking environment changes over time.  
When CPU reporting is enabled, learning and port change will be performed when the CPU request queue has  
room, and a memory slot is available, and a “Learn MAC Address” message is sent to the CPU. When fast learning  
mode is enabled, learning and port change will be performed when memory slot is available and a latter “Learn  
MAC Address” message is sent to the CPU when CPU queue has room.  
When CPU reporting is disabled, learning and port change will be performed based on memory slot availability only.  
In tag based VLAN mode, if the source port is not a member of a classified VLAN a “New VLAN Port” message is  
sent to the CPU. The CPU can decide whether or not the source port can be added to the VLAN.  
5.3.3 Aging  
Aging time is controlled by register 400h and 401h.  
The aging module scans and ages MCT entries based on a programmable “age out” time interval. As we indicated  
earlier, the search module updates the source MAC address and VLAN port association timestamps for each frame  
it processes. When an entry is ready to be aged, the entry is removed from the table and a “Delete MAC Address”  
message is sent to inform the CPU.  
Supported MAC entry types are: dynamic, static, source filter, destination filter, IP multicast, source and destination  
filter and secure MAC address. Only dynamic entries can be aged; all others are static. The MAC entry type is  
stored in the “status” field of the MCT data structure.  
5.3.4 VLAN Table  
The table below provides a mapping from VLAN ID to VLAN index. It is maintained by system software and is  
checked by the hardware search engine for every incoming frame. This table has 4 K entries and is stored in  
external SRAM. It is organized as 512 × 8 entries (total of 4 K VLAN indexes) as shown. Each VLAN index is 8 bits.  
VIX7  
VIX6  
VIX5  
VIX4  
VIX3  
VIX2  
VIX1  
VIX0  
VIX4095  
VIX4094  
VIX4093  
VIX4092  
VIX4091  
VIX4090  
VIX4089  
VIX4088  
Table 1 - VLAN Index Mapping Table  
Each VIX represents the mapping result from the associated VLAN ID (VLANID = 0x004 is mapped to VIX4).  
Unused VLAN ID’s have their corresponding VIX programmed to hexadecimal 00. Used VLAN ID’s have their  
corresponding VIX programmed to hexadecimal 01 through FF. In other words, 255 VLAN’s are supported. The VIX  
value is a pointer to the entries in the VLAN Index port association table (internal memory).  
27  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
The VLAN Index port association table is used by both software and hardware. It contains 256 entries. Each entry  
has 27 fields, such that each field represents the port status of that particular VLAN.  
Port  
Bit  
0
Not Used G1  
63 to 54 53 52  
G0  
CPU P23  
49 48 47 46  
P22  
……  
P3  
P2  
P1  
3
P0  
1
51 50  
45 44  
7 6  
5 4  
2
0
E
N
T
R
I
E
S
1
:
:
255  
Table 2 - LAN Index Port Association Table  
Each entry has 64 bits. Each port has a VLAN status field with the following two bits values:  
• 00: Port not a member of VLAN  
• 01: Port is a member of VLAN, and is subject to aging (Do not use. Used by the aging module)  
• 10: Port is a member of VLAN, and is subject to aging  
• 11: Port is a member of VLAN, and is not subject to aging  
Note: The VLAN aging time is controlled by register 402h.  
5.4 MAC Address Filtering  
The MVTX2604's implementation of intelligent traffic switching provides filters for source and destination MAC  
addresses. This feature filters unnecessary traffic, thereby providing intelligent control over traffic flows and  
broadcast traffic.  
MAC address filtering allows the MVTX2604 to block an incoming packet to an interface when it sees a specified  
MAC address in either the source address or destination address of the incoming packet. For example, if your  
network is congested because of high utilization from a MAC address you can filter all traffic transmitted from that  
address and restore network flow while you troubleshoot the problem.  
5.5 Quality of Service  
Quality of Service (QoS) refers to the ability of a network to provide better service to selected network traffic over  
various technologies. Primary goals of QoS include dedicated bandwidth, controlled jitter and latency (required by  
some real-time and interactive traffic) and improved loss characteristics.  
Traditional Ethernet networks have had no prioritization of traffic. Without a protocol to prioritize or differentiate  
traffic, a service level known as “best effort” attempts to get all the packets to their intended destinations with  
minimum delay; however, there are no guarantees. In a congested network or when a low-performance  
switch/router is overloaded, “best effort” becomes unsuitable for delay-sensitive traffic and mission-critical data  
transmission.  
28  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
The advent of QoS for packet-based systems accommodates the integration of delay-sensitive video and  
multimedia traffic onto any existing Ethernet network. It also alleviates the congestion issues that have previously  
plagued such “best effort” networking systems. QoS provides Ethernet networks with the breakthrough technology  
to prioritize traffic and ensure that a certain transmission will have a guaranteed minimum amount of bandwidth.  
Extensive core QoS mechanisms are built into the MVTX2604 architecture to ensure policy enforcement and  
buffering of the ingress port, as well as weighted fair-queue(WFQ) scheduling at the egress port.  
In the MVTX2604, QoS-based policies sort traffic into a small number of classes and mark the packets accordingly.  
The QoS identifier provides specific treatment to traffic in different classes, so that different quality of service is  
provided to each class. Frame and packet scheduling and discarding policies are determined by the class to which  
the frames and packets belong. For example, the overall service given to frames and packets in the premium class  
will be better than that given to the standard class; the premium class is expected to experience lower loss rate or  
delay.  
The MVTX2604 supports the following QoS techniques:  
In a port-based setup, any station connected to the same physical port of the switch will have the same  
transmit priority.  
In a tag-based setup, a 3-bit field in the VLAN tag provides the priority of the packet. This priority can be  
mapped to different queues in the switch to provide QoS.  
In a TOS/DS-based set up, TOS stands for “Type of Service” that may include “minimize delay,” “maximize  
throughput,” or “maximize reliability.” Network nodes may select routing paths or forwarding behaviours that  
are suitably engineered to satisfy the service request.  
In a logical port-based set up, a logical port provides the application information of the packet. Certain  
applications are more sensitive to delays than others; using logical ports to classify packets can help speed  
up delay sensitive applications, such as VoIP.  
5.6 Priority Classification Rule  
Figure 5 shows the MVTX2604 priority classification rule.  
Yes  
Use Default Port Settings  
Fix Port Priority ?  
No  
Yes  
TOS Precedence over VLAN?  
(FCR Register, Bit 7)  
Use Default Port Settings  
No  
No  
No  
No  
IP Frame ?  
IP  
VLAN Tag ?  
Yes  
Yes  
Use Logical Port  
Yes  
Use Logical Port  
Yes  
No  
Use TOS  
Use VLAN Priority  
Figure 5 - Priority Classification Rule  
29  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
5.7 Port and Tag Based VLAN  
The MVTX2604 supports two models for determining and controlling how a packet gets assigned to a VLAN: port  
priority and tag -based VLAN.  
5.7.1 Port-Based VLAN  
An administrator can use the PVMAP Registers to configure the MVTX2604 for port-based VLAN (see “Registration  
Definition” on page 42). For example, ports 1-3 might be assigned to the Marketing VLAN, ports 4-6 to the  
Engineering VLAN and ports 7-9 to the Administrative VLAN. The MVTX2604 determines the VLAN membership of  
each packet by noting the port on which it arrives. From there, the MVTX2604 determines which outgoing port(s)  
is/are eligible to transmit each packet or whether the packet should be discarded.  
Destination Port Numbers Bit Map  
Port Registers  
26  
0
2
1
1
1
0
0
Register for Port #0  
PVMAP00_0[7:0] to PVMAP00_3[2:0]  
Register for Port #1  
0
0
1
0
0
0
1
0
PVMAP01_0[7:0] to PVMAP01_3[2:0]  
Register for Port #2  
PVMAP02_0[7:0] to PVMAP02_3[2:0]  
Register for Port #26  
0
0
0
0
PVMAP26_0[7:0] to PVMAP26_3[2:0]  
Table 3 - PVMAP Register  
For example, in the above table, a "1" denotes that an outgoing port is eligible to receive a packet from an incoming  
port. A 0 (zero) denotes that an outgoing port is not eligible to receive a packet from an incoming port.  
In this example:  
Data packets received at port #0 are eligible to be sent to outgoing ports 1 and 2.  
Data packets received at port #1 are eligible to be sent to outgoing ports 0 and 2.  
Data packets received at port #2 are NOT eligible to be sent to ports 0 and 1.  
5.7.2 Tag-Based VLAN  
The MVTX2604 supports the IEEE 802.1q specification for “tagging” frames. The specification defines a way to  
coordinate VLANs across multiple switches. In the specification, an additional 4-octet header (or “tag”) is inserted in  
a frame after the source MAC address and before the frame type. 12 bits of the tag are used to define the VLAN ID.  
Packets are then switched through the network with each MVTX2604 simply swapping the incoming tag for an  
appropriate forwarding tag rather than processing each packet's contents to determine the path. This approach  
minimizes the processing needed once the packet enters the tag-switched network. In addition, coordinating VLAN  
IDs across multiple switches enables VLANs to extend to multiple switches.  
Up to 255 VLANs are supported in the MVTX2604. The 4 K VLANs specified in the IEEE 802.1q are mapped to 255  
VLAN indexes. The mapping is made by the VLAN index mapping table. Based on the VLAN index (VIXn), the  
source and destination port membership is checked against the content in the VLAN Index Port association table. If  
the destination port is a member of the VLAN, the packet is forwarded; otherwise it is discarded. If the source port is  
not a member, a “New VLAN Port” message is sent to the CPU. A filter can be applied to discard the packet if the  
source port is not a member of the VLAN.  
30  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
5.8 Memory Configurations  
The MVTX2604 supports the following memory configurations. Pipeline SBRAM modes support 1 M and 2 M per  
bank configurations, while ZBT mode supports 4 M configurations, 2 M per domain (bank). For detail connection  
information, please reference the memory application note.  
Configuration  
1 M per bank  
2 M per bank  
Connections  
(Bootstrap pin  
TSTOUT7 = open)  
(Bootstrap pin  
TSTOUT7 = pull down)  
Single Layer  
Two 128 K x 32 SRAM/bank  
or  
One 128 K x 64 SRAM/bank  
Two 256 K x 32 SRAM/bank Connect 0E# and WE#  
(Bootstrap pin  
TSTOUT13 = open)  
Double Layer  
(Bootstrap pin  
TSTOUT13 = pull  
down)  
NA  
Four 128 K x 32  
SRAM/bank  
or  
Connect 0E0# and  
WE0#  
Connect 0E1# and  
Two 128 K x 64 SRAM/bank WE1#  
Table 4 - Supported Memory Configurations (SBRAM Mode)  
Configuration  
2 M per bank  
Connections  
Single Layer  
Two 256 K x 32 ZBT SRAM/bank  
Connect ADS# to Layer 0 chipselect  
(Bootstrap pin  
or One 256 K x 64 ZBT SRAM/bank pin  
TSTOUT13 = open)  
Double Layer  
Four 128 K x 32 ZBT SRAM/bank  
Connect ADS# to Layer 0 chipselect  
(Bootstrap pin  
or Two 128 K x 64 ZBT SRAM/bank pin  
TSTOUT13 = pull down)  
and 0E# to Layer 1 chipselect pin  
Table 5 - Supported Memory Configurations (ZBT Mode)  
Frame data Buffer  
Only Bank A  
Bank A and Bank B  
Bank A and Bank B  
1 M  
2 M  
1 M/bank  
(SBRAM)  
2 M/bank  
1 M/bank  
2 M/bank  
(SBRAM)  
(SBRAM)  
(SBRAM)  
(ZBT SRAM)  
(ZBT SRAM)  
MVTX2601  
MVTX2602  
MVTX2603  
X
X
X
X
X
X
X
MVTX2603  
X
X
X
X
(Gigabit ports  
in 2giga mode)  
MVTX2604  
X
MVTX2604  
(Gigabit ports  
in 2giga mode)  
Table 6 - Options for Memory Configuration  
31  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Bank B (1 M One Layer)  
Bank A (1 M One Layer)  
Data LB_D[63:32]  
Data LA_D[63:32]  
Data LB_D[31:0]  
Data LA_D[31:0]  
SRAM  
Memory  
128 K  
SRAM  
Memory  
128 K  
Memory  
128 K  
32 bits  
Memory  
128 K  
32 bits  
32 bits  
32 bits  
Address LB_A[19:3]  
Address LA_A[19:3]  
Bootstraps: TSTOUT7 = Open, TSTOUT13 = Open, TSTOUT4 = Open  
Figure 6 - Memory Configuration For: 2 Banks, 1 Layer, 2 MB Total  
Bank A (2 M Two Layers)  
Bank B (2 M Two Layers)  
Data LA_D[63:32]  
Data LB_D[63:32]  
Data LA_D[31:0]  
Data LB_D[31:0]  
SRAM  
Memory  
128 K  
SRAM  
Memory  
128 K  
SRAM  
Memory  
128 K  
SRAM  
Memory  
128 K  
32 bits  
32 bits  
32 bits  
32 bits  
SRAM  
Memory  
128 K  
SRAM  
Memory  
128 K  
SRAM  
Memory  
128 K  
SRAM  
Memory  
128 K  
32 bits  
32 bits  
32 bits  
32 bits  
Address LA_A[19:3]  
Address LB_A[19:3]  
Bootstraps: TSTOUT7 = Pull Down, TSTOUT13 = Pull Down, TSTOUT4 = Open  
Figure 7 - Memory Configuration For: 2 Banks, 2 Layers, 4 MB Total  
32  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Bank B (2 M One Layer)  
Bank A (2 M One Layer)  
Data LB_D[63:32]  
Data LA_D[63:32]  
Data LB_D[31:0]  
Data LA_D[31:0]  
SRAM  
Memory  
256 K  
SRAM  
Memory  
256 K  
Memory  
256 K  
32 bits  
Memory  
256 K  
32 bits  
32 bits  
32 bits  
Address LB_A[20:3]  
Address LA_A[20:3]  
Bootstraps: TSTOUT7 = Pull Down, TSTOUT13 = Open, TSTOUT4 = Open  
Figure 8 - Memory Configuration For: 2 Banks, 1 Layer, 4 MB  
Bank A (2 M Two Layers)  
Bank B (2 M Two Layers)  
Data LA_D[63:32]  
Data LB_D[63:32]  
Data LA_D[31:0]  
Data LB_D[31:0]  
ZBT  
Memory  
128 K  
ZBT  
Memory  
128 K  
ZBT  
Memory  
128 K  
ZBT  
Memory  
128 K  
32 bits  
32 bits  
32 bits  
32 bits  
ZBT  
Memory  
128 K  
ZBT  
Memory  
128 K  
ZBT  
Memory  
128 K  
ZBT  
Memory  
128 K  
32 bits  
32 bits  
32 bits  
32 bits  
Address LA_A[19:3]  
Address LB_A[19:3]  
Bootstraps: TSTOUT7 = Pull Down, TSTOUT13 = Pull Down, TSTOUT4 = Open  
Figure 9 - Memory Configuration For: 2 Banks, 2 Layers, 4 MB Total  
33  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Bank B (2 M One Layer)  
Bank A (2 M One Layer)  
Data LB_D[63:32]  
Data LA_D[63:32]  
Data LB_D[31:0]  
Data LA_D[31:0]  
ZBT  
ZBT  
ZBT  
Memory  
256 K  
ZBT  
Memory  
256 K  
Memory  
Memory  
256 K  
32 bits  
256 K  
32 bits  
32 bits  
32 bits  
Address LB_A[20:3]  
Address LA_A[20:3]  
Bootstraps: TSTOUT7 = Pull Down, TSTOUT13 = Open, TSTOUT4 = Open  
Figure 10 - Memory Configuration For: 2 Banks, 1 Layer, 4 MB  
6.0 Frame Engine  
6.1 Data Forwarding Summary  
When a frame enters the device at the RxMAC, the RxDMA will move the data from the MAC RxFIFO to the FDB.  
Data is moved in 8-byte granules in conjunction with the scheme for the SRAM interface.  
A switch request is sent to the Search Engine. The Search Engine processes the switch request.  
A switch response is sent back to the Frame Engine and indicates whether the frame is unicast or multicast and its  
destination port or ports. A VLAN table lookup is performed as well.  
A Transmission Scheduling Request is sent in the form of a signal notifying the TxQ manager. Upon receiving a  
Transmission Scheduling Request, the device will format an entry in the appropriate Transmission Scheduling  
Queue (TxSch Q) or Queues. There are 4 TxSch Q for each 10/100 port (and 8 per Gigabit port), one for each  
priority. Creation of a queue entry either involves linking a new job to the appropriate linked list if unicast or adding  
an entry to a physical queue if multicast.  
When the port is ready to accept the next frame, the TxQ manager will get the head-of-line (HOL) entry of one of  
the TxSch Qs, according to the transmission scheduling algorithm (to ensure per-class quality of service). The  
unicast linked list and the multicast queue for the same port-class pair are treated as one logical queue. The older  
HOL between the two queues goes first. For 10/100 ports multicast queue 0 is associated with unicast queue 0 and  
multicast queue 1 is associated with unicast queue 2. For Gigabit ports multicast queue 0 is associated with unicast  
queue 0, multicast queue 1 with unicast queue 2, multicast queue 2 with unicast queue 4 and multicast queue 3  
with unicast queue 6.  
The TxDMA will pull frame data from the memory and forward it granule-by-granule to the MAC TxFIFO of the  
destination port.  
34  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
6.2 Frame Engine Details  
This section briefly describes the functions of each of the modules of the MVTX2604 frame engine.  
6.2.1 FCB Manager  
The FCB manager allocates FCB handles to incoming frames and releases FCB handles upon frame departure.  
The FCB manager is also responsible for enforcing buffer reservations and limits. The default values can be  
determined by referring to Chapter 7. In addition, the FCB manager is responsible for buffer aging and for linking  
unicast forwarding jobs to their correct TxSch Q. The buffer aging can be enabled or disabled by the bootstrap pin  
and the aging time is defined in register FCBAT.  
6.2.2 Rx Interface  
The Rx interface is mainly responsible for communicating with the RxMAC. It keeps track of the start and end of  
frame and frame status (good or bad). Upon receiving an end of frame that is good, the Rx interface makes a switch  
request.  
6.2.3 RxDMA  
The RxDMA arbitrates among switch requests from each Rx interface. It also buffers the first 64 bytes of each  
frame for use by the search engine when the switch request has been made.  
6.2.4 TxQ Manager  
First, the TxQ manager checks the per-class queue status and global reserved resource situation and using this  
information makes the frame dropping decision after receiving a switch response. If the decision is not to drop, the  
TxQ manager requests that the FCB manager link the unicast frame’s FCB to the correct per-port-per-class TxQ. If  
multicast, the TxQ manager writes to the multicast queue for that port and class. The TxQ manager can also trigger  
source port flow control for the incoming frame’s source if that port is flow control enabled. Second, the TxQ  
manager handles transmission scheduling; it schedules transmission among the queues representing different  
classes for a port. Once a frame has been scheduled, the TxQ manager reads the FCB information and writes to  
the correct port control module.  
6.3 Port Control  
The port control module calculates the SRAM read address for the frame currently being transmitted. It also writes  
start of frame information and an end of frame flag to the MAC TxFIFO. When transmission is done, the port control  
module requests that the buffer be released.  
6.4 TxDMA  
The TxDMA multiplexes data and address from port control and arbitrates among buffer release requests from the  
port control modules.  
7.0 Quality of Service and Flow Control  
7.1 Model  
Quality of service is an all-encompassing term for which different people have different interpretations. In general,  
the approach to quality of service described here assumes that we do not know the offered traffic pattern. We also  
assume that the incoming traffic is not policed or shaped. Furthermore, we assume that the network manager  
knows his applications, such as voice, file transfer, or web browsing and their relative importance. The manager  
can then subdivide the applications into classes and set up a service contract with each. The contract may consist  
35  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
of bandwidth or latency assurances per class. Sometimes it may even reflect an estimate of the traffic mix offered to  
the switch. As an added bonus, although we do not assume anything about the arrival pattern, if the incoming traffic  
is policed or shaped we may be able to provide additional assurances about our switch’s performance.  
Table 7 shows examples of QoS applications with three transmission priorities, but best effort (P0) traffic may form  
a fourth class with no bandwidth or latency assurances. Gigabit ports actually have eight total transmission  
priorities.  
Goals  
TotalAssured  
Bandwidth (user  
defined)  
Low Drop Probability  
(low-drop)  
High Drop Probability  
(high-drop)  
Highest transmission  
priority, P3  
50 Mbps  
Apps: phone calls,  
circuit emulation.  
Latency: < 1 ms.  
Drop: No drop if P3 not  
oversubscribed.  
Apps: training video.  
Latency: < 1 ms.  
Drop: No drop if P3 not  
oversubscribed; first P3 to drop  
otherwise.  
Middle transmission  
priority, P2  
37.5 Mbps  
Apps: interactive apps,  
Web business.  
Apps: non-critical interactive  
apps.  
Latency: < 4-5 ms.  
Drop: No drop if P2 not  
oversubscribed.  
Latency: < 4-5 ms.  
Drop: No drop if P2 not  
oversubscribed; firstP2 to drop  
otherwise.  
Low transmission  
priority, P1  
12.5 Mbps  
100 Mbps  
Apps: emails, file  
backups.  
Apps: casual web browsing.  
Latency: < 16 ms desired, but  
not critical.  
Latency: < 16 ms  
desired, but not critical.  
Drop: No drop if P1 not  
oversubscribed.  
Drop: No drop if P1 not  
oversubscribed; first to drop  
otherwise.  
Total  
Table 7 - Two-dimensional World Traffic  
A class is capable of offering traffic that exceeds the contracted bandwidth. A well-behaved class offers traffic at a  
rate no greater than the agreed-upon rate. By contrast, a misbehaving class offers traffic that exceeds the agreed-  
upon rate. A misbehaving class is formed from an aggregation of misbehaving microflows. To achieve high link  
utilization, a misbehaving class is allowed to use any idle bandwidth. However, such leniency must not degrade the  
quality of service (QoS) received by well-behaved classes.  
As Table 7 illustrates, the six traffic types may each have their own distinct properties and applications. As shown,  
classes may receive bandwidth assurances or latency bounds. In the table, P3, the highest transmission class,  
requires that all frames be transmitted within 1 ms,and receives 50% of the 100 Mbps of bandwidth at that port.  
Best-effort (P0) traffic forms a fourth class that only receives bandwidth when none of the other classes have any  
traffic to offer. It is also possible to add a fourth class that has strict priority over the other three; if this class has  
even one frame to transmit, then it goes first. In the MVTX2604, each 10/100 Mbps port will support four total  
classes and each 1000 Mbps port will support eight classes. We will discuss the various modes of scheduling these  
classes in the next section.  
In addition, each transmission class has two subclasses, high-drop and low-drop. Well-behaved users should rarely  
lose packets. But poorly behaved users – users who send frames at too high a rate – will encounter frame loss and  
the first to be discarded will be high-drop. Of course, if this is insufficient to resolve the congestion, eventually some  
low-drop frames are dropped and then all frames in the worst case.  
36  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Table 7 shows that different types of applications may be placed in different boxes in the traffic table. For example,  
casual web browsing fits into the category of high-loss, high-latency-tolerant traffic, whereas VoIP fits into the  
category of low-loss, low-latency traffic.  
7.2 Four QoS Configurations  
There are four basic pieces to QoS scheduling in the MVTX2604: strict priority (SP), delay bound, weighted fair  
queuing (WFQ), and best effort (BE). Using these four pieces, there are four different modes of operation as shown  
in the tables below. For 10/100 Mbps ports, the following registers select these modes:  
QOSC24 [7:6]_CREDIT_C00  
QOSC28 [7:6]_CREDIT_C10  
QOSC32 [7:6]_CREDIT_C20  
QOSC36 [7:6]_CREDIT_C30  
P3  
P2  
P1  
P0  
BE  
BE  
Delay Bound  
Op1 (default)  
Op2  
SP  
Delay Bound  
WFQ  
SP  
Op3  
WFQ  
Op4  
Table 8 - Four QoS Configurations for a 10/100 Mbps Port  
QOSC40 [7:6] and QOSC48 [7:6] select these modes for the first and second gigabit ports, respectively.  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
P7  
Delay Bound  
BE  
BE  
Op1 (default)  
Op2  
SP  
Delay Bound  
WFQ  
SP  
Op3  
WFQ  
Op4  
Table 9 - Four QoS Configurations for a Gigabit Port  
The default configuration for a 10/100 Mbps port is three delay-bounded queues and one best-effort queue. The  
delay bounds per class are 0,8 ms for P3, 3.2 ms for P2, and 12.8 ms for P1. For a 1 Gbps port, we have a default  
of six delay-bounded queues and two best-effort queues. The delay bounds for a 1 Gbps port are 0.16 ms for P7  
and P6, 0.32 ms for P5, 0.64 ms for P4, 1.28 ms for P3, and 2.56 ms for P2. Best effort traffic is only served when  
there is no delay-bounded traffic to be served. For a 1 Gbps port, where there are two best-effort queues, P1 has  
strict priority over P0.  
We have a second configuration for a 10/100 Mbps port in which there is one strict priority queue, two delay  
bounded queues and one best effort queue. The delay bounds per class are 3.2 ms for P2 and 12.8 ms for P1. If  
the user is to choose this configuration, it is important that P3 (SP) traffic be either policed or implicitly bounded  
(e.g., if the incoming P3 traffic is very light and predictably patterned). Strict priority traffic, if not admission-  
controlled at a prior stage to the MVTX2604 can have an adverse effect on all other classes’ performance. For a  
1 Gbps port, P7 and P6 are both SP classes and P7 has strict priority over P6. In this case, the delay bounds per  
class are 0.32 ms for P5, 0.64 ms for P4, 1.28 ms for P3, and 2.56 ms for P2.  
37  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
The third configuration for a 10/100 Mbps port contains one strict priority queue and three queues receiving a  
bandwidth partition via WFQ. As in the second configuration, strict priority traffic needs to be carefully controlled. In  
the fourth configuration, all queues are served using a WFQ service discipline.  
7.3 Delay Bound  
In the absence of a sophisticated QoS server and signaling protocol, the MVTX2604 may not know the mix of  
incoming traffic ahead of time. To cope with this uncertainty, our delay assurance algorithm dynamically adjusts its  
scheduling and dropping criteria, guided by the queue occupancies and the due dates of their head-of-line (HOL)  
frames. As a result, we assure latency bounds for all admitted frames with high confidence, even in the presence of  
system-wide congestion. Our algorithm identifies misbehaving classes and intelligently discards frames at no  
detriment to well-behaved classes. Our algorithm also differentiates between high-drop and low-drop traffic with a  
weighted random early drop (WRED) approach. Random early dropping prevents congestion by randomly dropping  
a percentage of high-drop frames even before the chip’s buffers are completely full, while still largely sparing low-  
drop frames. This allows high-drop frames to be discarded early, as a sacrifice for future low-drop frames. Finally,  
the delay bound algorithm also achieves bandwidth partitioning among classes.  
7.4 Strict Priority and Best Effort  
When strict priority is part of the scheduling algorithm, if a queue has even one frame to transmit, it goes first. Two  
of our four QoS configurations include strict priority queues. The goal is for strict priority classes to be used for IETF  
expedited forwarding (EF), where performance guarantees are required. As we have indicated, it is important that  
strict priority traffic be either policed or implicitly bounded, so as to keep from harming other traffic classes.  
When best effort is part of the scheduling algorithm, a queue only receives bandwidth when none of the other  
classes have any traffic to offer. Two of our four QoS configurations include best effort queues. The goal is for best  
effort classes to be used for non-essential traffic, because we provide no assurances about best effort performance.  
However, in a typical network setting, much best effort traffic will indeed be transmitted and with an adequate  
degree of expediency.  
Because we do not provide any delay assurances for best effort traffic, we do not enforce latency by dropping best  
effort traffic. Furthermore, because we assume that strict priority traffic is carefully controlled before entering the  
MVTX2604, we do not enforce a fair bandwidth partition by dropping strict priority traffic. To summarize, dropping to  
enforce bandwidth or delay does not apply to strict priority or best effort queues. We only drop frames from best  
effort and strict priority queues when global buffer resources become scarce.  
7.5 Weighted Fair Queuing  
In some environments – for example, in an environment in which delay assurances are not required, but precise  
bandwidth partitioning on small time scales is essential, WFQ may be preferable to a delay-bounded scheduling  
discipline. The MVTX2604 provides the user with a WFQ option with the understanding that delay assurances can  
not be provided if the incoming traffic pattern is uncontrolled. The user sets four WFQ “weights” (eight for Gigabit  
ports) such that all weights are whole numbers and sum to 64. This provides per-class bandwidth partitioning with  
error within 2%.  
In WFQ mode, though we do not assure frame latency, the MVTX2604 still retains a set of dropping rules that helps  
to prevent congestion and trigger higher level protocol end-to-end flow control.  
As before, when strict priority is combined with WFQ, we do not have special dropping rules for the strict priority  
queues, because the input traffic pattern is assumed to be carefully controlled at a prior stage. However, we do  
indeed drop frames from SP queues for global buffer management purposes. In addition, queue P0 for a 10/100  
port (and queues P0 and P1 for a Gigabit port) are treated as best effort from a dropping perspective, though they  
still are assured a percentage of bandwidth from a WFQ scheduling perspective. What this means is that these  
particular queues are only affected by dropping when the global buffer count becomes low.  
38  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
7.6 Shaper  
Although traffic shaping is not a primary function of the MVTX2604, the chip does implement a shaper for expedited  
forwarding (EF). Our goal in shaping is to control the peak and average rate of traffic exiting the MVTX2604.  
Shaping is limited to the two Gigabit ports only, and only to class P6 (the second highest priority). This means that  
class P6 will be the class used for EF traffic. If shaping is enabled for P6, then P6 traffic must be scheduled using  
strict priority. With reference to Table 7, only the middle two QoS configurations may be used.  
Peak rate is set using a programmable whole number, no greater than 64. For example, if the setting is 32, then the  
peak rate for shaped traffic is 32/64 * 1000 Mbps = 500 Mbps. Average rate is also a programmable whole number,  
no greater than 64 and no greater than the peak rate. For example, if the setting is 16, then the average rate for  
shaped traffic is 16/64 * 1000 Mbps = 250 Mbps. As a consequence of the above settings in our example, shaped  
traffic will exit the MVTX2604 at a rate always less than 500 Mbps and averaging no greater than 250 Mbps. See  
Programming QoS Register application note for more information.  
Also, when shaping is enabled, it is possible for a P6 queue to explode in length if fed by a greedy source. The  
reason is that a shaper is by definition not work-conserving; that is, it may hold back from sending a packet even if  
the line is idle. Though we do have global resource management, we do nothing to prevent this situation locally. We  
assume SP traffic is policed at a prior stage to the MVTX2604.  
7.7 Rate Control  
The MVTX2604 provides a rate control function on its 10/100 ports. This rate control function applies to the  
outgoing traffic aggregate on each 10/100 port. It provides a way of reducing the outgoing average rate below full  
wire speed. Note that the rate control function does not shape or manipulate any particular traffic class.  
Furthermore, though the average rate of the port can be controlled with this function, the peak rate will still be full  
line rate.  
Two principal parameters are used to control the average rate for a 10/100 port. A port’s rate is controlled by  
allowing, on average, M bytes to be transmitted every N microseconds. Both of these values are programmable.  
The user can program the number of bytes in 8-byte increments and the time may be set in units of 10 ms.  
The value of M/N will, of course, equal the average data rate of the outgoing traffic aggregate on the given 10/100  
port. Although there are many (M,N) pairs that will provide the same average data rate performance, the smaller the  
time interval N, the “smoother” the output pattern will appear.  
In addition to controlling the average data rate on a 10/100 port, the rate control function also manages the  
maximum burst size at wire speed. The maximum burst size can be considered the memory of the rate control  
mechanism; if the line has been idle for a long time, to what extent can the port “make up for lost time” by  
transmitting a large burst? This value is also programmable, measured in 8-byte increments.  
Example: Suppose that the user wants to restrict Fast Ethernet port P’s average departure rate to 32 Mbps – 32%  
of line rate – when the average is taken over a period of 10 ms. In an interval of 10 ms, exactly 40000 bytes can be  
transmitted at an average rate of 32 Mbps.  
So how do we set the parameters? The rate control parameters are contained in an internal RAM block accessible  
through the CPU port (See Programming QoS Registers application note and Processor interface application note).  
The data format is shown below.  
63:40  
0
39:32  
31:16  
15:0  
Time interval  
Maximum burst size  
Number of bytes  
As we indicated earlier, the number of bytes is measured in 8-byte increments, so the 16-bit field “Number of bytes”  
should be set to 40000/8, or 5000. In addition, the time interval has to be indicated in units of 10 ms. Though we  
want the average data rate on port P to be 32 Mbps when measured over an interval of 10 ms, we can also adjust  
the maximum number of bytes that can be transmitted at full line rate in any single burst. Suppose we wish this limit  
39  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
to be 12 kilobytes. The number of bytes is measured in 8-byte increments, so the 16-bit field “Maximum burst size”  
is set to 12000/8, or 1500.  
7.8 WRED Drop Threshold Management Support  
To avoid congestion, the Weighted Random Early Detection (WRED) logic drops packets according to specified  
parameters. The following table summarizes the behavior of the WRED logic.  
In KB (kilobytes)  
P3  
P2  
P1  
High Drop  
Low Drop  
Level 1  
X%  
0%  
N 120  
P3 AKB  
P2 BKB  
P1 CKB  
Level 2  
Y%  
Z%  
N 140  
Level 3  
100%  
100%  
N 160  
Table 10 - WRED Drop Thresholds  
Px is the total byte count, in the priority queue x. The WRED logic has three drop levels, depending on the value of  
N, which is based on the number of bytes in the priority queues. If delay bound scheduling is used, N equals  
P3*16+P2*4+P1. If using WFQ scheduling, N equals P3+P2+P1. Each drop level from one to three has defined  
high-drop and low-drop percentages, which indicate the minimum and maximum percentages of the data that can  
be discarded. The X, Y Z percent can be programmed by the register RDRC0, RDRC1. In Level 3, all packets are  
dropped if the bytes in each priority queue exceed the threshold. Parameters A, B, C are the byte count thresholds  
for each priority queue. They can be programmed by the QOS control register (refer to the register group 5). See  
Programming QoS Registers application note for more information.  
7.9 Buffer Management  
Because the number of FDB slots is a scarce resource and because we want to ensure that one misbehaving  
source port or class cannot harm the performance of a well-behaved source port or class, we introduce the concept  
of buffer management into the MVTX2604. Our buffer management scheme is designed to divide the total buffer  
space into numerous reserved regions and one shared pool as shown in Figure 11 on page 41.  
As shown in the figure, the FDB pool is divided into several parts. A reserved region for temporary frames stores  
frames prior to receiving a switch response. Such a temporary region is necessary, because when the frame first  
enters the MVTX2604, its destination port and class are as yet unknown, and so the decision to drop or not needs  
to be temporarily postponed. This ensures that every frame can be received first before subjecting them to the  
frame drop discipline after classifying.  
Six reserved sections, one for each of the first six priority classes, ensure a programmable number of FDB slots per  
class. The lowest two classes do not receive any buffer reservation. Furthermore, even for 10/100 Mbps ports, a  
frame is stored in the region of the FDB corresponding to its class. As we have indicated, the eight classes use only  
four transmission scheduling queues for 10/100 Mbps ports, but as far as buffer usage is concerned there are still  
eight distinguishable classes.  
Another segment of the FDB reserves space for each of the 27 ports — 26 ports for Ethernet and one CPU port  
(port number 24). Two parameters can be set, one for the source port reservation for 10/100 Mbps ports and CPU  
port, and one for the source port reservation for 1 Gbps ports. These 27 reserved regions make sure that no well-  
behaved source port can be blocked by another misbehaving source port.  
In addition, there is a shared pool, which can store any type of frame. The frame engine allocates the frames first in  
the six priority sections. When the priority section is full or the packet has priority 1 or 0, the frame is allocated in the  
shared poll. Once the shared poll is full the frames are allocated in the section reserved for the source port.  
40  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
The following registers define the size of each section of the Frame data Buffer:  
PR100- Port Reservation for 10/100 Ports  
PRG- Port Reservation for Giga Ports  
SFCB- Share FCB Size  
C2RS- Class 2 Reserve Size  
C3RS- Class 3 Reserve Size  
C4RS- Class 4 Reserve Size  
C5RS- Class 5 Reserve Size  
C6RS- Class 6 Reserve Size  
C7RS- Class 7 Reserve Size  
temporary  
reservation  
shared pool  
S
per-class  
reservation  
per-source  
reservations  
per-source  
reservations  
(2 G)  
(24 10/100 M, CPU)  
Figure 11 - Buffer Partition Scheme Used to Implement MVTX2604 AG Buffer Management  
7.9.1 Dropping When Buffers Are Scarce  
Summarizing the two examples of local dropping discussed earlier in this chapter:  
If a queue is a delay-bounded queue we have a multi-level WRED drop scheme designed to control delay and  
partition bandwidth in case of congestion.  
If a queue is a WFQ-scheduled queue we have a multi-level WRED drop scheme designed to prevent congestion.  
In addition to these reasons for dropping, we also drop frames when global buffer space becomes scarce. The  
function of buffer management is to make sure that such dropping causes as little blocking as possible.  
41  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
7.10 MVTX2604 Flow Control Basics  
Because frame loss is unacceptable for some applications, the MVTX2604 provides a flow control option. When  
flow control is enabled, scarcity of buffer space in the switch may trigger a flow control signal; this signal tells a  
source port that is sending a packet to this switch, to temporarily hold off.  
While flow control offers the clear benefit of no packet loss, it also introduces a problem for quality of service. When  
a source port receives an Ethernet flow control signal, all microflows originating at that port, well-behaved or not,  
are halted. A single packet destined for a congested output can block other packets destined for uncongested  
outputs. The resulting head-of-line blocking phenomenon means that quality of service cannot be assured with high  
confidence when flow control is enabled.  
In the MVTX2604, each source port can independently have flow control enabled or disabled. For flow control  
enabled ports, by default all frames are treated as lowest priority during transmission scheduling. This is done so  
that those frames are not exposed to the WRED Dropping scheme. Frames from flow control enabled ports feed to  
only one queue at the destination, the queue of lowest priority. This means that if flow control is enabled for a given  
source port then we can guarantee that no packets originating from that port will be lost but at the possible expense  
of minimum bandwidth or maximum delay assurances. In addition, these “downgraded” frames may only use the  
shared pool or the per-source reserved pool in the FDB; frames from flow control enabled sources may not use  
reserved FDB slots for the highest six classes (P2-P7).  
The MVTX2604 does provide a system-wide option of permitting normal QoS scheduling (and buffer use) for  
frames originating from flow control enabled ports. When this programmable option is active, it is possible that  
some packets may be dropped even though flow control is on. The reason is that intelligent packet dropping is a  
major component of the MVTX2604’s approach to ensuring bounded delay and minimum bandwidth for high priority  
flows.  
7.10.1 Unicast Flow Control  
For unicast frames, flow control is triggered by source port resource availability. Recall that the MVTX2604’s buffer  
management scheme allocates a reserved number of FDB slots for each source port. If a programmed number of a  
source port’s reserved FDB slots have been used then flow control Xoff is triggered.  
Xon is triggered when a port is currently being flow controlled and all of that port’s reserved FDB slots have been  
released.  
Note that the MVTX2604’s per-source-port FDB reservations assure that a source port that sends a single frame to  
a congested destination will not be flow controlled.  
7.10.2 Multicast Flow Control  
In unmanaged mode, flow control for multicast frames is triggered by a global buffer counter. When the system  
exceeds a programmable threshold of multicast packets Xoff is triggered. Xon is triggered when the system returns  
below this threshold.  
In managed mode, per-VLAN flow control is used for multicast frames. In this case, flow control is triggered by  
congestion at the destination. How so? The MVTX2604 checks each destination to which a multicast packet is  
headed. For each destination port, the occupancy of the lowest-priority transmission multicast queue (measured in  
number of frames) is compared against a programmable congestion threshold. If congestion is detected at even  
one of the packet’s destinations then Xoff is triggered.  
In addition, each source port has a 26-bit port map recording which port or ports of the multicast frame’s fanout  
were congested at the time Xoff was triggered. All ports are continuously monitored for congestion and a port is  
identified as uncongested when its queue occupancy falls below a fixed threshold. When all those ports that were  
originally marked as congested in the port map have become uncongested, then Xon is triggered and the 26-bit  
vector is reset to zero.  
42  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
The MVTX2604 also provides the option of disabling VLAN multicast flow control.  
Note: If per-Port flow control is on, QoS performance will be affected.  
7.11 Mapping to IETF Diffserv Classes  
The mapping between priority classes discussed in this chapter and elsewhere is shown below.  
P7  
P6  
EF  
P5  
P4  
P3  
P2  
P1  
P0  
VTX  
NM  
AF0  
AF1  
AF2  
AF3  
BE0  
BE1  
IETF  
Table 11 - Mapping between MVTX2604 and IETF Diffserv Classes for Gigabit Ports  
As the table illustrates, P7 is used solely for network management (NM) frames. P6 is used for expedited  
forwarding service (EF). Classes P2 through P5 correspond to an assured forwarding (AF) group of size 4. Finally,  
P0 and P1 are two best effort (BE) classes.  
For 10/100 Mbps ports, the classes of Table 12 are merged in pairs—one class corresponding to NM+EF, two AF  
classes, and a single BE class.  
P3  
P2  
P1  
P0  
VTX  
NM+EF  
AF0 AF1  
BE0  
IETF  
Table 12 - Mapping between MVTX2604 and IETF Diffserv Classes for 10/100 Ports  
Features of the MVTX2604 that correspond to the requirements of their associated IETF classes are summarized in  
the table below.  
Network management (NM) and  
Expedited forwarding (EF)  
Global buffer reservation for NM and EF  
Shaper for EF traffic on 1 Gbps ports  
Option of strict priority scheduling  
No dropping if admission controlled  
Assured forwarding (AF)  
Four AF classes for 1 Gbps ports  
Programmable bandwidth partition, with option of  
WFQ service  
Option of delay-bounded service keeps delay  
under fixed levels even if not admission-  
controlled  
Random early discard, with programmable levels  
Global buffer reservation for each AF class  
Best effort (BE)  
Two BE classes for 1 Gbps ports  
Service only when other queues are idle means  
that QoS not adversely affected  
Random early discard, with programmable levels  
Traffic from flow control enabled ports  
automatically classified as BE  
Table 13 - MVTX2604 Features Enabling IETF Diffserv Standards  
43  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
8.0 Port Trunking  
8.1 Features and Restrictions  
A port group (i.e., trunk) can include up to 4 physical ports but when using stack all of the ports in a group must be  
in the same MVTX2604.  
The two Gigabit ports may also be trunked together. There are three trunk groups total including the option to trunk  
Gigabit ports.  
Load distribution among the ports in a trunk for unicast is performed using hashing based on source MAC address  
and destination MAC address. Three other options include source MAC address only, destination MAC address  
only and source port (in bidirectional ring mode only). Load distribution for multicast is performed similarly.  
If a VLAN includes any of the ports in a trunk group, all the ports in that trunk group should be in the same VLAN  
member map.  
The MVTX2604 also provides a safe fail-over mode for port trunking automatically. If one of the ports in the trunking  
group goes down, the MVTX2604 will automatically redistribute the traffic over to the remaining ports in the trunk in  
unmanaged mode. In managed mode, the software can perform similar tasks.  
8.2 Unicast Packet Forwarding  
The search engine finds the destination MCT entry, and if the status field says that the destination port found  
belongs to a trunk, then the group number is retrieved instead of the port number. In addition, if the source address  
belongs to a trunk then the source port’s trunk membership register is checked.  
A hash key, based on some combination of the source and destination MAC addresses for the current packet  
selects the appropriate forwarding port as specified in the Trunk_Hash registers.  
8.3 Multicast Packet Forwarding  
For multicast packet forwarding, the device must determine the proper set of ports from which to transmit the  
packet based on the VLAN index and hash key.  
Two functions are required in order to distribute multicast packets to the appropriate destination ports in a port  
trunking environment.  
Determining one forwarding port per group. For multicast packets, all but one port per group, the forwarding port  
must be excluded.  
Preventing the multicast packet from looping back to the source trunk.  
The search engine needs to prevent a multicast packet from sending to a port that is in the same trunk group with  
the source port. This is because, when we select the primary forwarding port for each group we do not take the  
source port into account. To prevent this, we simply apply one additional filter so as to block that forwarding port for  
this multicast packet.  
44  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
8.4 Unmanaged Trunking  
In unmanaged mode, 3 trunk groups are supported. Groups 0 and 1 can trunk up to 4 10/100 ports. Group 2 can  
trunk 2 Gigabit ports. The supported combinations are shown in the following table.  
Group 0  
Port 0  
Port 1  
Port 2  
Port 3  
9
9
9
9
9
9
9
9
9
Select via trunk0_mode register  
Group 1  
Group 2  
Port 4  
9
Port 5  
Port 6  
Port 7  
9
9
9
9
9
Select via trunk1_mode register  
Port 25(Giga 0)  
Port 26 (Giga 1)  
9
9
In unmanaged mode, the trunks are individually enabled/disabled by controlling pin trunk0,1,2.  
9.0 Port Mirroring  
9.1 Port Mirroring Features  
The received or transmitted data of any 10/100 port in the MVTX2604 chip can be “mirrored” to any other port. We  
support two such mirrored source-destination pairs. A mirror port can not also serve as a data port.  
Please refer to the Port Mirroring Application note for further details.  
9.2 Setting Registers for Port Mirroring  
MIRROR1_SRC: Sets the source port for the first port mirroring pair. Bits [4:0] select the source port to be mirrored.  
An illegal port number is used to disable mirroring (which is the default setting). Bit [5] is used to select between  
ingress (Rx) or egress (Tx) data.  
MIRROR1_DEST: Sets the destination port for the first port mirroring pair. Bits [4:0] select the destination port to be  
mirrored. The default is port 23.  
MIRROR2_SRC: Sets the source port for the second port mirroring pair. Bits [4:0] select the source port to be  
mirrored. An illegal port number is used to disable mirroring (which is the default setting). Bit [5] is used to select  
between ingress (Rx) or egress (Tx) data.  
MIRROR2_DEST: Sets the destination port for the second port mirroring pair. Bits [4:0] select the destination port to  
be mirrored. The default is port 0.  
45  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
10.0 TBI Interface  
10.1 TBI Connection  
The TBI interface can be used for 1000 Mbps fiber operation. In this mode, the MVTX2604 is connected to the  
Serdes as shown in Figure 12. There are two TBI interfaces in the MVTX2604 devices. To enable to TBI function,  
the corresponding TXEN and TXER pins need to be boot strapped. See Ball – Signal Description for details.  
M25/26_TXD[9:0]  
T[9:0]  
REFCLK  
M25/26_TXCLK  
MVTX2604  
SERDES  
R[9:0]  
RBC0  
M25/26_RXD[9:0]  
M25/26_RXCLK  
M25/26_COL  
RBC1  
Figure 12 - TBI Connection  
11.0 GPSI (7WS) Interface  
11.1 GPSI connection  
The 10/100 RMII ethernet port can function in GPSI (7WS) mode when the corresponding TXEN pin is strapped low  
with a 1K pull down resistor. In this mode, the TXD[0], TXD[1], RXD[0] and RXD[1] serve as TX data, TX clock, RX  
data and RX clock respectively. The link status and collision from the PHY are multiplexed and shifted into the  
switch device through external glue logic. The duplex of the port can be controlled by programming the ECR  
register.  
The GPSI interface can be operated in port based VLAN mode only.  
46  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
crs  
rxd  
CRS_DV  
RXD[0]  
RXD[1]  
TXD[1]  
rx_clk  
tx_clk  
txd  
link0  
col0  
Port 0  
Ethernet  
PHY  
TXD[0]  
TXEN  
txen  
link1  
link2  
col1  
col2  
260X  
link23  
col23  
Port 23  
Ethernet  
PHY  
Link  
Serializer  
(CPLD)  
Collision  
Serializer  
(CPLD)  
Figure 13 - GPSI (7WS) Mode Connection Diagram  
47  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
11.2SCAN LINK and SCAN COL interface  
An external CPLD logic is required to take the link signals and collision signals from the GPSI PHYs and shift them  
into the switch device. The switch device will drive out a signature to indicate the start of the sequence. After that,  
the CPLD should shift in the link and collision status of the PHYS as shown in the figure. The extra link status  
indicates the polarity of the link signal. One indicates the polarity of the link signal is active high.  
scan_clk  
scan_link/  
scan_col  
25 cycles for link/  
24 cycles for col  
Drived by MVTX260x  
Drived by VTX260x  
Drived by CPLD  
Drived by CPLD  
Total 32 cycles period  
Figure 14 - SCAN LINK and SCAN COLLISON Status Diagram  
12.0 LED Interface  
12.1 LED Interface Introduction  
A serial output channel provides port status information from the MVTX2604 chips. It requires three additional pins.  
LED_CLK at 12.5 MHz  
LED_SYN a sync pulse that defines the boundary between status frames  
LED_DATA a continuous serial stream of data for all status LEDs that repeats once every frame time  
A non-serial interface is also allowed, but in this case, only the Gigabit ports will have status LEDs.  
A low cost external device (44 pin PAL) is used to decode the serial data and to drive an LED array for display. This  
device can be customized for different needs.  
12.2 Port Status  
In the VTX2604, each port has 8 status indicators, each represented by a single bit. The 8 LED status indicators  
are:  
Bit 0: Flow control  
Bit 1:Transmit data  
Bit 2: Receive data  
Bit 3: Activity (where activity includes either transmission or reception of data)  
Bit 4: Link up  
Bit 5: Speed (1= 100 Mb/s; 0= 10 Mb/s)  
Bit 6: Full-duplex  
Bit 7: Collision  
48  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Eight clocks are required to cycle through the eight status bits for each port.  
When the LED_SYN pulse is asserted, the LED interface will present 256 LED clock cycles with the clock cycles  
providing information for the following ports.  
Port 0 (10/100): cycles #0 to cycle #7  
Port 1 (10/100): cycles#8 to cycle #15  
Port 2 (10/100): cycle #16 to cycle #23  
...  
Port 22 (10/100): cycle #176 to cycle #183  
Port 23 (10/100): cycle #184 to cycle #191  
Port 24 (Gigabit 1): cycle #192 to cycle #199  
Port 25 (Gigabit 2): cycle #200 to cycle #207  
Byte 26 (additional status): cycle #208 to cycle #215  
Byte 27 (additional status): cycle #216 to cycle #223  
Cycles #224 to 256 present data with a value of zero.  
The first two bits of byte 26 provides the speed information for the Gigabit ports while the remainder of byte 26 and  
byte 27 provides bist status.  
26[0]: G0 port (1= port 24 is operating at Gigabit speed; 0= speed is either 10 or 100 Mb/s depending on  
speed bit of Port 24)  
26[1]: G1 port (1= port 25 is operating at Gigabit speed; 0= speed is either 10 or 100 Mb/s depending on  
speed bit of Port 25)  
26[2]: initialization done  
26[3]: initialization start  
26[4]: checksum ok  
26[5]: link_init_complete  
26[6]: bist_fail  
26[7]: ram_error  
27[0]: bist_in_process  
27[1]: bist_done  
12.3 LED Interface Timing Diagram  
The signal from the MVTX2604 to the LED decoder is shown in Figure 15.  
Figure 15 - Timing Diagram of LED Interface  
49  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
13.0 Hardware Statistics Counter  
13.1 Hardware Statistics Counters List  
MVTX2604 hardware provides a full set of statistics counters for each Ethernet port. The CPU accesses these  
counters through the CPU interface. All hardware counters are rollover counters. When a counter rolls over the  
CPU is interrupted so that long-term statistics may be kept. The MAC detects all statistics except for the delay  
exceed discard counter (detected by buffer manager) and the filtering counter (detected by queue manager). The  
following is the wrapped signal sent to the CPU through the command block.  
31  
30  
2
6
2
5
0
Status Wrapped Signal  
Bytes Sent (D)  
B[0]  
0-d  
1-L  
1-U  
2-I  
Unicast Frame Sent  
B[1]  
Frame Send Fail  
B[2]  
Flow Control Frames Sent  
Non-Unicast Frames Sent  
Bytes Received (Good and Bad) (D)  
Frames Received (Good and Bad) (D)  
Total Bytes Received (D)  
B[3]  
B[4]  
2-u  
3-d  
4-d  
5-d  
6-L  
6-U  
7-l  
B[5]  
B[6]  
B[7]  
Total Frames Received  
B[8]  
Flow Control Frames Received  
Multicast Frames Received  
Broadcast Frames Received  
Frames with Length of 64 Bytes  
Jabber Frames  
B9]  
B[10]  
B[11]  
B[12]  
B[13]  
B[14]  
B[15]  
B[16]  
B[17]  
B[18]  
B[19]  
B[20]  
B[21]  
B[22]  
B[23]  
7-u  
8-L  
8-U  
9-L  
9-U  
A-l  
Frames with Length Between 65-127 Bytes  
Oversize Frames  
Frames with Length Between 128-255 Bytes  
A-u  
B-l  
Frames with Length Between 256-511 Bytes  
Frames with Length Between 512-1023 Bytes  
Frames with Length Between 1024-1528 Bytes  
B-u  
C-l  
Fragments  
Alignment Error  
Undersize Frames  
CRC  
C-U1  
C-U  
D-l  
50  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Short Event  
Collision  
B[24]  
B[25]  
B[26]  
B[27]  
B[28]  
B[29]  
B[30]  
D-u  
E-l  
Drop  
E-u  
F-l  
Filtering Counter  
Delay Exceed Discard Counter  
Late Collision  
F-U1  
F-U  
Link Status Change  
Current link status  
B[31]  
Notation: X-Y  
Address in the contain memory  
Size and bits for the counter  
X:  
Y:  
D Word counter  
d:  
L:  
U:  
24 bits counter bit[23:0]  
8 bits counter bit[31:24]  
8 bits counter bit[23:16]  
16 bits counter bit[15:0]  
16 bits counter bit[31:16]  
U1:  
l:  
u:  
13.2 IEEE 802.3 HUB Management (RFC 1516)  
13.2.1 Event Counters  
13.2.1.1 Readablectet  
Counts number of bytes (i.e. octets) contained in good valid frames received.  
Frame size:  
> 64 bytes,  
< 1522 bytes if VLAN Tagged;  
1518 bytes if not VLAN Tagged  
No FCS (i.e. checksum) error  
No collisions  
51  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
13.2.1.2 ReadableFrame  
Counts number of good valid frames received.  
Frame size:  
> 64 bytes,  
< 1522 bytes if VLAN Tagged;  
1518 bytes if not VLAN Tagged  
No FCS error  
No collisions  
13.2.1.3 FCSErrors  
Counts number of valid frames received with bad FCS.  
Frame size:  
> 64 bytes,  
< 1522 bytes if VLAN Tagged;  
1518 bytes if not VLAN Tagged  
No framing error  
No collisions  
13.2.1.4 AlignmentErrors  
Counts number of valid frames received with bad alignment (not byte-aligned).  
Frame size:  
> 64 bytes,  
< 1522 bytes if VLAN Tagged;  
1518 bytes if not VLAN Tagged  
No framing error  
No collisions  
13.2.1.5 FrameTooLongs  
Counts number of frames received with size exceeding the maximum allowable frame size.  
Frame size:  
> 64 bytes,  
> 1522 bytes if VLAN Tagged;  
1518 bytes if not VLAN Tagged  
FCS error:  
don’t care  
don’t care  
Framing error:  
No collisions  
13.2.1.6 ShortEvents  
Counts number of frames received with size less than the length of a short event.  
Frame size:  
FCS error:  
< 10 bytes  
don’t care  
52  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Framing error:  
No collisions  
don’t care  
13.2.1.7 Runts  
Counts number of frames received with size under 64 bytes, but greater than the length of a short event.  
Frame size:  
FCS error:  
> 10 bytes,  
don’t care  
don’t care  
< 64 bytes  
Framing error:  
No collisions  
13.2.1.8 Collisions  
Counts number of collision events.  
Frame size:  
any size  
13.2.1.9 LateEvents  
Counts number of collision events that occurred late (after LateEventThreshold = 64 bytes).  
Frame size:  
any size  
Events are also counted by collision counter  
13.2.1.10  
VeryLongEvents  
Counts number of frames received with size larger than Jabber Lockup Protection Timer (TW3).  
Frame size: > Jabber  
13.2.1.11  
DataRateMisatches  
For repeaters or HUB application only.  
13.2.1.12 AutoPartitions  
For repeaters or HUB application only.  
13.2.1.13 TotalErrors  
Sum of the following errors:  
FCS errors  
Alignment errors  
Frame too long  
Short events  
Late events  
Very long events  
53  
Zarlink Semiconductor Inc.  
MVTX2604  
13.3 IEEE – 802.1 Bridge Management (RFC 1286)  
13.3.1 Event Counters  
Data Sheet  
13.3.1.1 InFrames  
Counts number of frames received by this port or segment.  
Note: A frame received by this port is only counted by this counter if and only if it is for a protocol being processed  
by the local bridge function.  
13.3.1.2 OutFrames  
Counts number of frames transmitted by this port.  
Note: A frame transmitted by this port is only counted by this counter if and only if it is for a protocol being  
processed by the local bridge function.  
13.3.1.3 InDiscards  
Counts number of valid frames received which were discarded (i.e. filtered) by the forwarding process.  
13.3.1.4 DelayExceededDiscards  
Counts number of frames discarded due to excessive transmit delay through the bridge.  
13.3.1.5 MtuExceededDiscards  
Counts number of frames discarded due to excessive size.  
13.4 RMON – Ethernet Statistic Group (RFC 1757)  
13.4.1 Event Counters  
13.4.1.1 Drop Events  
Counts number of times a packet is dropped, because of lack of available resources. DOES NOT include all packet  
dropping -- for example, random early drop for quality of service support.  
13.4.1.2 Octets  
Counts the total number of octets (i.e. bytes) in any frames received.  
13.4.1.3 BroadcastPkts  
Counts the number of good frames received and forwarded with broadcast address.  
Does not include non-broadcast multicast frames.  
13.4.1.4 MulticastPkts  
Counts the number of good frames received and forwarded with multicast address.  
Does not include broadcast frames.  
54  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
13.4.1.5 CRCAlignErrors  
Frame size:  
> 64 bytes,  
< 1522 bytes if VLAN tag (1518 if no VLAN)  
No collisions:  
Counts number of frames received with FCS or alignment errors  
13.4.1.6 UndersizePkts  
Counts number of frames received with size less than 64 bytes.  
Frame size:  
< 64 bytes,  
No FCS error  
No framing error  
No collisions  
13.4.1.7 OversizePkts  
Counts number of frames received with size exceeding the maximum allowable frame size.  
Frame size:  
FCS error  
1522 bytes if VLAN tag (1518 bytes if no VLAN)  
don’t care  
don’t care  
Framing error  
No collisions  
13.4.1.8 Fragments  
Counts number of frames received with size less than 64 bytes and with bad FCS.  
Frame size:  
Framing error  
No collisions  
< 64 bytes  
don’t care  
13.4.1.9 Jabbers  
Counts number of frames received with size exceeding maximum frame size and with bad FCS.  
Frame size:  
Framing error  
No collisions  
> 1522 bytes if VLAN tag (1518 bytes if no VLAN)  
don’t care  
55  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
13.4.1.10 Collisions  
Counts number of collision events detected.  
Only a best estimate since collisions can only be detected while in transmit mode, but not while in receive mode.  
Frame size: any size  
13.4.1.11 Packet Count for Different Size Groups  
Six different size groups – one counter for each:  
Pkts64Octets  
for any packet with size = 64 bytes  
Pkts65to127Octets  
Pkts128to255Octets  
Pkts256to511Octets  
for any packet with size from 65 bytes to 127 bytes  
for any packet with size from 128 bytes to 255 bytes  
for any packet with size from 256 bytes to 511 bytes  
Pkts512to1023Octets for any packet with size from 512 bytes to 1023 bytes  
Pkts1024to1518Octets for any packet with size from 1024 bytes to 1518 bytes  
Counts both good and bad packets.  
13.5 Miscellaneous Counters  
In addition to the statistics groups defined in previous sections, the MVTX2604 has other statistics counters for its  
own purposes. We have two counters for flow control – one counting the number of flow control frames received,  
and another counting the number of flow control frames sent. We also have two counters, one for unicast frames  
sent and one for non-unicast frames sent. A broadcast or multicast frame qualifies as non-unicast. Furthermore, we  
have a counter called “frame send fail.” This keeps track of FIFO under-runs, late collisions and collisions that have  
occurred 16 times.  
56  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.0 Register Definition  
14.1 MVTX2604 Register Description  
2
Default  
Notes  
CPU Addr  
(Hex)  
I C Addr  
Register  
Description  
R/W  
(Hex)  
0. ETHERNET Port Control Registers Substitute [N] with Port number (0..1A)  
ECR1P”N”  
ECR2P”N”  
GGC  
Port Control Register 1 for Port N  
Port Control Register 2 for Port N  
Extra GIGA bit control register  
0000 + 2 x N  
001 + 2 x N  
036  
R/W 000-01A  
R/W 01B-035  
R/W NA  
020  
000  
000  
1. VLAN Control Registers Substitute [N] with Port number (0..1A)  
AVTCL  
VLAN Type Code Register Low  
VLAN Type Code Register High  
Port “N” Configuration Register 0  
Port “N” Configuration Register 1  
Port “N” Configuration Register 2  
Port “N” Configuration Register 3  
VLAN Operating Mode  
100  
R/W 036  
000  
081  
0FF  
0FF  
0FF  
007  
000  
000  
AVTCH  
101  
R/W 037  
PVMAP”N”_0  
PVMAP”N”_1  
PVMAP”N”_2  
PVMAP”N”_3  
PVMODE  
102 + 4N  
103 + 4N  
104 + 4N  
105 + 4N  
170  
R/W 038-052  
R/W 053-06D  
R/W 06E-088  
R/W 089-0A3  
R/W 0A4  
PVROUTE7-0  
VLAN Router Group Enable  
171-178  
R/W NA  
2. TRUNK Control Registers  
TRUNK0_L  
TRUNK0_M  
TRUNK0_H  
Trunk Group 0 Low  
200  
201  
202  
203  
R/W NA  
R/W NA  
R/W NA  
R/W 0A5  
000  
000  
000  
003  
Trunk Group 0 Medium  
Trunk Group 0 High  
Trunk Group 0 Mode  
TRUNK0_  
MODE  
TRUNK0_  
HASH0  
Trunk Group 0 Hash 0 Destination 204  
Port  
R/W NA  
R/W NA  
R/W NA  
R/W NA  
000  
001  
002  
003  
TRUNK0_  
HASH1  
Trunk Group 0 Hash 1 Destination 205  
Port  
TRUNK0_  
HASH2  
Trunk Group 0 Hash 2 Destination 206  
Port  
TRUNK0_  
HASH3  
Trunk Group 0 Hash 3 Destination 207  
Port  
TRUNK1_L  
TRUNK1_M  
Trunk Group 1 Low  
208  
209  
R/W NA  
R/W NA  
000  
000  
Trunk Group 1 Medium  
57  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
2
Default  
Notes  
CPU Addr  
(Hex)  
I C Addr  
Register  
Description  
R/W  
(Hex)  
TRUNK1_H  
Trunk Group 1 High  
Trunk Group 1 Mode  
20A  
20B  
R/W NA  
R/W 0A6  
000  
003  
TRUNK1_  
MODE  
TRUNK1_  
HASH0  
Trunk Group 1 Hash 0 Destination 20C  
Port  
R/W NA  
R/W NA  
R/W NA  
R/W NA  
R/W NA  
R/W NA  
R/W NA  
R/W NA  
R/W NA  
R/W NA  
R/W NA  
R/W NA  
R/W NA  
R/W NA  
R/W NA  
R/W NA  
R/W NA  
004  
005  
006  
007  
003  
019  
01A  
0FF  
0FF  
0FF  
0FF  
0FF  
0FF  
0FF  
0FF  
0FF  
0FF  
TRUNK1_  
HASH1  
Trunk Group 1 Hash 1 Destination 20D  
Port  
TRUNK1_  
HASH2  
Trunk Group 1 Hash 2 Destination 20E  
Port  
TRUNK1_  
HASH3  
Trunk Group 1 Hash 3 Destination 20F  
Port  
TRUNK2_  
MODE  
Trunk Group 2 Mode  
210  
TRUNK2_  
HASH0  
Trunk Group 2 Hash 0 Destination 211  
Port  
TRUNK2_  
HASH1  
Trunk Group 2 Hash 1 Destination 212  
Port  
Multicast_  
HASH0-0  
Multicast hash result 0 mask byte  
0
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
Multicast_  
HASH0-1  
Multicast hash result 0 mask byte  
1
Multicast_  
HASH0-2  
Multicast hash result 0 mask byte  
2
Multicast_  
HASH0-3  
Multicast hash result 0 mask byte  
3
Multicast_  
HASH1-0  
Multicast hash result 1 mask byte  
0
Multicast_  
HASH1-1  
Multicast hash result 1 mask byte  
1
Multicast_  
HASH1-2  
Multicast hash result 1 mask byte  
2
Multicast_  
HASH1-3  
Multicast hash result 1 mask byte  
3
Multicast_  
HASH2-0  
Multicast hash result 2 mask byte  
0
Multicast_  
HASH2-1  
Multicast hash result 2 mask byte  
1
58  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
2
Default  
Notes  
CPU Addr  
(Hex)  
I C Addr  
Register  
Description  
R/W  
(Hex)  
Multicast_  
Multicast hash result 2 mask byte  
2
22A  
R/W NA  
R/W NA  
R/W NA  
R/W NA  
R/W NA  
R/W NA  
0FF  
0FF  
0FF  
0FF  
0FF  
0FF  
HASH2-2  
Multicast_  
HASH2-3  
Multicast hash result 2 mask byte  
3
22B  
Multicast_  
HASH3-0  
Multicast hash result 3 mask byte  
0
22C  
22D  
22E  
22F  
Multicast_  
HASH3-1  
Multicast hash result 3 mask byte  
1
Multicast_  
HASH3-2  
Multicast hash result 3 mask byte  
2
Multicast_  
HASH3-3  
Multicast hash result 3 mask byte  
3
3. CPU Port Configuration  
MAC0  
CPU MAC Address byte 0  
300  
301  
302  
303  
304  
305  
306  
R/W NA  
R/W NA  
R/W NA  
R/W NA  
R/W NA  
R/W NA  
R/W NA  
000  
000  
000  
000  
000  
000  
000  
000  
MAC1  
CPU MAC Address byte 1  
CPU MAC Address byte 2  
CPU MAC Address byte 3  
CPU MAC Address byte 4  
CPU MAC Address byte 5  
Interrupt Mask 0  
MAC2  
MAC3  
MAC4  
MAC5  
INT_MASK0  
INTP_MASK”N” Interrupt Mask for MAC Port 2N,  
2N+1  
310+N (310 - R/W NA  
313)  
RQS  
Receive Queue Select  
323  
324  
325  
R/W NA  
RO NA  
000  
N/A  
008  
RQSS  
TX_AGE  
Receive Queue Status  
Transmission Queue Aging Time  
R/W 0A7  
4. Search Engine Configurations  
AGETIME_LOW MAC Address Aging Time Low  
400  
401  
R/W 0A8  
R/W 0A9  
2M:05C/  
4M:02E  
AGETIME_  
HIGH  
MAC Address Aging Time High  
000  
V_AGETIME  
SE_OPMODE  
SCAN  
VLAN to Port Aging Time  
Search Engine Operating Mode  
Scan control register  
402  
403  
404  
R/W NA  
R/W NA  
R/W NA  
0FF  
000  
000  
59  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
2
Default  
Notes  
CPU Addr  
(Hex)  
I C Addr  
Register  
Description  
R/W  
(Hex)  
5. Buffer Control and QOS Control  
FCBAT  
QOSC  
FCB Aging Timer  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
50A  
50B  
R/W 0AA  
R/W 0AB  
R/W 0AC  
R/W 0AD  
R/W 0AE  
R/W 0AF  
R/W 0B0  
R/W 0B1  
R/W 0B2  
R/W 0B3  
R/W 0B4  
R/W 0B5  
R/W 0B6  
0FF  
000  
008  
000  
000  
000  
000  
000  
000  
000  
000  
000  
QOS Control  
FCR  
Flooding Control Register  
VLAN Priority Map Low  
VLAN Priority Map Middle  
VLAN Priority Map High  
TOS Priority Map Low  
TOS Priority Map Middle  
TOS Priority Map High  
VLAN Discard Map  
AVPML  
AVPMM  
AVPMH  
TOSPML  
TOSPMM  
TOSPMH  
AVDM  
TOSDML  
BMRC  
TOS Discard Map  
Broadcast/Multicast Rate Control  
Unicast Congestion Control  
UCC  
50C  
2M:008/  
4M:010  
MCC  
Multicast Congestion Control  
50D  
R/W 0B7  
R/W 0B8  
050  
PR100  
Port Reservation for 10/100 Ports 50E  
2M:024/  
4M:036  
PRG  
Port Reservation for Giga Ports  
Share FCB Size  
50F  
510  
R/W 0B9  
R/W 0BA  
2M:035/  
4M:058  
SFCB  
2M:014/  
4M:064  
C2RS  
C3RS  
C4RS  
C5RS  
C6RS  
C7RS  
QOSC”N”  
Class 2 Reserve Size  
Class 3 Reserve Size  
Class 4 Reserve Size  
Class 5 Reserve Size  
Class 6 Reserve Size  
Class 7 Reserve Size  
QOS Control (N=0 - 5)  
QOS Control (N=6 - 11)  
511  
R/W 0BB  
R/W 0BC  
R/W 0BD  
R/W 0BE  
R/W 0BF  
R/W 0C0  
R/W 0C1-0C6  
R/W NA  
000  
000  
000  
000  
000  
000  
000  
000  
512  
513  
514  
515  
516  
517- 51C  
51D- 522  
60  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
2
Default  
Notes  
CPU Addr  
I C Addr  
Register  
Description  
R/W  
(Hex)  
523- 52E  
52F- 552  
553  
(Hex)  
QOS Control (N=12 - 23)  
QOS Control (N=24 - 59)  
WRED Drop Rate Control 0  
WRED Drop Rate Control 1  
R/W 0C7-0D2  
R/W NA  
000  
000  
08F  
088  
RDRC0  
R/W 0FB  
R/W 0FC  
RDRC1  
554  
USER_  
User Define Logical Port “N” Low  
(N=0-7)  
580 + 2N  
R/W 0D6-0DD 000  
PORT”N”_LOW  
USER_  
User Define Logical Port “N” High 581 + 2N  
R/W 0DE-0E5  
R/W 0E6  
000  
000  
PORT”N”_HIGH  
USER_  
User Define Logic Port 1 and 0  
Priority  
590  
591  
592  
593  
PORT1:0_  
PRIORITY  
USER_  
User Define Logic Port 3 and 2  
Priority  
R/W 0E7  
R/W 0E8  
R/W 0E9  
000  
000  
000  
PORT3:2_  
PRIORITY  
USER_  
User Define Logic Port 5 and 4  
Priority  
PORT5:4_  
PRIORITY  
USER_  
User Define Logic Port 7 and 6  
Priority  
PORT7:6_PRI  
ORITY  
USER_PORT_  
ENABLE  
User Define Logic Port Enable  
594  
595  
596  
597  
598  
R/W 0EA  
R/W 0EB  
R/W 0EC  
R/W 0ED  
R/W 0EE  
000  
000  
000  
000  
000  
WLPP10  
WLPP32  
WLPP54  
WLPP76  
Well known Logic Port Priority for  
1 and 0  
Well known Logic Port Priority for  
3 and 2  
Well known Logic Port Priority for  
5 and 4  
Well-known Logic Port Priority for  
7 & 6  
WLPE  
Well known Logic Port Enable  
User Define Range Low Bit7:0  
User Define Range Low Bit 15:8  
User Define Range High Bit 7:0  
User Define Range High Bit 15:8  
User Define Range Priority  
599  
59A  
59B  
59C  
59D  
59E  
R/W 0EF  
R/W 0F4  
R/W 0F5  
R/W 0D3  
R/W 0D4  
R/W 0D5  
000  
000  
000  
000  
000  
000  
RLOWL  
RLOWH  
RHIGHL  
RHIGHH  
RPRIORITY  
61  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
2
Default  
Notes  
CPU Addr  
I C Addr  
Register  
Description  
R/W  
(Hex)  
(Hex)  
CPUQOSC1~3  
Byte limit for TxQ on CPU port  
5A0-5A2  
R/W NA  
000  
6. MISC Configuration Registers  
MII_OP0  
MII_OP1  
FEN  
MII Register Option 0  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
60A  
60B  
R/W 0F0  
R/W 0F1  
R/W 0F2  
R/W N/A  
R/W N/A  
R/W N/A  
R/W N/A  
000  
000  
010  
000  
000  
000  
000  
N/A  
N/A  
000  
000  
000  
MII Register Option 1  
Feature Registers  
MIIC0  
MIIC1  
MIIC2  
MIIC3  
MIID0  
MIID1  
LED  
MII Command Register 0  
MII Command Register 1  
MII Command Register 2  
MII Command Register 3  
MII Data Register 0  
RO  
RO  
N/A  
N/A  
MII Data Register 1  
LED Control Register  
Device id and test  
R/W 0F3  
R/W N/A  
R/W 0FF  
DEVICE  
SUM  
EEPROM Checksum Register  
7. Port Mirroring Controls  
MIRROR1_SRC Port Mirror 1 Source Port  
700  
701  
R/W N/A  
R/W N/A  
07F  
017  
MIRROR1_  
DEST  
Port Mirror 1 Destination Port  
MIRROR2_SRC Port Mirror 2 Source Port  
702  
703  
R/W N/A  
R/W N/A  
0FF  
000  
MIRROR2_  
DEST  
Port Mirror 2 Destination Port  
F. Device Configuration Register  
GCR  
DCR  
Global Control Register  
F00  
F01  
R/W N/A  
000  
N/A  
Device Status and Signature  
Register  
RO  
N/A  
DCR1  
DPST  
DTST  
DA  
Giga Port status  
F02  
F03  
F04  
FFF  
RO  
N/A  
N/A  
000  
N/A  
DA  
Device Port Status Register  
Data read back register  
DA Register  
R/W N/A  
RO  
RO  
N/A  
N/A  
62  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.2 Directly Accessed Registers  
14.2.1 INDEX_REG0  
Address bits [7:0] for indirectly accessed register addresses  
Address = 0 (write only)  
14.2.2 INDEX_REG1 (only needed for 8-bit mode)  
Address bits [15:8] for indirectly accessed register addresses  
Address = 1 (write only)  
14.2.3 DATA_FRAME_REG  
Data of indirectly accessed registers. (8 bits)  
Address = 2 (read/write)  
14.2.4 CONTROL_FRAME_REG  
CPU transmit/receive switch frames. (8/16 bits)  
Address = 3 (read/write)  
Format:  
- Send frame from CPU: In sequence)  
Frame Data (size should be in multiple of 8-byte)  
8-byte of Frame status (Frame size, Destination port #, Frame O.K. status)  
- CPU Received frame: In sequence)  
8-byte of Frame status (Frame size, Source port #, VLAN tag)  
Frame Data  
14.2.5 COMMAND&STATUS Register  
CPU interface commands (write) and status  
Address = 4 (read/write)  
When the CPU writes to this register  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Bit [3]:  
Set Control Frame Receive buffer ready after CPU writes a complete frame  
into the buffer. This bit is self-cleared.  
Set Control Frame Transmit buffer1 ready after CPU reads out a complete  
frame from the buffer. This bit is self-cleared.  
Set Control Frame Transmit buffer2 ready after CPU reads out a complete  
frame from the buffer. This bit is self-cleared.  
Set this bit to indicate CPU received a whole frame (transmit FIFO frame  
receive done), and flushed the rest of frame fragment. This bit will be self-  
cleared.  
Bit [4]:  
Set this bit to indicate that the following Write to the Receive FIFO is the last  
one (EOF). This bit will be self-cleared.  
63  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Bit [5]:  
Set this bit to re-start the data that is sent from the CPU to Receive FIFO  
(re-align). This feature can be used for software debug. For normal  
operation must be '0'.  
Bit [6]:  
Bit [7]:  
Do not use. Must be '0'  
Reserved  
When the CPU reads this register:  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Control Frame receive buffer ready, CPU can write a new frame  
• 1 – CPU can write a new control command 1  
• 0 – CPU has to wait until this bit is 1 to write a new control command 1  
Control Frame transmit buffer1 ready for CPU to read  
• 1 – CPU can read a new control command 1  
• 0 – CPU has to wait until this bit is 1 to read a new control command  
Control Frame transmit buffer2 ready for CPU to read  
• 1 – CPU can read a new control command 1  
• 0 – CPU has to wait until this bit is 1 to read a new control command  
Bit [3]:  
Bit [4]:  
Bit [5]:  
Bit [6]:  
Bit [7]:  
Transmit FIFO has data for CPU to read (TXFIFO_RDY)  
Receive FIFO has space for incoming CPU frame (RXFIFO_SPOK)  
Transmit FIFO End Of Frame (TXFIFO_EOF)  
Reserve  
Reserve  
64  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.2.6 Interrupt Register  
Interrupt sources (8 bits)  
Address = 5 (read only)  
When CPU reads this register  
Bit [0]:  
Bit [1]:  
CPU frame interrupt  
Control Frame 1 interrupt. Control Frame receive buffer1 has data for CPU  
to read  
Bit [2]:  
Control Frame 2 interrupt. Control Frame receive buffer2 has data for CPU  
to read  
Bit [3]:  
Bit [4]:  
Bit [7:5]:  
Gigabit port A interrupt  
Gigabit port B interrupt  
Reserve  
Note: This register is not self-cleared. After reading CPU has to clear the bit writing 0 to it.  
14.2.7 Control Command Frame Buffer1 Access Register  
Address = 6 (read/write)  
When CPU writes to this register, data is written to the Control Command Frame Receive Buffer  
When CPU reads this register, data is read from the Control Command Frame Transmit Buffer1  
14.2.8 Control Command Frame Buffer2 Access Register  
Address = 7 (read only)  
When CPU reads this register, data is read from the Control Command Frame Transmit Buffer1  
14.3 Indirectly Accessed registers  
14.4 Group 0 Address MAC Ports Group  
14.4.1 ECR1Pn: Port N Control Register  
2
I C Address 000 - 01A; CPU Address:0000+2xN (N = port number)  
2
Accessed by CPU, serial interface and I C (R/W)  
7
6
5
4
2
1
0
3
Sp State  
A-FC Port Mode  
65  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Bit [0]  
1 - Flow Control Off  
0 - Flow Control On  
When Flow Control On:  
In half duplex mode the MAC transmitter applies back pressure for flow  
control.  
In full duplex mode the MAC transmitter sends Flow Control frames when  
necessary. The MAC receiver interprets and processes incoming flow  
control frames. The Flow Control Frame Received counter is incremented  
whenever a flow control is received.  
When Flow Control off:  
In half duplex mode the MAC Transmitter does not assert flow control by  
sending flow control frames or jamming collision.  
In full duplex mode the Mac transmitter does not send flow control frames.  
The MAC receiver does not interpret or process the flow control frames. The  
Flow Control Frame Received counter is not incremented.  
Bit [1]  
1 - Half Duplex - Only in 10/100 mode  
0 - Full Duplex  
Bit [2]  
1 - 10 Mbps  
0 - 100 Mbps  
Bit [4:3]  
00 – Automatic Enable Auto Neg. - This enables hardware state machine  
for auto-negotiation.  
01 - Limited Disable auto Neg. This disables hardware for speed auto-nego-  
tiation. Hardware Poll MII for link status.  
10 - Link Down. Force link down (disable the port).  
11 - Link Up. The configuration in ECR1[2:0] is used for (speed/half  
duplex/full duplex/flow control) setup.  
Bit [5]  
Asymmetric Flow Control Enable.  
0 – Disable asymmetric flow control  
01 – Enable Asymmetric flow control  
When this bit is set, and flow control is on (bit[0] = 0), don’t send out a flow  
control frame. But MAC receiver interprets and processes flow control  
frames.  
Bit [7:6]  
SS - Spanning tree state (802.1D spanning tree protocol) Default is 11.  
00 – Blocking: Frame is dropped  
01 - Listening:  
10 - Learning:  
Frame is dropped  
Frame is dropped. Source MAC address is learned.  
11 - Forwarding: Frame is forwarded. Source MAC address is learned.  
66  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.4.2 ECR2Pn: Port N Control Register  
2
I C Address: 01B-035; CPU Address:0001+2xN (N = port number)  
Accessed by CPU and serial interface (R/W)  
7
6
5
4
3
2
1
0
Security En  
QoS Sel  
Reserve DisL  
Ftf  
Futf  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Filter untagged frame (Default 0)  
• 0: Disable  
• 1: All untagged frames from this port are discarded or follow security option when  
security is enable  
Filter Tag frame (Default 0)  
• 0: Disable  
• 1: All tagged frames from this port are discarded or follow security option when  
security is enable  
Learning Disable (Default 0)  
• 1 Learning is disabled on this port  
• 0 Learning is enabled on this port  
Bit [3]:  
Must be ‘1’  
Bit [5:4:]  
QOS mode selection (Default 00)  
Determines which of the 4 sets of QoS settings is used for 10/100 ports.  
Note that there are 4 sets of per-queue byte thresholds, and 4 sets of WFQ  
ratios programmed. These bits select among the 4 choices for each 10/100  
port. Refer to QOS Application Note.  
• 00: select class byte limit set 0 and classes WFQ credit set 0  
• 01: select class byte limit set 1 and classes WFQ credit set 1  
• 10: select class byte limit set 2 and classes WFQ credit set 2  
• 11: select class byte limit set 3 and classes WFQ credit set 3  
67  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Bit[7:6]  
Security Enable (Default 00). The MVTX2604 checks the incoming data for  
one of the following conditions:  
1. If the source MAC address of the incoming packet is in the MAC table  
and is defined as secure address but the ingress port is not the same as the  
port associated with the MAC address in the MAC table.  
A MAC address is defined as secure when its entry at MAC table has static  
status and bit 0 is set to 1. MAC address bit 0 (the first bit transmitted) indi-  
cates whether the address is unicast or multicast. As source addresses are  
always unicast bit 0 is not used (always 0). MVTX2600 uses this bit to  
define secure MAC addresses.  
2. If the port is set as learning disable and the source MAC address of the  
incoming packet is not defined in the MAC address table.  
3. If the port is configured to filter untagged frames and an untagged frame  
arrives or if the port is configured to filter tagged frames and a tagged frame  
arrives.  
If one of these three conditions occurs the packet will be handled according  
to one of the following specified options:  
CPU installed  
• 00 – Disable port security  
• 01 – Discard violating packets  
• 10 – Send packet to CPU and destination port  
• 11 – Send packet to CPU only  
14.4.3 GGControl – Extra GIGA Port Control  
CPU Address:h036  
Accessed by CPU and serial interface (R/W)  
7
6
5
4
3
2
1
0
DF  
DI  
MiiB  
RstA  
DF  
DI  
MiiA RstA  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Bit [3]:  
Reset GIGA port A  
• 0: Normal operation (default)  
• 1: Reset Gigabit port A. Normally used when a new Phy is connected (Hot swap).  
GIGA port A use MII interface (10/100M)  
• 0: Gigabit port operations at 1000 mode (default)  
• 1: Gigabit port operations at 10/100 mode  
Device information insertion enable for Gigabit port A  
• 0: Disable preamble stack device ID insertion (default).  
• 1: Insert stack device ID into the preamble (must be enabled for ring mode).  
GIGA port A direct flow control (MAC to MAC connection). The MVTX2604  
supports direct flow control mechanism; the flow control frame is therefore  
not sent through the Gigabit port data path.  
• 0: Direct flow control disabled (default)  
• 1: Direct flow control enabled  
68  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Bit [4]:  
Bit [5]:  
Bit [6]:  
Bit [7]:  
Reset GIGA port B  
• 0: Normal operation (default)  
• 1: Reset Gigabit port B  
GIGA port B use MII interface (10/100M)  
• 0: Gigabit port operates at 1000 mode (default)  
• 1: Gigabit port operates at 10/100 mode  
Device information attach enable for Gigabit port B  
• 0: Disable preamble stack device ID insertion (default)  
• 1: Insert stack device ID into the preamble (must be enabled for ring mode).  
GIGA port B direct flow control (MAC to MAC connection). MVTX2604  
supports direct flow control mechanism; the flow control frame is therefore  
not sent through the Gigabit port data path.  
• 0: Direct flow control disabled (default)  
• 1: Direct flow control enabled  
14.5 Group 1 Address VLAN Group  
14.5.1 AVTCL – VLAN Type Code Register Low  
2
I C Address 036; CPU Address:h100  
2
Accessed by CPU, serial interface and I C (R/W)  
Bit [7:0]:  
VLANType_LOW: Lower 8 bits of the VLAN type code (Default 00)  
14.5.2 AVTCH – VLAN Type Code Register High  
2
I C Address 037; CPU Address:h101  
2
Accessed by CPU, serial interface and I C (R/W)  
Bit [7:0]:  
VLANType_HIGH: Upper 8 bits of the VLAN type code (Default is 81)  
14.5.3 PVMAP00_0 – Port 00 Configuration Register 0  
2
I C Address 038, CPU Address:h102  
2
Accessed by CPU, serial interface and I C (R/W)  
In Port Based VLAN Mode  
Bit [7:0]:  
VLAN Mask for ports 7 to 0 (Default FF)  
This register indicates the legal egress ports. A “1” on bit 7 means that the packet can be sent to port 7. A  
“0” on bit 7 means that any packet destined to port 7 will be discarded. This register works with registers 1,  
2 and 3 to form a 27 bit mask to all egress ports.  
69  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
In Tag based VLAN Mode  
Bit [7:0]:  
PVID [7:0] (Default is FF)  
This is the default VLAN tag. It works with configuration register PVMAP00_1 [7:5] [3:0] to form a default  
VLAN tag. If the received packet is untagged, then the packet is classified with the default VLAN tag. If the  
received packet has a VLAN ID of 0, then PVID is used to replace the packet’s VLAN ID.  
14.5.4 PVMAP00_1 – Port 00 Configuration Register 1  
2
I C Address h53, CPU Address:h103  
2
Accessed by CPU, serial interface and I C (R/W)  
In Port based VLAN Mode  
Bit [7:0]:  
VLAN Mask for ports 15 to 8 (Default is FF)  
In Tag based VLAN Mode  
7
5
4
3
0
Unitag Port Priority Ultrust PVID  
Bit [3:0]:  
Bit [4]:  
PVID [11:8] (Default is F)  
Untrusted Port. (Default is 1)  
This register is used to change the VLAN priority field of a packet to a prede-  
termined priority.  
• 1 : VLAN priority field is changed to Bit[7:5] at ingress port  
• 0 : Keep VLAN priority field  
Bit [7:5]:  
Untag Port Priority (Default 7)  
14.5.5 PVMAP00_2 – Port 00 Configuration Register 2  
2
I C Address h6E, CPU Address:h104  
2
Accessed by CPU, serial interface and I C (R/W)  
In Port Based VLAN Mode  
Bit [7:0]:  
VLAN Mask for ports 23 to 16 (Default FF)  
In Tag based VLAN Mode  
This registered is unused  
14.5.6 PVMAP00_3 – Port 00 Configuration Register 3  
2
I C Address h89, CPU Address:h105  
2
Accessed by CPU, serial interface and I C (R/W)  
70  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
In Port Based VLAN Mode  
7
6
5
3
2
0
FP  
en  
Drop  
Default  
priority  
tx VLAN Mask  
Bit [2:0]:  
Bit [5:3]:  
VLAN Mask for ports 26 to 24 (Default 7). Port 24 is the CPU port  
Default Transmit priority. Used when Bit [7] = 1 (Default 0)  
• 000 Transmit Priority Level 0 (Lowest)  
• 001 Transmit Priority Level 1  
• 010 Transmit Priority Level 2  
• 011 Transmit Priority Level 3  
• 100 Transmit Priority Level 4  
• 101 Transmit Priority Level 5  
• 110 Transmit Priority Level 6  
• 111 Transmit Priority Level 7 (Highest)  
Bit [6]:  
Bit [7]:  
Default Discard priority. Used when Bit[7]=1 (Default 0)  
• 0 - Discard Priority Level 0 (Lowest)  
• 1 - Discard Priority Level 1(Highest)  
Enable Fix Priority (Default 0)  
• 0 Disable fix priority. All frames are analyzed. Transmit Priority and Discard  
Priority are based on VLAN Tag, TOS or Logical Port.  
• 1 Transmit Priority and Discard Priority are based on values programmed in bit  
[6:3]  
In Tag-based VLAN Mode  
Bit [0]:  
Bit [1]:  
Not used  
Ingress Filter Enable (Default 1)  
• 0 Disable Ingress Filter. Packets with VLAN not belonging to source  
port are forwarded, if destination port belongs to the VLAN. Symmetric  
VLAN.  
• 1 Enable Ingress Filter. Packets with VLAN not belonging to source port  
are filtered. Asymmetric VLAN.  
Bit [2]:  
Force untag out (VLAN tagging is based on 802.1q rule) (Default 1).  
• 0 Disable (Default)  
• 1 Force untagged output  
All packets transmitted from this port are untagged. This register is used  
when this port is connected to legacy equipment that does not support  
VLAN tagging.  
71  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Bit [5:3]:  
Default Transmit priority. Used when Bit [7] = 1 (Default 0)  
• 000 Transmit Priority Level 0 (Lowest)  
• 001 Transmit Priority Level 1  
• 010 Transmit Priority Level 2  
• 011 Transmit Priority Level 3  
• 100 Transmit Priority Level 4  
• 101 Transmit Priority Level 5  
• 110 Transmit Priority Level 6  
• 111 Transmit Priority Level 7 (Highest)  
Bit [6]:  
Bit [7]:  
Default Discard priority Used when Bit [7] =1 (Default 0)  
• 0 - Discard Priority Level 0 (Lowest)  
• 1 Discard Priority Level 1 (Highest)  
Enable Fix Priority (Default 0)  
• 0 Disable fix priority. All frames are analyzed. Transmit Priority and  
Discard Priority are based on VLAN Tag, TOS or Logical Port.  
• 1 Transmit Priority and Discard Priority are based on values  
programmed in bit [6:3]  
14.6 Port Configuration Registers  
2
PVMAP01_0,1,2,3 I C Address h39,54,6F,8A; CPU Address:h106,107,108,109)  
2
PVMAP02_0,1,2,3 I C Address h3A,55,70,8B; CPU Address:h10A, 10B, 10C, 10D)  
2
PVMAP03_0,1,2,3 I C Address h3B,56,71,8C; CPU Address:h10E, 10F, 110, 111)  
2
PVMAP04_0,1,2,3 I C Address h3C,57,72,8D; CPU Address:h112, 113, 114, 115)  
2
PVMAP05_0,1,2,3 I C Address h3D,58,73,8E; CPU Address:h116, 117, 118, 119)  
2
PVMAP06_0,1,2,3 I C Address h3E,59,74,8F; CPU Address:h11A, 11B, 11C, 11D)  
2
PVMAP07_0,1,2,3 I C Address h3F,5A,75,90; CPU Address:h11E, 11F, 120, 121)  
2
PVMAP08_0,1,2,3 I C Address h40,5B,76,91; CPU Address:h122, 123, 124, 125)  
2
PVMAP09_0,1,2,3 I C Address h41,5C,77,92; CPU Address:h126, 127, 128, 129)  
2
PVMAP10_0,1,2,3 I C Address h42,5D,78,93; CPU Address:h12A, 12B, 12C, 12D)  
2
PVMAP11_0,1,2,3 I C Address h43,5E,79,94; CPU Address:h12E, 12F, 130, 131)  
2
PVMAP12_0,1,2,3 I C Address h44,5F,7A,95; CPU Address:h132, 133, 134, 135)  
2
PVMAP13_0,1,2,3 I C Address h45,60,7B,96; CPU Address:h136, 137, 138, 139)  
2
PVMAP14_0,1,2,3 I C Address h46,61,7C,97; CPU Address:h13A, h13B, 13C, 13D)  
2
PVMAP15_0,1,2,3 I C Address h47,62,7D,98; CPU Address:h13E, 13F, 140, 141)  
2
PVMAP16_0,1,2,3 I C Address h48,63,7E,99; CPU Address:h142, 143, 144, 145)  
2
PVMAP17_0,1,2,3 I C Address h49,64,7F,9A; CPU Address:h146, 147, 148, 149)  
2
PVMAP18_0,1,2,3 I C Address h4A,65,80,9B; CPU Address:h14A, 14B, 14C, 14D)  
2
PVMAP19_0,1,2,3 I C Address h4B,66,81,9C; CPU Address:h14E, 14F, 150, 151)  
72  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
2
PVMAP20_0,1,2,3 I C Address h4C,67,82,9D; CPU Address:h152, 153, 154, 155)  
2
PVMAP21_0,1,2,3 I C Address h4D,68,83,9E; CPU Address:h156, 157, 158, 159)  
2
PVMAP22_0,1,2,3 I C Address h4E,69,84,9F; CPU Address:h15A, 15B, 15C, 15D)  
2
PVMAP23_0,1,2,3 I C Address h4F,6A,85,A0; CPU Address:h15E, 15F, 160, 161)  
2
PVMAP24_0,1,2,3 I C Address h50,6B,86,A1; CPU Address:h162, 163, 164, 165) (CPU port)  
2
PVMAP25_0,1,2,3 I C Address h51,6C,87,A2; CPU Address:h166, 167, 168, 169) (Giagabit port 1)  
2
PVMAP26_0,1,2,3 I C Address h52,6D,88,A3; CPU Address:h16A, 16B, 16C, 16D) (Gigabit port 2)  
14.6.1 PVMODE  
2
I C Address: h0A4, CPU Address:h170  
Accessed by CPU, serial interface (R/W)  
7
6
5
4
3
2
1
0
MAC05  
MMA STP SM0 rPCS  
DF  
SL  
Vmod  
Bit [0]:  
VLAN Mode (Default = 0)  
• 1 Tag based VLAN Mode  
• 0 Port based VLAN Mode  
Bit [1]:  
Bit [2]:  
Slow learning (Default = 0)  
Same function as SE_OP MODE bit 7. Either bit can enable the function;  
both need to be turned off to disable the feature.  
Disable dropping of frames with destination MAC addresses  
0180C2000001 to 0180C200000F (Default = 0)  
• 0: Drop all frames in this range  
• 1: Disable dropping of frames in this range  
Bit [3]:  
Bit [4]:  
Bit [5]:  
Disable Reset PCS (Default = 0)  
• 0: Enable reset PCS. PCS FIFO will be reset when received a PCS symbol error.  
• 1: Disable reset PCS  
Support MAC address 0 (Default = 0)  
• 0: MAC address 0 is not learned.  
• 1: MAC address 0 is learned.  
Disable IEEE multicast control frame (0180C2000000 to 0180C20000FF)  
to CPU in managed mode (Default = 0)  
• 0: Packet is forwarded to CPU  
• 1: Packet is forwarded as multicast  
Bit [6]:  
Multiple MAC addresses (Default = 0)  
• 0: Single MAC address is assigned to CPU. Registers MAC0 to MAC5 are used  
to program the CPU MAC address.  
• 1: One block of 32 MAC addresses are assigned to CPU. The block is defined in  
an increase way from the MAC address programmed in registers MAC0 to  
MAC5.  
73  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Bit [7]:  
Disable registers MAC 5 – 0 (CPU MAC address) in comparison with  
Ethernet frame destination MAC address. When disable, unicast frames  
are not forward to CPU. (Default = 0)  
• 1: Disable  
• 0: Enable  
14.6.2 PVROUTE 0  
Registers PVROUTE0 to PVROUTE7 allows the VLAN Index to be assigned an address of a router group. This  
feature is useful during IP Multicast mode when data is being sent to the VLAN group and no member of the group  
registers. By assigning a router group the VLAN group always has a default address to handle the multicast traffic.  
CPU Address:h171  
Accessed by CPU, serial interface (R/W)  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Bit [3]:  
Bit [4]:  
Bit [5]:  
Bit [6]:  
Bit [7]:  
VLAN Index 8’hC0 has router group and the router group is VLAN Index 8’h40  
VLAN Index 8’hC1 has router group and the router group is VLAN Index 8’h41  
VLAN Index 8’hC2 has router group and the router group is VLAN Index 8’h42  
VLAN Index 8’hC3 has router group and the router group is VLAN Index 8’h43  
VLAN Index 8’hC4 has router group and the router group is VLAN Index 8’h44  
VLAN Index 8’hC5 has router group and the router group is VLAN Index 8’h45  
VLAN Index 8’hC6 has router group and the router group is VLAN Index 8’h46  
VLAN Index 8’hC7 has router group and the router group is VLAN Index 8’h47  
14.6.3 PVROUTE1  
CPU Address:h172  
Accessed by CPU, serial interface (R/W)  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Bit [3]:  
Bit [4]:  
Bit [5]:  
Bit [6]:  
Bit [7]:  
VLAN Index 8’hC8 has router group and the router group is VLAN Index 8’h48  
VLAN Index 8’hC9 has router group and the router group is VLAN Index 8’h48  
VLAN Index 8’hCA has router group and the router group is VLAN Index 8’h4A  
VLAN Index 8’hCB has router group and the router group is VLAN Index 8’h4B  
VLAN Index 8’hCC has router group and the router group is VLAN Index 8’h4C  
VLAN Index 8’hCD has router group and the router group is VLAN Index 8’h4D  
VLAN Index 8’hCE has router group and the router group is VLAN Index 8’h4E  
VLAN Index 8’hCF has router group and the router group is VLAN Index 8’h4F  
74  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.6.4 PVROUTE2  
CPU Address:h173  
Accessed by CPU, serial interface (R/W)  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Bit [3]:  
Bit [4]:  
Bit [5]:  
Bit [6]:  
Bit [7]:  
VLAN Index 8’hD0 has router group and the router group is VLAN Index 8’h50  
VLAN Index 8’hD1 has router group and the router group is VLAN Index 8’h51  
VLAN Index 8’hD2 has router group and the router group is VLAN Index 8’h52  
VLAN Index 8’hD3 has router group and the router group is VLAN Index 8’h53  
VLAN Index 8’hD4 has router group and the router group is VLAN Index 8’h54  
VLAN Index 8’hD5 has router group and the router group is VLAN Index 8’h55  
VLAN Index 8’hD6 has router group and the router group is VLAN Index 8’h56  
VLAN Index 8’hD7 has router group and the router group is VLAN Index 8’h57  
14.6.5 PVROUTE3  
CPU Address:h174  
Accessed by CPU, serial interface (R/W)  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Bit [3]:  
Bit [4]:  
Bit [5]:  
Bit [6]:  
Bit [7]:  
VLAN Index 8’hD8 has router group and the router group is VLAN Index 8’h58  
VLAN Index 8’hD9 has router group and the router group is VLAN Index 8’h59  
VLAN Index 8’hDA has router group and the router group is VLAN Index 8’h5A  
VLAN Index 8’hDB has router group and the router group is VLAN Index 8’h5B  
VLAN Index 8’hDC has router group and the router group is VLAN Index 8’h5C  
VLAN Index 8’hDD has router group and the router group is VLAN Index 8’h5D  
VLAN Index 8’hDE has router group and the router group is VLAN Index 8’h5E  
VLAN Index 8’hDF has router group and the router group is VLAN Index 8’h5F  
14.6.6 PVROUTE4  
CPU Address:h175  
Accessed by CPU, serial interface (R/W)  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Bit [3]:  
Bit [4]:  
Bit [5]:  
Bit [6]:  
Bit [7]:  
VLAN Index 8’hE0 has router group and the router group is VLAN Index 8’h60  
VLAN Index 8’hE1 has router group and the router group is VLAN Index 8’h61  
VLAN Index 8’hE2 has router group and the router group is VLAN Index 8’h62  
VLAN Index 8’hE3 has router group and the router group is VLAN Index 8’h63  
VLAN Index 8’hE4 has router group and the router group is VLAN Index 8’h64  
VLAN Index 8’hE5 has router group and the router group is VLAN Index 8’h65  
VLAN Index 8’hE6 has router group and the router group is VLAN Index 8’h66  
VLAN Index 8’hE7 has router group and the router group is VLAN Index 8’h67  
75  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.6.7 PVROUTE5  
CPU Address:h176  
Accessed by CPU, serial interface (R/W)  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Bit [3]:  
Bit [4]:  
Bit [5]:  
Bit [6]:  
Bit [7]:  
VLAN Index 8’hE8 has router group and the router group is VLAN Index 8’h68  
VLAN Index 8’hE9 has router group and the router group is VLAN Index 8’h69  
VLAN Index 8’hEA has router group and the router group is VLAN Index 8’h6A  
VLAN Index 8’hEB has router group and the router group is VLAN Index 8’h6B  
VLAN Index 8’hEC has router group and the router group is VLAN Index 8’h6C  
VLAN Index 8’hED has router group and the router group is VLAN Index 8’h6D  
VLAN Index 8’hEE has router group and the router group is VLAN Index 8’h6E  
VLAN Index 8’hEF has router group and the router group is VLAN Index 8’h6F  
14.6.8 PVROUTE6  
CPU Address:h177  
Accessed by CPU, serial interface (R/W)  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Bit [3]:  
Bit [4]:  
Bit [5]:  
Bit [6]:  
Bit [7]:  
VLAN Index 8’hF0 has router group and the router group is VLAN Index 8’h70  
VLAN Index 8’hF1 has router group and the router group is VLAN Index 8’h71  
VLAN Index 8’hF2 has router group and the router group is VLAN Index 8’h72  
VLAN Index 8’hF3 has router group and the router group is VLAN Index 8’h73  
VLAN Index 8’hF4 has router group and the router group is VLAN Index 8’h74  
VLAN Index 8’hF5 has router group and the router group is VLAN Index 8’h75  
VLAN Index 8’hF6 has router group and the router group is VLAN Index 8’h76  
VLAN Index 8’hF7 has router group and the router group is VLAN Index 8’h77  
14.6.9 PVROUTE7  
CPU Address:h178  
Accessed by CPU, serial interface (R/W)  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Bit [3]:  
Bit [4]:  
VLAN Index 8’hF8 has router group and the router group is VLAN Index 8’h78  
VLAN Index 8’hF9 has router group and the router group is VLAN Index 8’h79  
VLAN Index 8’hFA has router group and the router group is VLAN Index 8’h7A  
VLAN Index 8’hFB has router group and the router group is VLAN Index 8’h7B  
VLAN Index 8’hFC has router group and the router group is VLAN Index  
8’h7C  
76  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Bit [5]:  
VLAN Index 8’hFD has router group and the router group is VLAN Index  
8’h7D  
Bit [6]:  
Bit [7]:  
VLAN Index 8’hFE has router group and the router group is VLAN Index 8’h7E  
VLAN Index 8’hFF has router group and the router group is VLAN Index 8’h7F  
14.7 Group 2 Address Port Trunking Groups  
Trunk Group 0 - Up to four 10/100 ports can be selected for trunk group 0.  
14.7.1 TRUNK0_L – Trunk group 0 Low (Managed mode only)  
CPU Address:h200  
Accessed by CPU, serial interface (R/W)  
Bit [7:0] Port7-0 bit map of trunk 0. (Default 00)  
14.7.2 TRUNK0_M – Trunk group 0 Medium (Managed mode only)  
CPU Address:h201  
Accessed by CPU, serial interface (R/W)  
Bit [7:0] Port15-8 bit map of trunk 0. (Default 00)  
14.7.3 TRUNK0_H – Trunk group 0 High (Managed mode only)  
CPU Address:h202  
Accessed by CPU, serial interface (R/W)  
Bit [7:0] Port23-16 bit map of trunk 0. (Default 00)  
TRUNK0_H, TRUNK0_M, and TRUNK0_L provide a trunk map for trunk0. If ports 0 and 2 are to be trunked  
together bit 0 and bit 2 of TRUNK0_L are set to 1. All others are clear at “0” to indicate that they are not part of  
trunk 0. Up to 4 ports can be selected for trunk group 0.  
B
i
B B  
B
i
B
i
B
i
i
i
t
t
t
t
t
t
7
0 7  
0
7
0
TRUNK0_H  
TRUNK0_M  
TRUNK0_L  
P
o
r
P
o
r
P
o
r
P
P
o
r
P
o
r
o
r
t
t
t
t
t
t
23  
16 15  
8
7
0
77  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.7.4 TRUNK0_MODE– Trunk group 0 mode  
2
I C Address h0A5; CPU Address:203  
2
Accessed by CPU, serial interface and I C (R/W)  
7
4
3
2
1
0
Hash  
Port  
Select  
Select  
Bit [1:0]:  
Port selection in unmanaged mode. Input pin TRUNK0 enable/disable  
trunk group 0 in unmanaged mode.  
00 Reserved  
01 Port 0 and 1 are used for trunk0  
10 Port 0,1 and 2 are used for trunk0  
11 Port 0,1,2 and 3 are used for trunk0  
Bit [3:2]  
Hash Select. The Hash selected is valid for Trunk 0, 1 and 2. (Default  
00)  
00 Use Source and Destination Mac Address for hashing  
01 Use Source Mac Address for hashing  
10 Use Destination Mac Address for hashing  
11 Use source destination MAC address and ingress physical port  
number for hashing  
14.7.5 TRUNK0_HASH0 – Trunk group 0 hash result 0 destination port number  
CPU Address:h204  
Accessed by CPU, serial interface (R/W)  
Bit [4:0]  
Hash result 0 destination port number (Default 00)  
14.7.6 TRUNK0_HASH1 – Trunk group 0 hash result 1 destination port number  
CPU Address:h205  
Accessed by CPU, serial interface (R/W)  
Bit [4:0]  
Hash result 1 destination port number (Default 01)  
14.7.7 TRUNK0_HASH2 – Trunk group 0 hash result 2 destination port number  
CPU Address:h206  
Accessed by CPU, serial interface (R/W)  
Bit [4:0]  
Hash result 2 destination port number (Default 02)  
78  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.7.8 TRUNK0_HASH3 – Trunk group 0 hash result 3 destination port number  
CPU Address:h207  
Accessed by CPU, serial interface (R/W)  
Bit [4:0]  
Hash result 3 destination port number (Default 03)  
Trunk Group 1 - Up to four 10/100 ports can be selected for trunk group 1.  
14.7.9 TRUNK1_L – Trunk group 1 Low (Managed mode only)  
Port selection for trunk group 1.  
CPU Address:h208  
Accessed by CPU, serial interface (R/W)  
Bit [7:0] Port7-0 bit map of trunk 1. (Default 00)  
14.7.10 TRUNK1_M – Trunk group 1 Medium (Managed mode only)  
CPU Address:h209  
Accessed by CPU, serial interface (R/W)  
Bit [7:0] Port15-8 bit map of trunk 1. (Default 00)  
14.7.11 TRUNK1_H – Trunk group 1 High (Managed mode only)  
CPU Address:h20A  
Accessed by CPU, serial interface (R/W)  
Bit [7:0] Port23-16 bit map of trunk 1. (Default 00)  
14.7.12 TRUNK1_MODE – Trunk group 1 mode  
2
I C Address h0A6; CPU Address:20B  
2
Accessed by CPU, serial interface and I C (R/W)  
7
2
1
0
Port Select  
Bit [1:0]:  
Port selection in unmanaged mode. Input pin TRUNK1  
enable/disable trunk group 1 in unmanaged mode.  
• 00 Reserved  
• 01 Port 4 and 5 are used for trunk1  
• 10 Reserved  
• 11 Port 4,5,6 and 7 are used for trunk1  
79  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.7.13 TRUNK1_HASH0 – Trunk group 1 hash result 0 destination port number  
CPU Address:h20C  
Accessed by CPU, serial interface (R/W)  
Bit [4:0]  
Hash result 0 destination port number (Default 04)  
14.7.14 TRUNK1_HASH1 – Trunk group 1 hash result 1 destination port number  
CPU Address:h20D  
Accessed by CPU, serial interface (R/W)  
Bit [4:0]  
Hash result 1 destination port number (Default 05)  
14.7.15 TRUNK1_HASH2 – Trunk group 1 hash result 2 destination port number  
CPU Address:h20E  
Accessed by CPU, serial interface (R/W)  
Bit [4:0]  
Hash result 1 destination port number (Default 06)  
14.7.16 TRUNK1_HASH3 – Trunk group 1 hash result 3 destination port number  
CPU Address:h20F  
Accessed by CPU, serial interface (R/W)  
Bit [4:0]  
Hash result 1 destination port number (Default 07)  
Trunk Group 2  
14.7.17 TRUNK2_MODE – Trunk group 2 mode (Gigabit ports 1 and 2)  
CPU Address:210  
Accessed by CPU, serial interface (R/W)  
7
6
4
3
0
Ring/trunk Mode  
Reserved  
Bit [3:0]  
Bit [6:4]  
000 Normal  
001 Trunk Mode. Enable Trunk group for Gigabit port 1 and 2 in  
managed mode. In unmanaged mode Trunk 2 is enable/disable  
using input pin TRUNK2.  
• 010 Single Ring with G1  
• 100 Single Ring with G2  
• 111 Dual Ring Mode  
80  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.7.18 TRUNK2_HASH0 – Trunk group 2 hash result 0 destination port number  
CPU Address:h211  
Accessed by CPU, serial interface (R/W)  
Bit [4:0]  
Hash result 0 destination port number (Default 0x19)  
0x19 = Gigabit port 1  
0x1A = Gigabit port 2  
14.7.19 TRUNK2_HASH1 – Trunk group 2 hash result 1 destination port number  
CPU Address:h211  
Accessed by CPU, serial interface (R/W)  
Bit [4:0]  
Hash result 1 destination port number (Default 0x1A)  
0x19 = Gigabit port 1  
0x1A = Gigabit port 2  
14.7.20 Multicast Hash Registers  
Multicast Hash registers are used to distribute multicast traffic. 16 registers are used to form a 4-entry array; each  
entry has 27 bits, with each bit representing one port. Any port not belonging to a trunk group should be  
programmed with 1. Ports belonging to the same trunk group should only have a single port set to “1” per entry.  
The port set to “1” is picked to transmit the multicast frame when the hash value is met.  
Hash Value =0  
Hash Value =1  
Hash Value =2  
Hash Value =3  
HASH0_3  
HASH1_3  
HASH2_3  
HASH3_3  
HASH0_2  
HASH1_2  
HASH2_2  
HASH3_2  
HASH0_1  
HASH1_1  
HASH2_1  
HASH3_1  
HASH0_0  
HASH1_0  
HASH2_0  
HASH3_0  
P
o
r
P
o
r
P
o
r
P
o
r
P P  
P
o
r
P
o
o o  
r
r
r
t
t
t
t
t
t
t
26  
16 15  
t
7
0
23  
24  
C
P
U
8
Multicast_HASH0-0 – Multicast hash result 0 mask byte 0  
CPU Address:h220  
Accessed by CPU, serial interface (R/W)  
Bit [7:0]  
(Default FF)  
81  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.7.20.1 Multicast_HASH0-1 – Multicast hash result 0 mask byte 1  
CPU Address:h221  
Accessed by CPU, serial interface (R/W)  
Bit [7:0]  
(Default FF)  
14.7.20.2 Multicast_HASH0-2 – Multicast hash result 0 mask byte 2  
CPU Address:h222  
Accessed by CPU, serial interface (R/W)  
Bit [7:0]  
(Default FF)  
14.7.20.3  
MULTICAST_HASH0-3 – MULTICAST HASH RESULT 0 MASK BYTE 3  
CPU Address:h223  
Accessed by CPU, serial interface (R/W)  
Bit [7:0]  
(Default FF)  
14.7.20.4 Multicast_HASH1-0 – Multicast hash result 1 mask byte 0  
CPU Address:h224  
Accessed by CPU, serial interface (R/W)  
Bit [7:0]  
(Default FF)  
14.7.20.5  
MULTICAST_HASH1-1 – MULTICAST HASH RESULT 1 MASK BYTE 1  
CPU Address:h225  
Accessed by CPU, serial interface (R/W)  
Bit [7:0]  
(Default FF)  
14.7.20.6 Multicast_HASH1-2 – Multicast hash result 1 mask byte 2  
CPU Address:h226  
Accessed by CPU, serial interface (R/W)  
Bit [7:0]  
(Default FF)  
14.7.20.7 Multicast_HASH1-3 – Multicast hash result 1 mask byte 3  
CPU Address:h227  
Accessed by CPU, serial interface (R/W)  
Bit [7:0]  
(Default FF)  
82  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.7.20.8 Multicast_HASH2-0 – Multicast hash result 2 mask byte 0  
CPU Address:h228  
Accessed by CPU, serial interface (R/W)  
Bit [7:0]  
(Default FF)  
14.7.20.9  
MULTICAST_HASH2-1 – MULTICAST HASH RESULT 2 MASK BYTE 1  
CPU Address:h229  
Accessed by CPU, serial interface (R/W)  
Bit [7:0]  
(Default FF)  
14.7.20.10  
MULTICAST_HASH2-2 – MULTICAST HASH RESULT 2 MASK BYTE 2  
CPU Address:h22A  
Accessed by CPU, serial interface (R/W)  
Bit [7:0]  
(Default FF)  
14.7.20.11  
MULTICAST_HASH2-3 – MULTICAST HASH RESULT 2 MASK BYTE 3  
CPU Address:h22B  
Accessed by CPU, serial interface (R/W)  
Bit [7:0]  
(Default FF)  
14.7.20.12  
MULTICAST_HASH3-0 – MULTICAST HASH RESULT 3 MASK BYTE 0  
CPU Address:h22C  
Accessed by CPU, serial interface (R/W)  
Bit [7:0]  
(Default FF)  
14.7.20.13  
MULTICAST_HASH3-1 – MULTICAST HASH RESULT 3 MASK BYTE 1  
CPU Address:h22D  
Accessed by CPU, serial interface (R/W)  
Bit [7:0]  
(Default FF)  
14.7.20.14  
MULTICAST_HASH3-2 – MULTICAST HASH RESULT 3 MASK BYTE 2  
CPU Address:h22E  
Accessed by CPU, serial interface (R/W)  
Bit [7:0]  
(Default FF)  
83  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.7.20.15 Multicast_HASH3-3 – Multicast hash result 3 mask byte 3  
CPU Address:h22F  
Accessed by CPU, serial interface (R/W)  
Bit [7:0]  
(Default FF)  
14.8 Group 3 Address CPU Port Configuration Group  
5
0
MAC5  
MAC4  
MAC3 MAC2 MAC1  
MAC0  
MAC5 to MAC0 registers form the CPU MAC address. When a packet with destination MAC address match MAC  
[5:0], the packet is forwarded to the CPU.  
14.8.1 MAC0 – CPU Mac address byte 0  
CPU Address:h300  
Accessed by CPU  
Bit [7:0] Byte 0 of the CPU MAC address. (Default 00)  
14.8.2 MAC1 – CPU Mac address byte 1  
CPU Address:h301  
Accessed by CPU  
Bit [7:0] Byte 1 of the CPU MAC address. (Default 00)  
14.8.3 MAC2 – CPU Mac address byte 2  
CPU Address:h302  
Accessed by CPU  
Bit [7:0] Byte 2 of the CPU MAC address. (Default 00)  
14.8.4 MAC3 – CPU Mac address byte 3  
CPU Address:h303  
Accessed by CPU  
Bit [7:0] Byte 3 of the CPU MAC address. (Default 00)  
14.8.5 MAC4 – CPU Mac address byte 4  
CPU Address:h304  
Accessed by CPU  
Bit [7:0] Byte 4 of the CPU MAC address. (Default 00)  
84  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.8.6 MAC5 – CPU Mac address byte 5  
CPU Address:h305  
Accessed by CPU  
Bit [7:0] Byte 5 of the CPU MAC address. (Default 00).  
14.8.7 INT_MASK0 – Interrupt Mask 0  
CPU Address:h306  
Accessed by CPU, serial interface (R/W)  
The CPU can dynamically mask the interrupt when it is busy and doesn’t want to be interrupted. (Default 0xFF)  
Bit [7:0] MASK  
- 1: Mask the interrupt  
- 0: Unmask the interrupt (Enable interrupt)  
Bit [0]:  
Bit [1]:  
CPU frame interrupt. CPU frame buffer has data for CPU to read  
Control Command 1 interrupt. Control Command Frame buffer1 has data for  
CPU to read  
Bit [2]:  
Control Command 2 interrupt. Control command Frame buffer2 has data for  
CPU to read  
Bit [7:3]:  
Reserved  
14.8.8 INTP_MASK0 – Interrupt Mask for MAC Port 0,1  
CPU Address:h310  
Accessed by CPU, serial interface (R/W)  
The CPU can dynamically mask the interrupt when it is busy and doesn’t want to be interrupted (Default 0xFF)  
7
6
5
4
3
2
1
0
P1  
P0  
- 1: Mask the interrupt  
- 0: Unmask the interrupt  
Bit [0]:  
Port 0 statistic counter wrap around interrupt mask. An Interrupt is generated when a  
statistic counter wraps around. Refer to hardware statistic counter for interrupt  
sources.  
Bit [1]:  
Bit [4]:  
Port 0 link change mask  
Port 1 statistic counter wrap around interrupt mask. Refer to hardware statistic  
counter for interupt sources.  
Bit [5]:  
Port 1 link change mask  
85  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.8.9 INTP_MASK1 – Interrupt Mask for MAC Port 2,3  
CPU Address:h311  
Accessed by CPU, serial interface (R/W)  
14.8.10 INTP_MASK2 – Interrupt Mask for MAC Port 4,5  
CPU Address:h312  
Accessed by CPU, serial interface (R/W)  
14.8.11 INTP_MASK3 – Interrupt Mask for MAC Port 6,7  
CPU Address:h313  
Accessed by CPU, serial interface (R/W)  
14.8.12 INTP_MASK4 – Interrupt Mask for MAC Port 8,9  
CPU Address:h314  
Accessed by CPU, serial interface (R/W)  
14.8.13 INTP_MASK5 – Interrupt Mask for MAC Port 10,11  
CPU Address:h315  
Accessed by CPU, serial interface (R/W)  
14.8.14 INTP_MASK6 – Interrupt Mask for MAC Port 12,13  
CPU Address:h316  
Accessed by CPU, serial interface (R/W)  
14.8.15 INTP_MASK7 – Interrupt Mask for MAC Port 14,15  
CPU Address:h317  
Accessed by CPU, serial interface (R/W)  
14.8.16 INTP_MASK8 – Interrupt Mask for MAC Port 16,17  
CPU Address:h318  
Accessed by CPU, serial interface (R/W)  
14.8.17 NTP_MASK9 – Interrupt Mask for MAC Port 18,19  
CPU Address:h319  
Accessed by CPU, serial interface (R/W)  
86  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.8.18 INTP_MASK10 – Interrupt Mask for MAC Port 20,21  
CPU Address:h31A  
Accessed by CPU, serial interface (R/W)  
14.8.19 INTP_MASK11 – Interrupt Mask for MAC Port 22,23  
CPU Address:h31B  
Accessed by CPU, serial interface (R/W)  
14.8.20 INTP_MASK12 – Interrupt Mask for MAC Port G1,G2  
CPU Address:h31C  
Accessed by CPU, serial interface (R/W)  
14.8.21 RQS – Receive Queue Select CPU Address:h323)  
Accessed by CPU, serial interface (RW)  
Select which receive queue is used.  
7
6
5
4
3
2
1
0
FQ3  
FQ2  
FQ1  
FQ0  
SQ3  
SQ2  
SQ1  
SQ0  
Bit [0]:  
Select Queue 0. If set to one this queue may be scheduled to CPU port. If set to zero,  
this queue will be blocked. If multiple queues are selected, a strict priority will be  
applied. Q3> Q2> Q1> Q0. Same applies to bits [3:1]. See QoS Application Note for  
more information.  
Bit [1]:  
Bit[2]:  
Bit [3]:  
Select Queue 1  
Select Queue 2  
Select Queue 3  
Note: Strip priority applies between different selected queues (Q3>Q2>Q1>Q0)  
Bit [4]:  
Bit [5]:  
Bit [6]:  
Bit [7]:  
Enable flush Queue 0  
Enable flush Queue 1  
Enable flush Queue 2  
Enable flush Queue 3  
When flush (drop frames) is enable, it starts when queue is too long or entry is too old. A queue is too long when it  
reaches WRED thresholds. Queue 0 is not subject to early drop. Packets in queue 0 are dropped only when the  
queue is too old. An entry is too old when it is older than the time programmed in the register TX_AGE [5:0]. CPU  
can dynamically program this register reading register RQSS [7:4].  
87  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.8.22 RQSS – Receive Queue Status  
CPU Address:h324  
Accessed by CPU, serial interface (RO)  
7
5
4
3
0
LQ3  
LQ2  
LQ1 LQ0  
NeQ3  
NeQ2  
NeQ1  
NeQ0  
CPU receive queue status  
Bit [3:0]: Queue 3 to 0 not empty  
Bit [4]: Head of line entry for Queue 0 is valid for too long. CPU Queue 0 has no WRED threshold.  
Bit [7:5]: Head of line entry for Queue 3 to 1 is valid for too long or Queue length is longer than WRED  
threshold.  
14.8.23 TX_AGE – Tx Queue Aging timer  
2
I C Address: h07;CPU Address:h324  
Accessed by CPU, serial interface (RW)  
7
6
5
0
Tx Queue Agent  
Bit [5:0]: Unit of 100ms (Default 8)  
Disable transmission queue aging if value is zero. Aging timer for all ports and queues.  
This register must be set to 0 for ‘No Packet Loss Flow Control Test’.  
14.9 Group 4 Address Search Engine Group  
14.9.1 AGETIME_LOW – MAC address aging time Low  
2
I C Address h0A8; CPU Address:h400  
2
Accessed by CPU, serial interface and I C (R/W)  
The MVTX2600 removes the MAC address from the data base and sends a Delete MAC Address Control  
Command to the CPU. MAC address aging is enable/disable by boot strap TSTOUT9.  
Bit [7:0] Low byte of the MAC address aging timer.  
14.9.2 AGETIME_HIGH –MAC address aging time High  
2
I C Address h0A9; CPU Address h401  
2
Accessed by CPU, serial interface and I C (R/W)  
Bit [7:0]: High byte of the MAC address aging timer.  
The default setting provide 300 seconds aging time. Aging time is based on the following equation:  
88  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
{AGETIME_TIME,AGETIME_LOW} X (# of MAC entries in the memory X100µsec). Number of MAC entries = 32 K  
when 1 MB is used per Bank. Number of entries = 64 K when 2 MB is used per Bank.  
14.9.3 V_AGETIME – VLAN to Port aging time  
CPU Address h402  
Accessed by CPU (R/W)  
Bit [7:0] (Default FF) V_AGETIME X 256 X 100 msec is the age time for the VLAN. This timer is for controlling how  
long a port is associated to a particular VLAN. It can use dynamic shrinking of a VLAN domain if no packet arrives  
for the VLAN. The 2600 does not remove the port from the VLAN domain. It sends an Age VLAN Port Control  
Command to the CPU. The CPU has to remove the port.  
14.9.4 SE_OPMODE – Search Engine Operation Mode  
CPU Address:h403  
Accessed by CPU (R/W)  
Note: ECR2[2] enable/disable learning for each port.  
7
6
5
4
3
2
1
0
SL  
DMS  
ARP DRA DA  
DRD  
DRN  
FL  
Bit [0]:  
1 – Enable fast learning mode. In this mode, the hardware learns all  
the new MAC addresses at highest rate, and reports to the CPU while  
the hardware scans the MAC database. When the CPU report queue is  
full, the MAC address is learned and marked as “Not reported”. When  
the hardware scans the database and finds a MAC address marked as  
“Not Reported” it tries to report it to the CPU. The scan rate must be  
set. SCAN Control register sets the scan rate. (Default 0)  
0 – Search Engine learns a new MAC address and sends a message  
to the CPU report queue. If queue is full, the learning is temporarily  
halted.  
Bit [1]:  
Bit [2]:  
1 – Disable report new VLAN port association(Default 0)  
0 – Report new VLAN port association  
Report control  
• 1 – Disable report MAC address deletion (Default 0)  
• 0 – Report MAC address deletion (MAC address is deleted from MCT after  
aging time)  
Bit [3]:  
Delete Control  
• 1 – Disable aging logic from removing MAC during aging (Default 0)  
• 0 – MAC address entry is removed when it is old enough to be aged.  
However, a report is still sent to the CPU in both cases, when bit[2] = 0  
Bit [4]:  
Bit [5]:  
1 – Disable report aging VLAN port association (Default 0)  
0 – Enable Report aging VLAN. VLAN is not removed by hardware.  
The CPU needs to remove the VLAN –port association.  
1 - Report ARP packet to CPU (Default 0)  
89  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Bit [6]:  
Bit [7]:  
Disable MCT speedup aging (Default 0)  
• 1 – Disable speedup aging when MCT resource is low.  
• 0 – Enable speedup aging when MCT resource is low.  
Slow Learning (Default 0)  
• 1– Enable slow learning. Learning is temporary disabled when search  
demand is high  
• 0 – Learning is performed independent of search demand  
14.9.5 SCAN – SCAN Control Register (default 00)  
CPU Address h404  
Accessed by CPU (R/W)  
7
6
0
R
Ratio  
SCAN is used when fast learning is enabled (SE_OPMODE bit 0). It is used for setting up the report rate for newly  
learned MAC addresses to the CPU.  
Bit [6:0]:  
Bit [7]:  
Ratio between database scanning and aging round (Default 00)  
Reverse the ratio between scanning round and aging round (Default 0)  
Examples:  
R= 0, Ratio = 0: All rounds are used for aging. Never scan for new MAC addresses.  
R= 0, Ratio = 1: Aging and scanning in every other aging round  
R= 1, Ratio = 7: In eight rounds, one is used for scanning and seven are used for aging  
R= 0, Ratio = 7: In eight rounds, one is used for aging and seven are used for scanning  
14.10 Group 5 Address Buffer Control/QOS Group  
14.10.1 FCBAT – FCB Aging Timer  
2
I C Address h0AA; CPU Address:h500  
7
0
FCBAT  
Bit [7:0]:  
FCB Aging time. Unit of 1ms. (Default FF)  
This is for buffer aging control. It is used to configure the buffer aging  
time. This function can be enabled/disabled through bootstrap pin. It  
is not suggested to use this function for normal operation.  
90  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.10.2 QOSC – QOS Control  
2
I C Address h0AB; CPU Address:h501  
2
Accessed by CPU, serial interface and I C (R/W)  
7
6
5
4
3
1
0
L
Tos-d Tos-p  
PMCQ  
VF1c  
Bit [0]:  
QoS frame lost is OK. Priority will be available for flow control enabled  
source only when this bit is set (Default 0)  
Bit [4]:  
Bit [5]:  
Bit [6]:  
Bit [7]:  
Per VLAN Multicast Flow Control (Default 0)  
• 0 – Disable  
• 1 – Enable  
Select processor multicast queue size  
• 0 = 16 entries  
• 1 = 64 entries  
Select TOS bits for Priority (Default 0)  
• 0 – Use TOS [4:2] bits to map the transmit priority  
• 1 – Use TOS [7:5] bits to map the transmit priority  
Select TOS bits for Drop priority(Default 0)  
• 0 – Use TOS [4:2] bits to map the drop priority  
• 1 – Use TOS [7:5] bits to map the drop priority  
14.10.3 FCR – Flooding Control Register  
2
I C Address h0AC; CPU Address:h502  
2
Accessed by CPU, serial interface and I C (R/W)  
7
6
4
3
0
Tos  
TimeBase  
U2MR  
Bit [3:0]:  
U2MR: Unicast to Multicast Rate. Units in terms of time base defined in  
bits [6:4]. This is used to limit the amount of flooding traffic. The value  
in U2MR specifies how many packets are allowed to flood within the  
time specified by bit [6:4]. To disable this function, program U2MR to  
0. (Default = 8)  
91  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Bit [6:4]:  
Time Base: (Default = 000)  
000 = 100 us  
001 = 200 us  
010 = 400 us  
011 = 800 us  
100 = 1.6 ms  
101 = 3.2 ms  
110 = 6.4 ms  
111 = 100 us, same as 000.  
Bit [7]:  
Select VLAN tag or TOS (IP packets) to be preferentially picked to map  
transmit priority and drop priority (Default = 0).  
0 – Select VLAN Tag priority field over TOS  
1 – Select TOS over VLAN tag priority field  
14.10.4 AVPML – VLAN Tag Priority Map  
2
I C Address h0AD; CPU Address:h503  
2
Accessed by CPU, serial interface and I C (R/W)  
7
6
5
3
2
0
VP2  
VP1  
VP0  
Registers AVPML, AVPMM and AVPMH allow the eight VLAN Tag priorities to map into eight Internal level transmit  
priorities. Under the Internal transmit priority, seven is the highest priority where as zero is the lowest. This feature  
allows the user the flexibility of redefining the VLAN priority field. For example, programming a value of 7 into bit 2:0  
of the AVPML register would map packet VLAN priority 0 into Internal transmit priority 7. The new priority is used  
inside the 2600. When the packet goes out it carries the original priority.  
Bit [2:0]:  
Bit [5:3]:  
Bit [7:6]:  
Priority when the VLAN tag priority field is 0 (Default 0)  
Priority when the VLAN tag priority field is 1 (Default 0)  
Priority when the VLAN tag priority field is 2 (Default 0)  
92  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.10.5 AVPMM – VLAN Priority Map  
2
I C Address h0AE, CPU Address:h504  
2
Accessed by CPU, serial interface and I C (R/W)  
Map VLAN priority into eight level transmit priorities:  
7
6
4
3
1
0
VP5  
VP4  
VP3  
VP2  
Bit [0]:  
Priority when the VLAN tag priority field is 2 (Default 0)  
Priority when the VLAN tag priority field is 3 (Default 0)  
Priority when the VLAN tag priority field is 4 (Default 0)  
Priority when the VLAN tag priority field is 5 (Default 0)  
Bit [3:1]:  
Bit [6:4]:  
Bit [7]:  
14.10.6 AVPMH – VLAN Priority Map  
2
I C Address h0AF, CPU Address:h505  
2
Accessed by CPU, serial interface and I C (R/W)  
7
5
4
2
1
0
VP7  
VP6  
VP5  
Map VLAN priority into eight level transmit priorities:  
Bit [1:0]:  
Bit [4:2]:  
Bit [7:5]:  
Priority when the VLAN tag priority field is 5 (Default 0)  
Priority when the VLAN tag priority field is 6 (Default 0)  
Priority when the VLAN tag priority field is 7 (Default 0)  
14.10.7 TOSPML – TOS Priority Map  
2
I C Address h0B0, CPU Address:h506  
2
Accessed by CPU, serial interface and I C (R/W)  
7
6
5
3
2
0
TP2  
TP1  
TP0  
Map TOS field in IP packet into eight level transmit priorities  
Bit [2:0]:  
Bit [5:3]:  
Bit [7:6]:  
Priority when the TOS field is 0 (Default 0)  
Priority when the TOS field is 1 (Default 0)  
Priority when the TOS field is 2 (Default 0)  
93  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.10.8 TOSPMM – TOS Priority Map  
2
I C Address h0B1, CPU Address:h507  
2
Accessed by CPU, serial interface and I C (R/W)  
7
6
4
3
0
1
TP5  
TP4  
TP3  
TP2  
Map TOS field in IP packet into eight level transmit priorities  
Bit [0]:  
Priority when the TOS field is 2 (Default 0)  
Bit [3:1]:  
Bit [6:4]:  
Bit [7]:  
Priority when the TOS field is 3 (Default 0)  
Priority when the TOS field is 4 (Default 0)  
Priority when the TOS field is 5 (Default 0)  
14.10.9 TOSPMH – TOS Priority Map  
2
I C Address h0B2, CPU Address:h508  
2
Accessed by CPU, serial interface and I C (R/W)  
7
5
4
2
1
0
TP7  
TP6  
TP5  
Map TOS field in IP packet into eight level transmit priorities:  
Bit [1:0]:  
Bit [4:2]:  
Bit [7:5]:  
Priority when the TOS field is 5 (Default 0)  
Priority when the TOS field is 6 (Default 0)  
Priority when the TOS field is 7 (Default 0)  
14.10.10 AVDM – VLAN Discard Map  
2
I C Address h0B3, CPU Address:h509  
2
Accessed by CPU, serial interface and I C (R/W)  
7
6
5
4
3
2
1
0
FDV7  
FDV6 FDV5 FDV4 FDV3 FDV2 FDV1 FDV0  
Map VLAN priority into frame discard when low priority buffer usage is above threshold  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Bit [3]:  
Frame drop priority when VLAN Tag priority field is 0 (Default 0)  
Frame drop priority when VLAN Tag priority field is 1 (Default 0)  
Frame drop priority when VLAN Tag priority field is 2 (Default 0)  
Frame drop priority when VLAN Tag priority field is 3 (Default 0)  
94  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Bit [4]:  
Bit [5]:  
Bit [6]:  
Bit [7]:  
Frame drop priority when VLAN Tag priority field is 4 (Default 0)  
Frame drop priority when VLAN Tag priority field is 5 (Default 0)  
Frame drop priority when VLAN Tag priority field is 6 (Default 0)  
Frame drop priority when VLAN Tag priority field is 7 (Default 0)  
14.10.11 TOSDML – TOS Discard Map  
2
I C Address h0B4, CPU Address:h50A  
2
Accessed by CPU, serial interface and I C (R/W)  
7
6
5
4
3
2
1
0
FDT7 FDT6 FDT5 FDT4 FDT3 FDT2  
FDT1  
FDT0  
Map TOS into frame discard when low priority buffer usage is above threshold  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Bit [3]:  
Bit [4]:  
Bit [5]:  
Bit [6]:  
Bit [7]:  
Frame drop priority when TOS field is 0 (Default 0)  
Frame drop priority when TOS field is 1 (Default 0)  
Frame drop priority when TOS field is 2 (Default 0)  
Frame drop priority when TOS field is 3 (Default 0)  
Frame drop priority when TOS field is 4 (Default 0)  
Frame drop priority when TOS field is 5 (Default 0)  
Frame drop priority when TOS field is 6 (Default 0)  
Frame drop priority when TOS field is 7 (Default 0)  
14.10.12 BMRC - Broadcast/Multicast Rate Control  
2
I C Address h0B5, CPU Address:h50B)  
2
Accessed by CPU, serial interface and I C (R/W)  
7
4
3
0
Broadcast Rate  
Multicast Rate  
This broadcast and multicast rate defines for each port, the number of packets allowed to be forwarded within a  
specified time. Once the packet rate is reached, packets will be dropped. To turn off the rate limit, program the field  
to 0. Time base is based on register FCR [6:4]  
Bit [3:0] :  
Multicast Rate Control. Number of multicast packets allowed within the time  
defined in bits 6 to 4 of the Flooding Control Register (FCR). (Default 0).  
95  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Bit [7:4] :  
Broadcast Rate Control. Number of broadcast packets allowed within the  
time defined in bits 6 to 4 of the Flooding Control Register (FCR). (Default  
0)  
14.10.13 UCC – Unicast Congestion Control  
2
I C Address h0B6, CPU Address: 50C  
2
Accessed by CPU, serial interface and I C (R/W)  
7
0
Unicast congest threshold  
Bit [7:0] :  
Number of frame count. Used for best effort dropping at B% when destination  
port’s best effort queue reaches UCC threshold and shared pool is all in use.  
Granularity 1 frame. (Default: h10 for 2 MB/bank or h08 for 1 MB/bank)  
14.10.14 MCC – Multicast Congestion Control  
2
I C Address h0B7, CPU Address: 50D  
2
Accessed by CPU, serial interface and I C (R/W)  
7
5
4
0
FC reaction period  
Multicast congest threshold  
Bit [4:0]:  
Bit [7:5]:  
In multiples of two frames (granularity). Used for triggering MC flow control  
when destination port’s multicast best effort queue reaches MCC  
threshold.(Default 0x10)  
Flow control reaction period (Default 2) Granularity 4uSec.  
14.10.15 PR100 – Port Reservation for 10/100 ports  
2
I C Address h0B8, CPU Address 50E  
2
Accessed by CPU, serial interface and I C (R/W)  
7
4
3
0
Buffer low threshold  
SP Buffer reservation  
Bit [3:0]:  
Per source port buffer reservation.  
Define the space in the FDB reserved for each 10/100 port and CPU.  
Expressed in multiples of 4 packets. For each packet 1536 bytes are  
reserved in the memory.  
96  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Bits [7:4]:  
Expressed in multiples of 4 packets. Threshold for dropping all best effort  
frames when destination port best efforts queues reaches UCC threshold,  
shared pool is all used and source port reservation is at or below the  
PR100[7:4] level. Also the threshold for initiating UC flow control.  
Default:  
- h36 for 24+2 configuration with memory 2 MB/bank;  
- h24 for 24+2 configuration with 1MB/bank;  
14.10.16 PRG – Port Reservation for Giga ports  
2
I C Address h0B9, CPU Address 50F  
2
Accessed by CPU, serial interface and I C (R/W)  
7
4
3
0
Buffer low threshold  
SP buffer reservation  
Bit [3:0]:  
Per source port buffer reservation.  
Define the space in the FDB reserved for each Gigabit port. Expressed in  
multiples of 16 packets. For each packet 1536 bytes are reserved in the  
memory.  
Bits [7:4]:  
Expressed in multiples of 16 packets. Threshold for dropping all best effort  
frames when destination port best effort queues reach UCC threshold,  
shared pool is all used and source port reservation is at or below the  
PRG[7:4] level. Also the threshold for initiating UC flow control.  
Default:  
- h58 for memory 2 MB/bank;  
- h35 for 1 MB/bank;  
14.10.17 SFCB – Share FCB Size  
2
I C Address h0BA), CPU Address 510  
2
Accessed by CPU, serial interface and I C (R/W)  
7
0
Shared pool buffer size  
Bits [7:0]:  
Expressed in multiples of 4 packets. Buffer reservation for shared pool.  
Default:  
- h64 for 24+2 configuration with memory of 2 MB/bank;  
- h14 for 24+2 configuration with memory of 1 MB/bank;  
97  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.10.18 C2RS – Class 2 Reserve Size  
2
I C Address h0BB, CPU Address 511  
Accessed by CPU, serial interface and I C (R/W)  
2
7
0
Class 2 FCB Reservation  
Buffer reservation for class 2 (third lowest priority). Granularity 1. (Default 0)  
14.10.19 C3RS – Class 3 Reserve Size  
2
I C Address h0BC, CPU Address 512  
2
Accessed by CPU, serial interface and I C (R/W)  
7
0
0
Class 3 FCB Reservation  
Buffer reservation for class 3. Granularity 1. (Default 0)  
14.10.20 C4RS – Class 4 Reserve Size  
2
I C Address h0BD, CPU Address 513  
2
Accessed by CPU, serial interface and I C (R/W)  
7
Class 4 FCB Reservation  
Buffer reservation for class 4. Granularity 1. (Default 0)  
14.10.21 C5RS – Class 5 Reserve Size  
2
I C Address h0BE; CPU Address 514  
2
Accessed by CPU, serial interface and I C (R/W)  
7
0
Class 5 FCB Reservation  
Buffer reservation for class 5. Granularity 1. (Default 0)  
14.10.22 C6RS – Class 6 Reserve Size  
2
I C Address h0BF; CPU Address 515  
2
Accessed by CPU, serial interface and I C (R/W)  
7
0
Class 6 FCB Reservation  
Buffer reservation for class 6 (second highest priority). Granularity 1. (Default 0)  
98  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.10.23 C7RS – Class 7 Reserve Size  
2
I C Address h0C0; CPU Address 516  
2
Accessed by CPU, serial interface and I C (R/W)  
7
0
Class 7 FCB Reservation  
Buffer reservation for class 7 (highest priority). Granularity 1. (Default 0)  
14.10.24 QOSCn - Classes Byte Limit Set 0  
2
Accessed by CPU; serial interface and I C (R/W):  
2
C — QOSC00 – BYTE_C01 (I C Address h0C1, CPU Address 517)  
2
B — QOSC01 – BYTE_C02 (I C Address h0C2, CPU Address 518)  
2
A — QOSC02 – BYTE_C03 (I C Address h0C3, CPU Address 519)  
QOSC00 through QOSC02 represents one set of values A-C for a 10/100 port when using the Weighted Random  
Early Drop (WRED) Scheme described in Chapter 7. There are four such sets of values A-C specified in Classes  
Byte Limit Set 0, 1, 2, and 3. For CPU port A-C values are defined using register CPUQOSC1, 2 and 3.  
Each 10/ 100 port can choose one of the four Byte Limit Sets as specified by the QoS Select field located in bits 5  
to 4 of the ECR2n register. The values A-C are per-queue byte thresholds for random early drop. QOSC02  
represents A, and QOSC00 represents C.  
Granularity when Delay bound is used: QOSC02: 128 bytes, QOSC01: 256 bytes, QOSC00: 512 bytes. Granularity  
when WFQ is used: QOSC02: 512 bytes, QOSC01: 512 bytes, QOSC00: 512 bytes.  
14.10.25 Classes Byte Limit Set 1  
2
Accessed by CPU, serial interface and I C (R/W):  
2
C - QOSC03 – BYTE_C11 (I C Address h0C4, CPU Address 51a)  
2
B - QOSC04 – BYTE_C12 (I C Address h0C5, CPU Address 51b)  
2
A - QOSC05 – BYTE_C13 (I C Address h0C6, CPU Address 51c)  
QOSC03 through QOSC05 represents one set of values A-C for a 10/100 port when using the Weighted Random  
Early Drop (WRED) scheme.  
Granularity when Delay bound is used: QOSC05: 128 bytes, QOSC04: 256 bytes, QOSC03: 512 bytes. Granularity  
when WFQ is used: QOSC05: 512 bytes, QOSC04: 512 bytes, QOSC03: 512 bytes.  
14.10.26 Classes Byte Limit Set 2  
Accessed by CPU and serial interface (R/W):  
C - QOSC06 – BYTE_C21 (CPU Address 51d)  
B - QOSC07 – BYTE_C22 (CPU Address 51e)  
A - QOSC08 – BYTE_C23 (CPU Address 51f)  
QOSC06 through QOSC08 represents one set of values A-C for a 10/100 port when using the Weighted Random  
Early Drop (WRED) scheme.  
99  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Granularity when Delay bound is used: QOSC08: 128 bytes, QOSC07: 256 bytes, QOSC06: 512 bytes.  
Granularity when WFQ is used: QOSC08: 512 bytes, QOSC07: 512 bytes, QOSC06: 512 bytes  
14.10.27 Classes Byte Limit Set 3  
Accessed by CPU and serial interface (R/W):  
C - QOSC09 – BYTE_C31 (CPU Address 520)  
B - QOSC10 – BYTE_C32 (CPU Address 521)  
A - QOSC11 – BYTE_C33 (CPU Address 522)  
QOSC09 through QOSC011 represents one set of values A-C for a 10/100 port when using the Weighted Random  
Early Drop (WRED) scheme.  
Granularity when Delay bound is used: QOSC11: 128 bytes, QOSC10: 256 bytes, QOSC09: 512 bytes.  
Granularity when WFQ is used: QOSC11: 512 bytes, QOSC10: 512 bytes, QOSC09: 512 bytes  
14.10.28 Classes Byte Limit Giga Port 1  
2
Accessed by CPU, serial interface and I C (R/W):  
2
F - QOSC12 – BYTE_C2_G1 (I C Address h0C7, CPU Address 523)  
2
E - QOSC13 – BYTE_C3_G1 (I C Address h0C8, CPU Address 524)  
2
D - QOSC14 – BYTE_C4_G1 (I C Address h0C9, CPU Address 525)  
2
C -QOSC15 – BYTE_C5_G1 (I C Address h0CA, CPU Address 526)  
2
B - QOSC16 – BYTE_C6_G1 (I C Address h0CB, CPU Address 527)  
2
A - QOSC17 – BYTE_C7_G1 (I C Address h0CC, CPU Address 528)  
QOSC12 through QOSC17 represent the values A-F for Gigabit port 1. They are per-queue byte thresholds for  
random early drop. QOSC17 represents A, and QOSC12 represents F.  
Granularity when Delay bound is used: QOSC17 and QOSC16: 256 bytes, QOSC15 and QOSC14: 512 bytes,  
QOSC13 and QOSC12: 1024 bytes.  
Granularity when WFQ is used: QOSC17 to QOSC12: 1024 bytes  
14.10.29 Classes Byte Limit Giga Port 2  
2
Accessed by CPU, serial interface and I C (R/W)  
2
F - QOSC18 – BYTE_C2_G2 (I C Address h0CD, CPU Address 529)  
2
E - QOSC19 – BYTE_C3_G2 (I C Address h0CE, CPU Address 52a)  
2
D - QOSC20 – BYTE_C4_G2 (I C Address h0CF, CPU Address 52b)  
2
C - QOSC21 – BYTE_C5_G2 (I C Address h0D0, CPU Address 52c)  
2
B - QOSC22 – BYTE_C6_G2 (I C Address h0D1, CPU Address 52d)  
2
A - QOSC23 – BYTE_C7_G2 (I C Address h0D2, CPU Address 52e)  
QOSC12 through QOSC17 represent the values A-F for Gigabit port 2. They are per-queue byte thresholds for  
random early drop. QOSC17 represents A, and QOSC12 represents F.  
100  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Granularity when Delay bound is used: QOSC17 and QOSC16: 256 bytes, QOSC15 and QOSC14: 512 bytes,  
QOSC13 and QOSC12: 1024 bytes.  
Granularity when WFQ is used: QOSC17 to QOSC12: 1024 bytes  
14.10.30 Classes WFQ Credit Set 0  
Accessed by CPU and serial interface  
W0 - QOSC24[5:0] – CREDIT_C00 (CPU Address 52f)  
W1 - QOSC25[5:0] – CREDIT_C01 (CPU Address 530)  
W2 - QOSC26[5:0] – CREDIT_C02 (CPU Address 531)  
W3 - QOSC27[5:0] – CREDIT_C03 (CPU Address 532)  
QOSC24 through QOSC27 represents one set of WFQ parameters for a 10/100 port. There are four such sets of  
values. The granularity of the numbers is 1, and their sum must be 64. QOSC27 corresponds to W3 and QOSC24  
corresponds to W0.  
QOSC24[7:6]: Priority service type for the ports select this parameter set. Option 1 to option 4.  
QOSC25[7]: Priority service allow flow control for the ports select this parameter set.  
QOSC25[6]: Flow control pause best effort traffic only  
Both flow control allow and flow control best effort only can take effect only the priority type is WFQ.  
14.10.31 Classes WFQ Credit Set 1  
Accessed by CPU and serial interface  
W0 - QOSC28[5:0] – CREDIT_C10 (CPU Address 533)  
W1 - QOSC29[5:0] – CREDIT_C11 (CPU Address 534)  
W2 - QOSC30[5:0] – CREDIT_C12 (CPU Address 535)  
W3 - QOSC31[5:0] – CREDIT_C13 (CPU Address 536)  
QOSC28 through QOSC31 represents one set of WFQ parameters for a 10/100 port. There are four such sets of  
values. The granularity of the numbers is 1, and their sum must be 64. QOSC31 corresponds to W3 and QOSC28  
corresponds to W0.  
QOSC28[7:6]: Priority service type for the ports select this parameter set. Option 1 to option 4.  
QOSC29[7]: Priority service allow flow control for the ports select this parameter set.  
QOSC29[6]: Flow control pause best effort traffic only  
14.10.32 Classes WFQ Credit Set 2  
Accessed by CPU and serial interface  
W0 - QOSC32[5:0] – CREDIT_C20 (CPU Address 537)  
W1 - QOSC33[5:0] – CREDIT_C21 (CPU Address 538)  
W2 - QOSC34[5:0] – CREDIT_C22 (CPU Address 539)  
W3 - QOSC35[5:0] – CREDIT_C23 (CPU Address 53a)  
101  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
QOSC35 through QOSC32 represents one set of WFQ parameters for a 10/100 port. There are four such sets of  
values. The granularity of the numbers is 1 and their sum must be 64. QOSC35 corresponds to W3 and QOSC32  
corresponds to W0.  
QOSC32[7:6]: Priority service type for the ports select this parameter set. Option 1 to option 4.  
QOSC33[7]: Priority service allow flow control for the ports select this parameter set.  
QOSC33[6]: Flow control pause for best effort traffic only  
14.10.33 Classes WFQ Credit Set 3  
Accessed by CPU and serial interface  
W0 - QOSC36[5:0] – CREDIT_C30 (CPU Address 53b)  
W1 - QOSC37[5:0] – CREDIT_C31 (CPU Address 53c)  
W2 - QOSC38[5:0] – CREDIT_C32 (CPU Address 53d)  
W3 - QOSC39[5:0] – CREDIT_C33 (CPU Address 53e)  
QOSC39 through QOSC36 represents one set of WFQ parameters for a 10/100 port. There are four such sets of  
values. The granularity of the numbers is 1 and their sum must be 64. QOSC39 corresponds to W0 and QOSC36  
corresponds to W0.  
QOSC36[7:6]: Priority service type for the ports select this parameter set. Option 1 to option 4.  
QOSC37[7]: Priority service allow flow control for the ports select this parameter set.  
QOSC37[6]: Flow control pause best effort traffic only  
14.10.34 Classes WFQ Credit Port G1  
Accessed by CPU and serial interface  
W0 - QOSC40[5:0] - CREDIT_C0_G1(CPU Address 53f)  
[7:6]: Priority service type. Option 1 to 4.  
W1 - QOSC41[5:0] – CREDIT_C1_G1 (CPU Address 540)  
[7]: Priority service allow flow control for the ports select this parameter set.  
[6]: Flow control pause best effort traffic only  
W2 - QOSC42[5:0] – CREDIT_C2_G1 (CPU Address 541)  
W3 - QOSC43[5:0] – CREDIT_C3_G1 (CPU Address 542)  
W4 - QOSC44[5:0] – CREDIT_C4_G1 (CPU Address 543)  
W5 - QOSC45[5:0] – CREDIT_C5_G1 (CPU Address 544)  
W6 - QOSC46[5:0] – CREDIT_C6_G1 (CPU Address 545)  
W7 - QOSC47[5:0] – CREDIT_C7_G1 (CPU Address 546)  
QOSC40 through QOSC47 represents the set of WFQ parameters for Gigabit port 24. The granularity of the  
numbers is 1 and their sum must be 64. QOSC47 corresponds to W7 and QOSC40 corresponds to W0. In the 2G  
trunk configuration, the sum of all values QOSC40 through QOSC47 must be equal to 128.  
102  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.10.35 Classes WFQ Credit Port G2  
Accessed by CPU and serial interface  
W0 - QOSC48[5:0] – CREDIT_C0_G2(CPU Address 547)  
[7:6]: Priority service type. Option 1 to 4  
W1 - QOSC49[5:0] – CREDIT_C1_G2(CPU Address 548)  
[7]: Priority service allow flow control for the ports select this parameter set.  
[6]: Flow control pause best effort traffic only  
W2 - QOSC50[5:0] – CREDIT_C2_G2(CPU Address 549)  
W3 - QOSC51[5:0] – CREDIT_C3_G2(CPU Address 54a)  
W4 - QOSC52[5:0] – CREDIT_C4_G2(CPU Address 54b)  
W5 - QOSC53[5:0] – CREDIT_C5_G2(CPU Address 54c)  
W6 - QOSC54[5:0] – CREDIT_C6_G2(CPU Address 54d)  
W7 - QOSC55[5:0] – CREDIT_C7_G2(CPU Address 54e)  
QOSC48 through QOSC55 represents the set of WFQ parameters for Gigabit port 2. The granularity of the  
numbers is 1 and their sum must be 64. QOSC55 corresponds to W7 and QOSC48 corresponds to W0. In the 2G  
trunk configuration, the sum of all values QOSC48 through QOSC55 must be equal to 128.  
14.10.36 Class 6 Shaper Control Port G1  
Accessed by CPU and serial interface  
QOSC56[5:0] – TOKEN_RATE_G1 (CPU Address 54f). Programs de average rate for gigabit port 1. When equal to  
0, shaper is disable. Granularity is 1.  
QOSC57[7:0] – TOKEN_LIMIT_G1 (CPU Address 550). Programs the maximum counter for gigabit port 1.  
Granularity is 16 bytes.  
Shaper is implemented to control the peak and average rate for outgoing traffic with priority 6 (queue 6). Shaper is  
limited to gigabit ports and queue P6 when it is in strict priority. QOSC41 programs the peak rate for gigabit port 1.  
See Programming QoS Registers Application Note for more information.  
14.10.37 Class 6 Shaper Control Port G2  
Accessed by CPU and serial interface  
QOSC58[5:0] – TOKEN_RATE_G2 (CPU Address 551). Programs de average rate for gigabit port 2. When equal  
to 0, shaper is disable. Granularity is 1.  
QOSC59[7:0] – TOKEN_LIMIT_G2 (CPU Address 552). Programs the maximum counter for gigabit port 2.  
Granularity is 16 bytes.  
Shaper is implemented to control the peak and average rate for outgoing traffic with priority 6 (queue 6). Shaper is  
limited to gigabit ports and queue P6 when it is in strict priority. QOSC49 programs the peak rate for gigabit port 2.  
See Programming QoS Register application note for more information.  
103  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.10.38 RDRC0 – WRED Rate Control 0  
2
I C Address 0FB, CPU Address 553  
c
Accessed by CPU, Serial Interface and I C (R/W)  
7
4
3
0
X Rate  
Y Rate  
Bits [7:4]:  
Bits [3:0]:  
Corresponds to the frame drop percentage X% for WRED. Granularity  
6.25%.  
Corresponds to the frame drop percentage Y% for WRED. Granularity  
6.25%.  
See Programming QoS Registers application note for more information  
14.10.39 RDRC1 – WRED Rate Control 1  
2
I C Address 0FC, CPU Address 554  
2
Accessed by CPU, Serial Interface and I C (R/W)  
7
4
3
0
Z Rate  
B Rate  
Bits [7:4]:  
Bits [3:0]:  
Corresponds to the frame drop percentage Z% for WRED. Granularity  
6.25%.  
Corresponds to the best effort frame drop percentage B%, when shared pool  
is all in use and destination port best effort queue reaches UCC. Granularity  
6.25%.  
See Programming QoS Registers application note for more information  
14.10.40 User Defined Logical Ports and Well Known Ports  
The MVTX2600AG supports classifying packet priority through layer 4 logical port information. It can be setup by 8  
Well Known Ports, 8 User Defined Logical Ports, and 1 User Defined Range. The 8 Well Known Ports supported  
are:  
0:23  
1:512  
2:6000  
3:443  
4:111  
5:22555  
6:22  
7:554  
Their respective priority can be programmed via Well_Known_Port [7:0] priority register. Well_Known_Port_  
Enable can individually turn on/off each Well Known Port if desired.  
104  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Similarly, the User Defined Logical Port provides the user programmability to the priority, plus the flexibility to select  
specific logical ports to fit the applications. The 8 User Logical Ports can be programmed via User_Port 0-7  
registers. Two registers are required to be programmed for the logical port number. The respective priority can be  
programmed to the User_Port [7:0] priority register. The port priority can be individually enabled/disabled via  
User_Port_Enable register.  
The User Defined Range provides a range of logical port numbers with the same priority level. Programming is  
similar to the User Defined Logical Port. Instead of programming a fixed port number, an upper and lower limit need  
to be programmed, they are: {RHIGHH, RHIGHL} and {RLOWH, RLOWL} respectively. If the value in the upper  
limit is smaller or equal to the lower limit, the function is disabled. Any IP packet with a logical port that is less than  
the upper limit and more than the lower limit will use the priority specified in RPRIORITY.  
14.10.40.1  
USER_PORT0_(0~7) – USER DEFINE LOGICAL PORT (0~7)  
2
USER_PORT_0 - I C Address h0D6 + 0DE; CPU Address 580(Low) + 581(high)  
2
USER_PORT_1 - I C Address h0D7 + 0DF; CPU Address 582 + 583  
2
USER_PORT_2 - I C Address h0D8 + 0E0; CPU Address 584 + 585  
2
USER_PORT_3 - I C Address h0D9 + 0E1; CPU Address 586 + 587  
2
USER_PORT_4 - I C Address h0DA + 0E2; CPU Address 588 + 589  
2
USER_PORT_5 - I C Address h0DB + 0E3; CPU Address 58A + 58B  
2
USER_PORT_6 - I C Address h0DC + 0E4; CPU Address 58C + 58D  
2
USER_PORT_7 - I C Address h0DD + 0E5; CPU Address 58E + 58F  
2
Accessed by CPU, serial interface and I C (R/W)  
7
0
0
TCP/UDP Logic Port Low  
7
TCP/UDP Logic Port High  
(Default 00) This register is duplicated eight times from PORT 0 through PORT 7 and allows the CPU to define  
eight separate ports.  
14.10.40.2 USER_PORT_[1:0]_PRIORITY - User Define Logic Port 1 and 0 Priority  
2
I C Address h0E6, CPU Address 590  
2
Accessed by CPU, serial interface and I C (R/W)  
7
5
4
3
1
0
Priority 1  
Drop Priority 0  
Drop  
The chip allows the CPU to define the priority  
Bits [3:0]:  
Bits [7:4]:  
Priority setting, transmission + dropping, for logic port 0  
Priority setting, transmission + dropping, for logic port 1 (Default 00)  
105  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.10.40.3 USER_PORT_[3:2]_PRIORITY - User Define Logic Port 3 and 2 Priority  
2
I C Address h0E7, CPU Address 591  
2
Accessed by CPU, serial interface and I C (R/W)  
7
5
4
3
1
0
Priority 3  
Drop  
Priority 2  
Drop  
14.10.40.4 USER_PORT_[5:4]_PRIORITY - User Define Logic Port 5 and 4 Priority  
2
I C Address h0E8, CPU Address 592  
2
Accessed by CPU, serial interface and I C (R/W)  
7
5
4
3
1
0
Priority 5  
Drop  
Priority 4  
Drop  
(Default 00)  
14.10.40.5  
USER_PORT_[7:6]_PRIORITY - USER DEFINE LOGIC PORT 7 AND 6 PRIORITY  
2
I C Address h0E9, CPU Address 593  
2
Accessed by CPU, serial interface and I C (R/W)  
7
5
4
3
1
0
Priority 7  
Drop  
Priority 6  
Drop  
(Default 00)  
14.10.40.6 USER_PORT_ENABLE[7:0] – User Define Logic 7 to 0 Port Enables  
2
I C Address h0EA, CPU Address 594  
2
Accessed by CPU, serial interface and I C (R/W)  
7
6
5
4
3
2
1
0
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
(Default 00)  
14.10.40.7 WELL_KNOWN_PORT[1:0] PRIORITY- Well Known Logic Port 1 and 0 Priority  
2
I C Address h0EB, CPU Address 595  
2
Accessed by CPU, serial interface and I C (R/W)  
7
5
4
3
1
0
Priority 1  
Drop Priority 0  
Drop  
Priority 0 - Well known port 23 for telnet applications.  
106  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Priority 1 - Well Known port 512 for TCP/UDP.  
(Default 00)  
14.10.40.8 WELL_KNOWN_PORT[3:2] PRIORITY- Well Known Logic Port 3 and 2 Priority  
2
I C Address h0EC, CPU Address 596  
2
Accessed by CPU, serial interface and I C (R/W)  
7
5
4
3
1
0
Priority 3  
Drop  
Priority 2  
Drop  
Priority 2 - Well known port 6000 for XWIN.  
Priority 3 - Well known port 443 for http.sec  
(Default 00)  
14.10.40.9 WELL_KNOWN_PORT [5:4] PRIORITY- Well Known Logic Port 5 and 4 Priority  
2
I C Address h0ED, CPU Address 597  
2
Accessed by CPU, serial interface and I C (R/W)  
7
5
4
3
1
0
Priority 5  
Drop  
Priority 4  
Drop  
Priority 4 - Well Known port 111 for sun remote procedure call.  
Priority 5 - Well Known port 22555 for IP Phone call setup.  
(Default 00)  
14.10.40.10 WELL_KNOWN_PORT [7:6] PRIORITY- WELL KNOWN LOGIC PORT 7 AND 6 PRIORITY  
2
I C Address h0EE, CPU Address 598  
2
Accessed by CPU, serial interface and I C (R/W)  
7
5
4
3
1
0
Priority 7  
Drop  
Priority 6  
Drop  
Priority 6 - well know port 22 for ssh.  
Priority 7 – well Known port 554 for rtsp.  
(Default 00)  
107  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.10.40.11 WELL KNOWN_PORT_ENABLE [7:0] – Well Known Logic 7 to 0 Port Enables  
2
I C Address h0EF, CPU Address 599  
2
Accessed by CPU, serial interface and I C (R/W)  
7
6
5
4
3
2
1
0
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
1 – Enable  
0 - Disable  
(Default 00)  
14.10.40.12  
RLOWL – USER DEFINE RANGE LOW BIT 7:0  
2
I C Address h0F4, CPU Address: 59a  
2
Accessed by CPU, serial interface and I C (R/W)  
(Default 00)  
14.10.40.13 RLOWH – User Define Range Low Bit 15:8  
2
I C Address h0F5, CPU Address: 59b  
2
Accessed by CPU, serial interface and I C (R/W)  
(Default 00)  
14.10.40.14 RHIGHL – User Define Range High Bit 7:0  
2
I C Address h0D3, CPU Address: 59c  
2
Accessed by CPU, serial interface and I C (R/W)  
(Default 00)  
14.10.40.15 RHIGHH – User Define Range High Bit 15:8  
2
I C Address h0D4, CPU Address: 59d  
2
Accessed by CPU, serial interface and I C (R/W)  
(Default 00)  
14.10.40.16 RPRIORITY – User Define Range Priority  
2
I C Address h0D5, CPU Address: 59e  
2
Accessed by CPU, serial interface and I C (R/W)  
7
4
3
0
Range Transmit Priority  
Drop  
108  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
RLOW and RHIGH form a range for logical ports to be classified with priority specified in RPRIORITY.  
Bit[3:1]  
Bits[0]:  
Transmit Priority  
Drop Priority  
14.10.41 CPUQOSC123  
CPU Address: 5a0, 5a1, 5a2  
Accessed by CPU and serial interface (R/W)  
2
C - CPUQOSC1 – CPU BYTE_C1 I C Address h0C1, CPU Address 517)  
2
B - CPUQOSC2 – CPU BYTE_C2 I C Address h0C2, CPU Address 518)  
2
A - CPUQOSC3 – CPU BYTE_C3 I C Address h0C3, CPU Address 519)  
Represents values A-C for a CPU port. The values A-C are per-queue byte thresholds for random early drop.  
QOSC3 represents A, and QOSC1 represents C. Granularity: 256 bytes  
14.11 Group 6 Address MISC Group  
14.11.1 MII_OP0 – MII Register Option 0  
2
I C Address F0, CPU Address:h600  
2
Accessed by CPU, serial interface and I C (R/W)  
7
6
5
4
0
hfc 1prst DisJ Vendor Spc. Reg Addr  
Bits [7]: Half duplex flow control feature  
0 = Half duplex flow control always enable  
1 = Half duplex flow control by negotiation  
Link partner reset auto-negotiate disable  
Bits [6]:  
Bits [5]:  
Disable jabber detection. This is for HomePNA applications or any serial  
operation slower than 10 Mbps.  
0 = Enable  
1 = Disable  
Bit [4:0]:  
Vendor specified link status register address (null value means don’t use it)  
(Default 00). This is used if the Linkup bit position in the PHY is non-  
standard.  
109  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.11.2 MII_OP1 – MII Register Option 1  
2
I C Address F1, CPU Address:h601  
2
Accessed by CPU, serial interface and I C (R/W)  
7
4
3
0
Speed bit location  
Duplex bit location  
Bits [3:0]:  
Bits [7:4]:  
Duplex bit location in vendor specified register  
Speed bit location in vendor specified register  
(Default 00)  
14.11.3 FEN – Feature Register  
2
I C Address F2, CPU Address:h602)  
2
Accessed by CPU, serial interface and I C (R/W)  
7
6
5
4
3
2
1
0
DML Mii Rp  
IP Mul  
V-Sp DS RC  
SC  
Bits [0]:  
Bits [1]:  
Statistic Counter Enable (Default 0)  
0 – Disable  
1 – Enable (all ports)  
When statistic counter is enable, an interrupt control frame is generated to  
the CPU, every time a counter wraps around. This feature requires an  
external CPU.  
Rate Control Enable (Default 0)  
0 – Disable  
1 – Enable; Must also set ECR2Pn[3] = 1  
This bit enables/disables the rate control for all 10/100 ports. To start rate  
control in a 10/100 port the rate control memory must be programmed. This  
feature requires an external CPU. See Programming QoS Registers  
Application Note and Processor Interface Application Note for more  
information.  
Bit [2]:  
Support DS EF Code. (Default 0)  
0 – Disable  
1 – Enable (all ports)  
When 101110 is detected in DS field (TOS[7:2]), the frame priority is set for  
110 and drop is set for 0.  
110  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Bit [3]:  
Bit [4]:  
Bit [5]:  
Enable VLAN spanning tree support (Default 0)  
0 – Disable  
1 – Enable  
When VLAN spanning tree is enable the registers ECR1Pn are NOT used to  
program the port spanning tree status. The port status is programmed using  
the Control Command Frame.  
Disable IP Multicast Support (Default 1)  
0 – Enable IP Multicast Support  
1 – Disable IP Multicast Support  
When enable, IGMP packets are identified by search engine and are passed  
to the CPU for processing. IP multicast packets are forwarded to the IP  
multicast group members according to the VLAN port mapping table.  
Enable report to CPU(Default 0)  
0 – Disable report to CPU  
1 – Enable report to CPU  
When disable new VLAN port association report, new MAC address report or  
aging reports are disable for all ports. When enable, register SE_OPEMODE  
is used to enable/disable selectively each function.  
Bit [6]:  
Bit [7]:  
Disable MII Management State Machine (Default 0)  
0: Enable MII Management State Machine  
1: Disable MII Management State Machine  
Disable using MCT Link List structure (Default 0)  
0 – Enable using MCT Link structure  
1 - Disable using MCT Link List structure  
14.11.4 MIIC0 – MII Command Register 0  
CPU Address:h603  
Accessed by CPU and serial interface only (R/W)  
Bit [7:0] - MII Data [7:0]  
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY, and no VALID; then  
program MII command.  
14.11.5 MIIC1 – MII Command Register 1  
CPU Address:h604  
Accessed by CPU and serial interface only (R/W)  
Bit [7:0] - MII Data [15:8]  
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then  
program MII command.  
111  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.11.6 MIIC2 – MII Command Register 2  
CPU Address:h605  
Accessed by CPU and serial interface only (R/W)  
7
6
5
4
0
Mii OP  
Register address  
Bit [4:0] -  
Bit [6:5] -  
REG_AD – Register PHY Address  
OP – Operation code “10” for read command and “01” for write command  
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then  
program MII command.  
14.11.7 MIIC3 – MII Command Register 3  
CPU Address:h606  
Accessed by CPU and serial interface only (R/W)  
7
6
5
4
0
Rdy  
Valid  
PHY address  
Bits [4:0] -  
Bit [6] -  
PHY_AD – 5 Bit PHY Address  
VALID – Data Valid from PHY (Read Only)  
Bit [7] -  
RDY – Data is returned from PHY (Ready Only)  
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then  
program MII command. Writing this register will initiate a serial management cycle to the MII management  
interface.  
14.11.8 MIID0 – MII Data Register 0  
CPU Address:h607  
Accessed by CPU and serial interface only (RO)  
Bit [7:0] - MII Data [7:0]  
14.11.9 MIID1 – MII Data Register 1  
CPU Address:h608  
Accessed by CPU and serial interface only (RO)  
Bit [7:0] - MII Data [15:8]  
112  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.11.10 LED Mode – LED Control  
CPU Address:h609  
2
Accessed by CPU, serial interface and I C (R/W)  
7
5
4
3
2
1
0
Clock rate  
Hold Time  
Bit [0]  
Bit [2:1]:  
Reserved(Default 0)  
Hold time for LED signal (Default 00)  
00=8 msec  
01=16 msec  
11=64 msec  
10=32 msec  
Bit [4:3]:  
LED clock frequency (Default 0)  
For 100MHz SCLK  
00 = 100 M/8 = 12.5 MHz  
01 = 100 M/16 = 6.25 MHz  
10 = 100 M/32 = 3.125 MHz 11 = 100 M/64 = 1.5625 MHz  
For 125 MHz SCLK  
00 = 125 M/64 = 1953 KHz  
10 = 125 M/512 = 244 KHz  
01 = 125 M/128 = 977 KHz  
11 = 125 M/1024 = 122 KHz  
Bit [7:5]:  
Reserved. Must be set to ‘0’ (Default 0)  
14.11.11 DEVICE Mode  
CPU Address:h60a  
Accessed by CPU and serial interface (R/W)  
7
4
3
0
Device ID  
Bit [1:0]:  
Reserved. Must be set to ‘0’ (Default 0)  
Support < = 1536 frames  
Bit [2]:  
0: < = 1518 bytes (< = 1522 bytes with VLAN tag) (Default)  
1: < = 1536 bytes  
Bit [3:0]:  
Bit [7:4]:  
Reserved. Must be set to ‘0’ (Default 0)  
DEVICE ID (Default 0). This is for stacking operation. This is the stack ID  
for loop topology.  
14.11.12 CHECKSUM - EEPROM Checksum  
2
I C Address FF, CPU Address:h60b  
2
Accessed by CPU, serial interface and I C (R/W)  
Bit [7:0]: (Default 0)  
113  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
This register is used in unmanaged mode only. Before requesting that the MVTX2604 updates the EEPROM  
device, the correct checksum needs to be calculated and written into this checksum register. The checksum  
formula is:  
FF  
2
Σ
i C register = 0  
i = 0  
When the MVTX2604 boots from the EEPROM the checksum is calculated and the value must be zero. If the  
checksum is not zeroed the MVTX2604 does not start and pin CHECKSUM_OK is set to zero.  
14.12 Group 7 Address Port Mirroring Group  
14.12.1 MIRROR1_SRC - Port Mirror source port  
CPU Address 700  
Accessed by CPU and serial interface (R/W) (Default 7F)  
7
6
5
4
0
I/O  
Src Port Select  
Bit [4:0]:  
Bit [5]:  
Source port to be mirrored. Use illegal port number to disable mirroring  
1 - select ingress data  
0 - select egress data  
Reserved  
Bit [6]:  
Bit [7]:  
Reserved must be se to '1'  
14.12.2 MIRROR1_DEST – Port Mirror destination  
CPU Address 701  
Accessed by CPU, serial interface (R/W) (Default 17)  
7
5
4
0
Dest Port Select  
Bit [4:0]:  
Port Mirror Destination  
When port mirroring is enable, destination port can not serve as a data port.  
14.12.3 MIRROR2_SRC – Port Mirror source port  
CPU Address 702  
Accessed by CPU, serial interface (R/W) (Default FF)  
7
6
5
4
0
I/O Src Port Select  
114  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Bit [4:0]:  
Bit [5]:  
Source port to be mirrored. Use illegal port number to disable mirroring  
1 – select ingress data  
0 – select egress data  
Reserved  
Bit [6]  
Bit [7]  
Reserved must be set to '1'  
14.12.4 MIRROR2_DEST – Port Mirror destination  
CPU Address 703  
Accessed by CPU, serial interface (R/W) (Default 00)  
7
5
4
0
Dest Port Select  
Bit [4:0]:  
Port Mirror Destination  
When port mirroring is enable, destination port can not serve as a data port.  
14.13 Group F Address CPU Access Group  
14.13.1 GCR-Global Control Register  
CPU Address: hF00  
Accessed by CPU and serial interface. (R/W)  
7
5
4
3
2
1
0
Init  
Reset Bist  
SR SC  
Bit [0]:  
Bit [1]:  
Bit [2]:  
Store configuration (Default = 0)  
Write ‘1’ followed by ‘0’ to store configuration into external EEPROM  
Store configuration and reset (Default = 0)  
Write ‘1’ to store configuration into external EEPROM and reset chip  
Start BIST (Default = 0)  
Write ‘1’ followed by ‘0’ to start the device’s built-in self-test. The result is  
found in the DCR register.  
Bit [3]:  
Soft Reset (Default = 0)  
Write ‘1’ to reset chip  
115  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Bit [4]:  
Initialization Done (Default = 0).  
This bit is meaningless in unmanaged mode. In managed mode, CPU write  
this bit with ‘1’ to indicate initialization is completed and ready to forward  
packets.  
1 = Initialization is done.  
0 = Initialization is not complete.  
14.13.2 DCR-Device Status and Signature Register  
CPU Address: hF01  
Accessed by CPU and serial interface. (RO)  
7
6
5
4
3
2
1
0
Revision  
Signature  
RE  
BinP  
BR BW  
2
Bit [0]:  
1: Busy writing configuration to I C  
2
0: Not busy (not writing configuration to I C)  
2
Bit [1]:  
1: Busy reading configuration from I C  
2
0: Not busy ( not reading configuration from I C)  
1: BIST in progress  
0: BIST not running  
1: RAM Error  
Bit [2]:  
Bit [3]:  
0: RAM OK  
Bit [5:4]:  
Bit [7:6]:  
Device Signature  
11: MVTX2604 device  
Revision  
00: Initial Silicon  
01: XA1 Silicon  
10: Production Silicon  
116  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.3.13 DCR1-Giga port status  
CPU Address: hF02  
Accessed by CPU and serial interface. (RO)  
7
6
4
3
2
1
0
CIC  
GIGA1  
GIGA0  
Bit [1:0]:  
Bit [3:2]  
Bit [7]  
Giga port 0 strap option  
- 00 – 100 Mb MII mode  
- 01 – 2 G mode  
- 10 – GMII  
- 11 – PCS  
Giga port 1 strap option  
- 00 – 100 Mb MII mode  
- 01 – 2 G mode  
- 10 – GMII  
- 11 – PCS  
Chip initialization completed  
117  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.3.14 DPST – Device Port Status Register  
CPU Address:hF03  
Accessed by CPU and serial interface (R/W)  
Bit [4:0]:  
Read back index register. This is used for selecting what to read back from  
DTST. (Default 00)  
- 5’b00000 - Port 0 Operating mode and Negotiation status  
- 5’b00001 - Port 1 Operating mode and Negotiation status  
- 5’b00010 - Port 2 Operating mode and Negotiation status  
- 5’b00011 - Port 3 Operating mode and Negotiation status  
- 5’b00100 - Port 4 Operating mode and Negotiation status  
- 5’b00101 - Port 5 Operating mode and Negotiation status  
- 5’b00110 - Port 6 Operating mode and Negotiation status  
- 5’b00111 - Port 7 Operating mode and Negotiation status  
- 5’b01000 - Port 8 Operating mode and Negotiation status  
- 5’b01001 - Port 9 Operating mode and Negotiation status  
- 5’b01010 - Port 10 Operating mode and Negotiation status  
- 5’b01011 - Port 11 Operating mode and Negotiation status  
- 5’b01100 - Port 12 Operating mode and Negotiation status  
- 5’b01101 - Port 13 Operating mode and Negotiation status  
- 5’b01110 - Port 14 Operating mode and Negotiation status  
- 5’b01111 - Port 15 Operating mode and Negotiation status  
- 5’b10000 - Port 16 Operating mode and Negotiation status  
- 5’b10001 - Port 17 Operating mode and Negotiation status  
- 5’b10010 - Port 18 Operating mode and Negotiation status  
- 5’b00011 - Port 19 Operating mode and Negotiation status  
- 5’b10100 - Port 20 Operating mode and Negotiation status  
- 5’b10101 - Port 21 Operating mode and Negotiation status  
- 5’b10110 - Port 22 Operating mode and Negotiation status  
- 5’b10111 - Port 23 Operating mode and Negotiation status  
- 5’b11000 - Port 24 Operating mode/Neg status (CPU port)  
- 5’b11001 - Port 25 Operating mode/Neg status (Gigabit 1)  
- 5’b11010 - Port 26 Operating mode/Neg status (Gigabit 2)  
118  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.3.15 DTST – Data read back register  
CPU Address: hF04  
Accessed by CPU and serial interface (RO)  
This register provides various internal information as selected in DPST bit[4:0]. Refer to the PHY Control  
Application Note.  
7
6
5
4
3
2
1
0
MD  
Info  
Sig  
Giga  
Inkdn FE  
Fdpx  
FcEn  
When bit is 1:  
Bit [0] – Flow control enable  
Bit [1] – Full duplex port  
Bit [2] – Fast Ethernet port (if not gigabit port)  
Bit [3] – Link is down  
Bit [4] – Giga port  
Bit [5] – Signal detect (when PCS interface mode)  
Bit [6] - 2G signal detect (2G mode only)  
Bit [7] – Module detected (for hot swap purpose)  
14.3.16 DA – DA Register  
CPU Address: hFFF  
Accessed by CPU and serial interface (RO)  
Always return 8’h DA. Indicate the CPU interface or serial port connection is good.  
14.4 TBI Registers  
Two sets of TBI registers are used for configure the two Gigabit ports if they are operating in TBI mode. These TBI  
registers are located inside the switching chip and they are accessed through the MII command and MII data  
registers.  
14.4.1 Control Register  
MII Address: h00  
Read/Write  
Bit [15]  
Reset PCS logic and all TBI registers  
1 = Reset.  
0 = Normal operation.  
Bit [14]  
Bit [13]  
Reserved. Must be programmed with “0”.  
Speed selection (See bit 6 for complete details)  
119  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Bit [12]  
Auto Negotiation Enable  
1 = Enable auto-negotiation process.  
0 = Disable auto-negotiation process (Default).  
Reserved. Must be programmed with “0”  
Restart Auto Negotiation.  
1 = Restart auto-negotiation process.  
0 = Normal operation (Default).  
Reserved.  
Bit [11:10]  
Bit [9]  
Bit [8:7]  
Bit [6]  
Speed Selection  
Bit[6][13]  
1 1 = Reserved  
1 0 =1000 Mb/s (Default)  
0 1 =100 Mb/s  
0 0 =10 Mb/s  
Bit [5:0]  
Reserved. Must be programmed with “0”.  
14.4.2 Status Register  
MII Address: h01  
Read Only  
Bit [15:9]  
Bit [8]  
Reserved. Always read back as “0”.  
Reserved. Always read back as “1”.  
Reserved. Always read back as “0”.  
Auto-Negotiation Complete  
Bit [7:6]  
Bit [5]  
1 = Auto-negotiation process completed.  
0 = Auto-negotiation process not completed.  
Reserved. Always read back as “0”  
Reserved. Always read back as “1”  
Link Status  
Bit [4]  
Bit [3]  
Bit [2]  
1 = Link is up.  
0 = Link is down.  
Bit [1]  
Bit [0]  
Reserved. Always read back as “0”.  
Reserved. Always read back as “1”.  
120  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.4.3 Advertisement Register  
MII Address: h04  
Read/Write  
Bit [15]  
Next Page  
1 = Has next page capabilities.  
0 = Do not has next page capabilities (Default).  
Bit [14]  
Reserved. Always read back as “0”. Read Only.  
Remote Fault. Default is “0”.  
Bit [13:12]  
Bit [11:9]  
Bit [8:7]  
Bit [6]  
Reserved. Always read back as “0”. Read Only.  
Pause. Default is “00”  
Half Duplex  
1 = Support half duplex (Default).  
0 = Do not support half duplex.  
Bit [5]  
Full duplex  
1 = Support full duplex (Default).  
0 = Do not support full duplex.  
Bit [4:0]  
Reserved. Always read back as “0”. Read Only.  
14.4.4 Link Partner Ability Register  
MII Address: h05  
Read Only  
Bit [15]  
Next Page  
1 = Has next page capabilities.  
0 = Do not has next page capabilities.  
Acknowledge  
Bit [14]  
Bit [13:12]  
Bit [11:9]  
Bit [8:7]  
Bit [6]  
Remote Fault.  
Reserved. Always read back as “0”.  
Pause.  
Half Duplex  
1 = Support half duplex.  
0 = Do not support half duplex.  
Full duplex  
Bit [5]  
1 = Support full duplex.  
0 = Do not support full duplex.  
Bit [4:0]  
Reserved. Always read back as “0”.  
121  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
14.4.5 Expansion Register  
MII Address: h06  
Read Only  
Bit [15:2]  
Bit [1]  
Reserved. Always read back as “0”.  
Page Received.  
1 = A new page has been received.  
0 = A new page has not been received.  
Reserved. Always read back as “0”.  
Bit [0]  
14.4.6 Extended Status Register  
MII Address: h15  
Read Only  
Bit [15]  
Bit [14]  
Bit [13:0]  
1000 Full Duplex  
1 = Support 1000 full duplex operation (Default).  
0 = Do not support 1000 full duplex operation.  
1000 Half Duplex  
1 = Support 1000 half duplex operation (Default).  
0 = Do not support 1000 half duplex operation.  
Reserved. Always read back as “0”.  
122  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
15.0 BGA and Ball Signal Descriptions  
15.1 BGA Views (Top-View)  
15.1.1 Encapsulated view in unmanaged mode  
1
2
3
4
5
6
7
8
9
1 0  
1 1  
1 3  
1 2  
1 6  
1 3  
1 9  
1 4  
3 3  
1 5  
3 6  
1 6  
3 9  
1 7  
4 2  
1 8  
4 5  
1 9  
2 0  
2 1  
K 1  
2 2  
2 3  
2 4  
2 5  
2 6  
2 7  
2 8  
2 9  
L A _ D L A _ D L A _ D L A _ D L A _ D L A _ A L A _ O L A _ A L A _ A L A _ A L A _ A L A _ D L A _ D L A _ D L A _ D L A _ D O E _ C L A _ C T R U N M I R R M I R R  
S T R O T S T O  
A
B
C
S C L S D A  
4
7
1 0  
1 3  
1 5  
4
E 0 _  
8
L K 0 L K 0  
O R 4 O R 1  
B E U T 7  
L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ A L A _ O L A _ A L A _ A L A _ A L A _ A L A _ D L A _ D L A _ D L A _ D L A _ D O E _ C L A _ C L A _ D M I R R M I R R T R U N R E S E  
T S T O T S T O  
U T 8 U T 3  
D 0  
K 2 R V E D  
1
3
6
9
1 2  
1 4 D S C _ E 1 _  
7
1 2  
1 5  
1 8  
3 2  
3 5  
3 8  
4 1  
4 4  
L K 1 L K 1  
6 2  
O R 5 O R 2  
L A _ C L A _ D L A _ D L A _ D L A _ D L A _ D L A _ A L A _ O L A _ W T _ M O L A _ A L A _ A L A _ A L A _ A L A _ D L A _ D L A _ D L A _ D O E _ C L A _ C  
L K 1 1 E _ E _ D E 1 1 1 1 4 1 7 2 0 3 4 3 7 4 0 4 3 L K 2 L K 2  
T R U N M I R R M I R R A U T O T S T O T S T O T S T O T S T O  
P _ D  
0
2
5
8
3
K 0  
O R 3 O R 0  
F D U T 1 1 U T 9 U T 4 U T 0  
A G N L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ A L A _ A L A _ W L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D S C A N S C A N T S T O T S T O T S T O T S T O T S T O T S T O  
D
E
F
D
1 7  
1 9  
2 1  
2 3  
2 5  
2 7  
2 9  
3 1  
6
1 0  
E 0 _  
4 9  
5 1  
5 3  
5 5  
5 7  
5 9  
6 1  
6 3  
4 7  
C O L C L K U T 1 4 U T 1 3 U T 1 2 U T 1 0 U T 5 U T 1  
S C A N  
L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ A L A _ A L A _ W L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D R E S E L A _ D  
S C A N T S T O M 2 6 _ M 2 6 _  
L I N K U T 1 5 C R S T X E R  
T S T O T S T O  
U T 6 U T 2  
S C L K  
M O D  
1 6  
1 8  
2 0  
2 2  
2 4  
2 6  
2 8  
3 0  
5
9
E 1 _  
4 8  
5 0  
5 2  
5 4  
5 6  
5 8  
6 0 R V E D 4 6  
E
M 2 6 _  
M 2 6 _  
T X C L  
T X E N  
K
M 2 6 _ M 2 6 _ M 2 6 _  
M T X R X D R X C L  
A V C R E S I S C A N L B _ D L B _ D  
V C C V C C V C C V C C V C C  
C
N _  
E N  
6 3  
6 2  
C L K  
V
K
R E S E  
T O UT  
_
M 2 6 _ M 2 6 _ M 2 6 _  
L B _ C  
L K  
L B _ D L B _ D L B _ D  
M 2 6 _ M 2 6 _  
R X E R C O L  
G
H
J
T X D 1 T X D 1 R X D 1  
4 7 6 1 6 0  
4
5
5
M 2 6 _ M 2 6 _ M 2 6 _ M 2 6 _ M 2 6 _  
L B _ D L B _ D L B _ D L B _ D L B _ D  
4 6 4 5 4 4 5 9 5 8  
T X D 1 T X D 1 R X D 1 R X D 1 R X D 1  
2
3
2
3
4
M 2 6 _ M 2 6 _  
M 2 6 _ M 2 6 _  
L B _ D L B _ D L B _ D L B _ D L B _ D  
4 3 4 2 4 1 5 7 5 6  
M 2 6 _  
R X D 9  
T X D 1 T X D 1  
R X D 1 R X D 1  
0
1
0
1
L B _ D L B _ D L B _ D L B _ D L B _ D  
M 2 6 _ M 2 6 _ M 2 6 _ M 2 6 _ M 2 6 _  
T X D 9 T X D 8 R X D 6 R X D 7 R X D 8  
K
L
V D D V D D  
V D D V D D  
4 0  
3 9  
3 8  
5 5  
5 4  
L B _ D L B _ D L B _ D L B _ D L B _ D  
3 7 3 6 3 5 5 3 5 2  
M 2 6 _ M 2 6 _ M 2 6 _ M 2 6 _ M 2 6 _  
T X D 4 T X D 6 R X D 3 R X D 4 R X D 5  
L B _ D L B _ D L B _ D L B _ D L B _ D  
M 2 6 _ M 2 6 _ M 2 6 _ M 2 6 _ M 2 6 _  
T X D 7 T X D 5 R X D 0 R X D 1 R X D 2  
M
N
P
V D D  
V D D  
V S S V S S V S S V S S V S S V S S V S S  
V S S V S S V S S V S S V S S V S S V S S  
V S S V S S V S S V S S V S S V S S V S S  
V S S V S S V S S V S S V S S V S S V S S  
V S S V S S V S S V S S V S S V S S V S S  
V S S V S S V S S V S S V S S V S S V S S  
V S S V S S V S S V S S V S S V S S V S S  
V D D  
V D D  
3 4  
3 3  
3 2  
5 1  
5 0  
G R E F  
L B _ A L B _ A L B _ A L B _ D L B _ D  
M 2 6 _ M 2 6 _  
_ C L K  
V C C  
V C C  
V C C  
V C C  
V C C  
V C C  
V C C  
V C C  
1 8  
1 9  
2 0  
4 9  
4 8  
T X D 2 T X D 3  
1
G R E F  
L B _ A L B _ A L B _ A L B _ W L B _  
M 2 6 _ M 2 6 _  
M D I O _ C L K  
T X D 0 T X D 1  
0
1 5 1 6 1 7 E 0 _ W E 1 _  
L B _ A L B _ A L B _ A L B _ A L B _ A  
M 2 5 _ M 2 5 _  
C R S T X E R  
M _ C L  
M D C  
K
R
T
1 0  
1 1  
1 2  
1 3  
1 4  
M 2 5 _  
M 2 5 _ M 2 5 _ M 2 5 _  
V C C T X C L  
M T X R X D R X C L  
T X E N  
K C L K  
L B _ A L B _ A L B _ A L B _ A L B _ A  
M 2 5 _  
5
6
7
8
9
V
K
M 2 5 _ M 2 5 _ M 2 5 _  
L B _ O L B _ O T _ M O L B _ D L B _ D  
M 2 5 _ M 2 5 _  
R X E R C O L  
U
V
V D D  
V D D  
V D D  
V D D  
V C C T X D 1 T X D 1 R X D 1  
E 0 _  
E 1 _ D E 0  
3 1  
3 0  
4
5
5
M 2 5 _ M 2 5 _ M 2 5 _ M 2 5 _ M 2 5 _  
L B _ A L B _ O L B _ W L B _ D L B _ D  
T X D 1 T X D 1 R X D 1 R X D 1 R X D 1  
D S C _ E _ E _ 2 9 2 8  
2
3
2
3
4
M 2 5 _ M 2 5 _  
M 2 5 _ M 2 5 _  
L B _ D L B _ A L B _ A L B _ D L B _ D  
M 2 5 _  
R X D 9  
W
Y
T X D 1 T X D 1  
R X D 1 R X D 1  
1 5  
3
4
2 7  
2 6  
0
1
0
1
L B _ D L B _ D L B _ D L B _ D L B _ D  
M 2 5 _ M 2 5 _ M 2 5 _ M 2 5 _ M 2 5 _  
R X D 6 T X D 8 R X D 9 R X D 7 R X D 8  
V D D V D D  
V D D V D D  
1 4 1 3 1 2 2 5 2 4  
L B _ D L B _ D L B _ D L B _ D L B _ D  
M 2 5 _ M 2 5 _ M 2 5 _ M 2 5 _ M 2 5 _  
T X D 6 T X D 7 R X D 3 R X D 4 R X D 5  
A
A
1 1  
1 0  
9
2 3  
2 2  
L B _ D L B _ D L B _ D L B _ D L B _ D  
M 2 5 _ M 2 5 _ M 2 5 _ M 2 5 _ M 2 5 _  
T X D 4 T X D 5 R X D 0 R X D 1 R X D 2  
A
B
8
7
6
2 1  
2 0  
L B _ D L B _ D L B _ D L B _ D L B _ D  
M 2 5 _ M 2 5 _ M 2 3 _ M 2 3 _ M 2 3 _  
T X D 2 T X D 3 C R S R X D 0 R X D 1  
A
C
5
4
3
1 9  
1 8  
L B _ D L B _ D L B _ D L B _ D L B _ D  
M 2 5 _ M 2 5 _ M 2 3 _ M 2 3 _ M 2 3 _  
T X D 0 T X D 1 T X D 1 T X D 0 T X E N  
A
D
V C C V C C V C C V C C V C C  
2
1
0
1 7  
1 6  
M 0 _ T M 0 _ T M 0 _ T M 3 _ T M 3 _ T M 3 _ R M 5 _ T M 5 _ T M 5 _ R M 8 _ T M 8 _ T M 8 _ R M 1 0 _ M 1 0 _ M 1 0 _ M 1 3 _ M 1 6 _ M 1 5 _ M 1 6 _ M 1 5 _ M 1 5 _ M 1 8 _ M 1 8 _ M 1 8 _ M 2 0 _ M 2 0 _ M 2 0 _ M 2 2 _  
X E N X D 0 X D 1 X D 1 X E N X D 0 X D 1 X E N X D 0 X D 1 X E N X D 0 T X D 1 T X E N R X D 0 T X D 1 T X D 0 T X D 1 R X D 1 T X E N R X D 0 T X D 1 T X E N R X D 0 T X D 1 T X E N R X D 0 R X D 1  
A
E
M 0 _ R M 0 _ R M 0 _ C M 3 _ T M 3 _ C M 3 _ R M 5 _ T M 5 _ C M 5 _ R M 8 _ T M 8 _ C M 8 _ R M 1 0 _ M 1 0 _ M 1 0 _ M 1 3 _ M 1 3 _ M 1 3 _ M 1 4 _ M 1 6 R M 1 5 _ M 1 7 _ M 1 7 _ M 1 8 _ M 2 0 _ M 2 0 _ M 2 0 _ M 2 2 _ M 2 2 _  
A F  
X D 1 X D 0  
R S  
X D 0  
R S  
X D 1 X D 0  
R S  
X D 1 X D 0  
R S  
X D 1 T X D 0 C R S R X D 1 T X D 0 C R S R X D 1 C R S X D 0 R X D 1 R X D 0 C R S R X D 1 T X D 0 C R S R X D 1 R X D 0 C R S  
M 1 _ T M 1 _ T M 1 _ T M 2 _ T M 2 _ C M 4 _ T M 4 _ C M 6 _ T M 6 _ C M 7 _ T M 7 _ C M 9 _ T M 9 _ C M 1 1 _ M 1 1 _ M 1 2 _ M 1 2 _ M 1 4 _ M 1 5 _ M 1 6 _ M 1 6 _ M 1 8 _ M 1 8 _ M 1 9 _ M 1 9 _ M 2 1 _ M 2 1 _ M 2 2 _ M 2 2 _  
A
G
X E N X D 0 X D 1 X D 1  
R S  
X D 1  
R S  
X D 1  
R S  
X D 1  
R S  
X D 1  
R S T X D 1 C R S T X D 1 C R S T X D 1 T X D 0 T X D 1 C R S T X D 0 C R S T X D 1 C R S T X D 1 C R S T X E N T X D 0  
M 1 _ R M 1 _ C M 2 _ T M 2 _ R M 4 _ T M 4 _ R M 6 _ T M 6 _ R M 7 _ T M 7 _ R M 9 _ T M 9 _ R M 1 1 _ M 1 1 _ M 1 2 _ M 1 2 _ M 1 4 _ M 1 4 _ M 1 3 _ M 1 5 _ M 1 7 _ M 1 7 _ M 1 9 _ M 1 9 _ M 2 1 _ M 2 1 _ M 2 2 _  
A
H
X D 0  
R S  
X D 0 X D 0 X D 0 X D 0 X D 0 X D 0 X D 0 X D 0 X D 0 X D 0 T X D 0 R X D 0 T X D 0 R X D 0 T X D 0 R X D 0 R X D 0 C R S T X D 0 R X D 1 T X D 0 R X D 0 T X D 0 R X D 0 T X D 1  
M 1 _ R M 2 _ T M 2 _ R M 4 _ T M 4 _ R M 6 _ T M 6 _ R M 7 _ T M 7 _ R M 9 _ T M 9 _ R M 1 1 _ M 1 1 _ M 1 2 _ M 1 2 _ M 1 4 _ M 1 4 _ M 1 6 _ M 1 3 _ M 1 7 _ M 1 7 _ M 1 9 _ M 1 9 _ M 2 1 _ M 2 1 _  
X D 1 X E N X D 1 X E N X D 1 X E N X D 1 X E N X D 1 X E N X D 1 T X E N R X D 1 T X E N R X D 1 T X E N R X D 1 T X E N T X E N T X E N T X D 1 T X E N R X D 1 T X E N R X D 1  
A J  
1
2
3
4
5
6
7
8
9
1 0  
1 1  
1 2  
1 3  
1 4  
1 5  
1 6  
1 7  
1 8  
1 9  
2 0  
2 1  
2 2  
2 3  
2 4  
2 5  
2 6  
2 7  
2 8  
2 9  
123  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
15.1.2 Encapsulated view in managed mode  
1
2
3
4
5
6
7
8
9
1 0  
1 1  
1 3  
1 2  
1 6  
1 3  
1 9  
1 4  
3 3  
1 5  
3 6  
1 6  
3 9  
1 7  
4 2  
1 8  
4 5  
1 9  
2 0  
2 1  
2 2  
2 3  
2 4  
2 5  
2 6  
2 7  
2 8  
2 9  
L A _ D L A _ D L A _ D L A _ D L A _ D L A _ A L A _ O L A _ A L A _ A L A _ A L A _ A L A _ D L A _ D L A _ D L A _ D L A _ D P _ D A P _ D A P _ D A P _ D A P _ D A  
T S T O  
U T 7  
A
B
C
P _ A 0 P _ A 1 P _ W E  
4
7
1 0  
1 3  
1 5  
4
E 0 _  
8
T A 1 3 T A 1 0 T A 7 T A 4 T A 1  
L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ A L A _ O L A _ A L A _ A L A _ A L A _ A L A _ D L A _ D L A _ D L A _ D L A _ D P _ D A P _ D A L A _ D P _ D A P _ D A P _ D A P _ I N  
T S T O T S T O  
U T 8 U T 3  
P _ R D  
1
3
6
9
1 2  
1 4 D S C _ E 1 _  
7
1 2  
1 5  
1 8  
3 2  
3 5  
3 8  
4 1  
4 4  
T A 1 4 T A 1 1  
6 2  
T A 5 T A 2 T A 6  
T
P -  
P _ D A  
L A _ C L A _ D L A _ D L A _ D L A _ D L A _ D L A _ A L A _ O L A _ W T _ M O L A _ A L A _ A L A _ A L A _ A L A _ D L A _ D L A _ D L A _ D P _ D A P _ D A P _ D A  
T S T O T S T O T S T O T S T O  
U T 1 1 U T 9 U T 4 U T 0  
P _ A 2 D A T A  
T A 0  
P _ C S  
L K  
0
2
5
8
1 1  
3
E _ E _  
D E 1  
1 1  
1 4  
1 7  
2 0  
3 4  
3 7  
4 0  
4 3  
T A 1 5 T A 1 2 T A 9  
3
A G N L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ A L A _ A L A _ W L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D S C A N S C A N T S T O T S T O T S T O T S T O T S T O T S T O  
D
E
F
D
1 7  
1 9  
2 1  
2 3  
2 5  
2 7  
2 9  
3 1  
6
1 0  
E 0 _  
4 9  
5 1  
5 3  
5 5  
5 7  
5 9  
6 1  
6 3  
4 7  
C O L C L K U T 1 4 U T 1 3 U T 1 2 U T 1 0 U T 5 U T 1  
S C A N  
L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ A L A _ A L A _ W L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D L A _ D P _ D A L A _ D  
S C A N T S T O M 2 6 _ M 2 6 _  
L I N K U T 1 5 C R S T X E R  
T S T O T S T O  
U T 6 U T 2  
S C L K  
M O D  
1 6  
1 8  
2 0  
2 2  
2 4  
2 6  
2 8  
3 0  
5
9
E 1 _  
4 8  
5 0  
5 2  
5 4  
5 6  
5 8  
6 0  
T A 8  
4 6  
E
M 2 6 _  
M 2 6 _  
T X C L  
T X E N  
K
M 2 6 _ M 2 6 _ M 2 6 _  
M T X R X D R X C L  
A V C R E S I S C A N L B _ D L B _ D  
V C C V C C V C C V C C V C C  
C
N _  
E N  
6 3  
6 2  
C L K  
V
K
R E S E  
T O UT  
_
M 2 6 _ M 2 6 _ M 2 6 _  
L B _ C  
L K  
L B _ D L B _ D L B _ D  
M 2 6 _ M 2 6 _  
R X E R C O L  
G
H
J
T X D 1 T X D 1 R X D 1  
4 7 6 1 6 0  
4
5
5
M 2 6 _ M 2 6 _ M 2 6 _ M 2 6 _ M 2 6 _  
L B _ D L B _ D L B _ D L B _ D L B _ D  
4 6 4 5 4 4 5 9 5 8  
T X D 1 T X D 1 R X D 1 R X D 1 R X D 1  
2
3
2
3
4
M 2 6 _ M 2 6 _  
M 2 6 _ M 2 6 _  
L B _ D L B _ D L B _ D L B _ D L B _ D  
4 3 4 2 4 1 5 7 5 6  
M 2 6 _  
R X D 9  
T X D 1 T X D 1  
R X D 1 R X D 1  
0
1
0
1
L B _ D L B _ D L B _ D L B _ D L B _ D  
M 2 6 _ M 2 6 _ M 2 6 _ M 2 6 _ M 2 6 _  
T X D 9 T X D 8 R X D 6 R X D 7 R X D 8  
K
L
V D D V D D  
V D D V D D  
4 0  
3 9  
3 8  
5 5  
5 4  
L B _ D L B _ D L B _ D L B _ D L B _ D  
3 7 3 6 3 5 5 3 5 2  
M 2 6 _ M 2 6 _ M 2 6 _ M 2 6 _ M 2 6 _  
T X D 4 T X D 6 R X D 3 R X D 4 R X D 5  
L B _ D L B _ D L B _ D L B _ D L B _ D  
M 2 6 _ M 2 6 _ M 2 6 _ M 2 6 _ M 2 6 _  
T X D 7 T X D 5 R X D 0 R X D 1 R X D 2  
M
N
P
V D D  
V D D  
V S S V S S V S S V S S V S S V S S V S S  
V S S V S S V S S V S S V S S V S S V S S  
V S S V S S V S S V S S V S S V S S V S S  
V S S V S S V S S V S S V S S V S S V S S  
V S S V S S V S S V S S V S S V S S V S S  
V S S V S S V S S V S S V S S V S S V S S  
V S S V S S V S S V S S V S S V S S V S S  
V D D  
V D D  
3 4  
3 3  
3 2  
5 1  
5 0  
G R E F  
L B _ A L B _ A L B _ A L B _ D L B _ D  
M 2 6 _ M 2 6 _  
_ C L K  
V C C  
V C C  
V C C  
V C C  
V C C  
V C C  
V C C  
V C C  
1 8  
1 9  
2 0  
4 9  
4 8  
T X D 2 T X D 3  
1
G R E F  
L B _ A L B _ A L B _ A L B _ W L B _  
M 2 6 _ M 2 6 _  
M D I O _ C L K  
T X D 0 T X D 1  
0
1 5 1 6 1 7 E 0 _ W E 1 _  
L B _ A L B _ A L B _ A L B _ A L B _ A  
M 2 5 _ M 2 5 _  
C R S T X E R  
M _ C L  
M D C  
K
R
T
1 0  
1 1  
1 2  
1 3  
1 4  
M 2 5 _  
M 2 5 _ M 2 5 _ M 2 5 _  
V C C T X C L  
M T X R X D R X C L  
T X E N  
K C L K  
L B _ A L B _ A L B _ A L B _ A L B _ A  
M 2 5 _  
5
6
7
8
9
V
K
M 2 5 _ M 2 5 _ M 2 5 _  
L B _ O L B _ O T _ M O L B _ D L B _ D  
M 2 5 _ M 2 5 _  
R X E R C O L  
U
V
V D D  
V D D  
V D D  
V D D  
V C C T X D 1 T X D 1 R X D 1  
E 0 _  
E 1 _ D E 0  
3 1  
3 0  
4
5
5
M 2 5 _ M 2 5 _ M 2 5 _ M 2 5 _ M 2 5 _  
L B _ A L B _ O L B _ W L B _ D L B _ D  
T X D 1 T X D 1 R X D 1 R X D 1 R X D 1  
D S C _ E _ E _ 2 9 2 8  
2
3
2
3
4
M 2 5 _ M 2 5 _  
M 2 5 _ M 2 5 _  
L B _ D L B _ A L B _ A L B _ D L B _ D  
M 2 5 _  
R X D 9  
W
Y
T X D 1 T X D 1  
R X D 1 R X D 1  
1 5  
3
4
2 7  
2 6  
0
1
0
1
L B _ D L B _ D L B _ D L B _ D L B _ D  
M 2 5 _ M 2 5 _ M 2 5 _ M 2 5 _ M 2 5 _  
R X D 6 T X D 8 R X D 9 R X D 7 R X D 8  
V D D V D D  
V D D V D D  
1 4 1 3 1 2 2 5 2 4  
L B _ D L B _ D L B _ D L B _ D L B _ D  
M 2 5 _ M 2 5 _ M 2 5 _ M 2 5 _ M 2 5 _  
T X D 6 T X D 7 R X D 3 R X D 4 R X D 5  
A
A
1 1  
1 0  
9
2 3  
2 2  
L B _ D L B _ D L B _ D L B _ D L B _ D  
M 2 5 _ M 2 5 _ M 2 5 _ M 2 5 _ M 2 5 _  
T X D 4 T X D 5 R X D 0 R X D 1 R X D 2  
A
B
8
7
6
2 1  
2 0  
L B _ D L B _ D L B _ D L B _ D L B _ D  
M 2 5 _ M 2 5 _ M 2 3 _ M 2 3 _ M 2 3 _  
T X D 2 T X D 3 C R S R X D 0 R X D 1  
A
C
5
4
3
1 9  
1 8  
L B _ D L B _ D L B _ D L B _ D L B _ D  
M 2 5 _ M 2 5 _ M 2 3 _ M 2 3 _ M 2 3 _  
T X D 0 T X D 1 T X D 1 T X D 0 T X E N  
A
D
V C C V C C V C C V C C V C C  
2
1
0
1 7  
1 6  
M 0 _ T M 0 _ T M 0 _ T M 3 _ T M 3 _ T M 3 _ R M 5 _ T M 5 _ T M 5 _ R M 8 _ T M 8 _ T M 8 _ R M 1 0 _ M 1 0 _ M 1 0 _ M 1 3 _ M 1 6 _ M 1 5 _ M 1 6 _ M 1 5 _ M 1 5 _ M 1 8 _ M 1 8 _ M 1 8 _ M 2 0 _ M 2 0 _ M 2 0 _ M 2 2 _  
X E N X D 0 X D 1 X D 1 X E N X D 0 X D 1 X E N X D 0 X D 1 X E N X D 0 T X D 1 T X E N R X D 0 T X D 1 T X D 0 T X D 1 R X D 1 T X E N R X D 0 T X D 1 T X E N R X D 0 T X D 1 T X E N R X D 0 R X D 1  
A
E
M 0 _ R M 0 _ R M 0 _ C M 3 _ T M 3 _ C M 3 _ R M 5 _ T M 5 _ C M 5 _ R M 8 _ T M 8 _ C M 8 _ R M 1 0 _ M 1 0 _ M 1 0 _ M 1 3 _ M 1 3 _ M 1 3 _ M 1 4 _ M 1 6 R M 1 5 _ M 1 7 _ M 1 7 _ M 1 8 _ M 2 0 _ M 2 0 _ M 2 0 _ M 2 2 _ M 2 2 _  
A F  
X D 1 X D 0  
R S  
X D 0  
R S  
X D 1 X D 0  
R S  
X D 1 X D 0  
R S  
X D 1 T X D 0 C R S R X D 1 T X D 0 C R S R X D 1 C R S X D 0 R X D 1 R X D 0 C R S R X D 1 T X D 0 C R S R X D 1 R X D 0 C R S  
M 1 _ T M 1 _ T M 1 _ T M 2 _ T M 2 _ C M 4 _ T M 4 _ C M 6 _ T M 6 _ C M 7 _ T M 7 _ C M 9 _ T M 9 _ C M 1 1 _ M 1 1 _ M 1 2 _ M 1 2 _ M 1 4 _ M 1 5 _ M 1 6 _ M 1 6 _ M 1 8 _ M 1 8 _ M 1 9 _ M 1 9 _ M 2 1 _ M 2 1 _ M 2 2 _ M 2 2 _  
A
G
X E N X D 0 X D 1 X D 1  
R S  
X D 1  
R S  
X D 1  
R S  
X D 1  
R S  
X D 1  
R S T X D 1 C R S T X D 1 C R S T X D 1 T X D 0 T X D 1 C R S T X D 0 C R S T X D 1 C R S T X D 1 C R S T X E N T X D 0  
M 1 _ R M 1 _ C M 2 _ T M 2 _ R M 4 _ T M 4 _ R M 6 _ T M 6 _ R M 7 _ T M 7 _ R M 9 _ T M 9 _ R M 1 1 _ M 1 1 _ M 1 2 _ M 1 2 _ M 1 4 _ M 1 4 _ M 1 3 _ M 1 5 _ M 1 7 _ M 1 7 _ M 1 9 _ M 1 9 _ M 2 1 _ M 2 1 _ M 2 2 _  
A
H
X D 0  
R S  
X D 0 X D 0 X D 0 X D 0 X D 0 X D 0 X D 0 X D 0 X D 0 X D 0 T X D 0 R X D 0 T X D 0 R X D 0 T X D 0 R X D 0 R X D 0 C R S T X D 0 R X D 1 T X D 0 R X D 0 T X D 0 R X D 0 T X D 1  
M 1 _ R M 2 _ T M 2 _ R M 4 _ T M 4 _ R M 6 _ T M 6 _ R M 7 _ T M 7 _ R M 9 _ T M 9 _ R M 1 1 _ M 1 1 _ M 1 2 _ M 1 2 _ M 1 4 _ M 1 4 _ M 1 6 _ M 1 3 _ M 1 7 _ M 1 7 _ M 1 9 _ M 1 9 _ M 2 1 _ M 2 1 _  
X D 1 X E N X D 1 X E N X D 1 X E N X D 1 X E N X D 1 X E N X D 1 T X E N R X D 1 T X E N R X D 1 T X E N R X D 1 T X E N T X E N T X E N T X D 1 T X E N R X D 1 T X E N R X D 1  
A J  
1
2
3
4
5
6
7
8
9
1 0  
1 1  
1 2  
1 3  
1 4  
1 5  
1 6  
1 7  
1 8  
1 9  
2 0  
2 1  
2 2  
2 3  
2 4  
2 5  
2 6  
2 7  
2 8  
2 9  
124  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
15.2 Ball – Signal Descriptions in Managed Mode  
All pins are CMOS type; all Input Pins are 5 Volt tolerance; and all Output Pins are 3.3 CMOS drive.  
15.2.1 Ball Signal Descriptions in Managed Mode  
Ball No(s)  
Symbol  
I/O  
Description  
CPU BUS Interface in Managed Mode  
C19, B19, A19,  
C20, B20, A20,  
C21, E20, A21,  
B24, B22, A22,  
C23, B23, A23,  
C24  
P_DATA[15:0]  
I/O-TS with pull up  
Except P_DATA[7:6]  
I/O-TS with pull down  
Processor Bus Data Bit [15:0].  
P_DATA[7:0] is used in 8-bit mode.  
C22, A24, A25  
A26  
P_A[2:0]  
P_WE#  
Input  
Processor Bus Address Bit [2:0]  
CPU Bus-Write Enable  
Input with weak  
internal pull up  
B26  
C25  
B25  
P_RD#  
P_CS#  
P_INT#  
Input with weak  
internal pull up  
CPU Bus-Read Enable  
Chip Select  
Input with weak  
internal pull up  
Output  
CPU Interrupt  
Frame Buffer Interface  
D20, B21, D19,  
E19,D18, E18,  
LA_D[63:0]  
I/O-TS with pullup  
Frame Bank A– Data Bit [63:0]  
D17, E17, D16,  
E16, D15, E15,  
D14, E14, D13,  
E13, D21, E21,  
A18, B18, C18,  
A17, B17, C17,  
A16, B16, C16,  
A15, B15, C15,  
A14, B14, D9, E9,  
D8, E8, D7, E7, D6,  
E6, D5, E5, D4, E4,  
D3, E3, D2, E2, A7,  
B7, A6, B6, C6, A5,  
B5, C5, A4, B4, C4,  
A3, B3, C3, B2, C2  
C14, A13, B13,  
C13, A12, B12,  
C12, A11, B11,  
C11, D11, E11,  
A10, B10, D10,  
E10, A8, C7  
LA_A[20:3]  
Output  
Frame Bank A – Address Bit [20:3]  
125  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Ball No(s)  
Symbol  
LA_ADSC#  
I/O  
Description  
B8  
Output with pull up  
Frame Bank A Address Status  
Control  
C1  
C9  
LA_CLK  
LA_WE#  
Output  
Frame Bank A Clock Input  
Output with pull up  
Frame Bank A Write Chip Select for  
one layer SRAM configuration  
D12  
E12  
LA_WE0#  
LA_WE1#  
Output with pull up  
Output with pull up  
Frame Bank A Write Chip Select for  
lower layer of two layers SRAM  
configuration  
Frame Bank A Write Chip Select for  
upper layer of two layers SRAM  
configuration  
C8  
A9  
LA_OE#  
Output with pull up  
Output with pull up  
Frame Bank A Read Chip Select for  
one bank SRAM configuration  
LA_OE0#  
Frame Bank A Read Chip Select for  
lower layer of two layers SRAM  
configuration  
B9  
LA_OE1#  
Output with pull up  
I/O-TS with pullup.  
Frame Bank A Read Chip Select for  
upper layer of two layers SRAM  
configuration  
F4, F5, G4, G5, H4, LB_D[63:0]  
H5, J4, J5, K4, K5,  
L4, L5, M4, M5, N4,  
N5, G3, H1, H2,  
Frame Bank B– Data Bit [63:0]  
H3, J1, J2, J3, K1,  
K2, K3, L1, L2, L3,  
M1, M2, M3, U4,  
U5, V4, V5, W4,  
W5, Y4, Y5, AA4,  
AA5, AB4, AB5,  
AC4, AC5, AD4,  
AD5, W1, Y1, Y2,  
Y3, AA1, AA2, AA3,  
AB1, AB2, AB3,  
AC1, AC2, AC3,  
AD1, AD2, AD3  
N3, N2, N1, P3, P2, LB_A[20:3]  
P1, R5, R4, R3, R2,  
R1, T5, T4, T3, T2,  
Output  
Frame Bank B – Address Bit [20:3]  
T1, W3, W2  
V1  
LB_ADSC#  
Output with pull up  
Frame Bank B Address Status  
Control  
G1  
V3  
LB_CLK  
LB_WE#  
Output with pull up  
Output with pull up  
Frame Bank B Clock Input  
Frame Bank B Write Chip Select for  
one layer SRAM configuration  
126  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Ball No(s)  
Symbol  
LB_WE0#  
I/O  
Description  
P4  
P5  
Output with pull up  
Frame Bank B Write Chip Select for  
lower layer of two layer SRAM  
configuration  
LB_WE1#  
Output with pull up  
Frame Bank B Write Chip Select for  
upper layer of two layers SRAM  
configuration  
V2  
U1  
LB_OE#  
Output with pull up  
Output with pull up  
Frame Bank B Read Chip Select for  
one layer SRAM configuration  
LB_OE0#  
Frame Bank B Read Chip Select for  
lower layer of two layers SRAM  
configuration  
U2  
LB_OE1#  
Output with pull up  
Frame Bank B Read Chip Select for  
upper layer of two layers SRAM  
configuration  
Fast Ethernet Access Ports [23:0] RMII  
R28  
P28  
R29  
M_MDC  
M_MDIO  
M_CLKI  
Output  
MII Management Data Clock –  
(Common for all MII Ports [23:0])  
I/O-TS with pull up  
MII Management Data I/O –  
(Common for all MII Ports –[23:0]))  
Input  
Reference Input Clock  
AC29, AE28, AJ27, M[23:0]_RXD[1]  
AF27, AJ25, AF24,  
AH23, AE19, AF21,  
AJ19, AF18, AJ17,  
AJ15, AF15, AJ13,  
AF12, AJ11, AJ9,  
Input with weak  
internal pull up  
resistors.  
Ports [23:0] – Receive Data Bit [1]  
AF9, AJ7, AF6,  
AJ5, AJ3, AF1  
AC28, AF28, AH27, M[23:0]_RXD[0]  
AE27, AH25, AE24,  
AF22, AF20, AE21,  
AH19, AH20,  
Input with weak  
internal pull up  
resistors  
Ports [23:0] – Receive Data Bit [0]  
AH17, AH15,  
AE15, AH13, AE12,  
AH11, AH9, AE9,  
AH7, AE6, AH5,  
AH2, AF2  
127  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Ball No(s)  
Symbol  
I/O  
Description  
AC27, AF29,  
M[23:0]_CRS_DV  
Input with weak  
internal pull down  
resistors.  
Ports [23:0] – Carrier Sense and  
Receive Data Valid  
AG27, AF26,  
AG25, AG23,  
AF23, AG21,  
AH21, AF19, AF17,  
AG17, AG15,  
AF14, AG13, AF11,  
AG11, AG9, AF8,  
AG7, AF5, AG5,  
AH3, AF3  
AD29, AG28, AJ26, M[23:0]_TXEN  
AE26, AJ24, AE23,  
AJ22, AJ20, AE20,  
AJ18, AJ21, AJ16,  
AJ14, AE14, AJ12,  
AE11, AJ10, AJ8,  
I/O- TS with pull up ,  
slew  
Ports [23:0] – Transmit Enable  
Strap option for RMII/GPSI  
AE8, AJ6, AE5,  
AJ4, AG1, AE1  
AD27, AH28,  
M[23:0]_TXD[1]  
Output, slew  
Ports [23:0] – Transmit Data Bit [1]  
AG26, AE25,  
AG24, AE22, AJ23,  
AG20, AE18,  
AG18, AE16,  
AG16, AG14,  
AE13, AG12,  
AE10, AG10, AG8,  
AE7, AG6, AE4,  
AG4, AG3, AE3  
AD28, AG29,  
M[23:0]_TXD[0]  
Output, slew  
Ports [23:0] – Transmit Data Bit [0]  
AH26, AF25, AH24,  
AG22, AH22,  
AE17, AG19,  
AH18, AF16, AH16,  
AH14, AF13, AH12,  
AF10, AH10, AH8,  
AF7, AH6, AF4,  
AH4, AG2, AE2  
GMII/TBI GiGabit Ethernet Access Ports 0 & 1  
U26, U25, V26,  
V25, W26, W25,  
Y27, Y26, AA26,  
AA25, AB26, AB25,  
AC26, AC25,  
M25_TXD[15:0]  
Output  
Transmit Data Bit [15:0]  
[7:0] - GMII  
[9:0] - TBI  
[15:0] - 2G  
AD26, AD25  
T28  
U28  
R25  
M25_RX_DV  
M25_RX_ER  
M25_CRS  
Input w/ pull down  
Input w/ pull up  
Receive Data Valid  
Receive Error  
Input w/ pull down  
Carrier Sense  
128  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Ball No(s)  
Symbol  
M25_COL  
I/O  
Description  
Collision Detected  
U29  
T29  
Input w/ pull up  
Input w/ pull up  
Input w/ pull up  
M25_RXCLK  
Receive Clock  
U27, V29, V28,  
V27, W29, W28,  
W27, Y29, Y28,  
Y25, AA29, AA28,  
AA27, AB29, AB28,  
AB27  
M25_RXD[15:0]  
Receive Data Bit [15:0]  
[7:0] - GMII  
[9:0] - TBI  
[15:0] - 2G  
T26  
R26  
T27  
T25  
P29  
M25_TX_EN  
M25_TX_ER  
M25_ MTXCLK  
M25_ TXCLK  
GREF_CLK0  
M26_TXD[15:0]  
Output w/ pull up  
Output w/ pull up  
Input w/ pull down  
Output  
Transmit Data Enable  
Transmit Error  
MII Mode Transmit Clock  
Gigabit Transmit Clock  
Gigabit Reference Clock  
Input w/ pull up  
Output  
G26, G25, H26,  
H25, J26, J25, K25,  
K26, M25, L26,  
M26, L25, N26,  
N25, P26, P25  
Transmit Data Bit [15:0]  
[7:0] - GMII  
[9:0] - TBI  
[15:0] - 2G  
F28  
G28  
E25  
G29  
F29  
M26_RX_DV  
M26_RX_ER  
M26_CRS  
Input w/ pull down  
Input w/ pull up  
Input w/ pull down  
Input w/ pull up  
Input w/ pull up  
Input w/ pull up  
Receive Data Valid  
Receive Error  
Carrier Sense  
M26_COL  
Collision Detected  
Receive Clock  
M26_RXCLK  
M26_RXD[15:0]  
G27,H29, H28,  
H27, J29, J28, J27,  
K29, K28, K27,  
L29, L28, L27,  
Receive Data Bit [15:0]  
[7:0] - GMII  
[9:0] - TBI  
[15:0] - 2G  
M29, M28, M27  
F26  
M26_TX_EN  
M26_TX_ER  
M26_ MTXCLK  
M26_ TXCLK  
GREF_CLK1  
Output w/ pull up  
Output w/ pull up  
Input w/ pull down  
Output  
Transmit Data Enable  
Transmit Error  
E26  
F27  
MII Mode Transmit Clock  
Gigabit Transmit Clock  
Gigabit Reference Clock  
F25  
N29  
Input w/ pull up  
LED Interface  
C29  
LED_CLK/TSTOUT0 I/O- TS with pull up  
LED_SYN/TSTOUT1 I/O- TS with pull up  
LED Serial Interface Output Clock  
LED Output Data Stream Envelope  
D29  
129  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Ball No(s)  
Symbol  
I/O  
Description  
E29  
B28  
LED_BIT/TSTOUT2  
I/O- TS with pull up  
LED Serial Data Output Stream  
G1_RXTX#/TSTOUT I/O- TS with pull up  
3
LED for Gigabit port 1 (receive +  
transmit)  
C28  
D28  
E28  
A27  
B27  
C27  
D27  
C26  
D26  
D25  
D24  
E24  
G1_DPCOL#/TSTO  
UT4  
I/O- TS with pull up  
LED for Gigabit port 1 (full duplex +  
collision)  
G1_LINK#/TSTOUT  
5
I/O- TS with pull up  
LED for Gigabit port 1  
G2_RXTX#/TSTOUT I/O- TS with pull up  
6
LED for Gigabit port 2 (receive +  
transmit)  
G2_DPCOL#/TSTO  
UT7  
I/O- TS with pull up  
I/O- TS with pull up  
I/O- TS with pull up  
LED for Gigabit port 2 (full duplex +  
collision)  
G2_LINK#/TSTOUT  
8
LED for Gigabit port 2  
System start operation  
Start initialization  
INIT_DONE/TSTOU  
T9  
INIT_START/TSTOU I/O- TS with pull up  
T10  
CHECKSUM_OK/TS I/O- TS with pull up  
TOUT11  
EEPROM read OK  
FCB_ERR/TSTOUT  
12  
I/O- TS with pull up  
FCB memory self test fail  
MCT memory self test fail  
Processing memory self test  
Memory self test done  
MCT_ERR/TSTOUT  
13  
I/O- TS with pull up  
BIST_IN_PRC/TSTO I/O- TS with pull up  
UT14  
BIST_DONE/TSTOU I/O- TS with pull up  
T15  
Test Facility  
U3, C10  
T_MODE0,  
T_MODE1  
I/O-TS  
Test Pins  
00 – Test mode – Set Mode upon  
Reset, and provides NAND Tree test  
output during test mode  
01 - Reserved - Do not use  
10 - Reserved - Do not use  
11 – Normal mode. Use external pull  
up for normal mode  
F3  
E27  
SCAN_EN  
SCANMODE  
Input with pull down  
Input with pull down  
Scan Enable  
1 – Enable Test mode  
0 - Normal mode (open)  
130  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Ball No(s)  
System Clock, Power, and Ground Pins  
E1 SCLK  
Symbol  
I/O  
Description  
Input  
Power  
System Clock at 100 MHz  
+2.5 Volt DC Supply  
K12, K13, K17,K18 VDD  
M10, N10, M20,  
N20, U10, V10,  
U20, V20, Y12,  
Y13, Y17, Y18  
F13, F14, F15,  
VCC  
VSS  
Power  
+3.3 Volt DC Supply  
Ground  
F16, F17, N6, P6,  
R6, T6, U6, N24,  
P24, R24, T24,  
U24, AD13, AD14,  
AD15, AD16, AD17  
M12, M13, M14,  
M15, M16, M17,  
M18, N12, N13,  
N14, N15, N16,  
N17, N18, P12,  
P13, P14, P15,  
P16, P17, P18,  
R12, R13, R14,  
R15, R16, R17,  
R18, T12, T13,  
T14, T15, T16,  
T17, T18, U12,  
U13, U14, U15,  
U16, U17, U18,  
V12, V13, V14,  
V15, V16, V17,  
V18,  
Power Ground  
F1  
D1  
AVCC  
AGND  
Analog Power  
Analog Ground  
Analog +2.5 Volt DC Supply  
Analog Ground  
MISC  
D22  
SCANCOL  
SCANCLK  
Input/ output  
Output  
Scans the Collision signal of Home  
PHY  
Clock for scanning Home PHY  
collision and link  
D23  
E23  
F2  
SCANLINK  
RESIN#  
Input/ output  
Input  
Link up signal from Home PHY  
Reset Input  
G2  
RESETOUT#  
Output  
Reset PHY  
Bootstrap Pins (Default = pull up, 1= pull up 0= pull down)  
After reset TSTOUT0 to TSTOU15 are used by the LED interface.  
C29  
TSTOUT0  
Default 1  
GIGA Link polarity  
0 – active low  
1 – active high  
131  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Ball No(s)  
Symbol  
TSTOUT1  
I/O  
Description  
D29  
E29  
B28  
C28  
D28  
E28  
A27  
Default 1  
RMII MAC Power Saving Enable  
0 – No power saving  
1 – power saving  
TSTOUT2  
TSTOUT3  
TSTOUT4  
TSTOUT5  
TSTOUT6  
TSTOUT7  
Default: Enable (1)  
Recommend disable  
(0) with pull-down  
Giga Half Duplex Support  
0 - Disable  
1 - Enable  
Default 1  
Default 1  
Default 1  
Default 1  
Default 1  
Module detect enable  
0 – Hot swap enable  
1 – Hot swap disable  
Memory is SBRAM/ZBT  
0 – ZBT  
1 – Pipeline SBRAM  
Scan Speed: ¼ SCLK or SCLK  
0 – ¼ SCLK (HPNA)  
1 - SCLK  
CPU Port Mode  
0 - 8 bit Bus Mode  
1 - 16 bit Bus Mode  
Memory Size  
0 - 256 K x 32 or 256 K x 64  
(4 M total)  
1 - 128 K x 32 or 128 K x 64  
(2 M total)  
B27  
C27  
D27  
C26  
TSTOUT8  
TSTOUT9  
TSTOUT10  
TSTOUT11  
Default 1  
Default 1  
Default 1  
Default 1  
EEPROM Installed  
0 – EEPROM installed  
1 – EEPROM not installed  
MCT Aging  
0 – MCT aging disable  
1 – MCT aging enable  
FCB Aging  
0 - FCB aging disable  
1 – FCB aging enable  
Timeout Reset  
0 – Time out reset disable  
1 – Time out reset enable. Issue  
reset if any state machine did not go  
back to idle for 5sec.  
D26  
D25  
TSTOUT12  
TSTOUT13  
Reserved  
Default 1  
Default 1  
Default 1  
FDB RAM depth (1 or 2 layers)  
0 – 2 layer  
1 – 1 layer  
D24  
E24  
TSTOUT14  
TSTOUT15  
CPU installed  
0 – CPU installed  
1 – CPU not installed  
SRAM Test Mode  
0 – Enable test mode  
1 – Normal operation  
132  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Ball No(s)  
T26, R26  
Symbol  
I/O  
Description  
G0_TXEN,  
Default: PCS  
Giga0  
G0_TXER  
Mode: G0_TXEN G0_TXER  
0
0
1
1
0
1
0
1
MII  
2G  
GMII  
PCS  
F26, E26  
G1_TXEN,  
G1_TXER  
Default: PCS  
Default: RMII  
Giga1  
Mode: G1_TXEN G1_TXER  
0
0
1
1
0
1
0
1
MII  
2G  
GMII  
PCS  
AD29, AG28, AJ26, M[23:0] TXEN  
AE26, AJ24, AE23,  
AJ22, AJ20, AE20,  
AJ18, AJ21, AJ16,  
AJ14, AE14, AJ12,  
AE11, AJ10, AJ8,  
0 – GPSI  
1 – RMII  
AE8, AJ6, AE5,  
AJ4, AG1, AE1  
C21  
C19, B19, A19  
P_D[9]  
P_D[15:13]  
Must be pulled-down  
Default: 111  
Reserved. Must be pulled-down.  
Programmable delay for internal  
OE_CLK from SCLK input. The  
OE_CLK is used for generating the  
OE0 and OE1 signals  
Suggested value is 001.  
C20, B20, A20  
P_D[12:10]  
P_D[5:0]  
Default: 111  
Programmable delay for LA_CLK  
and LB_CLK from internal OE_CLK.  
The LA_CLK and LB_CLK delay  
from SCLK is the sum of the delay  
programmed in here and the delay in  
P_D[15:13].  
Suggested value is 011.  
B22, A22, C23,  
B23, A23, C24  
Default: 111111  
Dedicated Port Mirror Mode. The  
first 5 bits select the port to be  
mirrored. The last bit selects either  
ingress or egress data.  
Notes  
# = Active low signal  
Input = Input signal  
In-ST = Input signal with Schmitt-Trigger  
Output = Output signal (Tri-State driver)  
Out-OD = Output signal with Open-Drain driver  
I/O-TS = Input & Output signal with Tri-State driver  
I/O-OD = Input & Output signal with Open-Drain driver  
133  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
15.2.2 Ball – Signal Descriptions in Unmanaged Mode  
Ball No(s)  
Symbol  
I/O  
Description  
2
2
I C Interface Note: In unmanaged mode, Use I C and Serial control interface to configure the system  
2
A24  
A25  
SCL  
SDA  
Output  
I C Data Clock  
2
I/O-TS with internal pull  
up  
I C Data I/O  
Serial Control Interface  
A26  
B26  
C25  
STROBE  
Input with weak internal  
pull up  
Serial Strobe Pin  
D0  
Input with weak internal  
pull up  
Serial Data Input  
AUTOFD  
Output with pull up  
Serial Data Output (AutoFD)  
Frame Buffer Interface  
D20, B21, D19,  
E19,D18, E18,  
D17, E17, D16,  
E16, D15, E15,  
D14, E14, D13,  
E13, D21, E21,  
A18, B18, C18,  
A17, B17, C17,  
A16, B16, C16,  
A15, B15, C15,  
A14, B14, D9, E9,  
D8, E8, D7, E7,  
D6, E6, D5, E5,  
D4, E4, D3, E3,  
D2, E2, A7, B7,  
A6, B6, C6, A5,  
B5, C5, A4, B4,  
C4, A3, B3, C3,  
B2, C2  
LA_D[63:0]  
I/O-TS with pull up  
Frame Bank A– Data Bit [63:0]  
C14, A13, B13,  
C13, A12, B12,  
C12, A11, B11,  
C11, D11, E11,  
A10, B10, D10,  
E10, A8, C7  
LA_A[20:3]  
LA_ADSC#  
Output  
Frame Bank A – Address Bit  
[20:3]  
B8  
Output with pull up  
Frame Bank A Address Status  
Control  
C1  
C9  
LA_CLK  
LA_WE#  
Output with pull up  
Output with pull up  
Frame Bank A Clock Input  
Frame Bank A Write Chip  
Select for one layer SRAM  
application  
134  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Ball No(s)  
D12  
Symbol  
LA_WE0#  
I/O  
Description  
Output with pull up  
Output with pull up  
Output with pull up  
Output with pull up  
Output with pull up  
I/O-TS with pull up.  
Frame Bank A Write Chip  
Select for lower layer of two  
bank SRAM application  
E12  
C8  
A9  
LA_WE1#  
LA_OE#  
Frame Bank A Write Chip  
Select for upper bank of two  
layer SRAM application  
Frame Bank A Read Chip  
Select for one layer SRAM  
application  
LA_OE0#  
LA_OE1#  
LB_D[63:0]  
Frame Bank A Read Chip  
Select for lower layer of two  
layers SRAM application  
B9  
Frame Bank A Read Chip  
Select for upper layer of two  
layers SRAM application  
F4, F5, G4, G5,  
H4, H5, J4, J5,  
K4, K5, L4, L5,  
M4, M5, N4, N5,  
G3, H1, H2, H3,  
J1, J2, J3, K1, K2,  
K3, L1, L2, L3,  
M1, M2, M3, U4,  
U5, V4, V5, W4,  
W5, Y4, Y5, AA4,  
AA5, AB4, AB5,  
AC4, AC5, AD4,  
AD5, W1, Y1, Y2,  
Y3, AA1, AA2,  
AA3, AB1, AB2,  
AB3, AC1, AC2,  
AC3, AD1, AD2,  
AD3  
Frame Bank B– Data Bit [63:0]  
N3, N2, N1, P3,  
P2, P1, R5, R4,  
R3, R2, R1, T5,  
T4, T3, T2, T1,  
W3, W2  
LB_A[20:3]  
LB_ADSC#  
Output  
Frame Bank B – Address Bit  
[20:3]  
V1  
Output with pull up  
Frame Bank B Address Status  
Control  
G1  
V3  
LB_CLK  
LB_WE#  
Output with pull up  
Output with pull up  
Frame Bank B Clock Input  
Frame Bank B Write Chip  
Select for one layer SRAM  
application  
135  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Ball No(s)  
Symbol  
LB_WE0#  
I/O  
Description  
P4  
P5  
V2  
U1  
U2  
Output with pull up  
Output with pull up  
Output with pull up  
Output with pull up  
Output with pull up  
Frame Bank B Write Chip  
Select for lower layer of two  
layers SRAM application  
LB_WE1#  
LB_OE#  
Frame Bank B Write Chip  
Select for upper layer of two  
layers SRAM application  
Frame Bank B Read Chip  
Select for one layer SRAM  
application  
LB_OE0#  
LB_OE1#  
Frame Bank B Read Chip  
Select for lower layer of two  
layers SRAM application  
Frame Bank B Read Chip  
Select for upper layer of two  
layers SRAM application  
Fast Ethernet Access Ports [23:0] RMII  
R28  
P28  
R29  
M_MDC  
Output  
MII Management Data Clock –  
(Common for all MII Ports  
[23:0])  
M_MDIO  
I/O-TS with pull up  
MII Management Data I/O –  
(Common for all MII Ports –  
[23:0])  
M_CLKI  
Input  
Reference Input Clock  
AC29, AE28,  
AJ27, AF27,  
AJ25, AF24,  
AH23, AE19,  
AF21, AJ19,  
AF18, AJ17,  
AJ15, AF15,  
AJ13, AF12,  
AJ11, AJ9, AF9,  
AJ7, AF6, AJ5,  
AJ3, AF1  
M[23:0]_RXD[1]  
Input with weak internal  
pull up resistors.  
Ports [23:0] – Receive Data Bit  
[1]  
AC28, AF28,  
AH27, AE27,  
AH25, AE24,  
AF22, AF20,  
AE21, AH19,  
AH20, AH17,  
AH15, AE15,  
AH13, AE12,  
AH11, AH9, AE9,  
AH7, AE6, AH5,  
AH2, AF2  
M[23:0]_RXD[0]  
Input with weak internal  
pull up resistors  
Ports [23:0] – Receive Data Bit  
[0]  
136  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Ball No(s)  
Symbol  
I/O  
Description  
AC27, AF29,  
AG27, AF26,  
AG25, AG23,  
AF23, AG21,  
AH21, AF19,  
AF17, AG17,  
AG15, AF14,  
AG13, AF11,  
AG11, AG9, AF8,  
AG7, AF5, AG5,  
AH3, AF3  
M[23:0]_CRS_DV  
Input with weak internal  
pull down resistors.  
Ports [23:0] – Carrier Sense  
and Receive Data Valid  
AD29, AG28,  
AJ26, AE26,  
AJ24, AE23,  
AJ22, AJ20,  
AE20, AJ18,  
AJ21, AJ16,  
AJ14, AE14,  
AJ12, AE11,  
AJ10, AJ8, AE8,  
AJ6, AE5, AJ4,  
AG1, AE1  
M[23:0]_TXEN  
M[23:0]_TXD[1]  
M[23:0]_TXD[0]  
I/O- TS with pull up ,  
slew  
Ports [23:0] – Transmit Enable  
Strap option for RMII/GPSI  
AD27, AH28,  
AG26, AE25,  
AG24, AE22,  
AJ23, AG20,  
AE18, AG18,  
AE16, AG16,  
AG14, AE13,  
AG12, AE10,  
AG10, AG8, AE7,  
AG6, AE4, AG4,  
AG3, AE3  
Output, slew  
Ports [23:0] – Transmit Data Bit  
[1]  
AD28, AG29,  
AH26, AF25,  
AH24, AG22,  
AH22, AE17,  
AG19, AH18,  
AF16, AH16,  
AH14, AF13,  
AH12, AF10,  
AH10, AH8, AF7,  
AH6, AF4, AH4,  
AG2, AE2  
Output, slew  
Ports [23:0] – Transmit Data Bit  
[0]  
137  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Ball No(s)  
Symbol  
I/O  
Description  
GMII/TBI GiGabit Ethernet Access Ports 0 & 1  
U26, U25, V26,  
V25, W26, W25,  
Y27, Y26, AA26,  
AA25, AB26,  
AB25, AC26,  
AC25, AD26,  
AD25  
M25_TXD[15:0]  
Output  
Transmit Data Bit [15:0]  
[7:0] - GMII  
[9:0] - TBI  
[15:0] - 2G  
T28  
U28  
R25  
U29  
T29  
M25_RX_DV  
M25_RX_ER  
M25_CRS  
Input w/ pulldown  
Input w/ pullup  
Input w/ pulldown  
Input w/ pullup  
Input w/ pullup  
Input w/ pullup  
Receive Data Valid  
Receive Error  
Carrier Sense  
M25_COL  
Collision Detected  
Receive Clock  
M25_RXCLK  
M25_RXD[15:0]  
U27, V29, V28,  
V27, W29, W28,  
W27, Y29, Y28,  
Y25, AA29, AA28,  
AA27, AB29,  
Receive Data Bit [15:0]  
[7:0] - GMII  
[9:0] - TBI  
[15:0] - 2G  
AB28, AB27  
T26  
R26  
T25  
P29  
M25_TX_EN  
M25_TX_ER  
M25_ TXCLK  
GREF_CLK0  
M26_TXD[15:0]  
Output w/ pullup  
Output w/ pullup  
Output  
Transmit Data Enable  
Transmit Error  
Gigabit Transmit Clock  
Gigabit Reference Clock  
Input w/ pullup  
Output  
G26, G25, H26,  
H25, J26, J25,  
K25, K26, M25,  
L26, M26, L25,  
N26, N25, P26,  
P25  
Transmit Data Bit [15:0]  
[7:0] - GMII  
[9:0] - TBI  
[15:0] - 2G  
F28  
G28  
E25  
G29  
F29  
M26_RX_DV  
M26_RX_ER  
M26_CRS  
Input w/ pulldown  
Input w/ pullup  
Input w/ pulldown  
Input w/ pullup  
Input w/ pullup  
Input w/ pullup  
Receive Data Valid  
Receive Error  
Carrier Sense  
M26_COL  
Collision Detected  
Receive Clock  
M26_RXCLK  
M26_RXD[15:0]  
G27,H29, H28,  
H27, J29, J28,  
J27, K29, K28,  
K27, L29, L28,  
L27, M29, M28,  
M27  
Receive Data Bit [15:0]  
[7:0] - GMII  
[9:0] - TBI  
[15:0] - 2G  
138  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Ball No(s)  
Symbol  
M26_TX_EN  
I/O  
Description  
F26  
E26  
F25  
Output w/ pullup  
Output w/ pullup  
Output  
Transmit Data Enable  
Transmit Error  
M26_TX_ER  
M26_ TXCLK  
GREF_CLK1  
Gigabit Transmit Clock  
Gigabit Reference Clock  
N29  
Input w/ pullup  
LED Interface  
C29  
LED_CLK/TSTOUT0  
LED_SYN/TSTOUT1  
I/O- TS with pull up  
I/O- TS with pull up  
LED Serial Interface Output  
Clock  
D29  
LED Output Data Stream  
Envelope  
E29  
B28  
LED_BIT/TSTOUT2  
I/O- TS with pull up  
I/O- TS with pull up  
LED Serial Data Output Stream  
G1_RXTX#/TSTOUT3  
LED for Gigabit port 1 (receive  
+ transmit)  
C28  
G1_DPCOL#/TSTOUT4  
I/O- TS with pull up  
LED for Gigabit port 1 (full  
duplex + collision)  
D28  
E28  
G1_LINK#/TSTOUT5  
G2_RXTX#/TSTOUT6  
I/O- TS with pull up  
I/O- TS with pull up  
LED for Gigabit port 1  
LED for Gigabit port 2 (receive  
+ transmit)  
A27  
G2_DPCOL#/TSTOUT7  
I/O- TS with pull up  
LED for Gigabit port 2 (full  
duplex + collision)  
B27  
C27  
D27  
C26  
G2_LINK#/TSTOUT8  
INIT_DONE/TSTOUT9  
INIT_START/TSTOUT10  
I/O- TS with pull up  
I/O- TS with pull up  
I/O- TS with pull up  
I/O- TS with pull up  
LED for Gigabit port 2  
System start operation  
Start initialization  
CHECKSUM_OK/TSTOU  
T11  
EEPROM read OK  
D26  
FCB_ERR/TSTOUT12  
MCT_ERR/TSTOUT13  
I/O- TS with pull up  
I/O- TS with pull up  
FCB memory self test fail  
MCT memory self test fail  
Processing memory self test  
Memory self test done  
D25  
D24  
BIST_IN_PRC/TSTOUT14 I/O- TS with pull up  
E24  
BIST_DONE/TSTOUT15  
I/O- TS with pull up  
Trunk Enabale  
C22  
TRUNK0  
Input w/ weak internal  
pull down resistors  
Trunk Port Enable in  
unmanaged mode  
In managed mode doesn't care  
A21  
B24  
TRUNK1  
TRUNK2  
Input w/ weak internal  
pull down resistors  
Trunk Port Enable in  
unmanaged mode  
In managed mode doesn't care  
Input w/ weak internal  
pull down resistors  
Trunk Port Enable in  
unmanaged mode  
In managed mode doesn't care  
139  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Ball No(s)  
Symbol  
I/O  
Description  
Test Facility  
U3, C10  
T_MODE0, T_MODE1  
I/O-TS  
Test Pins  
00 – Test mode – Set Mode  
upon Reset, and provides  
NAND Tree test output during  
test mode  
01 - Reserved - Do not use  
10 - Reserved - Do not use  
11 – Normal mode. Use  
external pull up for normal  
mode  
F3  
SCAN_EN  
Input with pull down  
Input with pull down  
Scan Enable  
0 - Normal mode (open)  
E27  
SCANMODE  
1 – Enable Test mode  
0 - Normal mode (open)  
System Clock, Power, and Ground Pins  
E1  
SCLK  
VDD  
Input  
System Clock at 100 MHz  
+2.5 Volt DC Supply  
K12, K13,  
Power  
K17,K18 M10,  
N10, M20, N20,  
U10, V10, U20,  
V20, Y12, Y13,  
Y17, Y18  
F13, F14, F15,  
F16, F17, N6, P6,  
R6, T6, U6, N24,  
P24, R24, T24,  
U24, AD13,  
VCC  
VSS  
Power  
+3.3 Volt DC Supply  
AD14, AD15,  
AD16, AD17  
M12, M13, M14,  
M15, M16, M17,  
M18, N12, N13,  
N14, N15, N16,  
N17, N18, P12,  
P13, P14, P15,  
P16, P17, P18,  
R12, R13, R14,  
R15, R16, R17,  
R18, T12, T13,  
T14, T15, T16,  
T17, T18, U12,  
U13, U14, U15,  
U16, U17, U18,  
V12, V13, V14,  
V15, V16, V17,  
V18,  
Power Ground  
Ground  
140  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Ball No(s)  
Symbol  
I/O  
Description  
F1  
D1  
AVCC  
AGND  
Analog Power  
Analog Ground  
Analog +2.5 Volt DC Supply  
Analog Ground  
MISC  
D22  
SCANCOL  
SCANCLK  
Input  
Scans the Collision signal of  
Home PHY  
D23  
Input/ output  
Clock for scanning Home PHY  
collision and link  
E23  
SCANLINK  
RESIN#  
Input  
Input  
Output  
N/A  
Link up signal from Home PHY  
Reset Input  
F2  
G2  
RESETOUT#  
RESERVED  
Reset PHY  
E20, B25  
Reserved Pins. Leave  
unconnected.  
Bootstrap Pins (Default = pull up, 1= pull up 0= pull down)  
After reset TSTOUT0 to TSTOU15 are used by the LED interface.  
C29  
D29  
TSTOUT0  
TSTOUT1  
Default 1  
Default 1  
GIGA Link polarity  
0 – active low  
1 – active high  
RMII MAC Power Saving  
Enable  
0 – No power saving  
1 – power saving  
E29  
B28  
TSTOUT2  
TSTOUT3  
Reserved  
Default 1  
Default 1  
Default 1  
Default 1  
Default 1  
Module detect enable  
0 – Hot swap enable  
1 – Hot swap disable  
C28  
D28  
E28  
A27  
TSTOUT4  
TSTOUT5  
TSTOUT6  
TSTOUT7  
Memory is SBRAM/ZBT  
0 – ZBT  
1 – Pipeline SBRAM  
Scan Speed: ¼ SCLK or SCLK  
0 – ¼ SCLK (HPNA)  
1 - SCLK  
CPU Port Mode  
0 - 8 bit Bus Mode  
1 - 16 bit Bus Mode  
Memory Size  
0 - 256 K x 32 or 256 K x 64  
(4 M total)  
1 - 128 K x 32 or 128 K x 64  
(2 M total)  
141  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Ball No(s)  
B27  
Symbol  
TSTOUT8  
I/O  
Description  
Default 1  
Default 1  
Default 1  
Default 1  
EEPROM Installed  
0 – EEPROM installed  
1 – EEPROM not installed  
C27  
D27  
C26  
TSTOUT9  
TSTOUT10  
TSTOUT11  
MCT Aging  
0 – MCT aging disable  
1 – MCT aging enable  
FCB Aging  
0 - FCB aging disable  
1 – FCB aging enable  
Timeout Reset  
0 – Time out reset disable  
1 – Time out reset enable. Issue  
reset if any state machine did  
not go back to idle for 5sec.  
D26  
D25  
TSTOUT12  
TSTOUT13  
Reserved  
Default 1  
FDB RAM depth (1 or 2 layers)  
0 – 2 layer  
1 – 1 layer  
D24  
TSTOUT14  
Default 1  
CPU installed  
0 – CPU installed  
1 – CPU not installed  
E24  
TSTOUT15  
Default 1  
SRAM Test Mode  
0 – Enable test mode  
1 – Normal operation  
T26, R26  
G0_TXEN, G0_TXER  
Default: PCS  
Giga0  
Mode: G0_TXEN G0_TXER  
0
0
1
1
0
1
0
1
MII  
2G  
GMII  
PCS  
F26, E26  
G1_TXEN, G1_TXER  
Default: PCS  
Giga1  
Mode: G1_TXEN G1_TXER  
0
0
1
1
0
1
0
1
MII  
2G  
GMII  
PCS  
142  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Ball No(s)  
Symbol  
M[23:0]_TXEN  
I/O  
Description  
AD29, AG28,  
AJ26, AE26,  
AJ24, AE23,  
AJ22, AJ20,  
AE20, AJ18,  
AJ21, AJ16,  
AJ14, AE14,  
AJ12, AE11,  
AJ10, AJ8, AE8,  
AJ6, AE5, AJ4,  
AG1, AE1,  
Default: RMII  
0 – GPSI  
1 - RMII  
C21  
P_D  
Must be pulled-down  
Default: 111  
Reserved. Must be pulled-  
down.  
C19, B19, A19  
OE_CLK[2:0]  
Programmable delay for internal  
OE_CLK from SCLK input. The  
OE_CLK is used for generating  
the OE0 and OE1 signals  
Suggested value is 001.  
C20, B20, A20  
LA_CLK[2:0]  
MIRROR[5:0]  
Default: 111  
Programmable delay for  
LA_CLK and LB_CLK from  
internal OE_CLK. The LA_CLK  
and LB_CLK delay from SCLK  
is the sum of the delay  
programmed in here and the  
delay in P_D[15:13].  
Suggested value is 011.  
B22, A22,  
C23, B23,  
A23, C24  
Default: 111111  
Dedicated Port Mirror Mode.  
The first 5 bits select the port to  
be mirrored. The last bit selects  
either ingress or egress data.  
Note:  
# = Active low signal  
Input = Input signal  
In-ST = Input signal with Schmitt-Trigger  
Output = Output signal (Tri-State driver)  
Out-OD = Output signal with Open-Drain driver  
I/O-TS = Input & Output signal with Tri-State driver  
I/O-OD = Input & Output signal with Open-Drain driver  
143  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
15.3 Ball – Signal Name in Unmanaged Mode  
Ball No.  
Signal Name  
LA_D[63]  
Ball No.  
D3  
Signal Name  
Ball No.  
Signal Name  
LA_OE0#  
D20  
B21  
D19  
E19  
D18  
E18  
D17  
E17  
D16  
E16  
D15  
E15  
D14  
E14  
D13  
E13  
D21  
E21  
A18  
B18  
C18  
A17  
B17  
C17  
A16  
B16  
C16  
A15  
B15  
C15  
LA_D[19]  
LA_D[18]  
LA_D[17]  
LA_D[16]  
LA_D[15]  
LA_D[14]  
LA_D[13]  
LA_D[12]  
LA_D[11]  
LA_D[10]  
LA_D[9]  
LA_D[8]  
LA_D[7]  
LA_D[6]  
LA_D[5]  
LA_D[4]  
LA_D[3]  
LA_D[2]  
LA_D[1]  
LA_D[0]  
LA_A[20]  
LA_A[19]  
LA_A[18]  
LA_A[17]  
LA_A[16]  
LA_A[15]  
LA_A[14]  
LA_A[13]  
LA_A[12]  
LA_A[11]  
A9  
B9  
F4  
F5  
G4  
G5  
H4  
H5  
J4  
LA_D[62]  
LA_D[61]  
LA_D[60]  
LA_D[59]  
LA_D[58]  
LA_D[57]  
LA_D[56]  
LA_D[55]  
LA_D[54]  
LA_D[53]  
LA_D[52]  
LA_D[51]  
LA_D[50]  
LA_D[49]  
LA_D[48]  
LA_D[47]  
LA_D[46]  
LA_D[45]  
LA_D[44]  
LA_D[43]  
LA_D[42]  
LA_D[41]  
LA_D[40]  
LA_D[39]  
LA_D[38]  
LA_D[37]  
LA_D[36]  
LA_D[35]  
LA_D[34]  
E3  
LA_OE1#  
LB_D[63]  
LB_D[62]  
LB_D[61]  
LB_D[60]  
LB_D[59]  
LB_D[58]  
LB_D[57]  
LB_D[56]  
LB_D[55]  
LB_D[54]  
LB_D[53]  
LB_D[52]  
LB_D[51]  
LB_D[50]  
LB_D[49]  
LB_D[48]  
LB_D[47]  
LB_D[46]  
LB_D[45]  
LB_D[44]  
LB_D[43]  
LB_D[42]  
LB_D[41]  
LB_D[40]  
LB_D[39]  
LB_D[38]  
LB_D[37]  
LB_D[36]  
D2  
E2  
A7  
B7  
A6  
B6  
C6  
A5  
J5  
B5  
K4  
K5  
L4  
L5  
M4  
M5  
N4  
N5  
G3  
H1  
H2  
H3  
J1  
C5  
A4  
B4  
C4  
A3  
B3  
C3  
B2  
C2  
C14  
A13  
B13  
C13  
A12  
B12  
C12  
A11  
B11  
C11  
J2  
J3  
K1  
K2  
K3  
L1  
L2  
144  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Ball No.  
Signal Name  
LA_D[33]  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
LB_D[35]  
A14  
B14  
D9  
D11  
E11  
LA_A[10]  
L3  
LA_D[32]  
LA_D[31]  
LA_D[30]  
LA_D[29]  
LA_D[28]  
LA_D[27]  
LA_D[26]  
LA_D[25]  
LA_D[24]  
LA_D[23]  
LA_D[22]  
LA_D[21]  
LA_D[20]  
LB_D[21]  
LB_D[20]  
LB_D[19]  
LB_D[18]  
LB_D[17]  
LB_D[16]  
LB_D[15]  
LB_D[14]  
LB_D[13]  
LB_D[12]  
LB_D[11]  
LB_D[10]  
LB_D[9]  
LA_A[9]  
M1  
LB_D[34]  
LB_D[33]  
A10  
B10  
D10  
E10  
A8  
LA_A[8]  
M2  
E9  
LA_A[7]  
M3  
LB_D[32]  
D8  
LA_A[6]  
U4  
LB_D[31]  
E8  
LA_A[5]  
U5  
LB_D[30]  
D7  
LA_A[4]  
V4  
LB_D[29]  
E7  
C7  
LA_A[3]  
V5  
LB_D[28]  
D6  
B8  
LA_DSC#  
LA_CLK  
W4  
LB_D[27]  
E6  
C1  
W5  
LB_D[26]  
D5  
C9  
LA_WE#  
Y4  
LB_D[25]  
E5  
D12  
E12  
C8  
LA_WE0#  
LA_WE1#  
LA_OE#  
Y5  
LB_D[24]  
D4  
AA4  
AA5  
AH7  
AE6  
AH5  
AH2  
AF2  
AC27  
AF29  
AG27  
AF26  
AG25  
AG23  
AF23  
AG21  
AH21  
AF19  
AF17  
AG17  
LB_D[23]  
E4  
LB_D[22]  
AB4  
AB5  
AC4  
AC5  
AD4  
AD5  
W1  
Y1  
U2  
LB_OE1#  
M[4]_RXD[0]  
M[3]_RXD[0]  
M[2]_RXD[0]  
M[1]_RXD[0]  
M[0]_RXD[0]  
R28  
P28  
R29  
AC29  
AE28  
AJ27  
AF27  
AJ25  
AF24  
AH23  
AE19  
AF21  
AJ19  
AF18  
AJ17  
AJ15  
MDC  
MDIO  
M_CLK  
M[23]_RXD[1]  
M[22]_RXD[1]  
M[21]_RXD[1]  
M[20]_RXD[1]  
M[19]_RXD[1]  
M[18]_RXD[1]  
M[17]_RXD[1]  
M[16]_RXD[1]  
M[15]_RXD[1]  
M[14]_RXD[1]  
M[13]_RXD[1]  
M[12]_RXD[1]  
M[11]_RXD[1]  
M[23]_CRS_DV  
M[22]_CRS_DV  
M[21]_CRS_DV  
M[20]_CRS_DV  
M[19]_CRS_DV  
M[18]_CRS_DV  
M[17]_CRS_DV  
M[16]_CRS_DV  
M[15]_CRS_DV  
M[14]_CRS_DV  
M[13]_CRS_DV  
M[12]_CRS_DV  
Y2  
Y3  
AA1  
AA2  
AA3  
AB1  
AB2  
AB3  
AC1  
LB_D[8]  
LB_D[7]  
LB_D[6]  
LB_D[5]  
145  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Ball No.  
Signal Name  
LB_D[4]  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
AC2  
AC3  
AD1  
AD2  
AD3  
N3  
N2  
N1  
P3  
AF15  
AJ13  
AF12  
AJ11  
AJ9  
M[10]_RXD[1]  
M[9]_RXD[1]  
M[8]_RXD[1]  
M[7]_RXD[1]  
M[6]_RXD[1]  
M[5]_RXD[1]  
M[4]_RXD[1]  
M[3]_RXD[1]  
M[2]_RXD[1]  
M[1]_RXD[1]  
M[0]_RXD[1]  
M[23]_RXD[0]  
M[22]_RXD[0]  
M[21]_RXD[0]  
M[20]_RXD[0]  
M[19]_RXD[0]  
M[18]_RXD[0]  
M[17]_RXD[0]  
M[16]_RXD[0]  
M[15]_RXD[0]  
M[14]_RXD[0]  
M[13]_RXD[0]  
M[12]_RXD[0]  
M[11]_RXD[0]  
M[10]_RXD[0]  
M[9]_RXD[0]  
M[8]_RXD[0]  
M[7]_RXD[0]  
M[6]_RXD[0]  
M[5]_RXD[0]  
M[6]_TXD[0]  
AG15  
AF14  
AG13  
AF11  
AG11  
AG9  
M[11]_CRS_DV  
M[10]_CRS_DV  
M[9]_CRS_DV  
M[8]_CRS_DV  
M[7]_CRS_DV  
M[6]_CRS_DV  
M[5]_CRS_DV  
M[4]_CRS_DV  
M[3]_CRS_DV  
M[2]_CRS_DV  
M[1]_CRS_DV  
M[0]_CRS_DV  
M[23]_TXEN  
M[22]_TXEN  
M[21]_TXEN  
M[20]_TXEN  
M[19]_TXEN  
M[18]_TXEN  
M[17]_TXEN  
M[16]_TXEN  
M[15]_TXEN  
M[14]_TXEN  
M[13]_TXEN  
M[12]_TXEN  
M[11]_TXEN  
M[10]_TXEN  
M[9]_TXEN  
LB_D[3]  
LB_D[2]  
LB_D[1]  
LB_D[0]  
LB_A[20]  
LB_A[19]  
LB_A[18]  
LB_A[17]  
LB_A[16]  
LB_A[15]  
LB_A[14]  
LB_A[13]  
LB_A[12]  
LB_A[11]  
LB_A[10]  
LB_A[9]  
AF9  
AJ7  
AF8  
AF6  
AG7  
AJ5  
AF5  
P2  
AJ3  
AG5  
P1  
AF1  
AH3  
R5  
R4  
R3  
R2  
R1  
T5  
AC28  
AF28  
AH27  
AE27  
AH25  
AE24  
AF22  
AF20  
AE21  
AH19  
AH20  
AH17  
AH15  
AE15  
AH13  
AE12  
AH11  
AH9  
AF3  
AD29  
AG28  
AJ26  
AE26  
AJ24  
AE23  
AJ22  
AJ20  
AE20  
AJ18  
AJ21  
AJ16  
AJ14  
AE14  
AJ12  
AE11  
AJ10  
AJ8  
T4  
LB_A[8]  
T3  
LB_A[7]  
T2  
LB_A[6]  
T1  
LB_A[5]  
W3  
W2  
V1  
LB_A[4]  
LB_A[3]  
LB_ADSC#  
LB_CLK  
LB_WE#  
LB_WE0#  
LB_WE1#  
LB_OE#  
LB_OE0#  
M[5]_TXEN  
G1  
V3  
P4  
P5  
M[8]_TXEN  
V2  
M[7]_TXEN  
U1  
AE8  
AE9  
M[6]_TXEN  
AH8  
G27  
M26_RXD[15]  
146  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Ball No.  
Signal Name  
M[4]_TXEN  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
AJ6  
AF7  
M[5]_TXD[0]  
M[4]_TXD[0]  
M[3]_TXD[0]  
M[2]_TXD[0]  
M[1]_TXD[0]  
M[0]_TXD[0]  
M25_TXD[15]  
M25_TXD[14]  
M25_TXD[13]  
M25_TXD[12]  
M25_TXD[11]  
M25_TXD[10]  
M25_TXD[9]  
M25_TXD[8]  
M25_TXD[7]  
M25_TXD[6]  
M25_TXD[5]  
M25_TXD[4]  
M25_TXD[3]  
M25_TXD[2]  
M25_TXD[1]  
M25_TXD[0]  
M25_RXD[15]  
M25_RXD[14]  
M25_RXD[13]  
M25_RXD[12]  
M25_RXD[11]  
M25_RXD[10]  
M25_RXD[9]  
M25_RXD[8]  
M25_RXD[7]  
H29  
H28  
H27  
J29  
M26_RXD[14]  
M26_RXD[13]  
M26_RXD[12]  
M26_RXD[11]  
M26_RXD[10]  
M26_RXD[9]  
M26_RXD[8]  
M26_RXD[7]  
M26_RXD[6]  
M26_RXD[5]  
M26_RXD[4]  
M26_RXD[3]  
M26_RXD[2]  
M26_RXD[1]  
M26_RXD[0]  
M26_TXD[15]  
M26_TXD[14]  
M26_TXD[13]  
M26_TXD[12]  
M26_TXD[11]  
M26_TXD[10]  
M26_TXD[9]  
M26_TXD[8]  
M26_TXD[7]  
M26_TXD[6]  
M26_TXD[5]  
M26_TXD[4]  
M26_TXD[3]  
M26_TXD[2]  
M26_TXD[1]  
M26_TXD[0]  
AE5  
M[3]_TXEN  
AH6  
AF4  
AJ4  
M[2]_TXEN  
AG1  
M[1]_TXEN  
AH4  
AG2  
AE2  
U26  
AE1  
M[0]_TXEN  
J28  
AD27  
AH28  
AG26  
AE25  
AG24  
AE22  
AJ23  
AG20  
AE18  
AG18  
AE16  
AG16  
AG14  
AE13  
AG12  
AE10  
AG10  
AG8  
M[23]_TXD[1]  
M[22]_TXD[1]  
M[21]_TXD[1]  
M[20]_TXD[1]  
M[19]_TXD[1]  
M[18]_TXD[1]  
M[17]_TXD[1]  
M[16]_TXD[1]  
M[15]_TXD[1]  
M[14]_TXD[1]  
M[13]_TXD[1]  
M[12]_TXD[1]  
M[11]_TXD[1]  
M[10]_TXD[1]  
M[9]_TXD[1]  
M[8]_TXD[1]  
M[7]_TXD[1]  
M[6]_TXD[1]  
M[5]_TXD[1]  
M[4]_TXD[1]  
M[3]_TXD[1]  
M[2]_TXD[1]  
M[1]_TXD[1]  
M[0]_TXD[1]  
M[23]_TXD[0]  
M[22]_TXD[0]  
J27  
K29  
K28  
K27  
L29  
L28  
L27  
M29  
M28  
M27  
G26  
G25  
H26  
H25  
J26  
U25  
V26  
V25  
W26  
W25  
Y27  
Y26  
AA26  
AA25  
AB26  
AB25  
AC26  
AC25  
AD26  
AD25  
U27  
J25  
K25  
K26  
M25  
L26  
M26  
L25  
N26  
N25  
P26  
P25  
AE7  
V29  
AG6  
V28  
AE4  
V27  
AG4  
W29  
W28  
W27  
Y29  
AG3  
AE3  
AD28  
AG29  
Y28  
147  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Ball No.  
Signal Name  
M[21]_TXD[0]  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
M26_RX_DV  
AH26  
AF25  
AH24  
AG22  
AH22  
AE17  
AG19  
AH18  
AF16  
Y25  
M25_RXD[6]  
M25_RXD[5]  
M25_RXD[4]  
M25_RXD[3]  
M25_RXD[2]  
M25_RXD[1]  
M25_RXD[0]  
M25_TX_ER  
M25_TXCLK  
F28  
G28  
E25  
G29  
F29  
F26  
E26  
F25  
E24  
M[20]_TXD[0]  
M[19]_TXD[0]  
M[18]_TXD[0]  
M[17]_TXD[0]  
M[16]_TXD[0]  
M[15]_TXD[0]  
M[14]_TXD[0]  
M[13]_TXD[0]  
AA29  
AA28  
AA27  
AB29  
AB28  
AB27  
R26  
M26_RX_ER  
M26_CRS  
M26_COL  
M26_RXCLK  
M26_TX_EN  
M26_TX_ER  
M26_TXCLK  
T25  
BIST_DONE/TSTO  
UT[15]  
AH16  
AH14  
AF13  
AH12  
AF10  
AH10  
M[12]_TXD[0]  
M[11]_TXD[0]  
M[10]_TXD[0]  
M[9]_TXD[0]  
M[8]_TXD[0]  
M[7]_TXD[0]  
T26  
T28  
U28  
R25  
U29  
T29  
M25_TX_EN  
M25_RX_DV  
M25_RX_ER  
M25_CRS  
D24  
D25  
D26  
C26  
D27  
C27  
BIST_IN_PRC/TST0  
UT[14]  
MCT_ERR/TSTOUT  
[13]  
FCB_ERR/TSTOUT[  
12]  
CHECKSUM_OK/TS  
TOUT[11]  
M25_COL  
INIT_START/TSTOU  
T[10]  
M25_RXCLK  
INIT_DONE/TSTOU  
T[9]  
B27  
A27  
G2_LINK#/TSTOUT[8] U18  
VSS  
VSS  
N12  
N13  
VSS  
VSS  
G2_DPCOL#/TSTOUT V12  
[7]  
E28  
G2_RXTX#/TSTOUT[  
6]  
V13  
VSS  
K17  
VDD  
D28  
C28  
G1_LINK#/TSTOUT[5] V14  
VSS  
VSS  
K18  
M10  
VDD  
VDD  
G1_DPCOL#/TSTOUT V15  
[4]  
B28  
G1_RXTX#/TSTOUT[  
3]  
V16  
VSS  
N10  
VDD  
E29  
D29  
C29  
N29  
LED_BIT/TSTOUT[2]  
V17  
VSS  
VSS  
VSS  
VSS  
M20  
N20  
U10  
V10  
VDD  
VDD  
VDD  
VDD  
LED_SYN/TSTOUT[1] V18  
LED_CLK/TSTOUT[0]  
GREF_CLK1  
N14  
N15  
148  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Ball No.  
Signal Name  
GREF_CLK0  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
VDD  
P29  
F3  
N16  
N17  
N18  
P12  
P13  
P14  
P15  
P16  
C19  
B19  
A19  
R13  
R14  
R15  
R16  
R17  
R18  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
U12  
U13  
U14  
U15  
U16  
U17  
M12  
VSS  
U20  
V20  
Y12  
Y13  
Y17  
Y18  
K12  
K13  
M16  
M17  
M18  
F16  
F17  
N6  
SCAN_EN  
SCLK  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
E1  
VSS  
U3  
T_MODE0  
T_MODE1  
TRUNK2  
TRUNK1  
TRUNK0  
STROBE  
D0  
VSS  
C10  
B24  
A21  
C22  
A26  
B26  
C25  
A24  
A25  
F1  
VSS  
VSS  
VSS  
VSS  
OE_CLK2  
OE_CLK1  
OE_CLK0  
VSS  
AUTOFD  
SCL  
SDA  
VSS  
AVCC  
VSS  
D1  
AGND  
VSS  
P6  
D22  
E23  
E27  
N28  
N27  
F2  
SCANCOL  
SCANLINK  
SCANMODE  
VSS  
R6  
VSS  
T6  
VSS  
U6  
VSS  
N24  
P24  
R24  
T24  
U24  
AD13  
AD14  
AD15  
AD16  
AD17  
F13  
F14  
F15  
VSS  
RESIN#  
VSS  
G2  
RESETOUT#  
MIRROR5  
MIRROR4  
MIRROR3  
MIRROR2  
MIRROR1  
MIRROR0  
SCANCLK  
M25_MTXCLK  
M26_MTXCLK  
VSS  
B22  
A22  
C23  
B23  
A23  
C24  
D23  
T27  
F27  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
149  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Ball No.  
Signal Name  
LA_CLK2  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
C20  
B20  
A20  
C21  
E20  
B25  
M13  
M14  
M15  
P17  
P18  
R12  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
LA_CLK1  
LA_CLK0  
P_D  
RESERVED  
RESERVED  
15.4 Ball – Signal Name in Managed Mode  
Ball No.  
Signal Name  
LA_D[63]  
Ball No.  
Signal Name  
Ball No.  
A9  
Signal Name  
LA_OE0#  
D20  
B21  
D19  
E19  
D18  
E18  
D17  
E17  
D16  
E16  
D15  
E15  
D14  
E14  
D13  
E13  
D21  
E21  
A18  
B18  
C18  
A17  
D3  
E3  
D2  
E2  
A7  
B7  
A6  
B6  
C6  
A5  
B5  
C5  
A4  
B4  
C4  
A3  
B3  
C3  
B2  
C2  
C14  
A13  
LA_D[19]  
LA_D[18]  
LA_D[17]  
LA_D[16]  
LA_D[15]  
LA_D[14]  
LA_D[13]  
LA_D[12]  
LA_D[11]  
LA_D[10]  
LA_D[9]  
LA_D[8]  
LA_D[7]  
LA_D[6]  
LA_D[5]  
LA_D[4]  
LA_D[3]  
LA_D[2]  
LA_D[1]  
LA_D[0]  
LA_A[20]  
LA_A[19]  
LA_D[62]  
LA_D[61]  
LA_D[60]  
LA_D[59]  
LA_D[58]  
LA_D[57]  
LA_D[56]  
LA_D[55]  
LA_D[54]  
LA_D[53]  
LA_D[52]  
LA_D[51]  
LA_D[50]  
LA_D[49]  
LA_D[48]  
LA_D[47]  
LA_D[46]  
LA_D[45]  
LA_D[44]  
LA_D[43]  
LA_D[42]  
B9  
F4  
F5  
G4  
G5  
H4  
H5  
J4  
LA_OE1#  
LB_D[63]  
LB_D[62]  
LB_D[61]  
LB_D[60]  
LB_D[59]  
LB_D[58]  
LB_D[57]  
LB_D[56]  
LB_D[55]  
LB_D[54]  
LB_D[53]  
LB_D[52]  
LB_D[51]  
LB_D[50]  
LB_D[49]  
LB_D[48]  
LB_D[47]  
LB_D[46]  
LB_D[45]  
LB_D[44]  
J5  
K4  
K5  
L4  
L5  
M4  
M5  
N4  
N5  
G3  
H1  
H2  
H3  
150  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Ball No.  
Signal Name  
LA_D[41]  
Ball No.  
Signal Name  
Ball No.  
J1  
Signal Name  
LB_D[43]  
B17  
C17  
A16  
B16  
C16  
A15  
B15  
C15  
A14  
B14  
D9  
B13  
C13  
A12  
B12  
C12  
A11  
B11  
C11  
D11  
E11  
A10  
B10  
D10  
E10  
A8  
LA_A[18]  
LA_A[17]  
LA_A[16]  
LA_A[15]  
LA_A[14]  
LA_A[13]  
LA_A[12]  
LA_A[11]  
LA_A[10]  
LA_A[9]  
LA_D[40]  
LA_D[39]  
LA_D[38]  
LA_D[37]  
LA_D[36]  
LA_D[35]  
LA_D[34]  
LA_D[33]  
LA_D[32]  
LA_D[31]  
LA_D[30]  
LA_D[29]  
LA_D[28]  
LA_D[27]  
LA_D[26]  
LA_D[25]  
LA_D[24]  
LA_D[23]  
LA_D[22]  
LA_D[21]  
LA_D[20]  
LB_D[21]  
LB_D[20]  
LB_D[19]  
LB_D[18]  
LB_D[17]  
LB_D[16]  
LB_D[15]  
LB_D[14]  
LB_D[13]  
J2  
LB_D[42]  
LB_D[41]  
LB_D[40]  
LB_D[39]  
LB_D[38]  
LB_D[37]  
LB_D[36]  
LB_D[35]  
LB_D[34]  
LB_D[33]  
LB_D[32]  
LB_D[31]  
LB_D[30]  
LB_D[29]  
LB_D[28]  
LB_D[27]  
LB_D[26]  
LB_D[25]  
LB_D[24]  
LB_D[23]  
LB_D[22]  
M[4]_RXD[0]  
M[3]_RXD[0]  
M[2]_RXD[0]  
M[1]_RXD[0]  
M[0]_RXD[0]  
J3  
K1  
K2  
K3  
L1  
L2  
L3  
M1  
LA_A[8]  
M2  
E9  
LA_A[7]  
M3  
D8  
LA_A[6]  
U4  
E8  
LA_A[5]  
U5  
D7  
LA_A[4]  
V4  
E7  
C7  
LA_A[3]  
V5  
D6  
B8  
LA_DSC#  
LA_CLK  
W4  
W5  
Y4  
E6  
C1  
D5  
C9  
LA_WE#  
LA_WE0#  
LA_WE1#  
LA_OE#  
E5  
D12  
E12  
C8  
Y5  
D4  
AA4  
AA5  
AH7  
AE6  
AH5  
AH2  
AF2  
AC27  
AF29  
AG27  
AF26  
E4  
AB4  
AB5  
AC4  
AC5  
AD4  
AD5  
W1  
Y1  
U2  
LB_OE1#  
MDC  
R28  
P28  
R29  
AC29  
AE28  
AJ27  
AF27  
AJ25  
MDIO  
M_CLK  
M[23]_RXD[1]  
M[22]_RXD[1]  
M[21]_RXD[1]  
M[20]_RXD[1]  
M[19]_RXD[1]  
M[23]_CRS_DV  
M[22]_CRS_DV  
M[21]_CRS_DV  
M[20]_CRS_DV  
Y2  
151  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Ball No.  
Signal Name  
LB_D[12]  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
M[19]_CRS_DV  
Y3  
AF24  
AH23  
AE19  
AF21  
AJ19  
AF18  
AJ17  
AJ15  
AF15  
AJ13  
AF12  
AJ11  
AJ9  
M[18]_RXD[1]  
M[17]_RXD[1]  
M[16]_RXD[1]  
M[15]_RXD[1]  
M[14]_RXD[1]  
M[13]_RXD[1]  
M[12]_RXD[1]  
M[11]_RXD[1]  
M[10]_RXD[1]  
M[9]_RXD[1]  
M[8]_RXD[1]  
M[7]_RXD[1]  
M[6]_RXD[1]  
M[5]_RXD[1]  
M[4]_RXD[1]  
M[3]_RXD[1]  
M[2]_RXD[1]  
M[1]_RXD[1]  
M[0]_RXD[1]  
M[23]_RXD[0]  
M[22]_RXD[0]  
M[21]_RXD[0]  
M[20]_RXD[0]  
M[19]_RXD[0]  
M[18]_RXD[0]  
M[17]_RXD[0]  
M[16]_RXD[0]  
M[15]_RXD[0]  
M[14]_RXD[0]  
M[13]_RXD[0]  
M[12]_RXD[0]  
AG25  
AG23  
AF23  
AG21  
AH21  
AF19  
AF17  
AG17  
AG15  
AF14  
AG13  
AF11  
AG11  
AG9  
AA1  
AA2  
AA3  
AB1  
AB2  
AB3  
AC1  
AC2  
AC3  
AD1  
AD2  
AD3  
N3  
LB_D[11]  
LB_D[10]  
LB_D[9]  
LB_D[8]  
LB_D[7]  
LB_D[6]  
LB_D[5]  
LB_D[4]  
LB_D[3]  
LB_D[2]  
LB_D[1]  
LB_D[0]  
LB_A[20]  
LB_A[19]  
LB_A[18]  
LB_A[17]  
LB_A[16]  
LB_A[15]  
LB_A[14]  
LB_A[13]  
LB_A[12]  
LB_A[11]  
LB_A[10]  
LB_A[9]  
LB_A[8]  
LB_A[7]  
LB_A[6]  
LB_A[5]  
LB_A[4]  
LB_A[3]  
M[18]_CRS_DV  
M[17]_CRS_DV  
M[16]_CRS_DV  
M[15]_CRS_DV  
M[14]_CRS_DV  
M[13]_CRS_DV  
M[12]_CRS_DV  
M[11]_CRS_DV  
M[10]_CRS_DV  
M[9]_CRS_DV  
M[8]_CRS_DV  
M[7]_CRS_DV  
M[6]_CRS_DV  
M[5]_CRS_DV  
M[4]_CRS_DV  
M[3]_CRS_DV  
M[2]_CRS_DV  
M[1]_CRS_DV  
M[0]_CRS_DV  
M[23]_TXEN  
AF9  
N2  
AJ7  
AF8  
N1  
AF6  
AG7  
P3  
AJ5  
AF5  
P2  
AJ3  
AG5  
P1  
AF1  
AH3  
R5  
AC28  
AF28  
AH27  
AE27  
AH25  
AE24  
AF22  
AF20  
AE21  
AH19  
AH20  
AH17  
AF3  
R4  
AD29  
AG28  
AJ26  
AE26  
AJ24  
AE23  
AJ22  
AJ20  
AE20  
AJ18  
AJ21  
R3  
M[22]_TXEN  
R2  
M[21]_TXEN  
R1  
M[20]_TXEN  
T5  
M[19]_TXEN  
T4  
M[18]_TXEN  
T3  
M[17]_TXEN  
T2  
M[16]_TXEN  
T1  
M[15]_TXEN  
W3  
W2  
M[14]_TXEN  
M[13]_TXEN  
152  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Ball No.  
Signal Name  
LB_ADSC#  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
M[12]_TXEN  
V1  
AH15  
AE15  
AH13  
AE12  
AH11  
AH9  
AE9  
M[11]_RXD[0]  
M[10]_RXD[0]  
M[9]_RXD[0]  
M[8]_RXD[0]  
M[7]_RXD[0]  
M[6]_RXD[0]  
M[5]_RXD[0]  
M[6]_TXD[0]  
M[5]_TXD[0]  
M[4]_TXD[0]  
M[3]_TXD[0]  
M[2]_TXD[0]  
M[1]_TXD[0]  
M[0]_TXD[0]  
M25_TXD[15]  
M25_TXD[14]  
M25_TXD[13]  
M25_TXD[12]  
M25_TXD[11]  
M25_TXD[10]  
M25_TXD[9]  
M25_TXD[8]  
M25_TXD[7]  
M25_TXD[6]  
M25_TXD[5]  
M25_TXD[4]  
M25_TXD[3]  
M25_TXD[2]  
M25_TXD[1]  
M25_TXD[0]  
M25_RXD[15]  
AJ16  
AJ14  
AE14  
AJ12  
AE11  
AJ10  
AJ8  
G27  
H29  
H28  
H27  
J29  
G1  
LB_CLK  
M[11]_TXEN  
M[10]_TXEN  
M[9]_TXEN  
V3  
LB_WE#  
P4  
LB_WE0#  
P5  
LB_WE1#  
M[8]_TXEN  
V2  
LB_OE#  
M[7]_TXEN  
U1  
LB_OE0#  
M[6]_TXEN  
AE8  
AJ6  
M[5]_TXEN  
M[4]_TXEN  
M[3]_TXEN  
M[2]_TXEN  
M[1]_TXEN  
M[0]_TXEN  
M[23]_TXD[1]  
M[22]_TXD[1]  
M[21]_TXD[1]  
M[20]_TXD[1]  
M[19]_TXD[1]  
M[18]_TXD[1]  
M[17]_TXD[1]  
M[16]_TXD[1]  
M[15]_TXD[1]  
M[14]_TXD[1]  
M[13]_TXD[1]  
M[12]_TXD[1]  
M[11]_TXD[1]  
M[10]_TXD[1]  
M[9]_TXD[1]  
M[8]_TXD[1]  
M[7]_TXD[1]  
M[6]_TXD[1]  
AH8  
AF7  
M26_RXD[15]  
M26_RXD[14]  
M26_RXD[13]  
M26_RXD[12]  
M26_RXD[11]  
M26_RXD[10]  
M26_RXD[9]  
M26_RXD[8]  
M26_RXD[7]  
M26_RXD[6]  
M26_RXD[5]  
M26_RXD[4]  
M26_RXD[3]  
M26_RXD[2]  
M26_RXD[1]  
M26_RXD[0]  
M26_TXD[15]  
M26_TXD[14]  
M26_TXD[13]  
M26_TXD[12]  
M26_TXD[11]  
M26_TXD[10]  
M26_TXD[9]  
M26_TXD[8]  
AE5  
AJ4  
AH6  
AF4  
AG1  
AE1  
AD27  
AH28  
AG26  
AE25  
AG24  
AE22  
AJ23  
AG20  
AE18  
AG18  
AE16  
AG16  
AG14  
AE13  
AG12  
AE10  
AG10  
AG8  
AH4  
AG2  
AE2  
J28  
J27  
U26  
K29  
K28  
K27  
L29  
U25  
V26  
V25  
W26  
W25  
Y27  
L28  
L27  
M29  
M28  
M27  
G26  
G25  
H26  
H25  
J26  
Y26  
AA26  
AA25  
AB26  
AB25  
AC26  
AC25  
AD26  
AD25  
U27  
J25  
K25  
K26  
153  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Ball No.  
Signal Name  
M[5]_TXD[1]  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
M26_TXD[7]  
AE7  
V29  
M25_RXD[14]  
M25_RXD[13]  
M25_RXD[12]  
M25_RXD[11]  
M25_RXD[10]  
M25_RXD[9]  
M25_RXD[8]  
M25_RXD[7]  
M25_RXD[6]  
M25_RXD[5]  
M25_RXD[4]  
M25_RXD[3]  
M25_RXD[2]  
M25_RXD[1]  
M25_RXD[0]  
M25_TX_ER  
M25_TXCLK  
M25_TX_EN  
M25  
L26  
M26  
L25  
N26  
N25  
P26  
P25  
F28  
G28  
E25  
G29  
F29  
F26  
E26  
F25  
E24  
D24  
AG6  
M[4]_TXD[1]  
M[3]_TXD[1]  
M[2]_TXD[1]  
M[1]_TXD[1]  
M[0]_TXD[1]  
M[23]_TXD[0]  
M[22]_TXD[0]  
M[21]_TXD[0]  
M[20]_TXD[0]  
M[19]_TXD[0]  
M[18]_TXD[0]  
M[17]_TXD[0]  
M[16]_TXD[0]  
M[15]_TXD[0]  
M[14]_TXD[0]  
M[13]_TXD[0]  
M[12]_TXD[0]  
V28  
M26_TXD[6]  
M26_TXD[5]  
M26_TXD[4]  
M26_TXD[3]  
M26_TXD[2]  
M26_TXD[1]  
M26_TXD[0]  
M26_RX_DV  
M26_RX_ER  
M26_CRS  
AE4  
V27  
AG4  
W29  
W28  
W27  
Y29  
AG3  
AE3  
AD28  
AG29  
AH26  
AF25  
AH24  
AG22  
AH22  
AE17  
AG19  
AH18  
AF16  
AH16  
Y28  
Y25  
AA29  
AA28  
AA27  
AB29  
AB28  
AB27  
R26  
M26_COL  
M26_RXCLK  
M26_TX_EN  
M26_TX_ER  
M26_TXCLK  
T25  
BIST_DONE/TSTOUT[15]  
T26  
BIST_IN_PRC/TST0UT[1  
4]  
AH14  
AF13  
AH12  
M[11]_TXD[0]  
M[10]_TXD[0]  
M[9]_TXD[0]  
T28  
U28  
R25  
M25_RX_DV  
M25_RX_ER  
M25_CRS  
D25  
D26  
C26  
MCT_ERR/TSTOUT[13]  
FCB_ERR/TSTOUT[12]  
CHECKSUM_OK/TSTOU  
T[11]  
AF10  
AH10  
B27  
A27  
E28  
D28  
C28  
B28  
E29  
M[8]_TXD[0]  
U29  
T29  
U18  
V12  
V13  
V14  
V15  
V16  
V17  
M25_COL  
M25_RXCLK  
VSS  
D27  
C27  
N12  
N13  
K17  
K18  
M10  
N10  
M20  
INIT_START/TSTOUT[10]  
M[7]_TXD[0]  
INIT_DONE/TSTOUT[9]  
G2_LINK#/TSTOUT[8]  
G2_DPCOL#/TSTOUT[7]  
G2_RXTX#/TSTOUT[6]  
G1_LINK#/TSTOUT[5]  
G1_DPCOL#/TSTOUT[4]  
G1_RXTX#/TSTOUT[3]  
LED_BIT/TSTOUT[2]  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
154  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
D29  
C29  
N29  
P29  
F3  
LED_SYN/TSTOUT[1]  
LED_CLK/TSTOUT[0]  
GREF_CLK1  
GREF_CLK0  
SCAN_EN  
SCLK  
V18  
N14  
N15  
C19  
B19  
A19  
P12  
P13  
P14  
P15  
P16  
N16  
N17  
N18  
R13  
R14  
R15  
R16  
R17  
R18  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
U12  
U13  
U14  
U15  
VSS  
N20  
U10  
V10  
U20  
V20  
Y12  
Y13  
Y17  
Y18  
K12  
K13  
M16  
M17  
M18  
F16  
F17  
N6  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
P_DATA15  
P_DATA14  
P_DATA13  
VSS  
E1  
U3  
T_MODE0  
T_MODE1  
P_DATA6  
P_DATA7  
P_A2  
C10  
B24  
A21  
C22  
A26  
B26  
C25  
A24  
A25  
F1  
VSS  
VSS  
VSS  
VSS  
P_WE  
VSS  
P_RD  
VSS  
P_CS  
VSS  
P_A1  
VSS  
P_A0  
VSS  
AVCC  
VSS  
D1  
AGND  
VSS  
P6  
D22  
E23  
E27  
N28  
N27  
F2  
SCANCOL  
SCANLINK  
SCANMODE  
VSS  
R6  
VSS  
T6  
VSS  
U6  
VSS  
N24  
P24  
R24  
T24  
U24  
AD13  
AD14  
AD15  
AD16  
AD17  
VSS  
RESIN#  
VSS  
G2  
RESETOUT#  
P_DATA5  
P_DATA4  
P_DATA3  
P_DATA2  
P_DATA1  
P_DATA0  
VSS  
B22  
A22  
C23  
B23  
A23  
C24  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
155  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
Ball No.  
Signal Name  
SCANCLK  
Ball No.  
Signal Name  
Ball No.  
Signal Name  
D23  
T27  
F27  
C20  
B20  
A20  
C21  
E20  
B25  
U16  
U17  
M12  
M13  
M14  
M15  
P17  
P18  
R12  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
F13  
F14  
F15  
VCC  
VCC  
VCC  
M25_MTXCLK  
M26_MTXCLK  
P_DATA12  
P_DATA11  
P_DATA10  
P_DATA9  
P_DATA8  
P_INT  
15.5 AC/DC Timing  
15.5.1 Absolute Maximum Ratings  
Storage Temperature  
-65°C to +150°C  
-40°C to +85°C  
+125°C  
Operating Temperature  
Maximum Junction Temperature  
Supply Voltage VCC with Respect to VSS  
Supply Voltage VDD with Respect to VSS  
Voltage on Input Pins  
+3.0 V to +3.6 V  
+2.38 V to +2.75 V  
-0.5 V to (VCC + 3.3 V)  
Caution: Stress above those listed may damage the device. Exposure to the Absolute Maximum Ratings for  
extended periods may affect device reliability. Functionality at or above these limits is not implied.  
15.5.2 DC Electrical Characteristics  
VCC = 3.0 V to 3.6 V (3.3v +/- 10%)T  
VDD = 2.5 V +10% - 5%  
= -40°C to +85°C  
AMBIENT  
156  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
15.5.3 Recommended Operating Conditions  
Symbol  
Parameter Description  
Frequency of Operation  
Min.  
Typ.  
100  
Max.  
Unit  
f
I
I
MHz  
mA  
mA  
V
osc  
Supply Current – @ 100 MHz (VCC=3.3 V)  
Supply Current – @ 100 MHz (VDD=2.5 V)  
Output High Voltage (CMOS)  
450  
CC  
DD  
1500  
V
V
V
V
2.4  
2.0  
OH  
Output Low Voltage (CMOS)  
0.4  
V
OL  
Input High Voltage (TTL 5 V tolerant)  
Input Low Voltage (TTL 5 V tolerant)  
VCC + 2.0  
V
IH-TTL  
IL-TTL  
0.8  
10  
V
I
Input Leakage Current (0.1 V < V < VCC)  
µA  
IL  
IN  
(all pins except those with internal pull-up/pull-  
down resistors)  
I
Output Leakage Current (0.1 V < VOUT < VCC)  
Input Capacitance  
10  
5
µA  
OL  
C
C
C
pF  
IN  
Output Capacitance  
5
pF  
OUT  
I/O  
I/O Capacitance  
7
pF  
θ
θ
θ
θ
θ
Thermal resistance with 0 air flow  
Thermal resistance with 1 m/s air flow  
Thermal resistance with 2 m/s air flow  
Thermal resistance between junction and case  
Thermal resistance between junction and board  
11.2  
10.2  
8.9  
3.1  
6.6  
C/W  
C/W  
C/W  
C/W  
C/W  
ja  
ja  
ja  
jc  
jb  
157  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
15.5.4 Typical Reset & Bootstrap Timing Diagram  
RESIN#  
RESETOUT#  
Tri-Stated  
R1  
R3  
Bootstrap Pins  
Outputs  
Inputs  
Outputs  
R2  
Figure 16 - Typical Reset & Bootstrap Timing Diagram  
Symbol  
R1  
Parameter  
Min.  
Typ.  
Note:  
Delay until RESETOUT# is tri-stated  
10 ns  
RESETOUT# state is then determined  
by the external pull-up/down resistor  
R2  
R3  
Bootstrap stabilization  
1 µs  
10 µs  
Bootstrap pins sampled on rising  
a
edge of RESIN#  
RESETOUT# assertion  
2 ms  
Table 14 - Reset & Bootstrap Timing  
a. The TSTOUT[8:0] pins will switch over to the LED interface functionality in 3 SCLK cycles after RESIN# goes high  
158  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
15.5.5 Typical CPU Timing Diagram for a CPU Write Cycle  
ADDR1  
P_ADDR  
ADDR0  
P_CS#  
P_WE#  
TWA  
TWS  
TWA  
TWH  
TWS  
TWH  
TDH  
at least  
at least  
2 SCLKs  
2 SCLKs  
TWR  
Recovery Time  
TDH  
DATA 0  
DATA 1  
DATA to VTX2600  
TDS  
TDS  
Hold time  
Set up time  
Figure 17 - Typical CPU Timing Diagram for a CPU Write Cycle  
Description  
(SCLK=100 Mhz)  
Min. Max.  
10  
(SCLK=125 Mhz)  
Min. Max.  
10  
Refer to Figure 17  
Write Cycle  
Symbol  
Write Set up Time  
Write Active Time  
Write Hold Time  
Write Recovery time  
Data Set Up time  
Data Hold time  
T
T
T
T
T
T
WS  
20  
2
16  
2
At least 2 SCLK  
At least 3 SCLK  
WA  
WH  
WR  
DS  
30  
10  
2
24  
10  
2
DH  
159  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
15.5.6 Typical CPU Timing Diagram for a CPU Read Cycle  
ADDR1  
P_ADDR  
ADDR0  
P_CS#  
P_RD#  
TRA  
TRH  
TRS  
TRH  
TRA  
TRS  
at least  
at least  
TRR  
2 SCLKs  
2 SCLKs  
Recovery Time  
at least 3 SCLKs  
DATA to CPU  
DATA 0  
DATA 1  
TDV  
TDI  
TDV  
TDI  
2ns  
Valid time  
Invalid time  
Figure 18 - Typical CPU Timing Diagram for a CPU Read Cycle  
Description  
(SCLK=100 Mhz) (SCLK=125 Mhz)  
Refer to Figure 18  
Read Cycle  
Symbol  
Min.  
Max.  
Min.  
Max.  
Read Set up Time  
Read Active Time  
Read Hold Time  
Read Recovery time  
Data Valid time  
T
T
T
T
T
T
10  
20  
2
10  
16  
2
RS  
RA  
RH  
RR  
Dv  
DI  
At least 2 SCLK  
At least 3 SCLK  
30  
24  
10  
6
10  
6
Data Invalid time  
15.6 Local Frame Buffer SBRAM Memory Interface  
15.6.1 Local SBRAM Memory Interface  
LA_CLK  
L1  
L2  
LA_D[63:0]  
Figure 19 - Local Memory Interface – Input Setup and Hold Timing  
160  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
LA_CLK  
LA_D[63:0]  
LA_A[20:3]  
LA_ADSC#  
LA_WE[1:0]#  
L3-max  
L3-min  
L4-max  
L4-min  
L6-max  
L6-min  
L7-max  
L7-min  
L8-max  
L8-min  
LA_OE[1:0]#  
LA_WE#  
L9-max  
L9-min  
L10-max  
L10-min  
LA_OE#  
Figure 20 - Local Memory Interface - Output Valid Delay Timing  
-100 MHz  
Symbol  
L1  
Parameter  
Note  
Min. (ns) Max. (ns)  
LA_D[63:0] input set-up time  
LA_D[63:0] input hold time  
LA_D[63:0] output valid delay  
LA_A[20:3] output valid delay  
LA_ADSC# output valid delay  
LA_WE[1:0]#output valid delay  
LA_OE[1:0]# output valid delay  
LA_WE# output valid delay  
LA_OE# output valid delay  
4
L2  
L3  
L4  
L6  
L7  
L8  
L9  
L10  
1.5  
1.5  
2
7
7
7
7
1
7
5
C = 25 pf  
L
C = 30 pf  
L
1
C = 30 pf  
L
1
C = 25 pf  
L
-1  
1
C = 25 pf  
L
C = 25 pf  
L
1
C = 25 pf  
L
Table 15 - AC Characteristics – Local Frame Buffer SBRAM Memory Interface  
161  
Zarlink Semiconductor Inc.  
MVTX2604  
15.7 Local Switch Database SBRAM Memory Interface  
15.7.1 Local SBRAM Memory Interface  
Data Sheet  
LB_CLK  
L1  
L2  
LB_D[63:0]  
Figure 21 - Local Memory Interface – Input Setup and Hold Timing  
LB_CLK  
L3-max  
L3-min  
LB_D[31:0]  
L4-max  
L4-min  
LB_A[21:2]  
L6-max  
L6-min  
LB_ADSC#  
L8-max  
L8-min  
LB_WE[1:0]#  
L9-max  
L9-min  
LB_OE[1:0]#  
L10-max  
L10-min  
LB_WE#  
L11-max  
L11-min  
LB_OE#  
Figure 22 - Local Memory Interface - Output Valid Delay Timing  
162  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
-100 MHz  
Symbol  
L1  
Parameter  
Note:  
Min. (ns) Max. (ns)  
LB_D[63:0] input set-up time  
LB_D[63:0] input hold time  
LB_D[63:0] output valid delay  
LB_A[20:3] output valid delay  
LB_ADSC# output valid delay  
LB_WE[1:0]#output valid delay  
LB_OE[1:0]# output valid delay  
LB_WE# output valid delay  
LB_OE# output valid delay  
4
L2  
1.5  
L3  
1.5  
2
7
7
7
7
1
7
5
C = 25 pf  
L
L4  
C = 30 pf  
L
L6  
1
C = 30 pf  
L
L8  
1
C = 25 pf  
L
L9  
-1  
1
C = 25 pf  
L
L10  
L11  
C = 25 pf  
L
1
C = 25 pf  
L
Table 16 - AC Characteristics – Local Switch Database SBRAM Memory Interface  
163  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
15.8 AC Characteristics  
15.8.1 Reduced Media Independent Interface  
M_CLKI  
M[23:0]_TXEN  
M6-max  
M6-min  
M7-max  
M7-min  
M[23:0] _TXD[1:0]  
Figure 23 - AC Characteristics – Reduced Media Independent Interface  
M_CLKI  
M2  
M[23:0]_RXD  
M3  
M4  
M[23:0]_CRS_DV  
M5  
Figure 24 - AC Characteristics – Reduced Media Independent Interface  
-50 MHz  
Symbol  
M2  
Parameter  
Note  
Min. (ns)  
Max. (ns)  
M[23:0]_RXD[1:0] Input Setup Time  
M[23:0]_RXD[1:0] Input Hold Time  
M[23:0]_CRS_DV Input Setup Time  
M[23:0]_CRS_DV Input Hold Time  
M[23:0]_TXEN Output Delay Time  
M[23:0]_TXD[1:0] Output Delay Time  
4
1
4
1
2
2
M3  
M4  
M5  
M6  
M7  
11  
11  
C = 20 pF  
L
C = 20 pF  
L
Table 17 - AC Characteristics – Reduced Media Independent Interface  
164  
Zarlink Semiconductor Inc.  
MVTX2604  
15.8.2 Gigabit Media Independent Interface - Port A  
M25_TXCLK  
Data Sheet  
G12-max  
G12-min  
M25_TXD [15:0]  
M25_TX_EN]  
M25_TX_ER  
G13-max  
G13-min  
G14-max  
G14-min  
Figure 25 - AC Characteristics- GMII  
M25_RXCLK  
G1  
G2  
M25_RXD[15:0]  
G3  
G4  
M25_RX_DV  
G5  
G6  
M25_RX_ER  
G7  
G8  
M25_RX_CRS  
Figure 26 - AC Characteristics – Gigabit Media Independent Interface  
-125 Mhz  
Symbol  
G1  
Parameter  
Note  
Min. (ns)  
Max. (ns)  
M[25]_RXD[15:0] Input Setup Times  
M[25]_RXD[15:0] Input Hold Times  
M[25]_RX_DV Input Setup Times  
M[25]_RX_DV Input Hold Times  
M[25]_RX_ER Input Setup Times  
M[25]_RX_ER Input Hold Times  
M[25]_CRS Input Setup Times  
M[25]_CRS Input Hold Times  
2
1
2
1
2
1
2
1
1
1
1
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G12  
G13  
G14  
M[25]_TXD[15:0] Output Delay Times  
M[25]_TX_EN Output Delay Times  
M[25]_TX_ER Output Delay Times  
6
6.5  
6
C = 20 pf  
L
C = 20 pf  
L
C = 20 pf  
L
Table 18 - AC Characteristics – Gigabit Media Independent Interface  
165  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
15.8.3 Ten Bit Interface - Port A  
M25_TXCLK  
TIMIN  
M25_TXD [9:0]  
TIMAX  
Figure 27 - Gigabit TBI Interface Transmit Timing  
M25_RXCLK  
M25_COL  
T2  
T2  
M25_RXD[9:0]  
T3  
T3  
Figure 28 - Gigabit TBI Interface Receive Timing  
Symbol  
T1  
Parameter  
Min. (ns)  
Max. (ns)  
Note  
C = 20 pf  
M25_TXD[9:0] Output Delay Time  
1
6
L
Table 19 - Output Delay Timing  
Symbol  
T2  
T3  
Parameter  
Min. (ns)  
Ma.x (ns)  
Note  
M25_RXD[9:0] Input Setup Time  
M25_RXD[9:0] Input Hold Time  
3
3
Table 20 - Input Setup Timing  
15.8.4 Gigabit Media Independent Interface - Port B  
M26_TXCLK  
G12-max  
G12-min  
M26_TXD [15:0]  
M26_TX_EN]  
M26_TX_ER  
G13-max  
G13-min  
G14-max  
G14-min  
Figure 29 - AC Characteristics- GMII  
166  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
M26_RXCLK  
G1  
G3  
G2  
M26_RXD[15:0]  
M26_RX_DV  
M26_RX_ER  
M26_RX_CRS  
G4  
G5  
G7  
G6  
G8  
Figure 30 - AC Characteristics – Gigabit Media Independent Interface  
-125 Mhz  
Symbol  
G1  
Parameter  
Note  
Min. (ns)  
Max. (ns)  
M[26]_RXD[15:0] Input Setup Times  
M[26]_RXD[15:0] Input Hold Times  
M[26]_RX_DV Input Setup Times  
M[26]_RX_DV Input Hold Times  
M[26]_RX_ER Input Setup Times  
M[26]_RX_ER Input Hold Times  
M[26]_CRS Input Setup Times  
M[26]_CRS Input Hold Times  
2
1
2
1
2
1
2
1
1
1
1
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G12  
G13  
G14  
M[26]_TXD[15:0] Output Delay Times  
M[26]_TX_EN Output Delay Times  
M[26]_TX_ER Output Delay Times  
6
6.5  
6
C = 20 pf  
L
C = 20 pf  
L
C = 20 pf  
L
Table 21 - AC Characteristics – Gigabit Media Independent Interface  
15.8.5 Ten Bit Interface - Port B  
M26_TXCLK  
TIMIN  
M26_TXD [9:0]  
TIMAX  
Figure 31 - Gigabit TBI Interface Transmit Timing  
167  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
M26_RXCLK  
M26_COL  
T2  
T2  
M26_RXD[9:0]  
T3  
T3  
Figure 32 - Gigabit TBI Interface Timing  
Symbol  
T1  
Parameter  
Min. (ns)  
Max. (ns)  
Note  
C = 20 pf  
M26_TXD[9:0] Output Delay Time  
1
6
L
Table 22 - Output Delay Timing  
Parameter  
Min. (ns)  
Max. (ns)  
Symbol  
T2  
Note  
M26_RXD[9:0] Input Setup Time  
M26_RXD[9:0] Input Hold Time  
3
3
T3  
Table 23 - Input Setup Timing  
168  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
15.8.6 LED Interface  
LED_CLK  
LED_SYN  
LED_BIT  
LE5-max  
LE5-min  
LE6-max  
LE6-min  
Figure 33 - AC Characteristics – LED Interface  
Variable FREQ.  
Parameter  
Symbol  
Note  
C = 30 pf  
Min. (ns)  
Max. (ns)  
LE5  
LE6  
LED_SYN Output Valid Delay  
LED_BIT Output Valid Delay  
-1  
-1  
7
7
L
C = 30 pf  
L
Table 24 - AC Characteristics – LED Interface  
169  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
15.8.7 SCANLINK SCANCOL Output Delay Timing  
SCANCLK  
C5-max  
C5-min  
SCANLINK  
C7-max  
C7-min  
SCANCOL  
Figure 34 - SCANLINK SCANCOL Output Delay Timing  
SCANCLK  
C1  
C3  
C2  
C4  
SCANLINK  
SCANCOL  
Figure 35 - SCANLINK, SCANCOL Setup Timing  
-25 MHz  
Parameter  
Symbol  
C1  
Note  
Min. (ns) Max. (ns)  
SCANLINK input set-up time  
20  
2
C2  
C3  
C4  
C5  
C7  
SCANLINK input hold time  
SCANCOL input setup time  
SCANCOL input hold time  
SCANLINK output valid delay  
SCANCOL output valid delay  
20  
1
0
10  
10  
C = 30pf  
L
0
C = 30pf  
L
Table 25 - SCANLINK, SCANCOL Timing  
170  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
15.9 MDIO Input Setup and Hold Timing  
MDC  
D1  
D2  
MDIO  
Figure 36 - MDIO Input Setup and Hold Timing  
MDC  
D3-max  
D3-min  
MDIO  
Figure 37 - MDIO Output Delay Timing  
1 MHz  
Parameter  
Symbol  
D1  
Note:  
Min. (ns) Max. (ns)  
MDIO input setup time  
10  
2
D2  
D3  
MDIO input hold time  
MDIO output delay time  
1
20  
C = 50 pf  
L
Table 26 - MDIO Timing  
171  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
15.9.1 I2C Input Setup Timing  
SCL  
SDA  
S2  
S1  
2
Figure 38 - I C Input Setup Timing  
SCL  
S3-max  
S3-min  
SDA  
2
Figure 39 - I C Output Delay Timing  
50 KHz  
Symbol  
S1  
Parameter  
Note  
Min. (ns)  
Max. (ns)  
SDA input setup time  
SDA input hold time  
SDA output delay time  
20  
1
S2  
S3*  
4 usec  
6 usec  
C = 30 pf  
L
* Open Drain Output. Low to High transistor is controlled by external pullup resistor.  
2
Table 27 - I C Timing  
172  
Zarlink Semiconductor Inc.  
MVTX2604  
Data Sheet  
15.9.2 Serial Interface Setup Timing  
STROBE  
D0  
D4  
D5  
D1  
D1  
D2  
D2  
Figure 40 - Serial Interface Setup Timing  
STROBE  
D3-max  
D3-min  
AutoFd  
Figure 41 - Serial Interface Output Delay Timing  
Symbol  
D1  
Parameter  
Min. (ns) Max. (ns)  
Note  
D0 setup time  
D0 hold time  
20  
D2  
D3  
D4  
D5  
3 µs  
AutoFd output delay time  
Strobe low time  
1
50  
C = 100 pf  
L
5 µs  
5 µs  
Strobe high time  
Table 28 - Serial Interface Timing  
173  
Zarlink Semiconductor Inc.  
DIMENSION  
MIN  
MAX  
A
A1  
A2  
D
D1  
E
2.20  
0.50  
2.46  
0.70  
1.17 REF  
37.70  
37.30  
37.30  
34.50 REF  
37.70  
E1  
E
E1  
b
e
34.50 REF  
0.60  
0.90  
1.27  
553  
Conforms to JEDEC MS - 034  
e
D
D1  
A2  
b
NOTE:  
1. CONTROLLING DIMENSIONS ARE IN MM  
2. DIMENSION "b" IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER  
3. SEATING PLANE IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.  
4. N IS THE NUMBER OF SOLDER BALLS  
5. NOT TO SCALE.  
6. SUBSTRATE THICKNESS IS 0.56 MM  
Package Code  
Previous package codes:  
ISSUE  
ACN  
DATE  
APPRD.  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable.  
However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such  
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or  
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual  
property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in  
certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the  
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute  
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and  
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does  
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in  
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.  
Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright Zarlink Semiconductor Inc. All Rights Reserved.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

相关型号:

MVTX2604AG2

LAN Switching Circuit, CMOS, PBGA553, 37.50 X 37.50 MM, 2.33 MM HEIGHT, LEAD FREE, MS-034, HSBGA-553
ZARLINK

MVTX2801

Unmanaged 4-Port 1000 Mbps Ethernet Switch
ZARLINK

MVTX2801A

Unmanaged 4 port Gigabit Ethernet switch
ETC

MVTX2801AG

Unmanaged 4-Port 1000 Mbps Ethernet Switch
ZARLINK

MVTX2802

Managed 4-Port 1000 Mbps Ethernet Switch
ZARLINK

MVTX2802A

Managed 4 port Gigabit Ethernet switch
ETC

MVTX2802AG

Managed 4-Port 1000 Mbps Ethernet Switch
ZARLINK

MVTX2802AG

DATACOM, LAN SWITCHING CIRCUIT, PBGA596, 40 X 40 MM, 2.33 MM HEIGHT, MS-034, HSBGA-596
MICROSEMI

MVTX2803

Unmanaged 8-Port 1000 Mbps Ethernet Switch
ZARLINK

MVTX2803A

Unmanaged 8 port Gigabit Ethernet switch
ETC

MVTX2803AG

Unmanaged 8-Port 1000 Mbps Ethernet Switch
ZARLINK

MVTX2804

8-Port 1000 Mbps Ethernet Distributed Switch
ZARLINK