LM833DR [TI]

DUAL HIGH-SPEED AUDIO OPERATIONAL AMPLIFIER; 双高速音频运算放大器
LM833DR
型号: LM833DR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DUAL HIGH-SPEED AUDIO OPERATIONAL AMPLIFIER
双高速音频运算放大器

运算放大器
文件: 总26页 (文件大小:954K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM833  
www.ti.com  
SLOS481A JULY 2010REVISED AUGUST 2010  
DUAL HIGH-SPEED AUDIO OPERATIONAL AMPLIFIER  
Check for Samples: LM833  
1
FEATURES  
APPLICATIONS  
HiFi Audio System Equipment  
Preamplification and Filtering  
Set Top Box  
Microphone PreAmplifier Circuit  
General-Purpose Amplifier Applications  
Dual-Supply Operation: ±5 V to ±18 V  
Low Noise Voltage: 4.5 nV/Hz  
Low Input Offset Voltage: 0.15 mV  
Low Total Harmonic Distortion: 0.002%  
High Slew Rate: 7 V/ms  
High-Gain Bandwidth Product: 16 MHz  
High Open-Loop AC Gain: 800 at 20 kHz  
Large Output-Voltage Swing: 14.1 V to –14.6 V  
Excellent Gain and Phase Margins  
Available in 8-Pin MSOP Package (3mm x  
4.9mm x 0.65mm)  
D (SOIC), DGK (MSOP), OR P (PDIP) PACKAGE  
(TOP VIEW)  
1
2
3
4
8
7
6
5
OUT1  
IN1–  
IN1+  
VCC–  
VCC+  
OUT2  
IN2–  
IN2+  
DESCRIPTION  
The LM833 is a dual operational amplifier with high-performance specifications for use in quality audio and  
data-signal applications. This device operates over a wide range of single- and dual-supply voltage with low  
noise, high-gain bandwidth, and high slew rate. Additional features include low total harmonic distortion, excellent  
phase and gain margins, large output voltage swing with no deadband crossover distortions, and symmetrical  
sink/source performance.  
The dual amplifiers are utilized widely in circuit of audio optimized for all preamp and high level stages in PCM  
and HiFi systems. LM833 is pin-for-pin compatible with industry-standard dual operation amplifiers' pin  
assignments. With addition of a preamplifier, the gain of the power stage can be greatly reduced to improve  
performance.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2010, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
 
LM833  
SLOS481A JULY 2010REVISED AUGUST 2010  
www.ti.com  
ORDERING INFORMATION(1)  
TA  
PACKAGE(2)  
ORDERABLE PART NUMBER  
TOP-SIDE MARKING(3)  
LM833P  
PDIP – P  
SOIC – D  
Tube of 50  
Tube of 75  
Reel of 2500  
Reel of 2500  
Reel of 250  
LM833P  
LM833D  
LM833  
RS_  
–40°C to 85°C  
LM833DR  
LM833DGKR  
LM833DGKT  
VSSOP/MSOP – DGK  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
(3) DGK: The actual top-side marking has one additional character that designates the wafer fab/assembly site.  
Symbol (Each Amplifier)  
IN+  
IN−  
+
OUT  
Typical Design Example Audio Pre-Amplifier  
2
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): LM833  
LM833  
www.ti.com  
SLOS481A JULY 2010REVISED AUGUST 2010  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX UNIT  
VCC+  
Supply voltage(2)  
Supply voltage(2)  
18  
V
V
VCC–  
–18  
36  
VCC+ – VCC–  
Supply voltage  
V
Input voltage, either input(2) (3)  
Input current(4)  
VCC+ or VCC–  
±10  
V
mA  
Duration of output short circuit(5)  
Unlimited  
97  
D package  
DGK package  
P package  
qJA  
Package thermal impedance, junction to free air(6) (7)  
172 °C/W  
85  
TJ  
Operating virtual junction temperature  
Storage temperature range  
150  
150  
°C  
°C  
Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC–  
(3) The magnitude of the input voltage must never exceed the magnitude of the supply voltage.  
.
(4) Excessive input current will flow if a differential input voltage in excess of approximately 0.6 V is applied between the inputs, unless  
some limiting resistance is used.  
(5) The output may be shorted to ground or either power supply. Temperature and/or supply voltages must be limited to ensure the  
maximum dissipation rating is not exceeded.  
(6) Maximum power dissipation is a function of TJ(max), qJA, and TA. The maximum allowable power dissipation at any allowable ambient  
temperature is PD = (TJ(max) – TA)/qJA. Operating at the absolute maximum TJ of 150°C can affect reliability.  
(7) The package thermal impedance is calculated in accordance with JESD 51-7.  
ELECTROSTATIC DISCHARGE RATINGS  
MIN  
MAX UNIT  
Human-Body Model (HBM)  
2.5  
kV  
ESD  
Charged-Device Model (CDM)  
1.5  
RECOMMENDED OPERATING CONDITIONS  
MIN  
–5  
MAX UNIT  
VCC–  
–18  
V
Supply voltage  
VCC+  
5
18  
TA  
Operating free-air temperature range  
–40  
85  
°C  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): LM833  
LM833  
SLOS481A JULY 2010REVISED AUGUST 2010  
www.ti.com  
ELECTRICAL CHARACTERISTICS  
VCC– = –15 V, VCC+ = 15 V, TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TA = 25°C  
0.15  
2
3
VIO  
aVIO  
IIB  
Input offset voltage  
VO = 0, RS = 10 , VCM = 0  
VO = 0, RS = 10 , VCM = 0  
VO = 0, VCM = 0  
mV  
TA = –40°C to 85°C  
Input offset voltage  
temperature coefficient  
TA = –40°C to 85°C  
2
mV/°C  
TA = 25°C  
300  
750  
800  
150  
175  
Input bias current  
Input offset current  
nA  
TA = –40°C to 85°C  
TA = 25°C  
25  
IIO  
VO = 0, VCM = 0  
nA  
V
TA = –40°C to 85°C  
Common-mode input voltage  
range  
VICR  
AVD  
ΔVIO = 5 mV, VO = 0  
RL 2 k, VO = ±10 V  
±13  
±14  
110  
TA = 25°C  
TA = –40°C to 85°C  
VOM+  
90  
85  
Large-signal differential  
voltage amplification  
dB  
10.7  
–11.9  
13.8  
RL = 600 Ω  
VOM–  
VOM+  
13.2  
VOM  
Maximum output voltage swing VID = ±1 V  
Common-mode rejection ratio VIN = ±13 V  
RL = 2k Ω  
V
VOM–  
–13.2 –13.7  
13.5 14.1  
–14 –14.6  
VOM+  
RL = 10k Ω  
VOM–  
CMMR  
80  
80  
100  
105  
29  
dB  
dB  
(1)  
kSVR  
Supply-voltage rejection ratio  
VCC+ = 5 V to 15 V, VCC– = –5 V to –15 V  
Source current  
15  
IOS  
Output short-circuit current  
|VID| = 1 V, Output to GND  
VO = 0  
mA  
mA  
Sink current  
–20  
–37  
2.05  
TA = 25°C  
2.5  
ICC  
Supply current (per channel)  
TA = –40°C to 85°C  
2.75  
(1) Measured with VCC± differentially varied at the same time  
OPERATING CHARACTERISTICS  
VCC– = –15 V, VCC+ = 15 V, TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
5
TYP  
7
MAX  
UNIT  
V/ms  
MHz  
MHz  
SR  
Slew rate at unity gain  
AVD = 1, VIN = –10 V to 10 V, RL = 2 k, CL = 100 pF  
GBW Gain bandwidth product  
f = 100 kHz  
Open loop  
10  
16  
B1  
Unity gain frequency  
9
CL = 0 pF  
–11  
–6  
Gm  
Gain margin  
RL = 2 kΩ  
dB  
CL = 100 pF  
CL = 0 pF  
55  
Φm  
Phase margin  
RL = 2 kΩ  
deg  
CL = 100 pF  
40  
Amp-to-amp isolation  
f = 20 Hz to 20 kHz  
–120  
120  
0.002  
37  
dB  
kHz  
%
Power bandwidth  
VO = 27 V(PP), RL = 2 k, THD 1%  
THD  
zo  
Total harmonic distortion  
Open-loop output impedance  
Differential input resistance  
Differential input capacitance  
Equivalent input noise voltage  
Equivalent input noise current  
VO = 3 Vrms, AVD = 1, RL = 2 k, f = 20 Hz to 20 kHz  
VO = 0, f = 9 MHz  
VCM = 0  
rid  
175  
12  
kΩ  
Cid  
Vn  
In  
VCM = 0  
pF  
f = 1 kHz, RS = 100 Ω  
f = 1 kHz  
4.5  
0.5  
nV/Hz  
pA/Hz  
4
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): LM833  
LM833  
www.ti.com  
SLOS481A JULY 2010REVISED AUGUST 2010  
0.1 µF  
100 kΩ  
10 Ω  
2.0 kΩ  
4.7 µF  
22 µF  
4.3 kΩ  
+
1/2  
LM833  
D.U.T.  
Scope  
x 1  
= 1.0 MΩ  
R
IN  
100 kΩ  
Voltage Gain = 50,000  
2.2 µF  
24.3 kΩ  
110 kΩ  
0.1 µF  
NOTE: All capacitors are non-polarized.  
Figure 1. Voltage Noise Test Circuit (0.1 Hz to 10 Hz)  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): LM833  
LM833  
SLOS481A JULY 2010REVISED AUGUST 2010  
www.ti.com  
TYPICAL CHARACTERISTICS  
INPUT BIAS CURRENT  
INPUT BIAS CURRENT  
vs  
vs  
COMMON-MODE VOLTAGE  
SUPPLY VOLTAGE  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
VCM = 0 V  
TA = 25°C  
VCC+ = 15 V  
VCC– = –15 V  
TA = 25°C  
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
-15  
-10  
-5  
0
5
10  
15  
VCC+/–VCC– – Supply Voltage – V  
VCM – Common Mode Voltage – V  
INPUT BIAS CURRENT  
vs  
INPUT OFFSET VOLTAGE  
vs  
TEMPERATURE  
TEMPERATURE  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
2
VCC+ = 15 V  
VCC+ = 15 V  
VCC– = –15 V  
VCM = 0 V  
VCC– = –15 V  
VCM = 0 V  
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-55 -35 -15  
5
25 45 65 85 105 125  
-55 -35 -15  
5
25 45 65 85 105 125  
TA – Temperature – °C  
TA – Temperature – °C  
6
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): LM833  
LM833  
www.ti.com  
SLOS481A JULY 2010REVISED AUGUST 2010  
TYPICAL CHARACTERISTICS (continued)  
INPUT COMMON-MODE VOLTAGE  
LOW PROXIMITY TO VCC–  
vs  
INPUT COMMON-MODE VOLTAGE  
HIGH PROXIMITY TO VCC+  
vs  
TEMPERATURE  
TEMPERATURE  
1.4  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
VCC+ = 3 V to 15 V  
VCC– = -3 V to -15 V  
1.2  
1
D
VIO = 5 mV  
VO = 0 V  
0.8  
0.6  
0.4  
0.2  
0
VCC+ = 3 V to 15 V  
VCC– = -3 V to -15 V  
D
VIO = 5 mV  
-1.2  
-1.4  
VO = 0 V  
-55  
-25  
5
35  
65  
95  
125  
-55  
-25  
5
35  
65  
95  
125  
TA – Temperature – °C  
TA – Temperature – °C  
OUTPUT SATURATION VOLTAGE PROXIMITY TO VCC+  
OUTPUT SATURATION VOLTAGE PROXIMITY TO VCC–  
vs  
vs  
LOAD RESISTANCE  
LOAD RESISTANCE  
10  
9
0
-1  
TA = 125°C  
8
-2  
TA = 25°C  
7
-3  
TA = –55°C  
-4  
-5  
6
5
TA = 125°C  
-6  
4
TA = 25°C  
-7  
3
TA = –55°C  
-8  
2
1
0
-9  
-10  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
kW  
4
4.5  
kW  
RL – Load Resistance –
RL – Load Resistance –
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): LM833  
LM833  
SLOS481A JULY 2010REVISED AUGUST 2010  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
OUTPUT SHORT-CIRCUIT CURRENT  
SUPPLY CURRENT  
vs  
vs  
TEMPERATURE  
TEMPERATURE  
70  
60  
50  
40  
30  
20  
10  
10  
9
8
7
6
5
4
3
2
1
0
VCC+ = 15 V  
VCC– = –15 V  
VID = 1 V  
VCM = 0 V  
RL = High Impedance  
VO = 0 V  
VCC± = ±15 V  
Source  
Sink  
VCC± = ±10 V  
VCC± = ±5 V  
-55 -35 -15  
5
25  
45  
65  
85 105 125  
-55 -35 -15  
5
25 45 65 85 105 125  
TA – Temperature – °C  
TA – Temperature – °C  
CMRR  
vs  
PSSR  
vs  
FREQUENCY  
FREQUENCY  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VCC+ = 15 V  
VCC+ = 15 V  
VCC– = –15 V  
VCM = 0 V  
VCC– = –15 V  
TA = 25°C  
DVCM = ±1.5 V  
TA = 25°C  
T3P  
T3N  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k 1M  
10k 100k 10M  
f – Frequency – Hz  
f – Frequency – Hz  
8
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): LM833  
LM833  
www.ti.com  
SLOS481A JULY 2010REVISED AUGUST 2010  
TYPICAL CHARACTERISTICS (continued)  
GAIN BANDWIDTH PRODUCT  
GAIN BANDWIDTH PRODUCT  
vs  
vs  
SUPPLY VOLTAGE  
TEMPERATURE  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
-55 -35 -15  
5
25  
45  
65  
85 105 125  
5
6
7
8
9 10 11 12 13 14 15 16 17 18  
TA – Temperature – °C  
VCC+/–VCC– – Supply Voltage – V  
OUTPUT VOLTAGE  
vs  
OUTPUT VOLTAGE  
vs  
SUPPLY VOLTAGE  
FREQUENCY  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
VCC+ = 15 V  
VCC– = –15 V  
RL = 2 kW  
AV = 1  
RL = 10 kW  
RL = 2 kW  
THD < 1%  
TA = 25°C  
0
-5  
RL = 10 kW  
RL = 2 kW  
-10  
-15  
-20  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
VCC+/–VCC– – Supply Voltage – V  
f – Frequency – Hz  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): LM833  
LM833  
SLOS481A JULY 2010REVISED AUGUST 2010  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
OPEN-LOOP GAIN  
OPEN-LOOP GAIN  
vs  
vs  
SUPPLY VOLTAGE  
TEMPERATURE  
120  
115  
110  
105  
100  
95  
110  
105  
100  
95  
RL = 2 kW  
f < 10 Hz  
DVO = 2/3(VCC+ – VCC–  
)
TA = 25°C  
90  
90  
RL = 2 kW  
f < 10 Hz  
DVO = 2/3(VCC+ – VCC–  
85  
)
85  
TA = 25°C  
80  
80  
5
6
7
8
9 10 11 12 13 14 15 16 17 18  
-55 -35 -15  
5
25 45 65 85 105 125  
VCC+/–VCC– – Supply Voltage – V  
TA – Temperature – °C  
OUTPUT IMPEDANCE  
vs  
CROSSTALK REJECTION  
vs  
FREQUENCY  
FREQUENCY  
200  
190  
180  
170  
160  
150  
140  
130  
120  
110  
100  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Drive Channel  
VCC+ = 15 V  
VCC– = –15 V  
VO = 1 Vrms  
TA = 25°C  
VCC+ = 15 V  
VCC– = –15 V  
RL = 2 kW  
VO = 20 VPP  
TA = 25°C  
AV = 1000  
AV = 10  
AV = 1  
AV = 100  
0
10
100
1k  
10k  
100k  
1k  
10k
100k
1M  
10M
f – Frequency – Hz  
f – Frequency – Hz  
10  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): LM833  
LM833  
www.ti.com  
SLOS481A JULY 2010REVISED AUGUST 2010  
TYPICAL CHARACTERISTICS (continued)  
TOTAL HARMONIC DISTORTION  
TOTAL HARMONIC DISTORTION  
vs  
vs  
FREQUENCY  
OUTPUT VOLTAGE  
1
1
VCC+ = 15 V  
VCC– = –15 V  
VO = 1 Vrms  
AV = 1  
AV = 1000  
0.1  
RL = 2 kW  
TA = 25°C  
0.1  
AV = 100  
0.01  
0.001  
0.01  
AV = 10  
0.001  
0.0001  
VCC+ = 15 V  
VCC– = –15 V  
f = 2 kHz  
AV = 1  
RL = 2 kW  
TA = 25°C  
0.0001  
10  
100  
1k  
10k  
100k  
0
1
2
3
4
5
6
7
8
9
f – Frequency – Hz  
VO – Output Voltage – Vrms  
SLEW RATE  
vs  
SLEW RATE  
vs  
SUPPLY VOLTAGE  
TEMPERATURE  
10  
9
10  
9
8
Falling Edge  
8
Falling Edge  
7
7
6
5
4
3
2
Rising Edge  
Rising Edge  
6
5
VCC+ = 15 V  
4
DVIN = 2/3(VCC+ – VCC–  
)
VCC– = –15 V  
DVIN = 20 V  
AV = 1  
AV = 1  
3
RL = 2 kW  
TA = 25°C  
RL = 2 kW  
2
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
-55 -35 -15  
5
25  
45  
65  
85 105 125  
VCC+/–VCC– – Supply Voltage – V  
TA – Temperature – °C  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): LM833  
LM833  
SLOS481A JULY 2010REVISED AUGUST 2010  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
GAIN AND PHASE  
GAIN AND PHASE MARGIN  
vs  
vs  
FREQUENCY  
OUTPUT LOAD CAPACITANCE  
12  
9
0
80  
70  
60  
50  
40  
30  
20  
10  
0
0
VCC+ = 15 V  
Phase  
Gain,TA = 125°C  
VCC– = –15 V  
VO = 0 V  
10  
20  
30  
40  
50  
60  
70  
80  
Gain,TA = 25°C  
Gain,TA = –55°C  
-45  
-90  
-135  
-180  
Gain  
6
Phase,TA = 125°C  
3
Phase,TA = 25°C  
Phase,TA = –55°C  
VCC+ = 15 V  
VCC– = –15 V  
RL = 2 kW  
TA = 25°C  
0
1
10  
100  
1000  
1k  
10k  
100k  
1M  
10M  
Cout – Output Load Capacitance – pF  
f – Frequency – Hz  
OVERSHOOT  
vs  
INPUT VOLTAGE AND CURRENT NOISE  
vs  
OUTPUT LOAD CAPACITANCE  
FREQUENCY  
100  
10  
1
10  
100  
VCC+ = 15 V  
VCC– = –15 V  
VCC+ = 15 V  
VCC– = –15 V  
TA = 25°C  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 100 mVPP  
1
Input Voltage Noise  
Input Current Noise  
TA = 125°C  
TA = 25°C  
TA = –55°C  
0.1  
10  
100  
Cout – Output Load Capacitance – pF  
1000  
10  
100  
1k  
10k  
100k  
f – Frequency – Hz  
12  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): LM833  
LM833  
www.ti.com  
SLOS481A JULY 2010REVISED AUGUST 2010  
TYPICAL CHARACTERISTICS (continued)  
INPUT REFERRED NOISE VOLTAGE  
GAIN AND PHASE MARGIN  
vs  
vs  
SOURCE RESISTANCE  
DIFFERENTIAL SOURCE RESISTANCE  
16  
14  
12  
10  
8
64  
60  
56  
52  
48  
44  
40  
36  
32  
28  
24  
20  
16  
12  
8
1000  
VCC+ = 15 V  
VCC– = –15 V  
f = 1 Hz  
TA = 25°C  
Phase Margin  
100  
10  
1
Gain Margin  
6
VCC+ = 15 V  
VCC– = –15 V  
AV = 100  
4
VO = 0 V  
2
TA = 25°C  
4
0
0
10  
100  
1k  
10k  
100k  
1M  
0
1
10  
100  
1k  
10k 100k  
W
RS – Source Resistance – 
W
RSD – Differential Source Resistance – 
LARGE SIGNAL TRANSIENT RESPONSE  
(AV = 1)  
LARGE SIGNAL TRANSIENT RESPONSE  
(AV = –1)  
Input  
Input  
55  
10  
55  
45  
35  
25  
15  
5
10  
45  
35  
25  
15  
5
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-10  
VCC+ = 15 V  
VCC+ = 15 V  
VCC– = –15 V  
AV = 1  
VCC– = –15 V  
AV = –1  
-20  
-30  
-40  
-50  
-60  
RL = 2 kW  
CL = 100 pF  
TA = 25°C  
RL = 2 kW  
CL = 100 pF  
TA = 25°C  
Output  
Output  
-5  
-5  
-15  
-15  
-2  
2
6
10  
14  
18  
22  
-2  
2
6
10  
14  
18  
22  
Time – µs  
Time – µs  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): LM833  
LM833  
SLOS481A JULY 2010REVISED AUGUST 2010  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
SMALL SIGNAL TRANSIENT RESPONSE  
LOW_FREQUENCY NOISE  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.2  
400  
300  
200  
100  
0
0.1  
0.0  
Input  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
VCC+ = 15 V  
VCC– = –15 V  
AV = 1  
-100  
-200  
-300  
-400  
-500  
RL = 2 kW  
CL = 100 pF  
TA = 25°C  
T3  
VCC+ = 15 V  
VCC– = –15 V  
Output  
BW = 0.1 Hz to 10 Hz  
TA = 25°C  
-0.1  
-0.2  
-5 -4 -3 -2 -1  
0
1
2
3
4
5
-0.5  
0.0  
0.5  
1.0  
1.5  
Time – s  
Time – µs  
14  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): LM833  
LM833  
www.ti.com  
SLOS481A JULY 2010REVISED AUGUST 2010  
APPLICATION INFORMATION  
Output Characteristics  
All operating characteristics are specified with 100-pF load capacitance. The LM833 can drive higher capacitance  
loads. However, as the load capacitance increases, the resulting response pole occurs at lower frequencies,  
causing ringing, peaking, or oscillation. The value of the load capacitance at which oscillation occurs varies from  
lot to lot. If an application appears to be sensitive to oscillation due to load capacitance, adding a small  
resistance in series with the load should alleviate the problem (see Figure 2).  
PULSE RESPONSE  
PULSE RESPONSE  
PULSE RESPONSE  
(RL = 600 , CL = 380 pF)  
(RL = 2 k, CL = 560 pF)  
(RL = 10 k, CL = 590 pF)  
Maximum capacitance  
before oscillation = 380 pF  
Maximum capacitance  
before oscillation = 590 pF  
Maximum capacitance  
before oscillation = 560 pF  
250 ns per Division  
250 ns per Division  
250 ns per Division  
PULSE RESPONSE  
PULSE RESPONSE  
PULSE RESPONSE  
(RO = 0 , CO = 1000 pF, RL = 2 k)  
(RO = 4 , CO = 1000 pF, RL = 2 k)  
(RO = 35 , CO = 1000 pF, RL = 2 k)  
250 ns per Division  
250 ns per Division  
250 ns per Division  
15 V  
RO  
VO  
5 V  
–5 V  
–15 V  
CL  
RL = 2 k  
Figure 2. Output Characteristics  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): LM833  
 
LM833  
SLOS481A JULY 2010REVISED AUGUST 2010  
www.ti.com  
REVISION HISTORY  
Changes from Original (July 2010) to Revision A  
Page  
Changed Datasheet status from Product Preview to Production Data. ................................................................................ 1  
16  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): LM833  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Jul-2013  
PACKAGING INFORMATION  
Orderable Device  
LM833D  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
ACTIVE  
SOIC  
VSSOP  
VSSOP  
SOIC  
D
8
8
8
8
8
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
LM833  
LM833DGKR  
LM833DGKT  
LM833DR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DGK  
DGK  
D
2500  
250  
2500  
50  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
RSU  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
RSU  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
LM833  
LM833P  
LM833P  
PDIP  
P
Pb-Free  
(RoHS)  
-40 to 85  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Jul-2013  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Aug-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM833DGKR  
LM833DGKT  
LM833DR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
8
2500  
250  
330.0  
180.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
5.3  
5.3  
6.4  
6.4  
3.3  
3.3  
5.2  
5.2  
1.3  
1.3  
2.1  
2.1  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
2500  
2500  
LM833DR  
SOIC  
D
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Aug-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM833DGKR  
LM833DGKT  
LM833DR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
8
2500  
250  
346.0  
203.0  
367.0  
340.5  
346.0  
203.0  
367.0  
338.1  
35.0  
35.0  
35.0  
20.6  
2500  
2500  
LM833DR  
SOIC  
D
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

LM833DR2

Low Noise, Audio Dual Operational Amplifier
ONSEMI

LM833DR2G

Low Noise, Audio Dual Operational Amplifier
ONSEMI

LM833DT

Low noise dual operational amplifier
STMICROELECTR

LM833G-S08-R

DUAL OPERATIONAL AND LOW VOLTAGE NOISE AMPLIFIER
UTC

LM833G-S08-T

DUAL OPERATIONAL AND LOW VOLTAGE NOISE AMPLIFIER
UTC

LM833L-S08-R

DUAL OPERATIONAL AND LOW VOLTAGE NOISE AMPLIFIER
UTC

LM833L-S08-T

DUAL OPERATIONAL AND LOW VOLTAGE NOISE AMPLIFIER
UTC

LM833M

Dual Audio Operational Amplifier
NSC

LM833M

LM833-N Dual Audio Operational Amplifier
TI

LM833M/NOPB

LM833-N Dual Audio Operational Amplifier
TI

LM833MM

Dual Audio Operational Amplifier
NSC

LM833MM

LM833-N Dual Audio Operational Amplifier
TI