LM833DR2 [ONSEMI]

Low Noise, Audio Dual Operational Amplifier; 低噪声,音频双路运算放大器
LM833DR2
型号: LM833DR2
厂家: ONSEMI    ONSEMI
描述:

Low Noise, Audio Dual Operational Amplifier
低噪声,音频双路运算放大器

运算放大器 光电二极管
文件: 总8页 (文件大小:100K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM833  
Low Noise, Audio Dual  
Operational Amplifier  
The LM833 is a standard low−cost monolithic dual general−purpose  
operational amplifier employing Bipolar technology with innovative  
high−performance concepts for audio systems applications. With high  
frequency PNP transistors, the LM833 offers low voltage noise  
(4.5 nV/ Hz ), 15 MHz gain bandwidth product, 7.0 V/ms slew rate,  
0.3 mV input offset voltage with 2.0 mV/°C temperature coefficient of  
input offset voltage. The LM833 output stage exhibits no dead−band  
crossover distortion, large output voltage swing, excellent phase and  
gain margins, low open loop high frequency output impedance and  
symmetrical source/sink AC frequency response.  
http://onsemi.com  
MARKING  
DIAGRAMS  
8
LM833N  
AWL  
YYWWG  
PDIP−8  
N SUFFIX  
CASE 626  
For an improved performance dual/quad version, see the MC33079  
family.  
1
1
Features  
LM833N = Device Code  
Ǹ
Low Voltage Noise: 4.5 nV/ Hz  
A
= Assembly Location  
High Gain Bandwidth Product: 15 MHz  
High Slew Rate: 7.0 V/ms  
Low Input Offset Voltage: 0.3 mV  
Low T.C. of Input Offset Voltage: 2.0 mV/°C  
Low Distortion: 0.002%  
WL  
YY  
WW  
G
= Wafer Lot  
= Year  
= Work Week  
= Pb−Free Package  
Excellent Frequency Stability  
Dual Supply Operation  
Pb−Free Packages are Available  
LM833  
ALYW  
SOIC−8  
D SUFFIX  
CASE 751  
G
1
1
MAXIMUM RATINGS  
LM833 = Device Code  
Rating  
Supply Voltage (V to V  
Symbol  
Value  
Unit  
A
L
= Assembly Location  
= Wafer Lot  
)
EE  
V
S
+36  
V
CC  
Y
W
G
= Year  
= Work Week  
= Pb−Free Package  
Input Differential Voltage Range (Note 1)  
Input Voltage Range (Note 1)  
V
30  
15  
V
V
IDR  
V
IR  
Output Short Circuit Duration (Note 2)  
Operating Ambient Temperature Range  
Operating Junction Temperature  
Storage Temperature  
t
Indefinite  
−40 to +85  
+150  
SC  
PIN CONNECTIONS  
T
°C  
°C  
°C  
V
A
T
J
1
2
8
7
V
CC  
Output 1  
T
−60 to +150  
stg  
1
ESD Protection at any Pin  
− Human Body Model  
− Machine Model  
V
esd  
Output 2  
Inputs 2  
600  
200  
Inputs 1  
3
6
5
Maximum Power Dissipation (Notes 2 and 3)  
P
500  
mW  
D
2
Maximum ratings are those values beyond which device damage can occur.  
Maximum ratings applied to the device are individual stress limit values (not  
normal operating conditions) and are not valid simultaneously. If these limits are  
exceeded, device functional operation is not implied, damage may occur and  
reliability may be affected.  
4
V
EE  
(Top View)  
1. Either or both input voltages must not exceed the magnitude of V or V  
2. Power dissipation must be considered to ensure maximum junction  
.
CC  
EE  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 6 of this data sheet.  
temperature (T ) is not exceeded (see power dissipation performance  
J
characteristic).  
3. Maximum value at T 85°C.  
A
©
Semiconductor Components Industries, LLC, 2005  
1
Publication Order Number:  
December, 2005 − Rev. 5  
LM833/D  
 
LM833  
ELECTRICAL CHARACTERISTICS (V = +15 V, V = −15 V, T = 25°C, unless otherwise noted.)  
CC  
EE  
A
Characteristic  
Input Offset Voltage (R = 10 W, V = 0 V)  
Symbol  
Min  
Typ  
Max  
Unit  
V
IO  
0.3  
5.0  
mV  
S
O
Average Temperature Coefficient of Input Offset Voltage  
= 10 W, V = 0 V, T = T to T  
DV /DT  
2.0  
mV/°C  
IO  
R
S
O
A
low  
high  
Input Offset Current (V  
= 0 V, V = 0 V)  
I
IO  
10  
200  
nA  
nA  
V
CM  
O
Input Bias Current (V  
= 0 V, V = 0 V)  
I
IB  
300  
1000  
CM  
O
Common Mode Input Voltage Range  
V
−12  
+14  
−14  
+12  
ICR  
Large Signal Voltage Gain (R = 2.0 kW, V  
=
10 V)  
A
VOL  
90  
110  
dB  
V
L
O
Output Voltage Swing:  
V
10  
12  
13.7  
−14.1  
13.9  
−10  
O+  
O−  
O+  
O−  
R = 2.0 kW V = 1.0 V  
L
,
ID  
V
V
V
R = 2.0 kW V = 1.0 V  
L
,
ID  
R = 10 kW V = 1.0 V  
L
,
ID  
−14.7  
−12  
R = 10 kW, V = 1.0 V  
L
ID  
Common Mode Rejection (V  
=
12 V)  
CMR  
PSR  
80  
80  
100  
115  
4.0  
dB  
dB  
in  
Power Supply Rejection (V = 15 V to 5.0 V, −15 V to −5.0 V)  
S
Power Supply Current (V = 0 V, Both Amplifiers)  
I
8.0  
mA  
O
D
AC ELECTRICAL CHARACTERISTICS (V = +15 V, V = −15 V, T = 25°C, unless otherwise noted.)  
CC  
EE  
A
Characteristic  
Slew Rate (V = −10 V to +10 V, R = 2.0 kW, A = +1.0)  
Symbol  
Min  
5.0  
10  
Typ  
7.0  
15  
Max  
Unit  
V/ms  
MHz  
MHz  
°
S
R
in  
L
V
Gain Bandwidth Product (f = 100 kHz)  
Unity Gain Frequency (Open Loop)  
Unity Gain Phase Margin (Open Loop)  
GBW  
f
9.0  
U
q
60  
m
e
i
4.5  
Ǹ
Equivalent Input Noise Voltage (R = 100 W, f = 1.0 kHz)  
S
n
nVń Hz  
Equivalent Input Noise Current (f = 1.0 kHz)  
0.5  
Ǹ
n
pAń Hz  
Power Bandwidth (V = 27 V , R = 2.0 kW, THD 1.0%)  
BWP  
THD  
120  
0.002  
−120  
kHz  
%
O
pp  
L
Distortion (R = 2.0 kW, f = 20 Hz to 20 kHz, V = 3.0 V  
A = +1.0)  
V
L
O
rms,  
Channel Separation (f = 20 Hz to 20 kHz)  
C
S
dB  
1000  
800  
600  
400  
200  
800  
V
V
V
= +15 V  
= −15 V  
= 0 V  
CC  
EE  
CM  
600  
400  
200  
0
0
−55  
−25  
0
25  
50  
75  
100  
125  
−50  
0
50  
100  
150  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 1. Maximum Power Dissipation  
versus Temperature  
Figure 2. Input Bias Current versus Temperature  
http://onsemi.com  
2
LM833  
800  
600  
400  
10  
V
CC  
R = ∞  
A
I
S
L
T
A
= 25°C  
8.0  
6.0  
T
= 25°C  
V
O
+
V
EE  
4.0  
2.0  
0
200  
0
5.0  
10  
15  
20  
0
5.0  
10  
, |V |, SUPPLY VOLTAGE (V)  
CC EE  
15  
20  
V
, |V |, SUPPLY VOLTAGE (V)  
CC EE  
V
Figure 3. Input Bias Current versus  
Supply Voltage  
Figure 4. Supply Current versus  
Supply Voltage  
110  
105  
100  
95  
110  
100  
V
V
= +15 V  
= −15 V  
CC  
EE  
R
T
= 2.0 kW  
= 25°C  
L
R = 2.0 kW  
A
L
90  
80  
90  
−55  
−25  
0
25  
50  
75  
100  
125  
5.0  
10  
V , |V |, SUPPLY VOLTAGE (V)  
CC EE  
15  
20  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 5. DC Voltage Gain  
versus Temperature  
Figure 6. DC Voltage Gain versus  
Supply Voltage  
120  
0
20  
15  
10  
100  
80  
45  
90  
Phase  
60  
40  
V
V
= +15 V  
= −15 V  
V
V
= +15 V  
= −15 V  
CC  
EE  
CC  
EE  
5.0  
0
Gain  
135  
180  
R = 2.0 kW  
T
A
f = 100 kHz  
L
20  
0
= 25°C  
1.0  
10  
100  
1.0 k  
10 k  
100 k 1.0 M  
10 M  
−55  
−25  
0
25  
50  
75  
100  
125  
f, FREQUENCY (Hz)  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 7. Open Loop Voltage Gain and  
Phase versus Frequency  
Figure 8. Gain Bandwidth Product  
versus Temperature  
http://onsemi.com  
3
LM833  
30  
10  
f = 100 kHz  
= 25°C  
T
A
8.0  
6.0  
Falling  
Rising  
20  
10  
V
V
= +15 V  
= −15 V  
CC  
EE  
+
V
O
V
in  
4.0  
2.0  
R = 2.0 kW  
A
V
L
R
L
= +1.0  
0
5.0  
10  
15  
20  
−55  
−25  
0
25  
50  
75  
100  
125  
V
, |V |, SUPPLY VOLTAGE (V)  
CC EE  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 9. Gain Bandwidth Product versus  
Supply Voltage  
Figure 10. Slew Rate versus Temperature  
10  
8.0  
6.0  
4.0  
2.0  
0
35  
30  
R = 2.0k W  
L
A
V
= +1.0  
T
A
= 25°C  
Falling  
Rising  
25  
20  
15  
10  
V
V
= +15 V  
= −15 V  
CC  
EE  
+
V
O
R = 2.0 kW  
THD v 1.0%  
T
A
L
V
in  
R
L
= 25°C  
5.0  
0
5.0  
10  
15  
20  
10  
100  
1.0 k  
10 k  
1.0 M  
10 M 100 k  
V
, |V |, SUPPLY VOLTAGE (V)  
CC EE  
f, FREQUENCY (Hz)  
Figure 11. Slew Rate versus Supply Voltage  
Figure 12. Output Voltage versus Frequency  
15  
14  
13  
20  
15  
10  
5.0  
V
+
R = 10 kW  
O
L
+V  
T
= 25°C  
sat  
A
−V  
sat  
0
−5.0  
V
V
= +15 V  
= −15 V  
CC  
EE  
−10  
V
O
R = 10 kW  
L
−15  
−20  
5.0  
10  
15  
20  
−55  
−25  
0
25  
50  
75  
100  
125  
V
, |V |, SUPPLY VOLTAGE (V)  
CC EE  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 13. Maximum Output Voltage  
versus Supply Voltage  
Figure 14. Output Saturation Voltage  
versus Temperature  
http://onsemi.com  
4
LM833  
160  
140  
120  
V
V
T
= +15 V  
= −15 V  
= 25°C  
DV  
A
+
CC  
EE  
CC  
DV  
CM  
DM  
DM  
+
140  
120  
A
DV  
O
A
DV  
O
100  
80  
DV  
CM  
DV  
EE  
A
×
DM  
CMR = 20 Log  
DV  
0
100  
80  
−PSR  
+PSR  
60  
V
V
V
= +15 V  
= −15 V  
= 0 V  
CC  
EE  
CM  
DV /A  
O
DM  
40  
60  
+PSR = 20 Log  
(
)
)
DV  
CC  
DV  
= 1.5 V  
CM  
DV /A  
20  
0
O
DM  
T
A
= 25°C  
40  
20  
−PSR = 20 Log  
1.0 k  
(
DV  
EE  
100  
10 k  
100 k  
1.0 M  
10 M  
100  
1.0 k  
10 k  
100 k  
1.0 M  
10 M  
100 k  
1.0 M  
f, FREQUENCY (Hz)  
f, FREQUENCY (Hz)  
Figure 15. Power Supply Rejection  
versus Frequency  
Figure 16. Common Mode Rejection  
versus Frequency  
1.0  
0.1  
10  
V
V
= +15 V  
= −15 V  
CC  
EE  
V
L
O
+
R = 2.0 kW  
T
A
R
L
5.0  
= 25°C  
V
V
= +15 V  
= −15 V  
= 100 W  
= 25°C  
CC  
EE  
0.01  
0.001  
R
T
S
V
= 1.0 V  
rms  
O
2.0  
1.0  
A
V
= 3.0 V  
rms  
O
10  
100  
1.0 k  
f, FREQUENCY (Hz)  
10 k  
100 k  
10  
100  
1.0 k  
f, FREQUENCY (Hz)  
10 k  
Figure 17. Total Harmonic Distortion  
versus Frequency  
Figure 18. Input Referred Noise Voltage  
versus Frequency  
2.0  
100  
V
V
T
= +15 V  
= −15 V  
= 25°C  
V
V
= +15 V  
= −15 V  
CC  
EE  
CC  
EE  
2
2
V (total) = (i R ) +e  
+
Ǹ
A
n
n
S
n
4KTRS  
T
A
= 25°C  
1.0  
0.7  
10  
0.5  
0.4  
0.3  
1.0  
0.2  
10  
100  
1.0 k  
10 k  
100 k  
1.0  
10  
100  
1.0 k  
10 k  
100 k  
f, FREQUENCY (Hz)  
R , SOURCE RESISTANCE (W)  
S
Figure 19. Input Referred Noise Current  
versus Frequency  
Figure 20. Input Referred Noise Voltage  
versus Source Resistance  
http://onsemi.com  
5
LM833  
V
V
= +15 V  
= −15 V  
V
V
= +15 V  
= −15 V  
CC  
EE  
CC  
EE  
R = 2.0 kW  
L
R = 2.0 kW  
L
C = 0 pF  
L
C = 0 pF  
L
A
V
= −1.0  
A
V
= +1.0  
T
A
= 25°C  
T
A
= 25°C  
t, TIME (2.0 ms/DIV)  
t, TIME (2.0 ms/DIV)  
Figure 21. Inverting Amplifier  
Figure 22. Noninverting Amplifier Slew Rate  
V
V
= +15 V  
= −15 V  
CC  
EE  
R = 2.0 kW  
L
C = 0 pF  
L
A
V
= +1.0  
T
A
= 25°C  
t, TIME (200 ns/DIV)  
Figure 23. Noninverting Amplifier Overshoot  
ORDERING INFORMATION  
Device  
LM833N  
Package  
Shipping  
PDIP−8  
50 Units / Rail  
98 Units / Rail  
LM833NG  
PDIP−8  
(Pb−Free)  
LM833D  
SOIC−8  
LM833DG  
SOIC−8  
(Pb−Free)  
LM833DR2  
SOIC−8  
2500 / Tape & Reel  
LM833DR2G  
SOIC−8  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
6
LM833  
PACKAGE DIMENSIONS  
SOIC−8  
D SUFFIX  
CASE 751−07  
ISSUE AG  
NOTES:  
−X−  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
A
8
5
4
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW  
STANDARD IS 751−07.  
S
M
M
B
0.25 (0.010)  
Y
1
K
−Y−  
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
C
N X 45  
_
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
SEATING  
PLANE  
−Z−  
1.27 BSC  
0.050 BSC  
0.10 (0.004)  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
M
J
H
D
8
0
_
_
_
_
M
S
S
0.25 (0.010)  
Z
Y
X
0.25  
5.80  
0.50 0.010  
6.20 0.228  
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
0.275  
4.0  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting
T
e
chniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
7
LM833  
PACKAGE DIMENSIONS  
PDIP−8  
N SUFFIX  
CASE 626−05  
ISSUE L  
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
8
5
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
−B−  
1
4
MILLIMETERS  
INCHES  
MIN  
DIM MIN  
MAX  
10.16  
6.60  
4.45  
0.51  
1.78  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
A
B
C
D
F
9.40  
6.10  
3.94  
0.38  
1.02  
0.370  
0.240  
0.155  
0.015  
0.040  
F
−A−  
NOTE 2  
L
G
H
J
2.54 BSC  
0.100 BSC  
0.76  
0.20  
2.92  
1.27  
0.30  
3.43  
0.030  
0.008  
0.115  
0.050  
0.012  
0.135  
K
L
C
7.62 BSC  
0.300 BSC  
M
N
−−−  
0.76  
10  
1.01  
−−−  
0.030  
10  
0.040  
_
_
J
−T−  
SEATING  
PLANE  
N
M
D
K
G
H
M
M
M
0.13 (0.005)  
T
A
B
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
LM833/D  

相关型号:

LM833DR2G

Low Noise, Audio Dual Operational Amplifier
ONSEMI

LM833DT

Low noise dual operational amplifier
STMICROELECTR

LM833G-S08-R

DUAL OPERATIONAL AND LOW VOLTAGE NOISE AMPLIFIER
UTC

LM833G-S08-T

DUAL OPERATIONAL AND LOW VOLTAGE NOISE AMPLIFIER
UTC

LM833L-S08-R

DUAL OPERATIONAL AND LOW VOLTAGE NOISE AMPLIFIER
UTC

LM833L-S08-T

DUAL OPERATIONAL AND LOW VOLTAGE NOISE AMPLIFIER
UTC

LM833M

Dual Audio Operational Amplifier
NSC

LM833M

LM833-N Dual Audio Operational Amplifier
TI

LM833M/NOPB

LM833-N Dual Audio Operational Amplifier
TI

LM833MM

Dual Audio Operational Amplifier
NSC

LM833MM

LM833-N Dual Audio Operational Amplifier
TI

LM833MM/NOPB

LM833-N Dual Audio Operational Amplifier
TI