STLC2415 [STMICROELECTRONICS]

BLUETOOTH BASEBAND WITH INTEGRATED FLASH; 具有内置闪光灯蓝牙基带
STLC2415
型号: STLC2415
厂家: ST    ST
描述:

BLUETOOTH BASEBAND WITH INTEGRATED FLASH
具有内置闪光灯蓝牙基带

闪光灯 蓝牙
文件: 总22页 (文件大小:185K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STLC2415  
BLUETOOTH® BASEBAND WITH INTEGRATED FLASH  
PRELIMINARY DATA  
1 FEATURES  
Figure 1. Package  
Bluetooth® V1.1 specification compliant  
SW compatible with STLC2410B-M28R400CT  
combination  
2 layer class 4 PCB compatible  
Point-to-point, point-to-multi-point (up to 7  
slaves) and scatternet capability  
LFBGA120 (10x10x1.4mm)  
Table 1. Order Codes  
Asynchronous Connection Less (ACL) link  
support giving data rates up to 721 kbps  
Synchronous Connection Oriented (SCO) link  
Standard BlueRF bus interface  
Part Number  
Package  
LFBGA120  
Temp. Range  
STLC2415  
-40 to +85 °C  
stack with profiles  
Clock support  
– Support of UART and USB HCI transport layers.  
Idle and power down modes  
– Ultra low power in idle mode  
– Low standby current  
– System clock input: 13 MHz external clock  
– LPO clock input at 3.2 and 32 kHz or via the  
embedded 32 kHz crystal oscillator cell  
ARM7TDMI 32-bit CPU  
Memory organization  
1.1 Applications Features  
– Integrated 4 Mbit flash  
Typical applications in which the STLC2415 can  
be used are:  
– 64 KByte on-chip RAM  
– 4 KByte on-chip boot ROM  
– Hold-acknowledge bus arbitration support  
HW support for all packet types  
– ACL: DM1, 3, 5 and DH1, 3, 5  
– SCO: HV1, 2, 3 and DV1  
Cable replacement  
Portable computers, PDA  
Modems  
Handheld data transfer devices  
Cameras  
Communication interfaces  
Computer peripherals  
Other type of devices that require the wireless  
– Serial Synchronous Interface  
– Two enhanced 16550 UART's with 128 byte  
fifo depth  
communication provided by Bluetooth®  
– 12 Mbps USB interface  
2 DESCRIPTION  
– Fast master I2C bus interface  
– Multi slot PCM interface  
The STLC2415 from STMicroelectronics is a Blue-  
tooth® baseband controller with integrated 4 Mbit  
flash memory. Together with a Bluetooth® Radio  
this product offers a compact and complete solu-  
tion for short-range wireless connectivity. It incor-  
porates all the lower layer functions of the  
Bluetooth® protocol.  
– 16 programmable GPIO  
– 2 external interrupts and various interrupt  
possibilities through other interfaces  
Ciphering support for up to 128-bit key  
Receiver Signal Strenght Indication (RSSI)  
support for power-controlled links  
Separate control for external power amplifier  
(PA) for class1 power support.  
The microcontroller allows the support of all data  
packets of Bluetooth® in addition to voice. The em-  
bedded controller can be used to run the Blue-  
tooth® protocol and application layers if required.  
The software is located in the integrated flash  
memory.  
Software support  
– Low level (up to HCI) stack or embedded  
Rev. 2  
1/22  
September 2004  
This is preliminary information on a new product now in development. Details are subject to change without notice.  
STLC2415  
3 QUICK REFERENCE DATA  
3.1 Absolute Maximum Ratings  
Operation of the device beyond these conditions is not guaranteed.  
Sustained exposure to these limits will adversely affect device reliability  
Table 2. Absolute Maximum Ratings  
Symbol  
Conditions  
Supply voltage baseband core  
Min  
Max  
2.5  
2.5  
13  
Unit  
V
V
V
V
V
0.5  
DD  
SS –  
SS –  
SS –  
V
DDF  
Supply voltage flash  
0.5  
0.5  
V
V
PP  
Fast Program Voltage  
V
V
Supply voltage baseband I/O  
Supply voltage flash I/O  
4
V
DDIO  
V
V
V
0.5  
0.5  
2.5  
V
DDQ  
SS –  
V
Input voltage on any digital pin (excluding FLASH input pins)  
Operating ambient temperature  
Storage temperature  
V + 0.3  
DDIO  
V
IN  
SS –  
T
-40  
+85  
+150  
+240  
°C  
°C  
°C  
amb  
T
-55  
stg  
T
Lead temperature < 10s  
lead  
3.2 Operating Ranges  
Operating ranges define the limits for functional operation and parametric characteristics of the device.  
Functionality outside these limits is not implied.  
Table 3. Operating Ranges  
Symbol  
Conditions  
Supply voltage baseband core and EMI pads  
Supply voltage flash  
Min  
1.55  
1.55  
2.7  
Typ  
1.8  
1.8  
3.3  
1.8  
Max  
1.95  
1.95  
3.6  
Unit  
V
V
DD  
V
V
DDF  
V
Supply voltage baseband I/O  
V
DDIO  
V
Supply voltage flash I/O (V  
V )  
DDF  
1.55  
-40  
1.95  
+85  
V
DDQ  
DDQ  
T
amb  
Operating ambient temperature  
°C  
3.3 I/O Specifications  
Depending on the interface, the I/O voltage is typical 1.8V (interface to the flash memory) or typical 3.3V  
(all the other interfaces). These I/Os comply to the EIA/JEDEC standard JESD8-B.  
3.3.1 Specifications for 3.3V I/Os  
Table 4. LVTTL DC Input Specification (3V<VDDIO<3.6V)  
Symbol  
Vil  
Parameter  
Low level input voltage  
Conditions  
Min  
Typ  
Max  
Unit  
V
0.8  
Vih  
High level input voltage  
Schmitt trigger hysteresis  
2
V
Vhyst  
0.4  
V
Table 5. LVTTL DC Output Specification (3V<VDDIO<3.6V)  
Symbol  
Vol  
Parameter  
Low level output voltage  
High level output voltage  
Conditions  
Iol = X mA  
Min  
Typ  
Max  
0.15  
Unit  
V
V
Voh  
Ioh =-X mA  
VDDIO-0.15  
Note: X is the source/sink current under worst case conditions according to the drive capability. (See table 8, pad information for value of X).  
2/22  
STLC2415  
3.3.2 Specifications for 1.8V I/Os  
Table 6. DC Input Specification (1.55V<VDD<1.95V)  
Symbol  
Vil  
Parameter  
Low level input voltage  
Conditions  
Min  
Typ  
Max  
Unit  
V
0.35*VDD  
Vih  
High level input voltage  
Schmitt trigger hysteresis  
0.65*VDD  
0.2  
V
Vhyst  
0.3  
0.5  
V
Table 7. DC Output Specification (1.55V<VDD<1.95V)  
Symbol  
Vol  
Parameter  
Low level output voltage  
High level output voltage  
Conditions  
Iol = X mA  
Min  
Typ  
Max  
Unit  
V
0.15  
Voh  
Ioh =-X mA  
VDD-0.15  
V
Note: X is the source/sink current under worst case conditions according to the drive capability. (See table 8, pad information for value of X).  
3.4 Current Consumption  
Table 8. Typical Power Consumption of the STLC2415 (VDD = VDD Flash = PLLVDD = 1.8V, VDDIO  
3.3V)  
=
Core  
STLC2415 State  
IO  
Unit  
Slave  
5.10  
0.94  
7.60  
7.90  
8.70  
127  
Master  
5.10  
0.94  
6.99  
7.20  
7.90  
n.a.  
Standby (no low power mode)  
0.13  
0.13  
0.13  
0.13  
0.14  
5
mA  
mA  
mA  
mA  
mA  
µA  
Standby (low power mode enabled)  
ACL connection (no transmission)  
ACL connection (data transmission)  
SCO connection (no codec connected)  
Inquiry and Page scan (low power mode enabled)  
Low Power mode (32 kHz crystal)  
20  
20  
0
µA  
3/22  
STLC2415  
Figure 2. Block Diagram and Electrical Schematic  
JTAG  
5
4
2
PCM  
PCM  
VDD  
INTERRUPT  
CONTROLLER  
100nF  
EXT._INT1/2  
2
2
USB  
I2C  
USB  
VDDIO  
100nF  
I2C  
VDDIO  
4
APB  
BRIDGE  
100nF  
SPI  
SPI  
ARM7  
TDMI  
16  
13  
TIMER  
GPIO  
GPIO(O..15)  
RADIO  
I/F  
BLUETOOTH  
CORE  
RF BUS  
D
M
A
8
START  
DETECT  
RAM  
UART  
UART  
UART2  
UART1  
(*)  
22pF  
22pF  
LPOCLKP  
2
2
BOOT  
ROM  
UART  
FIFO  
LPO  
Y2  
32KHz  
NRESET  
SYS_CLK_REQ  
SYSTEM  
CONTROL  
LPOCLKN  
DATA(0..15)  
ADDR(0..19)  
WRN  
16  
16  
DATA(0..15)  
ADDR(1..18)  
NW  
20  
18  
VDDPLL  
VDD  
4Mbit  
FLASH  
VDD  
EMI  
100nF  
RDN  
1
1
NG  
100nF  
CSN(0)  
NE  
1
2
1
5
16  
1
1
D03TL582A  
BOOT  
CSN(1..2)  
XIN  
RDN/NG ADDR DATA(0..15)  
(0,2,17,18,19)  
NRP NWP  
CSN(0)  
NE  
(**)  
(*) If a low-power clock is available, it can be connected to the LPOCLKP pin in stead of using a crystal  
(**) For device testing only (should not be connected in the application.  
4/22  
STLC2415  
4 PINOUT  
Figure 3. Pinout (Bottom view)  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
uart1_ uart1_ i2c_ i2c_ pcm_ pcm_ usb_ uart2_ uart2_ uart2_ uart2_  
spi_ spi_  
nreset nrp  
xin  
vddio vdd  
vss  
rxd  
txd  
dat  
clk  
sync  
a
dn  
rxd  
txd  
i1  
o2  
frm  
clk  
A
B
C
D
E
F
spi_txd  
sys_cl  
k_req  
pcm_ pcm- usb_ uart2_ uart2_ uart2_ uart2_  
n.c.  
vssio  
tms  
int2  
int1 vddio vssio  
vssio rdn/ng  
ne  
spi_rxd  
csn1  
clk  
b
dp  
i2  
o1  
io1  
io2  
tck  
tdo  
csn0  
addr0  
n.c.  
csn2  
ntrst  
tdi  
vdd  
btxen  
brxen  
bpktcl  
btxd  
vddio  
ant_sw  
bpaen  
bdclk  
bmosi  
bmiso  
bnden  
gpio14  
gpio15  
vss  
G
H
J
nwp  
addr2  
vdd  
vpp  
vddf  
vss  
K
L
brclk  
brxd  
vssf  
addr17  
addr18  
addr19  
data0  
vddq  
n.c.  
M
bsen  
gpio12  
gpio10  
N
P
R
T
n.c.  
data3  
data1  
data2  
vdd  
gpio11  
gpio9  
gpio13 vsspll vssio vddio gpio3 gpio1 boot vss  
vdd data8 data7 data6 data5 data4  
U
V
lpo_ lpo_  
clk_n clk_p  
gpio8 gpio7 gpio6 vddpll gpio5 gpio4 gpio2 gpio0  
data15 data14 data13 data12 data11 data10 data9 vss  
D03TL583  
4.1 Pin Description and Asthe signment  
Table 9 shows the pin list of STLC2415. There are 91 functional pins of which 25 are used for device test-  
ing only (should not be connected in the application) and 24 supply pins. The column "PU/PD" shows the  
pads implementing an internal weak pull-up/down, to fix value if the pin is left open. This can not replace  
an external pull-up/down.  
The pads are grouped according to two different power supply values, as shown in column "VDD":  
– V1 for 3.3 V typical 2.7 - 3.6 V range  
– V2 for 1.8 V typical 1.55 - 1.95 V range  
Finally the column "DIR" describes the pin directions:  
– I for inputs  
– O for outputs  
– I/O for input/outputs  
– O/t for tristate outputs  
5/22  
STLC2415  
Table 9. Pin List  
Name  
Pin #  
Description  
DIR  
PU/PD VDD  
PAD  
Clock and test pins  
xin  
B18  
A18  
A17  
H3  
System clock  
Reset  
I
CMOS, 3.3V TTL  
compatible  
schmitt trigger  
V1  
nreset  
nrp  
I
I
External flash reset  
Flash Write Protect  
System clock request  
V2  
V2  
nwp  
I
CMOS 1.8V  
sys_clk_req C18  
I/O  
CMOS, 3.3V TTL  
compatible, 2mA  
tristate  
V1  
slew rate control  
(1)  
lpo_clk_p  
lpo_clk_n  
int1  
V9  
Low power oscillator + / Slow clock input  
Low power oscillator -  
I
O
I
V2  
V10  
C14  
C15  
(1)  
External Interrupt used also as external wakeup  
Second external interrupt  
CMOS, 3.3V TTL  
compatible  
V1  
(1)  
int2  
I
schmitt trigger  
(1)  
boot  
T10  
Select external boot from EMI or internal from ROM  
I
V2  
CMOS 1.8V  
SPI interface  
spi_frm  
spi_clk  
A2  
Synchronous Serial Interface frame sync  
Synchronous Serial Interface clock  
I/O  
I/O  
CMOS, 3.3V TTL  
compatible, 2mA  
tristate  
slew rate control  
schmitt trigger  
A1  
V1  
V1  
spi_txd  
spi_rxd  
B1  
C1  
Synchronous Serial Interface transmit data  
Synchronous Serial Interface receive data  
O/t  
I
CMOS, 3.3V TTL  
compatible, 2mA  
slew rate control  
(1)  
CMOS, 3.3V TTL  
compatible  
V1  
schmitt trigger  
UART interface  
uart1_txd  
uart1_rxd  
uart2_o1  
uart2_o2  
A15  
Uart1 transmit data  
Uart1 receive data  
Uart2 modem output  
Uart2 modem output  
O/t  
I
CMOS, 3.3V TTL  
compatible, 2mA  
slew rate control  
V1  
(2)  
A16  
C7  
CMOS, 3.3V TTL  
compatible  
schmitt trigger  
V1  
O
CMOS, 3.3V TTL  
compatible, 2mA  
slew rate control  
V1  
V1  
A6  
O/t  
CMOS, 3.3V TTL  
compatible, 2mA  
slew rate control  
(2)  
uart2_i1  
uart2_i2  
uart2_io1  
uart2_io2  
A7  
C8  
C6  
C5  
Uart2 modem input  
I
V1  
CMOS, 3.3V TTL  
compatible  
(2)  
Uart2 modem input  
I
V1  
(2)  
Uart2 modem input/output  
Uart2 modem input/output  
I/O  
I/O  
V1  
CMOS, 3.3V TTL  
compatible, 2mA  
tristate slew rate  
control  
(2)  
V1  
6/22  
STLC2415  
Table 9. Pin List (continued)  
Name  
Pin #  
Description  
Uart2 transmit data  
DIR  
PU/PD VDD  
PAD  
uart2_txd  
A8  
O/t  
CMOS, 3.3V TTL  
compatible, 2mA  
slew rate control  
V1  
(2)  
uart2_rxd  
A9  
Uart2 receive data  
I
CMOS, 3.3V TTL  
compatible  
V1  
I2C interface  
i2c_dat  
(3)  
A14  
A13  
I2C data pin  
I2C clock pin  
I/O  
I/O  
V1  
CMOS, 3.3V TTL  
compatible, 2mA  
tristate  
(3)  
i2c_clk  
V1  
slew rate control  
USB interface  
(1)  
usb_dn  
usb_dp  
A10  
C9  
USB - pin  
USB + pin  
I/O  
I/O  
V1  
(1)  
V1  
GPIO interface  
gpio0  
gpio1  
gpio2  
gpio3  
V11  
Gpio port 0  
Gpio port 1  
Gpio port 2  
Gpio port 3  
I/O  
I/O  
I/O  
I/O  
PU  
CMOS, 3.3V TTL  
compatible, 4mA  
tristate  
T11  
V12  
T12  
PU  
PU  
PU  
V1  
V1  
slew rate control  
CMOS, 3.3V TTL  
compatible, 4mA  
tristate  
slew rate control  
schmitt trigger  
gpio4  
V13  
V14  
V16  
V17  
V18  
U18  
R18  
T18  
P18  
T16  
P16  
R16  
Gpio port 4  
Gpio port 5  
Gpio port 6  
Gpio port 7  
Gpio port 8  
Gpio port 9  
Gpio port 10  
Gpio port 11  
Gpio port 12  
Gpio port 13  
Gpio port 14  
Gpio port 15  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
CMOS, 3.3V TTL  
compatible, 4mA  
tristate  
gpio5  
V1  
gpio6  
slew rate control  
gpio7  
gpio8  
gpio9  
gpio10  
gpio11  
gpio12  
gpio13  
gpio14  
gpio15  
CMOS, 3.3V TTL  
compatible, 2mA  
tristate  
V1  
slew rate control  
JTAG interface  
ntrst  
F18  
JTAG pin  
JTAG pin  
I
I
PD  
CMOS, 3.3V TTL  
compatible  
V1  
V1  
(1)  
tck  
D18  
CMOS, 3.3V TTL  
compatible  
schmitt trigger  
tms  
tdi  
E16  
F16  
JTAG pin  
JTAG pin  
I
I
PU  
PU  
CMOS, 3.3V TTL  
compatible  
V1  
7/22  
STLC2415  
Table 9. Pin List (continued)  
Name  
tdo  
Pin #  
Description  
DIR  
PU/PD VDD  
PAD  
E18  
JTAG pin (should be left open)  
O/t  
CMOS, 3.3V TTL  
compatible, 2mA  
slew rate control  
V1  
PCM interface  
pcm_a  
pcm_b  
A11  
C10  
PCM data  
I/O  
I/O  
I/O  
I/O  
PD  
CMOS, 3.3V TTL  
compatible, 2mA  
tristate  
PCM data  
PD  
PD  
PD  
V1  
V1  
slew rate control  
pcm_sync A12  
pcm_clk C11  
PCM 8kHz sync  
PCM clock  
CMOS, 3.3V TTL  
compatible, 2mA  
tristate  
slew rate control  
schmitt trigger  
Radio interface  
(1)  
(1)  
brclk  
brxd  
L18  
Transmit clock  
Receive data  
I
I
CMOS, 3.3V TTL  
compatible  
schmitt trigger  
V1  
V1  
M18  
bmiso  
M16  
RF serial interface input data  
I
CMOS, 3.3V TTL  
compatible  
bnden  
bmosi  
bdclk  
btxd  
N16  
L16  
K16  
K18  
N18  
J16  
H18  
G18  
J18  
H16  
RF serial interface control  
RF serial interface output data  
RF serial interface clock  
Transmit data  
O
O
O
O
O
O
O
O
O
O
CMOS, 3.3V TTL  
compatible, 2mA  
slew rate control  
bsen  
Synthesizer ON  
Open PLL  
V1  
bpaen  
brxen  
btxen  
bpktctl  
ant_sw  
Receive ON  
Transmit ON  
Packet ON  
Antenna switch  
CMOS, 3.3V TTL  
compatible, 8mA  
slew rate control  
V1  
(1) Should be strapped to vssio if not used  
(2) Should be strapped to vddio if not used  
(3) Must have a 10 kOhm pull-up.  
8/22  
STLC2415  
Table 9. Pin List (continued)  
Name  
Pin #  
Description  
Power Supply  
vsspll  
vddpll  
vdd  
T15 PLL ground  
V15 1.8V supply for PLL  
A4  
F1  
J1  
1.8V Digital supply  
vdd  
1.8V Digital supply  
vdd  
1.8V Digital supply  
vdd  
U1  
T8  
K3  
M3  
J3  
1.8V Digital supply  
vdd  
1.8V Digital supply  
vddf  
1.8V Digital supply Flash  
1.8V I/O's supply Flash  
12V fast program supply Flash  
vddq  
vpp  
vddio  
vddio  
vddio  
vddio  
vss  
C13 3.3V I/O's supply  
A5 3.3V I/O's supply  
T13 3.3V I/O's supply  
G16 3.3V I/O's supply  
A3  
G1  
K1  
V1  
T9  
L3  
Digital ground  
Digital ground  
Digital ground  
Digital ground  
Digital ground  
Digital ground Flash  
vss  
vss  
vss  
vss  
vssf  
vssio  
vssio  
vssio  
vssio  
C12 I/O's ground  
C4 I/O's ground  
T14 I/O's ground  
D16 I/O's ground  
9/22  
STLC2415  
Table 9. Pin List (continued)  
Name  
Pin #  
Description  
DIR  
PU/PD VDD  
PAD  
To be connected together on the PCB’s top layer  
ne  
D3  
E3  
I
Flash chip enable  
csn0  
O
External chip select bank 0  
Test Only (Do NOT connect)  
rdn/ng  
csn1  
C3  
D1  
E1  
F3  
H1  
L1  
External read  
O
O
External chip select bank 1  
External chip select bank 2  
External address bit 0  
External address bit 2  
External address bit 17  
External address bit 18  
External address bit 19  
External data bit 0  
External data bit 1  
External data bit 2  
External data bit 3  
External data bit 4  
External data bit 5  
External data bit 6  
External data bit 7  
External data bit 8  
External data bit 9  
External data bit 10  
External data bit 11  
External data bit 12  
External data bit 13  
External data bit 14  
External data bit 15  
csn2  
O
addr0  
addr2  
addr17  
addr18  
addr19  
data0  
data1  
data2  
data3  
data4  
data5  
data6  
data7  
data8  
data9  
data10  
data11  
data12  
data13  
data14  
data15  
O
O
O
CMOS 1.8V  
4mA  
M1  
N1  
P1  
R1  
T1  
R3  
T3  
T4  
T5  
T6  
T7  
V2  
V3  
V4  
V5  
V6  
V7  
V8  
O
V2  
O
slew rate control  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
CMOS 1.8V  
4mA  
slew rate control  
PD  
V2  
PD  
PD  
PD  
PD  
PD  
Not Connected  
n.c. C16, Not Connected  
G3,  
N3,  
P3  
10/22  
STLC2415  
5 FUNCTIONAL DESCRIPTION  
5.1 Baseband  
5.1.1 Overview  
The baseband is based on Ericsson Technology Licensing Baseband Core (EBC) and it is fully compliant  
with the Bluetooth® specification 1.1:  
– Point to multipoint (up to 7 Slaves)  
– Asynchronous Connection Less (ACL) link support giving data rates up to 721 kbps.  
– Synchronous Connection Oriented (SCO) link with support for 1 voice channel over the air interface.  
– HW support for all packet types:  
– ACL: DM1, 3, 5 and DH1, 3, 5  
– SCO: HV1, 2, 3, and DV1.  
– Support for three PCM channels in the PCM interface .  
– Architecture gives ultra-low power consumption.  
– Ciphering support up to 128 bits key, configurable by software.  
– Receiver Signal Strenght Indication (RSSI) support for power-controlled links  
– Flexible voice formats to Host and over air (CVSD, PCM 16/8-bit, A-law, µ-law)  
– High quality filtering of voice packets enabling excellent audio quality.  
– Scatternet support, communication between two simultaneously running piconets.  
– Full Bluetooth® software stack available.  
– Low level link controller.  
– Specific external power amplifier (PA) control for class1 support  
– Extended wake-up and interrupt functionality for HID support  
5.2 Processor and Memory  
– ARM7TDMI  
– 64 Kbyte of static RAM.  
– 4 Kbyte of metal programmable ROM  
– Extension of the ARM Bus to access the program in the integrated 4 MBit FLASH  
5.3 Integrated Flash Memory  
– 4 Mbit size  
– 8 parameter blocks of 4 Kword (top configuration)  
– 7 main blocks of 32 Kword  
– 120 ns access time  
– See datasheet of standalone product M28R400CT for more detailed information.  
11/22  
STLC2415  
Figure 4. Block Addresses  
M28R400CT  
Top Boot Block Addresses  
3FFFF  
3F000  
4 KWords  
Total of 8  
4 KWord Blocks  
38FFF  
4 KWords  
38000  
37FFF  
32 KWords  
30000  
Total of 7  
32 KWord Blocks  
0FFFF  
32 KWords  
32 KWords  
08000  
07FFF  
00000  
5.3.1 Flash Signal Descriptions  
Write Protect (nwp)  
Write protect is an input that gives an additional hardware protection for each block. When Write Protect  
is 0.4V the Lock-Down is enabled and the protection status of the flash blocks cannot be changed.  
When Write Protect is (vddq - 0.4V), the Lock-Down is disabled and the flash memory blocks can be  
locked or unlocked.  
Reset (nrp)  
The Reset input provides a hardware reset of the memory. When reset is 0.4V, the memory is in reset  
mode: the outputs are high impedant and the current consumption is minimized. After Reset all blocks  
are in Locked state. When Reset is (vddq - 0.4V), the device is in normal operation. Exiting reset mode  
the device enters read array mode, but a negative transition of Chip Enable or a change of the address  
is required to ensure valid data outputs.  
Vdd Supply Voltage (vddf)  
Vdd provides the power supply to the internal core of the flash memory device. It is the main power sup-  
ply for all operations (Read, Program and Erase)  
Vddq Supply Voltage (vddq)  
Vddq provides the power supply to the I/O pins and enables all Outputs to be powered independently  
from Vddf. Vddq can be tied to Vddf or can use separate supply.  
12/22  
STLC2415  
Vpp Program Supply Voltage (vpp)  
Vpp is both a control input and a power supply pin. The two functions are selected by the voltage range  
applied to the pin. The supply voltage Vddf and the program supply voltage Vpp can be applied in any  
order.  
If Vpp is kept in a low voltage range (0V to 3.6V) Vpp is seen as a control input. In this case a voltage  
lower than 1V gives protection agains program or block erase, while 1.65V<Vpp<3.6V enables these  
functions. Vpp is only sampled at the beginning of a program or block erase; a change in its value after  
the operation has started does not have any effect and program or erase opereations continue.  
If Vpp is in the range 11.4V to 12.6V it acts as a power supply pin. In this condition Vpp must be stable  
until the Program/Erase algorithm is completed.  
Vssf Flash Ground (vssf)  
Vssf is the reference for all voltage measurements.  
*
*
Address Inputs (Addr(1-18)/Addr(0-19)) , Data Input/Output (Data(0-15)/Data(0-15)) , Chip Enable (ne/  
csn(0)) , Ouput Enable (ng/rdn) , Write Enable (nw/wrn) are connected and controlled by the Bluetooth®  
*
*
*
baseband controller.  
*( flash memory signals / baseband controller signals )  
13/22  
STLC2415  
6 GENERAL SPECIFICATION  
6.1 System Clock  
The STLC2415 works with a single clock provided on the XIN pin. The value of this external clock should  
be 13MHz ±20ppm (overall).  
6.1.1 Slow Clock  
The slow clock is used by the baseband as reference clock during the low power modes. Compared to the  
13MHz clock, the slow clock only requires an accuracy of ±250ppm (overall).  
Several options are foreseen in order to adjust the STLC2415 behaviour according to the features of the  
radio used:  
– if the system clock (e.g. 13MHz) is not provided at all times (power consumption saving) and no slow  
clock is provided by the system, a 32 kHz crystal must be used by the STLC2415 (default mode).  
– if the system clock (e.g. 13MHz) is not provided at all times (power consumption saving) and the system  
provides a slow clock at 32kHz or 3.2kHz, this signal is simply connected to the STLC2415 (lpo_clk_p).  
– if the system clock (e.g. 13MHz) is provided at all times, the STLC2415 generates from the 13MHz ref-  
erence clock an internal 32kHz clock. This mode is not an optimized mode for power consumption.  
6.2 Boot Procedure  
The boot code instructions are the first that ARM7TDMI executes after an HW reset. All the internal de-  
vice's registers are set to their default value.  
There are 2 types of boot:  
– Flash boot.  
When boot pin is set to `1` (connected to VDD), the STLC2415 boots on its flash memory.  
– UART download boot from ROM.  
When boot pin is set to `0` (connected to GND), the STLC2415 boots on its internal ROM (needed to  
download the new firmware in the flash). When booting on the internal ROM, the STLC2415 will monitor  
the UART interface for approximately 1.4 second. If there is no request for code downloading during this  
period, the ROM jumps to flash.  
6.3 Clock Detection  
The STLC2415 has an automatic slow clock frequency detection (32kHz, 3.2kHz or none).  
6.4 Master Reset  
When the device's reset is held active (NRESET is low), UART1_TXD and UART2_TXD are set to input  
state. When the NRESET returns high, the device starts to boot.  
Remark: The device should be held in active reset for minimum 20ms in order to guarantee a complete  
reset of the device.  
6.5 Interrupts/Wake-up  
The external pins int1 and int2, and up to 8 GPIOs can be used both as external interrupt source and as  
wake-up source. In addition the chip can be woken-up by USB, UART1_RXD, UART2_RXD.  
14/22  
STLC2415  
7 INTERFACES  
7.1 UART Interface  
The chip contains two enhanced (128 byte transmit FIFO and 128 byte receive FIFO, sleep mode, 127 Rx  
and 128 Tx interrupt tresholds) UARTs, named UART1 and UART2, compatible with the standard M16550  
UART.  
For UART1, only Rx and Tx signals are available (used for debug purposes).  
UART2 features:  
– standard HCI UART transport layer:  
– all HCI commands as described in the Bluetooth® specification 1.1  
– ST specific HCI command (check STLC2415 Software Interface document for more information)  
– RXD, TXD, CTS, RTS on permanent external pins  
– 128-byte FIFOs, for transmit and for receive  
– Default configuration: 57.600 kbps  
– Specific HCI command to change to the following baud rates:  
Table 10. List of Supported Baud Rates  
Baud rate  
57.6 kbps (default)  
38.4 k  
4800  
2400  
1800  
1200  
900  
921.6k  
460.8 k  
230.4 k  
153.6 k  
115.2 k  
76.8 k  
28.8 k  
19.2 k  
14.4 k  
9600  
600  
300  
7200  
7.2 Synchronous Serial Interface  
The Synchronous Serial Interface (SSI) (or the Synchronous Peripheral Interface (SPI)) is a flexible mod-  
ule supporting full-duplex and half-duplex synchronous communications with external devices in Master  
and Slave mode. It allows the STLC2415 to communicate with peripheral devices.  
The Synchronous Serial Interface is also capable of inter processor communications in a multiple-master  
system. This interface is flexible enough to interface directly with numerous standard product peripherals.  
This Synchronous Serial Interface peripheral features:  
– full duplex, four-wire synchronous transfers.  
– Microwire half duplex transfer using 8-bit control message  
– programmable clock polarity and phase.  
– transmit data pin tri state able when not transmitting  
– Master or Slave operation  
– Programmable clock bit rate up to XIN/4  
– Programmable data frame from 4 bits to 16 bits.  
– Independent transmit and receive 16 words FIFO.  
– Internal loopback  
7.3 I2C Interface  
Used to access I2C peripherals.  
The interface is a fast master I2C; it has full control of the interface at all times. I2C slave functionality is  
not supported.  
15/22  
STLC2415  
7.4 USB Interface  
A USB device interface compliant to USB specification v1.1 is connected to the ARM processor. This al-  
lows the chip to be connected to a Universal Serial Bus that can transmit data and/or voice through the  
internal USB transceiver.  
Figure 5 gives an overview of the main components needed for supporting the USB interface, as specified  
in the Bluetooth® Core Specification (Part H:2). For clarity, the serial interface (including the UART Trans-  
port Layer) is also shown.  
Figure 5. USB Interface  
HCI  
USB TRANSPORT LAYER  
UART TRANSPORT LAYER  
SERIAL DRIVER  
RTOS  
USB  
DEVICE  
REGISTERS  
FIFOs  
UART  
DEVICE  
REGISTERS  
FIFOs  
USB DRIVER  
IRQ  
IRQ  
STLC2415 HW  
D03TL588  
The USB device registers and FIFOs are memory mapped. The USB Driver will use these registers to ac-  
cess the USB interface. The equivalent exists for the HCI communication over UART.  
For transmission to the host, the USB & Serial Drivers interface with the HW via a set of registers and  
FIFOs, while in the other direction, the hardware may trigger the Drivers through a set of interrupts (iden-  
tified by the RTOS, and directed to the appropriate Driver routines).  
7.5 JTAG Interface  
The JTAG interface is compliant with the JTAG IEEE Std 1149.1. Its allows both the boundary scan of the  
digital pins and the debug of the ARM7TDMI application when connected with the standard ARM7 devel-  
opment tools.  
7.6 RF Interface  
The STLC2415 radio interface is compatible to BlueRF (unidirectional RxMode2 for data and unidirection-  
al serial interface for control).  
7.7 PCM Voice Interface  
The PCM interface is a direct PCM interface to connect to a standard CODEC (e.g. STw5093 or STw5094)  
16/22  
STLC2415  
including internal decimator and interpolator filters. The data can be linear PCM (13-16bit), µ-Law (8bit) or  
A-Law (8bit). By default the codec interface is configured as master. The encoding on the air interface is  
programmable to be CVSD, A-Law or µ-Law.  
The PCM block is able to manage the PCM bus with up to 3 timeslots.  
In master mode, PCM clock and data can operate at 2 MHz or at 2.048 MHz to allow interfacing of stan-  
dard codecs.  
The four signals of the PCM interface are:  
– PCM_CLK : PCM clock  
– PCM_SYNC : PCM 8kHz sync  
– PCM_A : PCM data  
– PCM_B : PCM data  
Directions of PCM_A and PCM_B are software configurable.  
Figure 6. PCM (A-law, µ-law) Standard Mode  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
PCM_CLK  
PCM_SYNC  
PCM_A  
B
B
B
PCM_B  
B
D02TL558  
125µs  
Figure 7. Linear Mode  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
PCM_CLK  
PCM_SYNC  
PCM_A  
PCM_B  
D02TL559  
125µs  
Table 11. PCM Interface Timing.  
Symbol  
Description  
Min  
Typ  
Max  
Unit  
PCM Interface  
Fpcm_clk  
Frequency of PCM_CLK (master)  
-
2048  
8
kHz  
kHz  
ns  
F
Frequency of PCM_SYNC  
High period of PCM_CLK  
Low period of PCM_CLK  
High period of PCM_SYNC  
pcm_sync  
t
200  
200  
200  
100  
100  
100  
WCH  
t
ns  
WCL  
WSH  
t
ns  
t
Setup time, PCM_SYNC high to PCM_CLK low  
ns  
SSC  
SDC  
HCD  
DCD  
t
Setup time, PCM_A/B input valid to PCM_CLK low  
Hold time, PCM_CLK low to PCM_A/B input invalid  
Delay time, PCM_CLK high to PCM_A/B output valid  
ns  
t
t
ns  
150  
ns  
17/22  
STLC2415  
Figure 8. PCM Interface Timing  
t
WCL  
PCM_CLK  
t
WCH  
t
SSC  
PCM_SYNC  
t
SDC  
t
WSH  
t
HCD  
MSB  
MSB-1 MSB-2 MSB-3 MSB-4  
PCM_A/B in  
t
DCD  
MSB  
MSB-1 MSB-2 MSB-3 MSB-4  
D02TL557  
PCM_B/A out  
8 HCI UART TRANSPORT LAYER  
The UART Transport Layer has been specified by the Bluetooth® SIG ( Part H:3), and allows HCI level  
communication between a host controller (STLC2415) and a host (e.g. PC), via a RS232 interface.  
The objective of this HCI UART Transport Layer is to make it possible to use the Bluetooth® HCI over a  
serial interface between two UARTs on the same PCB. The HCI UART Transport Layer assumes that the  
UART communication is free from line errors.  
8.1 UART Settings  
The HCI UART Transport Layer uses the following settings:  
– Baud rate: Configurable (Default baud rate: 57.600 kbps)  
– Number of data bits: 8  
– Parity bit: no parity  
– Stop bit: 1 stop bit  
– Flow control: RTS/CTS  
– Flow-off response time: 3 ms  
Flow control with RTS/CTS is used to prevent temporary UART buffer overrun. It should not be used for  
flow control of HCI, since HCI has its own flow control mechanisms for HCI commands, HCI events and  
HCI data.  
If CTS is 1, then the Host/Host Controller is allowed to send.  
If CTS is 0, then the Host/Host Controller is not allowed to send.  
The flow-off response time defines the maximum time from setting RTS to 0 until the byte flow actually  
stops. The signals should be connected in a null-modem fashion; i.e. the local TXD should be connected  
to the remote RXD and the local RTS should be connected to the remote CTS and vice versa.  
Figure 9. UART Transport Layer  
BLUETHOOTH  
HOST  
CONTROLLER  
BLUETHOOTH HCI  
BLUETHOOTH  
HOST  
HCI UART TRANSPORT LAYER  
D02TL556  
18/22  
STLC2415  
9 HCI USB TRANSPORT LAYER  
The USB Transport Layer has been specified by the Bluetooth® SIG (Part H:2), and allows HCI level com-  
munication between a host controller (STLC2415) and a host (e.g. PC), via a USB interface. The USB  
Transport Layer is completely implemented in SW. It accepts HCI messages from the HCI Layer, prepares  
it for transmission over a USB bus, and sends it to the USB Driver. It reassembles the HCI messages from  
USB data received from the USB Driver, and sends these messages to the HCI Layer. The Transport Lay-  
er does not interprete the contents (payload) of the HCI messages; it only examines the header.  
10 POWER CLASS1 SUPPORT  
The chip can control an external power amplifier (PA). Several signals are duplicated on GPIOs for this  
purpose in order to avoid digital/analog noise loops in the radio.  
The Class1_En register enables the alternate functions of GPIO[15:6] to generate the signals for driving  
an external PA in a Bluetooth® power class1 application.  
Every bit enables a dedicated signal on a GPIO pin, as described in table 12.  
Table 12. Power Class 1 Functionality  
Class1_En bit  
rxon  
involved GPIO  
gpio[6]  
description (when class1_En bit = ‘1’)  
outputs a copy of rx_on pin to switch LNA/RF switch on/off  
outputs an inverted copy of rx_on pin to switch LNA/RF switch on/off  
Bit 0 of the PA value for the current connection  
Bit 1 of the PA value for the current connection  
Bit 2 of the PA value for the current connection  
Bit 3 of the PA value for the current connection  
Bit 4 of the PA value for the current connection  
Bit 5 of the PA value for the current connection  
Bit 6 of the PA value for the current connection  
Bit 7 of the PA value for the current connection  
not rxon  
PA0  
gpio[7]  
gpio[8]  
PA1  
gpio[9]  
PA2  
gpio[10]  
gpio[11]  
gpio[12]  
gpio[13]  
gpio[14]  
gpio[15]  
PA3  
PA4  
PA5  
PA6  
PA7  
rx_on is the same as the rx_on output pin. Not rx_on is the inverted signal, in order to save components  
on the application board.  
PA7 to PA0 are the power amplifier control lines. They are managed, on a connection basis, by the base-  
band core. The Power Level programmed for a certain Bluetooth® connection is manged by the firmware,  
as specified in the Bluetooth® SIG spec.  
19/22  
STLC2415  
Figure 10. LFBGA120 (Low Fne Ball Grid Array) Mechanical Data & Package Dimensions  
mm  
inch  
DIM.  
MIN. TYP. MAX. MIN.  
TYP. MAX.  
0.055  
OUTLINE AND  
MECHANICAL DATA  
A
A1  
A2  
b
1.40  
0.20  
0.008  
1
0.039  
0.25  
0.30  
0.35 0.010 0.012 0.014  
D
9.90 10.00 10.10 0.390 0.394 0.398  
D1  
D2  
E
8.50  
6.50  
0.335  
0.256  
9.90 10.00 10.10 0.390 0.394 0.398  
E1  
E2  
eD  
eE  
FD  
FE  
mD  
mE  
n
8.50  
6.50  
0.335  
0.256  
0.50 basic  
0.50 basic  
0.75  
0.020 basic  
0.020 basic  
0.029  
0.75  
0.029  
18  
18  
120 balls  
SE  
SD  
0.25 basic  
0.25 basic  
0.0098 basic  
0.0098 basic  
Body: 10 x 10 x 1.4mm  
Tolerance  
aaa  
bbb  
ddd  
eee  
fff  
0.15  
0.10  
0.08  
0.15  
0.05  
0.006  
0.0039  
0.0031  
0.006  
LFBGA120  
Low Fine Ball Grid Array  
0.002  
7513355 A  
20/22  
STLC2415  
Table 13. Revision History  
Date  
Revision  
Description of Changes  
First Issue in EDOCS DMS.  
August 2004  
September 2004  
1.1  
2
Editorial corrections.  
Clock support added in section 1.  
Section 2 corrected.  
Modified the figures 2 and 3.  
Modified the tables 5, 7 and 8.  
To be connected’ added in table 9.  
Section 5.3.1 modified.  
Section 6.2 corrected.  
Section 6.5 modified.  
Section 7.3 updated and figure removed.  
21/22  
STLC2415  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
The BLUETOOTH® word mark and logos are owned by the Bluetooth SIG, Inc. and any use of such marks by STMicroelectronics is under license.  
All other names are the property of their respective owners  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
22/22  

相关型号:

STLC2416

BLUETOOTH BASEBAND WITH INTEGRATED FLASH
STMICROELECTR

STLC2500

BLUETOOTH⑩ SINGLE CHIP
STMICROELECTR

STLC2500A

Bluetooth Single Chip
STMICROELECTR

STLC2500ATR

Bluetooth Single Chip
STMICROELECTR

STLC2500C

BluetoothTM EDR Single Chip
STMICROELECTR

STLC2592

Bluetooth V2.1(a) EDR and RDS FM radio combo solution
STMICROELECTR

STLC2592TR

Bluetooth V2.1(a) EDR and RDS FM radio combo solution
STMICROELECTR

STLC2593

Bluetooth EDR and RDS FM radio tuner
STMICROELECTR

STLC2690

Bluetooth V2.1 and FM RDS transceiver system-on-chip
STMICROELECTR

STLC2690WTR

Bluetooth V2.1 and FM RDS transceiver system-on-chip
STMICROELECTR

STLC3040

A/MU-LAW, PCM CODEC, PQCC44, PLASTIC, LCC-44
STMICROELECTR

STLC3040-TR

STLC3040-TR
STMICROELECTR