CXD1961AQ [SONY]

DVB-S Frontend IC (QPSK demodulation + FEC); DVB -S前端IC ( QPSK解调+ FEC )
CXD1961AQ
型号: CXD1961AQ
厂家: SONY CORPORATION    SONY CORPORATION
描述:

DVB-S Frontend IC (QPSK demodulation + FEC)
DVB -S前端IC ( QPSK解调+ FEC )

文件: 总33页 (文件大小:293K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CXD1961AQ  
Preliminary  
DVB-S Frontend IC (QPSK demodulation + FEC)  
For the availability of this product, please contact the sales office.  
Description  
100 pin QFP (Plastic)  
The CXD1961AQ is a single chip DVB compliant  
Satellite Broadcasting Frontend IC, including dual  
A/D converter for analog baseband I/Q input, QPSK  
demodulator, Viterbi decoder Reed-Solomon decoder  
and Energy Dispersal descrambler. It is suitable for  
use in a DVB Integrated Receiver Decoder.  
Features  
Dual 6 bit A/D converter  
Absolute Maximum Rating (Ta = 25°C, GND = 0V)  
QPSK demodulator  
Power Supply  
Input Voltage  
Output Voltage  
I/O Voltage  
VDD  
–0.5 to +4.6  
V
V
Multi-symbol rate operation  
Nyquist Roll off filter (α = 0.35)  
Clock recovery circuit  
VIN  
–0.5 to VDD + 0.5  
VOUT –0.5 to VDD + 0.5  
–0.5 to VDD + 0.5  
Vcpuif –0.5 to +5.5  
–55 to +150  
V
VI/O  
V
Carrier recovery circuit  
CPU I/F pin  
V
AGC control (PWM output)  
Storage Temperature Tstg  
°C  
Viterbi decoder  
Constraint length 7  
Recommended Operating Condition  
(Ta = 0 to 75°C, GND = 0V)  
VDD 3.15 to 3.45  
VIH 0.7 × VDD to VDD + 0.5V  
0.3 to 0.2 × VDD  
Truncation length 144  
BER monitor of QPSK demodulator output  
Frame synchronization circuit  
Convolutional de-interleaver  
Reed-Solomon decoder (204,188)  
BER monitor of Viterbi decoder output  
Energy dispersal descrambler  
CPU interface circuit  
Power Supply  
Input High level  
Input Low level  
V
VIL  
V
I2C bus interface (5V input capability)  
Package  
QFP 100pin  
Operating frequency  
Power consumption  
Process  
20 to 30MSPS  
750mW (@3.3V 30MSPS typical)  
0.4µm CMOS Technology  
Application  
DVB-S Set Top Box (Satellite)  
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by  
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the  
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.  
– 1 –  
PE97854-PS  
CXD1961AQ  
Block Diagram  
100  
99 98  
96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
97  
AVS0  
RB0  
1
2
3
4
5
6
7
8
9
80 VDD9  
79 CR7  
78 CR6  
77 CR5  
analog I/O  
2ch ADC  
Sampling  
Clock  
PLL  
VCO  
VDD0  
VSS0  
TEST1  
TEST2  
TEST3  
TEST4  
NC  
76  
CR4  
QPSK  
Demodulator  
75 VSS8  
74 VDD8  
73 CR3  
72 CR2  
VDD1 10  
VSS1 11  
71  
CR1  
70 CR0  
NCO  
Viterbi Decoder  
SDAT/SCL 12  
13  
69 CKV  
68 AGCPWM  
SCLK  
SEN/SDA 14  
VDD2 15  
67  
66  
65  
64  
63  
62  
61  
V
SS7  
VDD7  
VCK  
VDT  
XI  
VSS2 16  
De-interleaver  
TCK 17  
18  
19  
TMS  
XO  
TEST6  
AVS3  
TEST7 20  
CK8OUT  
21  
60 AVD3  
SDA  
RESET 22  
TE 23  
59  
58  
57  
Reed-Solomon  
Decoder  
CPU I/F  
SCL  
I2C bus  
TEST22  
VDD3 24  
VSS3 25  
56 TEST21  
55 TEST20  
PKTCLK 26  
BYTCLK 27  
PKTERR 28  
DATA0 29  
DATA1 30  
Energy Dispersal  
54  
53  
52  
51  
VSS6  
VDD6  
decoded data  
& clock  
TEST19  
TEST18  
31  
32 33  
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
34  
Typical Block Diagram  
QPSK + FEC  
I/Q  
detector  
Amp  
Data  
LNB  
SAW  
LPF  
LPF  
SONY  
CXD1961AQ  
Clock  
VCO  
PLL  
479.5MHz  
90°  
LPF  
Crystal  
Reference  
OSC  
Micro Controller  
– 2 –  
CXD1961AQ  
Functional Description  
(1) A/D Converters  
The CXD1961AQ has dual 6 bit A/D converters to quantize the analog baseband I/Q signal. The sampling rate  
is two times the symbol rate. The input range is determined by the external resisters. See reference circuit (1).  
The DC offset cancellation function is set by setting CPU I/F register 1E,1F(hex).  
(2) Clock Recovery Circuit  
The CXD1961AQ can operate at multiple symbol rates between 20 to 30MSPS. Initial sampling clock  
frequency is set by a 24 bit control word via CPU I/F register 18, 19, 1A (hex). This control word is written to  
the numerically controlled oscillator (NCO). The internal clock recovery loop feeds clock error data to the  
above NCO to provide sampling timing correction. The relation between the symbol rate and the control word  
is;  
(symbol rate) = 4 × NCO [23:0] × Fcrystal ÷ 224 (Hz)  
where NCO [23:0] is the 24 bit control word and Fcrystal is crystal frequency (Hz).  
The clock recovery loop coefficient and the loop gain are set by setting CPU I/Fregister 0C (hex) accordingly.  
See reference circuit (2). The recovered symbol clock can be monitored at Pin 69.  
There are three internal sub-registers to save the NCO control word. By setting the number of the preset sub-  
register, the control word corresponded to the certain symbol rate is set to the internal NCO. Contents of the  
sub-register are deleted by power off or reset by pin 22. Refer to the explanation of CPU I/F register 0D (hex).  
(3) Carrier Recovery Circuit  
Any carrier frequency offset which remains on the analog baseband I/Q input is compensated by the internal  
digital costas loop. The capture range is ±Rs/8 (Rs: symbol rate). When the carrier capture is performed,  
QPSK lock flag QSYNC goes high. QSYNC is output at Pin 82 and CPU I/F register 09 (hex). In QPSK  
synchronization, the carrier offset estimation value is output at CPU I/F register 02 (hex) as AFC [7:0]. The  
frequency offset is;  
(carrier offset) = Rs × AFC [7:0] ÷ 512 (Hz)  
where AFC7 is the sign bit that represents the direction of the offset.  
(4) Nyquist Roll off Filter  
The Nyquist roll off filter for each channel are embedded. The roll off factor is 0.35.  
– 3 –  
CXD1961AQ  
(5) Auto Gain Control  
By comparing the demodulated I/Q amplitude (I2 + Q2) and the reference level which is set via CPU I/F register  
21 (hex), the AGC control signal is generated as PWM output at Pin 68. The polarity of the AGC can be  
reversed by setting CPU I/F register 10 (hex). For the Tuner interface, see the reference circuit (4).  
(6) Viterbi Decoder  
The punctured decoding and Viterbi decoding are performed on the demodulated I and Q data. The punctured  
rate is programmable from 1/2 to 7/8. When punctured mapping is performed, Viterbi lock flag at CPU I/F  
register 09 (hex) goes one. Bit error count at QPSK demodulator output is estimated and output to CPU I/F  
register 03, 04 (hex) as 16 bit data.  
(7) Frame synchronization and Deinterleaver  
By detecting the MPEG2 sync word 47 (hex), the synchronization of the data packet is achieved, and the  
convolutional deinterleaver then recovers the original data order.  
(8) Reed-Solomon Decoder  
In DVB systems, 16 parity bytes are added to the 188 data bytes, so that up to 8 error bytes are correctable by  
the Reed-Solomon decoder. If there are more than 8 error bytes in a packet, error correction is not performed  
and the packet error flag PKTERR (Pin 28) goes high during the packet to indicate that the packet is not  
correctable. The MSB of the second byte of the uncorrectable packet also becomes one. Bit error count at  
Viterbi decoder output is estimated and output every 1280 packet (=204 × 8 × 1280 bit) to CPU I/F register 06,  
07 (hex) at a resolution of 16 bits.  
(9) Energy Dispersal Descrambler  
Energy dispersal descrambling is represented by the polynomial X15 + X14 + 1. The initial sequence is loaded  
when an inverted MPEG sync word B8 (hex) is detected. When MPEG sync word including inverted one is  
detected every 204 bytes, the lock flag of the whole IC "FSYNC" goes high. FSYNC is output at Pin 83 and  
CPU I/F register 09 (hex).  
– 4 –  
CXD1961AQ  
(10) CPU Interface  
The CXD1961AQ has an I2C bus interface. Serial clock SCL is Pin 58 and serial data in out SDA is Pin 59.  
Slave address is "1101 111" (DChex).  
<Write data>  
During the write operation, the second byte is input as the sub-address of the start position. The third byte then  
forms the data to be written to the start register. Successive data bytes are written to the successive sub-  
address registers up to 21 (hex). Note that registers of sub-addresses 00 (hex) to 0B (hex) are read only.  
Input data for  
sub-address  
N (hex)  
Input data for  
sub-address  
N + 1 (hex)  
Slave address  
1101 111  
Sub address  
N (hex)  
0
· · ·  
STA: start condition  
STP: stop condition  
ACK: acknowledge  
XACK: no acknowledge  
<Read operation>  
Before the read operation, the sub-address of the start register to be read is input by using write operation, and  
terminated with a stop condition. Read operation then begins with the second byte which is the data of the start  
register. Data of the successive sub-address registers are read successively following the second byte. All  
registers can be read.  
Slave address  
1101 111  
Sub address  
N (hex)  
0
Output data for  
sub-address  
N (hex)  
Output data for  
sub-address  
N + 1 (hex)  
Slave address  
1101 111  
1
· · ·  
Both SCL and SDA have 5V input capability.  
– 5 –  
CXD1961AQ  
Pin Configuration  
100  
99 98  
96 95 94 93 92  
91 90 89 88 87 86 85 84 83 82 81  
97  
AVS0  
RB0  
1
2
3
4
5
6
7
8
9
80 VDD9  
CR7  
79  
78 CR6  
VDD0  
VSS0  
CR5  
CR4  
77  
76  
TEST1  
TEST2  
TEST3  
TEST4  
NC  
75 VSS8  
VDD8  
74  
73 CR3  
72 CR2  
CR1  
CR0  
CKV  
VDD1 10  
VSS1 11  
71  
70  
69  
SDAT/SCL 12  
13  
14  
15  
68 AGCPWM  
67 VSS7  
SCLK  
SEN/SDA  
VDD2  
66 VDD7  
65  
64  
63  
62  
61  
VCK  
VDT  
XI  
VSS2 16  
TCK 17  
TMS  
TEST6  
18  
19  
20  
21  
22  
XO  
AVS3  
TEST7  
CK8OUT  
RESET  
60 AVD3  
SDA  
59  
SCL  
TE 23  
58  
57  
56  
TEST22  
TEST21  
VDD3  
24  
25  
VSS3  
PKTCLK 26  
BYTCLK 27  
55 TEST20  
VSS6  
54  
PKTERR  
DATA0  
28  
29  
53 VDD6  
TEST19  
52  
51  
TEST18  
DATA1 30  
31  
32 33  
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
34  
– 6 –  
CXD1961AQ  
Pin List  
No.  
Symbol  
AVS0  
I/O type  
1
2
Analog VSS  
RB0  
Ref. voltage input  
Digital VDD  
3
VDD0  
4
VSS0  
Digital VSS  
5 to 8  
9
TEST1 to 4  
NC  
CMOS input  
No Connection  
Digital VDD  
10  
VDD1  
11  
VSS1  
Digital VSS  
12  
SDAT/SCL  
SCLK  
3-state CMOS output  
3-state CMOS output  
In out with Pull up  
Digital VDD  
13  
14  
SEN/SDA  
VDD2  
15  
16  
VSS2  
Digital VSS  
17  
TCK  
Input with pull up  
Input with pull up  
CMOS input  
18  
TMS  
19  
TEST6  
TEST7  
CK8OUT  
RESET  
TE  
20  
Input with pull up  
CMOS output  
Input with pull up  
Input with pull down  
Digital VDD  
21  
22  
23  
24  
VDD3  
25  
VSS3  
Digital VSS  
26  
PKTCLK  
BYTCLK  
PKTERR  
DATA0 to 4  
VDD4  
3-state CMOS output  
3-state CMOS output  
3-state CMOS output  
3-state CMOS output  
Digital VDD  
27  
28  
29 to 33  
34  
35  
VSS4  
Digital VSS  
36 to 38  
39 to 43  
44  
DATA5 to 7  
TEST8 to 12  
VDD5  
3-state CMOS output  
CMOS in out  
Digital VDD  
45  
VSS5  
Digital VSS  
46 to 48  
49 to 52  
TEST13 to 15  
TEST16 to 19  
CMOS in out  
CMOS input  
– 7 –  
CXD1961AQ  
No.  
53  
Symbol  
I/O type  
VDD6  
Digital VDD  
54  
VSS6  
Digital VSS  
55 to 57  
58  
TEST20 to 22  
SCL  
CMOS input  
5V input  
59  
SDA  
5V open drain in out  
Crystal VDD  
60  
AVD3  
AVS3  
XO  
61  
Crystal VSS  
62  
Oscillator output  
Oscillator input  
CMOS in out  
CMOS in out  
Digital VDD  
63  
XI  
64  
VDT  
65  
VCK  
66  
VDD7  
67  
VSS7  
Digital VSS  
68  
AGCPWM  
CKV  
CMOS output  
CMOS in out  
CMOS output  
Digital VDD  
69  
70 to 73  
74  
CR0 to 3  
VDD8  
75  
VSS8  
Digital VSS  
76 to 79  
80  
CR4 to 7  
VDD9  
CMOS output  
Digital VDD  
81  
VSS9  
Digital VSS  
82  
QSYNC  
FSYNC  
AVD4  
AVS4  
CPOUT  
AVD2  
VCOC  
OPXIN  
OPOUT  
AVS2  
VCOEN  
RT1  
CMOS output  
CMOS output  
Analog VDD  
83  
84  
85  
Analog VSS  
86  
3-state CMOS output  
Analog VDD  
87  
88  
Analog input  
Analog input  
Analog output  
Analog VSS  
89  
90  
91  
92  
CMOS input  
Ref. voltage input  
Analog VDD  
93  
94  
AVD1  
– 8 –  
CXD1961AQ  
No.  
95  
Symbol  
QIN  
I/O type  
Analog input  
96  
AVS1  
RB1  
RT0  
AVD0  
IIN  
Analog VSS  
97  
Ref. voltage input  
Ref. voltage input  
Analog VDD  
98  
99  
100  
Analog input  
Note) Apply 0.1µF capacitor to every power supply terminal and reference voltage input (RB0, RB1, RT0, RT1).  
– 9 –  
CXD1961AQ  
Pin Explanation  
1. A/D Converter  
ADC for I input  
ADC for Q input  
Function  
Pin No. Pin name Pin No. Pin name  
Analog signal input  
100  
98  
2
IIN  
95  
93  
97  
94  
96  
QIN  
RT1  
Top reference level input  
RT0  
Bottom reference level input  
Analog power supply (+3.3V)  
Analog ground  
RB0  
RB1  
99  
1
AVD0  
AVS0  
AVD1  
AVS1  
See reference circuit (1)  
2. Clock Recovery  
2-1. Crystal  
Function  
Pin No. Pin name  
Crystal oscillator (output)  
62  
63  
60  
61  
XO  
XI  
Crystal oscillator (input)  
Crystal oscillator power supply (+3.3V)  
Crystal oscillator ground  
AVD3  
AVS3  
See reference circuit (3)  
2-2. VCO · OP-Amp  
Function  
Charge Pump output  
Pin No. Pin name  
86  
84  
85  
88  
92  
89  
90  
87  
91  
CPOUT  
AVD4  
Charge pump power supply (+3.3V)  
Charge pump ground  
AVS4  
VCO control voltage input  
VCO enable (H: enable)  
OP-Amp negative input  
VCOC  
VCOEN  
OPXIN  
OPOUT  
AVD2  
OP-Amp output  
VCO · OP-Amp power supply (+3.3V)  
VCO · OP-Amp ground  
AVS2  
See reference circuit (2)  
– 10 –  
CXD1961AQ  
2-3. Clock Recovery  
Function  
Pin No. Pin name  
Clock error output  
(for clock recovery by VCXO)  
70 to 73 CR0 to 3  
76 to 79 CR4 to 7  
Recovered symbol clock output  
(switchable to sampling clock output)  
69  
CKV  
3. Carrier Recovery  
Function  
Pin No. Pin name  
82 QSYNC  
Carrier lock flag (H: lock)  
4. AGC  
Function  
AGC control data (PWM output)  
See reference circuit (4)  
Pin No. Pin name  
68 AGCPWM  
5. Viterbi Decoder  
Function  
Viterbi clock output  
Pin No. Pin name  
65  
64  
VCK  
VDT  
Viterbi decoded data output  
These pins can be fixed to ground by setting CPU I/F register 0E (hex).  
6. Frame Synchronization  
Function  
Pin No. Pin name  
83 FSYNC  
Frame synchronization flag (H: sync)  
– 11 –  
CXD1961AQ  
7. Reed-Solomon Decoder/Data output  
Function  
Pin No. Pin name  
Data output clock  
(parallel mode) Byte clock  
(Serial mode) Viterbi clock  
27  
BYTCLK  
Packet clock (H: data, L: parity)  
Uncorrectable packet flag  
26  
28  
PKTCLK  
PKTERR  
Data output  
(Parallel mode) LSB data  
(Serial mode) serial data (MSB first)  
29  
DATA0  
Data output  
(Parallel mode) DATA7 = MSB  
(Serial mode) Hi-Z  
30 to 33 DATA1 to 4  
36 to 38 DATA5 to 7  
Output mode (Serial or Parallel) is switched by setting CPU I/F register 0F (hex).  
8. CPU Interface  
Function  
Pin No. Pin name  
I2C bus serial clock input  
I2C bus serial data in out  
58  
59  
SCL  
SDA  
9. Reset  
Function  
Pin No. Pin name  
22 RESET  
Reset (L: reset/fix H for normal use)  
10. Power Supply  
Function  
Pin No. Pin name  
10, 15, 24,  
Digital power supply (+3.3V)  
34, 44, 53, VDD0 to 9  
66, 74, 80  
11, 16, 25,  
Digital ground  
35, 45, 54, VSS0 to 9  
67, 75, 81  
Apply 0.1µF capacitor to every power supply terminal.  
– 12 –  
CXD1961AQ  
11. Test / Others  
Function  
Pin No.  
23  
Pin name  
TE  
Test mode enable (Fix L for normal use)  
Test clock (Fix H for normal use)  
17  
TCK  
Test mode Control (Fix H for normal use)  
18  
TMS  
5 to 8, 20 TEST1 to 4, TEST7  
Test input (Fix L)  
49 to 52  
55 to 57  
TEST16 to 19  
TEST20 to 22  
Test output (connect nothing)  
Test in out (Fix L)  
19  
TEST6  
39 to 43  
46 to 48  
TEST8 to 12  
TEST13 to 15  
Tuner interface  
(3 wire mode) Serial data output  
12  
13  
14  
SDAT/SCL  
SCLK  
(I2C bus mode) Serial clock output  
Tuner interface (3 wire) Clock output  
Tuner interface  
(3 wire mode) Latch enable output  
(I2C bus mode) Serial data in out  
SEN/SDA  
Clock output (crystal frequency/8)  
No Connection  
21  
9
CK8OUT  
NC  
– 13 –  
CXD1961AQ  
Electrical Characteristics  
Description  
(Ta = 0 to 75°C, VDD = 3.3V)  
Symbol  
Rs  
Min.  
20  
Typ.  
Max.  
30  
Unit  
MSPS  
MHz  
Symbol rate  
Crystal Frequency  
Fxtal  
32  
DATA0 to 7 – BYTCLK falling edge  
(Parallel output mode PBYCK = 0)  
tDB0  
tPB0  
tEB0  
tDB1  
tPB1  
tEB1  
tSOC  
tDBH  
tPBS  
tEBH  
75  
75  
75  
75  
75  
75  
16  
12  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PKTCLK – BYTCLK falling edge  
(Parallel output mode PBYCK = 0)  
PKTERR – BYTCLK falling edge  
(Parallel output mode PBYCK = 0)  
DATA0 to 7 – BYTCLK rising edge  
(Parallel output mode PBYCK = 1)  
PKTCLK – BYTCLK rising edge  
(Parallel output mode PBYCK = 1)  
PKTERR – BYTCLK rising edge  
(Parallel output mode PBYCK = 1)  
Serial output mode cycle time  
(Serial output mode)  
DATA0 to 7 – BYTCLK hold time  
(Serial output mode)  
PKTCLK, PKTERR – BYTCLK setup time  
(Serial output mode)  
PKTCLK, PKTERR – BYTCLK hold time  
(Serial output mode)  
10  
I2C bus Serial clock cycle time  
I2C bus Data setup time  
I2C bus Data hold time  
FscI  
tDSI  
tDHI  
400  
kHz  
ns  
100  
0
ns  
Timing Waveform  
(1) Parallel output mode, PBYTCK = 0  
tPB0  
tEB0  
tPB0  
tEB0  
PKTCLK  
PKTERR  
BYTCLK  
DATA [0:7]  
tDB0 tDB0  
– 14 –  
CXD1961AQ  
(2) Parallel output mode, PBYTCK = 1  
tPB1  
tEB1  
tPB1  
tEB1  
PKTCLK  
PKTERR  
BYTCLK  
DATA [0:7]  
tDB1 tDB1  
(3) Serial output mode (Example of R = 3/4)  
tPBS  
tEBH  
tEBH  
PKTCLK  
tSOC  
PKTERR  
BYTCLK  
DATA0  
tDBH  
(4) I2C Bus interface  
0.6µs  
tDSI  
SDA  
SCL  
1.3µs  
1.3µs  
tDHI  
0.6µs  
0.6µs  
– 15 –  
CXD1961AQ  
CPU Interface Registers  
Sub address  
MSB  
bit7  
LSB  
bit0  
Name  
INP_LEV  
(hex)  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09A  
09B  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
INP7  
INP6  
INP5  
INP4  
INP3  
INP2  
INP1  
INP0  
PWM_VAL PWM7 PWM6 PWM5 PWM4 PWM3 PWM2 PWM1 PWM0  
AFC_VAL AFC7 AFC6 AFC5 AFC4 AFC3 AFC2 AFC1 AFC0  
QBEC_LO QBEC7 QBEC6 QBEC5 QBEC4 QBEC3 QBEC2 QBEC1 QBEC0  
QBEC15 QBEC14 QBEC13 QBEC12 QBEC11 QBEC10 QBEC9 QBEC8  
QBEC_UP VBEC7 VBEC6 VBEC5 VBEC4 VBEC3 VBEC2 VBEC1 VBEC0  
W
R
VBEC_LO  
W
VBEC15 VBEC14 VBEC13 VBEC12 VBEC11 VBEC10 VBEC9 VBEC8  
RO2  
OFI2  
NAK  
RO1  
OFI1  
RO0  
OFI0  
QBER1 QBER0 VBER1 VBER0  
OFI3  
OFQ3  
OFQ2  
OFQ1  
OFQ0  
ID  
VBEC_UPR VCOLK  
CM7  
DC_OFST CM15  
FLAG OFC7  
CM_LOW MQS3  
CM_UPR  
FSYNC VSYNC QSYNC  
CODE/BER  
CM6  
CM5  
CM13  
OFC5  
MQS1  
CM4  
CM12  
OFC4  
MQS0  
CM3  
CM11  
OFC3  
AK1  
CM2  
CM10  
OFC2  
AK0  
CM1  
CM9  
OFC1  
CE1  
CM0  
CM8  
OFC0  
CE0  
CM14  
OFC6  
MQS2  
RATE2 RATE1 RATE0 SRSAVE  
SRS1  
SRS0  
CAR_OFST PBYCK DOH1Z DOPS PPKER PPKCK MBYCK VCKVDT SEL09  
MQS/CLK SINV SYSSEL DFSKIP RSSKIP TUNSEL TUNEN MFSYNC AGCLP  
CODE/SRS MAGC  
OUT_CNT QTH5  
MOD_CNT VTH4  
PAGC MVSYNC CKVSEL QPRST VTRST RSRST VCORST  
QTH4  
VTH3  
QTH3  
VTH2  
QTH2  
VTH1  
QTH1  
VTH0  
QTH0 TQBEC1 TQBEC0  
TVS2 TVS1 TVS0  
AGC/RST TUD17 TUD16 TUD15 TUD14 TUD13 TUD12 TUD11 TUD10  
QTH  
VTH  
TUD27 TUD26 TUD25 TUD24 TUD23 TUD22 TUD21 TUD20  
TUD37 TUD36 TUD35 TUD34 TUD33 TUD32 TUD31 TUD30  
TUN_DAT1 TUD47 TUD46 TUD45 TUD44 TUD43 TUD42 TUD41 TUD40  
TUN_DAT2 TUD57 TUD56 TUD55 TUD54 TUD53 TUD52 TUD51 TUD50  
TUN_DAT3 NCO7  
NCO6  
NCO5  
NCO4  
NCO3  
NCO2  
NCO1  
NCO0  
NCO8  
TUN_DAT4 NCO15 NCO14 NCO13 NCO12 NCO11 NCO10 NCO9  
TUN_DAT5 NCO23 NCO22 NCO21 NCO20 NCO19 NCO18 NCO17 NCO16  
SYM_RATE1 CALRST CADRST CLKRST  
RANGE FSYSEL FSYTHD  
SYM_RATE2  
SYM_RATE3 BSI3  
BSI2  
BSI1  
BSI0  
BSQ3  
BSQ2  
BSQ1  
BSQ0  
CAR_RST RSTEN GAIN1 GAIN0 TCAR1 TCAR0 MOFST OFSTEN OFSTGN  
N.A.  
TQS1  
BSC7  
REF7  
TQS0 FLOOP TRACK FLMOD FLSTEP QTLEV1 QTLEV0  
DC_BIAS  
CAR/DC  
BSC6  
REF6  
BSC5  
REF5  
BSC4  
REF4  
BSC3  
REF3  
BSC2  
REF2  
BSC1  
REF1  
BSC0  
REF0  
Input "0" to write registers which are not assigned ("—").  
– 16 –  
CXD1961AQ  
Description of CPU Interface Registers  
Sub address 00 (hex)  
Read  
INP_LEV  
Input level estimation  
INP7 to INP0  
(MSB) (LSB)  
Upper 8 bit of I2 + Q2 of analog I/Q input.  
(Ex.) The value is about 40 (hex) when the analog I/Q amplitude is half the input  
range.  
Sub address 01 (hex)  
PWM7 to PWM0  
Read  
PWM_VAL  
AGC PWM output value  
PWM output value of AGC control.  
(MSB)  
(LSB)  
Sub address 02 (hex)  
Read  
AFC_VAL  
Carrier offset value  
AFC7 to AFC0  
(MSB) (LSB)  
AFC7: Sign  
Carrier offset estimation  
Carrier offset = (Symbol rate) × AFC [7:0] ÷ 512 (Hz)  
Ex.) 20MSPS AFC [7:0] = 11110000 (bin)  
offset = 20MHz × (–16) ÷ 512  
= –625kHz  
In this case, by changing tuner PLL value by -625kHz, the offset may be  
cancelled.  
Sub address 03 (hex)  
Sub address 04 (hex)  
Read  
Read  
QBEC_LOW Bit error count at QPSK output  
QBEC_UPR Bit error count at QPSK output  
QBEC15 to QBEC0  
Bit error count at the QPSK output (16 bit).  
(MSB)  
(LSB)  
Measuring period is set by TQBEC [1:0] of CPU I/F register 11 (hex) .  
BER is the ratio of QBEC [15:0] and the measuring period.  
QBEC [15:0] is valid when QSYNC, VSYNC and FSYNC are all High.  
Sub address 05 (hex)  
Sub address 06 (hex)  
Read  
Read  
VBEC_LOW Bit error count at Viterbi output  
VBEC_UPR Bit error count at Viterbi output  
VBEC15 to VBEC0  
Bit error count at the Viterbi output (16 bit).  
(MSB)  
(LSB)  
Measuring period is 204 × 8 × 1280 = 2,088,960.  
BER is the ratio of VBEC [15:0] and 2,088,960.  
VBEC [15:0] is valid when QSYNC, VSYNC and FSYNC are all High.  
– 17 –  
CXD1961AQ  
Sub address 07 (hex)  
RO2 to RO0  
Read  
CODE/BER  
Code rate and BER  
Current punctured rate (code rate)  
RO2  
RO1  
RO0  
Code rate  
1/2  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
2/3  
3/4  
4/5  
5/6  
6/7  
7/8  
QBER1 to QBER0  
4 level BER indicator of QPSK output.  
This indicator is valid when QSYNC, VSYNC and FSYNC are all High and  
TQBEC [1:0] = 10 (bin). TQBEC [1:0] is in register 11 (hex).  
QBER1 QBER0  
Bit Error Rate  
0
0
1
1
0
1
0
1
more than 10–2  
10–3  
10–4  
<
<
<10–2  
<10–3  
less than 10–4  
VBER1 to VBER0  
4 level BER indicator of Viterbi output.  
This indicator is valid when QSYNC, VSYNC and FSYNC are all High.  
VBER1 VBER0  
Bit Error Rate  
0
0
1
1
0
1
0
1
more than 10–2  
10–3  
10–4  
<
<
<10–2  
<10–3  
less than 10–4  
– 18 –  
CXD1961AQ  
Sub address 08 (hex)  
OFI3 to OFI0  
Read  
DC_OFST  
DC offset level of A to D converter  
DC offset value of the I channel A/D converter.  
OFI3: Sign  
OFQ3 to OFQ0  
DC offset value of the Q channel A/D converter.  
In both cases, the value is depend on the operation mode.  
OFQ3: Sign  
MOFST (reg. IE)  
0
Operating mode  
Offset bias mode  
OFI [3:0] / OFQ [3:0]  
Current offset value.  
Compensation value for each  
A/D converter.  
1
Offset cancel mode  
Refer to the explanation of register 1E (hex).  
Sub address 09 (hex)-A  
Read  
FLAG  
Status Flag  
Register 09 (hex) has an irregular structure. Two register -A and -B are correspond to the sub-address 09  
(hex). When SEL09 of the register 0E (hex) is 0, register 09 (hex)-A is selected, else register 09 (hex)-B is  
selected.  
VCOLK  
NAK  
This bit become 0 in case of abnormal oscillation of embedded VCO.  
(Tuner interface I2C bus mode)  
This bit becomes 1 in case of no acknowledge from the tuner PLL.  
FSYNC  
VSYNC  
This bit becomes 1 iwhen Frame synchronization is achieved.  
This bit becomes 1 when the punctured mapping synchronization is achieved.  
QSYNC  
ID  
This bit becomes 1 when carrier lock is achieved.  
This bit is always 1.  
Sub address 09 (hex)-B  
Sub address 0A (hex)  
Read  
Read  
CM_LOW  
CM_UPR  
Constellation Monitor  
Constellation Monitor  
These registers can be access when SEL09 of register 0E (hex) is 1.  
CM15 to CM0  
(MSB) (LSB)  
Monitor value of the QPSK constellation. This value depends on the AGC  
reference (reg. 21 (hex)). Refer to Fig.1.  
– 19 –  
CXD1961AQ  
Sub address 0B (hex)  
Read  
CAR_OFST  
Carrier Capture offset value  
OFC7 to OFC0  
OFC7: Sign  
Offset frequency at the point of carrier capture  
(Latest offset frequency is output to register 02 (hex))  
(offset frequency) = (Symbol rate) × OFC [7:0] ÷ 1024 (Hz)  
Ex.) 20MSPS OFC [6:0] = 11110000 (bin)  
(offset freq.)  
= 20MHz × (–16) ÷ 1024  
= –312.5kHz  
Sub address 0C (hex)  
Write  
MQS/CLK  
Qsync mode/Clock recovery  
MQS3 to MQS0  
(MSB) (LSB)  
Threshold for carrier lock detection  
AK1 to AK0  
CE1 to CE0  
Clock recovery loop filter coefficient  
00: Max. 11: min.  
Clock recovery loop filter gain  
00: Min. 11: Max.  
Clock recovery range is approximately ±200ppm with CE (1:0) = 11.  
Sub address 0D (hex)  
RATE2 to RATE0  
Write  
CODE/SRS  
Code rate select/Symbol rate select  
Code rate setting  
RATE2 RATE1 RATE0  
Code rate R  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
1/2  
2/3  
3/4  
4/5  
5/6  
6/7  
7/8  
SRSAVE  
By saving several NCO control word to sub registers initially, symbol rate can be  
changed by setting the number of the sub register in which the desired control  
word is saved. There are three sub registers.  
– 20 –  
CXD1961AQ  
SRS1 to SRS0  
(To set the symbol rate directly without the above function)  
Set SRSAVE = 0, SRS [1:0] = (1,1) and set control word to registers 18, 19, 1A  
(hex).  
(To save control word to sub registers)  
Set SRSAVE = 1 and set sub register No. ((0, 0) or (0, 1) or (1, 0)) to SRS [1:0].  
Then set control word to registers 18, 19, 1A (hex).  
The control word is set to both the clock recovery circuit and the selected sub  
register.  
(To set the symbol rate with the above function)  
Set SRSAVE = 0, and set sub register No. of control word to be set. The control  
word saved in the sub register is set to the clock recovery circuit.  
Sub address 0E (hex)  
PBYCK  
Write  
OUT_CNT  
Output control and polarity  
BYTCLK polarity  
0: For falling edge 1: For rising edge  
DOH1Z  
1: Output Hi-Z mode (PKTCLK, BYTCLK, PKTERR, DATA [7:0])  
DOPS  
0: Parallel output mode 1: Serial output mode  
Refer to Electric characteristics  
PPKER  
PPKCK  
PKTERR polarity  
PKTCLK polarity  
0: PKTERR: H at uncorrectable packet  
1: PKTERR: L at uncorrectable packet  
0: PKTCLK: H at data / L at parity  
1: PKTCLK: L at data / H at parity  
MBYCK  
VCKVDT  
SEL09  
1: BYTCLK mask mode  
In this mode BYTCLK is forced Low during parity data output  
1: Viterbi decode data VDT (Pin 64) and clock VCK (Pin 65) output enable  
0: VDT and VCK are fixed low.  
Read register 09 (hex)-A, -B selection  
0: 09 (hex)-A is selected  
1: 09 (hex)-B is selected  
– 21 –  
CXD1961AQ  
Sub address 0F (hex)  
SINV  
Write  
MOD_CONT Mode Control  
I/Q exchange  
1: normal operation  
SYSSEL  
DFSK1P  
RSSK1P  
TUNSEL  
TUNEN  
Not assigned. Input 0.  
1: Nyquist roll off filter bypass mode  
1: Reed-Solomon decoder bypass mode  
Tuner interface mode  
0: I2C bus mode 1: 3 wire mode  
1: Tuner interface enable  
TUNSEL  
TUNEN  
Pin 12  
Hi-Z  
Pin 13  
Hi-Z  
Pin 14  
Hi-Z  
mode  
Don't care  
0
1
1
0
1
clock out  
data out  
Hi-Z  
data in out  
I2C bus  
3 wire  
clock out Latch Enable  
Refer to reference circuit (5).  
MFSYNC  
AGCLP  
Parameter for frame synchronization protection  
0: normal operation mode  
1: powerful protection mode  
AGC loop filter gain  
1: normal operation  
0: large gain  
– 22 –  
CXD1961AQ  
Sub address 10 (hex)  
MAGC  
Write  
AGC/RST  
AGC and Reset  
AGC mode 0: normal mode 1: bus control mode  
In normal mode, PWM output is controlled so that I2 + Q2 (register 00hex) should  
become approximately equal to the reference level set in register 21 (hex). In bus  
control mode, data of the register 21 (hex) is directly converted to PWM output.  
PAGC  
AGC polarity 0: For tuner whose gain increases by higher AGC control voltage  
1: For tuner whose gain increases by lower AGC control voltage  
Select mode according to tuner AGC type.  
MVSYNC  
CKVSEL  
Input 0  
CKV (Pin 69) output mode  
0: symbol clock output  
1: sampling clock output  
QPRST  
1: QPSK block reset (set 0 for normal operation)  
To reset QPSK block, set this bit to 1 and then set this bit to 0 again.  
VTRST  
RSRST  
1: Viterbi block reset (set 0 for normal operation)  
Reset operation is same as QPRST.  
1: Deinterleaver and Reed-solomon block reset (set 0 for normal operation)  
Reset operation is same as QPRST.  
VCORST  
1: NCO block reset (set 0 for normal operation)  
Reset operation is same as QPRST.  
– 23 –  
CXD1961AQ  
Sub address 11 (hex)  
Write  
QTH  
Qsync Threshold and QBEC period  
QTH5 to QTH0  
(MSB) (LSB)  
Threshold for carrier lock detection  
These parameters relate to QTLEV [1:0] in register 1F (hex) and  
AGC reference 21 (hex).  
Ex.) QTLEV [1:0] = 01 AGC ref = 32 (hex)  
QTH [5:0] = 101000  
TQBEC1 to TQBEC0  
Count period of QPSK bit error count  
TQBEC1 TQBEC0  
Count period  
0
0
1
1
0
1
0
1
28  
216  
219  
223  
Select TQBEC [1:0] = 10 to use QPSK BER indicator (register 07 (hex))  
Sub address 12 (hex)  
VTH4 to VTH0  
Write  
VTH  
Viterbi sync threshold and period  
Threshold for punctured mapping synchronization  
11110: Min. 00000: Max.  
TVS2 to TVS0  
Detection period for punctured mapping synchronization  
110: Min 000: Max.  
code rate  
1/2  
VTH4 to VTH0, TVS2 to TVS0  
8B (hex)  
2/3  
BB (hex)  
3/4  
CB (hex)  
4/5  
D3 (hex)  
5/6  
DB (hex)  
6/7  
E3 (hex)  
7/8  
E3 (hex)  
– 24 –  
CXD1961AQ  
Sub address 13 (hex)  
Sub address 14 (hex)  
Sub address 15 (hex)  
Sub address 16 (hex)  
Sub address 17 (hex)  
Write  
Write  
Write  
Write  
Write  
TUN_DAT1  
TUN_DAT2  
TUN_DAT3  
TUN_DAT4  
TUN_DAT5  
Tuner control data  
Tuner control data  
Tuner control data  
Tuner control data  
Tuner control data  
(I2C bus mode)  
Set TUNSEL = 0 and TUNEN = 1 in the register 0F (hex).  
13 (hex): Tuner PLL IC slave address + 0 (write mode)  
14 to 17 (hex): Write data (tuning parameter)  
I2C bus starts write operation when data setting to register 17 (hex) is finished. In  
case of no acknowledge from tuner PLL IC, NAK in the register 09 (hex)-A is set  
to 1.  
(3 wire mode)  
Set TUNSEL = 1 and TUEN = 1 in the register 0F (hex). 28 bits data (register 13  
to 15 (hex) and upper 4bit of the register 16 (hex)) are transmitted serially. To  
start operation, dummy data setting to the register 17 (hex) is needed.  
Refer to the reference circuit (5).  
Sub address 18 (hex)  
Sub address 19 (hex)  
Sub address 1A (hex)  
Write  
Write  
Write  
SYM_RATE1 Control word for multi-rate oscillation  
SYM_RATE2 Control word for multi-rate oscillation  
SYM_RATE3 Control word for multi-rate oscillation  
NCO23 to NCO0  
The relation between symbol rate and the control word of the NCO is:  
(MSB)  
(LSB)  
NCO [23:0] = (symbol rate) × 222 ÷ (crystal frequency)  
Ex.) Symbol rate 20MSPS crystal 32MHz  
NCO [23:0] = 20 × 106 × 222 ÷ 32 × 10–6  
= 2,621,440  
= 221 + 219  
NCO21 = NCO19 = 1, other = 0  
– 25 –  
CXD1961AQ  
Sub address 1B (hex)  
CARRST  
Write  
CAR_RST  
Carrier loop reset  
1: Carrier loop filter reset  
Reset operation is same as QPRST (register 10hex)  
CADRST  
CLKRST  
RANGE  
FSYSEL  
FSYTHD  
1: Carrier recovery frequency loop reset  
Reset operation is same as QPRST (register 10hex)  
1: Clock recovery loop reset  
Reset operation is same as QPRST (register 10hex)  
Carrier capture range  
0: Carrier capture range = ±Rs/8  
1: Carrier capture range = ±Rs/16  
Frame synchronization detector mode 0: Hard decision  
1: Soft decision  
Frame synchronization threshold  
0: Low  
1: High  
Sub address 1C (hex)  
Sub address 1D (hex)  
Write  
N.A.  
Not Assigned  
Input 0 to all bits.  
Write  
DC_BIAS  
A/D Converter DC_BIAS  
DC offset is added to the output of the A/D converter when MOFST in the  
register 1E (hex) is 0.  
BSI3 to BSI0  
DC offset for I channel A/D converter. BSI3: sign  
Offset range is from –8 to +7.  
BSQ3 to BSQ0  
DC offset for Q channel A/D converter. BSI3: sign  
Offset range is from –8 to +7.  
– 26 –  
CXD1961AQ  
Sub address 1E (hex)  
RSTEN  
Write  
CAR/DC  
Carrier recovery and DC offset  
1:Carrier loop filter reset enable (Set to 1 for normal operation)  
GAIN1 to GAIN0  
Gain setting for carrier recovery loop  
(default ×1)  
GAIN1  
GAIN0  
Gain  
×1  
0
0
1
1
0
1
0
1
×2  
×4  
×8  
TCAR1 to TCAR0  
MOFST  
Mode setting for carrier recovery frequency loop: default TCAR [1:0] = 10.  
1: A/D converter DC offset cancellation mode  
0: A/D converter DC offset addition mode  
OFSTEN  
OFSTGN  
1: A/D converter DC offset control (cancel or add) enable  
0: A/D converter DC offset control (cancel or add) disable  
A/D converter DC offset cancellation loop filter gain  
1: ×1  
0: ×1/2  
– 27 –  
CXD1961AQ  
Sub address 1F (hex)  
TQS1 to TQS0  
Write  
CAR_MODE Carrier recovery mode  
Carrier lock detection period 00: min. 11: max.  
Default is TQS [1:0] = 10  
FLOOP  
0: Carrier recovery by phase loop  
1: Carrier recovery by phase and frequency loop (default)  
TRACK  
default: 0  
FLMOD  
1: Carrier offset frequency is set by BSC [6:0].  
0: Carrier offset frequency is set by the internal loop. (default)  
FLSTEP  
default: 1  
QTLEV1 to QTLEV0  
Gain for carrier lock detection circuit.  
Default is QTLEV [1:0] = 00  
Sub address 20 (hex)  
Write  
CAR_BIAS  
Carrier frequency offset bias  
BSC7 to BSC0  
BSC7: sign  
Carrier offset frequency setting  
This mode is good when FLMOD = 1.  
(Carrier offset) = (Symbol rate) × BSC [7:0] ÷ 1024 (Hz)  
Sub address 21 (hex)  
AGCR7 to AGCR0  
Write  
AGC_REF  
AGC reference  
Input level reference for AGC operation  
Refer to the explanation of register 10 (hex)  
– 28 –  
CXD1961AQ  
Application Circuit  
(1) A/D Converter  
390  
Analog  
VSS  
Connect AVD0  
and AVD1 to analog  
+3.3V supply  
0.1µF  
0.1µF 0.1µF  
0.1µF  
1kΩ  
0.1µF  
0.1µF  
Baseband  
Q input  
1k390Ω  
1kΩ  
390Ω  
Baseband  
I input  
0.1µF  
100  
99  
95  
94  
98  
97  
96  
93  
1kΩ  
1
2
AVS0  
RB0  
CXD1961AQ  
390Ω  
0.1µF  
Analog  
VSS  
(2) Clock Recovery circuit  
Connect AVD2  
and AVD4 to analog  
+3.3V supply  
15kΩ  
4.7µF  
Analog  
VSS  
2.2µF  
100kΩ  
22Ω  
0.1µF  
0.1µF  
84  
10kΩ  
Analog  
VSS  
1kΩ  
92  
91  
90  
89  
88  
87  
86  
85  
CXD1961AQ  
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for  
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.  
– 29 –  
CXD1961AQ  
(3) Crystal  
Crystal  
7pF  
Crystal  
Daishinku AT-49  
32.0MHz  
63  
62  
61  
60  
XI  
XO  
470kΩ  
Connect AVD3 to ditital +3.3V supply  
7pF  
AVS3  
AVD3  
Digital  
VSS  
0.1µF  
CXD1961AQ  
(4) AGC  
This is an example of how to set AGC control  
voltage from 0 to 5V.  
Power supply for the OP-Amp is 7V.  
OP-Amp  
20kΩ  
68  
AGCPWM  
To tuner AGC input  
5.6kΩ  
10kΩ  
0.1µF  
CXD1961AQ  
Analog  
VSS  
(5) Tuner Interface  
(3 wire type) suitable for GEC Plessey SP5658  
100Ω  
ENABLE  
12  
13  
SDAT/SCL  
SCLK  
100Ω  
DATA  
100Ω  
CLOCK  
SEN/SDA  
14  
SP5658  
CXD1961AQ  
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for  
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.  
– 30 –  
CXD1961AQ  
(5) Tuner Interface  
(I2C bus type) suitable to GEC Plessey SP5659 etc. (4 bytes of data can be written)  
+3.3V  
10kΩ  
100Ω  
10kΩ  
SDA  
SCL  
12  
13  
SDAT/SCL  
SCLK  
100Ω  
SEN/SDA  
14  
SP5659  
CXD1961AQ  
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for  
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.  
– 31 –  
CXD1961AQ  
Appendix  
Fig.1 Constellation monitor output vs. C/N  
104  
103  
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
C/N [dB]  
This figure is an example when AGCREF is set to 32 (hex).  
The monitor output value is proportional to AGCREF.  
Monitor output : CM [15:0] CPU I/F register 09-B (hex) and 0A (hex)  
– 32 –  
CXD1961AQ  
Package Outline  
Unit: mm  
100PIN QFP (PLASTIC)  
23.9 ± 0.4  
+ 0.1  
0.15 – 0.05  
+ 0.4  
20.0 – 0.1  
80  
51  
50  
81  
A
31  
100  
1
30  
+ 0.15  
0.65  
+ 0.35  
2.75 – 0.15  
0.3 – 0.1  
0.24  
0.15  
M
+ 0.2  
0.1 – 0.05  
0° to 15°  
DETAIL A  
PACKAGE STRUCTURE  
PACKAGE MATERIAL  
LEAD TREATMENT  
EPOXY RESIN  
SOLDER PLATING  
QFP-100P-L01  
QFP100-P-1420  
SONY CODE  
EIAJ CODE  
LEAD MATERIAL  
PACKAGE MASS  
42/COPPER ALLOY  
1.7g  
JEDEC CODE  
– 33 –  

相关型号:

CXD1961Q

DVB-S Front-end IC (QPSK demodulator + FEC)
SONY

CXD1968AR

DVB-T Demodulator
SONY

CXD1969

CableCARDTM INTERFACE CONTROLLER
SONY

CXD2011Q

TV/Video Filter
ETC

CXD2018AQ

Vertical Processor/Deflector
ETC

CXD2024AQ

TV/Video Filter
ETC

CXD2027Q

DBS Audio Signal Processor
SONY

CXD2027Q/R

DBS Audio Signal Processor
ETC

CXD2027R

DBS Audio Signal Processor
SONY

CXD2043

Digital Comb Filter (NTSC)
SONY

CXD2043Q

Digital Comb Filter (NTSC)
SONY