CXD1961Q [SONY]

DVB-S Front-end IC (QPSK demodulator + FEC); DVB-S的前端集成电路( QPSK解调器+ FEC)的
CXD1961Q
型号: CXD1961Q
厂家: SONY CORPORATION    SONY CORPORATION
描述:

DVB-S Front-end IC (QPSK demodulator + FEC)
DVB-S的前端集成电路( QPSK解调器+ FEC)的

文件: 总15页 (文件大小:219K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CXD1961Q  
DVB-S Front-end IC (QPSK demodulator + FEC)  
Preliminary  
For the availability of this product, please contact the sales office.  
Description  
100 pin QFP (Plastic)  
The CXD1961Q is a single chip DVB Satellite  
Broadcasting Front-end IC, including dual ADC for  
analog I/O inputs, QPSK demodulator, Viterbi  
decoder, de-interleaver, Reed-Solomon decoder  
and Energy Dispersal descrambler.  
It is suitable for use in a DVB Integrated Receiver  
Decoder.  
Features  
Absolute Maximum Ratings (Ta=25°C, GND=0V)  
Dual 6 bit A/D converters  
Supply voltage  
• Input voltage  
• Output voltage  
• I/O voltage  
VDD  
VIN  
–0.5 to 4.6  
V
V
QPSKdemodulator  
–0.5 to VDD+0.5  
Multi-symbol rate operation  
Nyquist roll off filter (α = 0.35)  
Clock recovery circuit  
VOUT –0.5 to VDD+0.5  
V
VI/O  
–0.5 to VDD+0.5  
–0.5 to 5.5  
0 to +75  
V
• CPU I/F pin  
VCPUIF  
V
Carrier recovery circuit  
Operating temperature Topr  
Storage temperature Tstg  
°C  
AGC control circuit  
–55 to +150 °C  
Viterbi decoder  
Constraint length K =7  
DC Recommended Operating Conditions  
Punctured rate R = 1/2 –7/8  
Truncation length 144  
(Ta=0°C to 75°C, GND=0 V)  
Supply voltage  
• Input Hi-level  
• Input Lo-level  
VDD  
3.15 to 3.45  
VIH VDD–0.7 to VDD+0.5V  
0.3 to VDD +0.2  
V
Punctured rate search function  
BER monitor  
VIL  
V
• De-interleaver  
Packet synchronization  
Convolutional de-interleaver  
• Reed-Solomon decoder (204, 188)  
• Energy dispersal descrambler  
• CPU interface  
l2C bus interface/8 bit CPU bus  
TTL interface level (5V input capability)  
• JTAG(IEEE std 1149.1–1990) test mode  
• Package : QFP-100pin  
• Single +3.3V Power Supply  
• Symbol rate max:32MSPS min:TBD  
• Power consumption TBD  
• 0.4um CMOS Technology  
Applications  
DVB-S Set Top Box (Satellite)  
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by  
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the  
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.  
—1—  
PE96417-TE  
CXD1961Q  
Block Diagram  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
1
2
3
4
5
6
7
8
Analog I/Q  
Sampling  
Clock  
VCO  
2ch ADC  
PLL  
QPSK  
Demodulator  
Digital  
Filter  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
NCO  
Viterbi Decoder  
De-interleaver  
Reed-Solomon  
Decoder  
CPU I/F  
l2C  
bus  
Energy Dispersal  
8bit CPU bus  
Decoded  
data & clock  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Typical Application Block Diagram  
QPSK+FEC  
I/Q  
Detector  
Amp  
Data  
LNB  
SAW  
LPF  
LPF  
SONY  
CXD1961Q  
Clock  
PLL  
VCO  
Crystal  
90°  
LPF  
Reference  
OSC  
Micro Controller  
—2—  
CXD1961Q  
Pin Configuration  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
80  
79  
78  
77  
76  
75  
74  
72  
73  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
AVS0 1  
RB0 2  
VDD10  
CR7  
CR6  
CR5  
CR4  
VSS9  
VDD9  
CR3  
CR2  
CR1  
CR0  
CKV  
3
4
VDD0  
VSS0  
CPUSEL 5  
PLLSEL 6  
TEST1 7  
8
TEST2  
TEST3  
VDD1  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VSS1  
SDATA  
SCLK  
SEN  
AGCPWM  
VSS8  
VDD8  
TEST5  
TEST4  
XI  
VDD2  
VSS2  
TCK  
TMS  
TDO  
XO  
TDI  
VSS7  
VDD7  
SDA  
CK8OUT  
RESET  
TE  
SCL  
VDD3  
ADD3  
ADD2  
ADD1  
VSS6  
VDD6  
ADD0  
CS  
VSS3  
PKTCLK  
BYTCLK  
PKTERR  
DATA0  
DATA1  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
—3—  
CXD1961Q  
Pin Description  
No.  
1
Symbol  
AVS0  
RB0  
I/O  
I
Description  
Analog Ground  
2
ADC0 bottom reference voltage  
Digital Power Supply (+3.3 V)  
Digital Ground  
CPU interface select (L : I2C bus)  
Connect Digital Ground  
Test input (connect Digital Ground)  
Digital Power Supply (+3.3 V)  
Digital Ground  
3
VDD0  
4
VSS0  
5
CPUSEL  
PLLSEL  
TEST1–3  
VDD1  
6
I
7–9  
10  
I
O
O
O
I
11  
VSS1  
12  
SDATA  
SCLK  
SEN  
SONY internal use  
13  
SONY internal use  
14  
SONY internal use  
15  
VDD2  
Digital Power Supply (+3.3 V)  
Digital Ground  
16  
VSS2  
17  
TCK  
JTAG test clock  
18  
TMS  
I
JTAG test mode select  
JTAG test data output  
JTAG test data input  
19  
TDO  
O
I
20  
TDI  
21  
CK8OUT  
RESET  
TE  
O
I
Divide by 8 clock of Crystal clock  
Reset input (L : reset)  
Test Enable (H : test enable)  
Digital Power Supply (+3.3 V)  
Digital Ground  
22  
23  
I
24  
VDD3  
O
O
O
O
O
25  
VSS3  
26  
PKTCLK  
BYTCLK  
PKTERR  
DATA0–4  
VDD4  
R/S Packet clock  
27  
R/S Byte clock  
28  
R/S uncorrectable Packet flag  
R/S data output (DATA0 : LSB)  
Digital Power Supply (+3.3 V)  
Digital Ground  
29–33  
34  
35  
VSS4  
36–38  
39–43  
44  
DATA5–7  
D0–D4  
VDD5  
R/S data output (DATA7 : MSB)  
I/O 8 bit CPU bus data I/O (D0 : LSB)  
Digital Power Supply (+3.3 V)  
Digital Ground  
45  
VSS5  
46–48  
49  
D5–D7  
RW  
I/O 8 bit CPU bus data I/O (D7 : MSB)  
I
I
8 bit CPU bus Read/Write (H : Read)  
8 bit CPU bus Data strobe  
8 bit CPU bus Chip Select  
8 bit CPU bus Address0 (LSB)  
Digital Power Supply (+3.3 V)  
Digital Ground  
50  
DS  
51  
CS  
I
52  
ADD0  
I
53  
VDD6  
54  
VSS6  
—4—  
CXD1961Q  
No.  
55–57  
58  
Symbol  
ADD1–3  
SCL  
I/O  
Description  
8 bit CPU bus Address1–3 (ADD3 : MSB)  
I2C bus serial clock  
I
I
59  
SDA  
I/O I2C bus serial data  
60  
VDD7  
O
I
Digital Power Supply (+3.3 V)  
Digital Ground  
61  
VSS7  
62  
XO  
Oscillator output (for Crystal)  
Oscillator input (for Crystal)  
Test output (VSS level)  
63  
XI  
64, 65  
66  
TEST4, 5  
VDD8  
O
O
O
O
O
O
O
I
Digital Power Supply (+3.3 V)  
Digital Ground  
67  
VSS8  
68  
AGCPWM  
CKV  
PWM output for AGC  
69  
Sampling Clock monitor output  
Clock Recovery data 0–3 (CR0 : LSB)  
Digital Power Supply (+3.3 V)  
Digital Ground  
70–73  
74  
CR0–3  
VDD9  
75  
VSS9  
76–79  
80  
CR4–7  
VDD10  
VSS10  
TEST6, 7  
VDD11  
VSS11  
CPOUT  
AVD2  
VCOC  
OPXIN  
OPOUT  
AVS2  
VCOEN  
RT1  
Clock Recovery data 4–7 (CR7 : MSB)  
Digital Power Supply (+3.3 V)  
Digital Ground  
81  
82, 83  
84  
Test output (VSS level)  
Digital Power Supply (+3.3 V)  
Digital Ground  
85  
86  
PLL Charge pump output  
Analog Power Supply (+3.3 V)  
VCO control voltage input  
Embedded OP-Amp Negative input  
Embedded OP-Amp output  
Analog Ground  
87  
88  
89  
I
90  
O
I
91  
92  
VCO enable (H : enable)  
ADC1 top reference voltage  
Analog Power Supply (+3.3 V)  
Analog Q input (ADC1 input)  
Analog Ground  
93  
I
94  
AVD1  
QIN  
95  
96  
AVS1  
RB1  
I
97  
ADC1 bottom reference voltage  
ADC0 top reference voltage  
Analog Power Supply (+3.3 V)  
Analog input (ADC0 input)  
98  
RT0  
99  
AVD0  
IIN  
100  
Note)  
Apply 0.1 µF capacitor to every power supply terminal.  
Apply 0.1µF capacitor to RB0, RT0, RB1, RT1 for stable A to D conversion.  
—5—  
CXD1961Q  
CPU Interface Register  
Sub  
R/W  
R
MSB 7  
6
5
4
3
2
1
LSB 0  
address  
0
ADC_IN7 ADC_IN6 ADC_IN5 ADC_IN4 ADC_IN3 ADC_IN2 ADC_IN1 ADC_IN0  
BECNT15 BECNT14 BECNT13 BECNT12 BECNT11 BECNT10 BECNT9 BECNT8  
BECNT7 BECNT6 BECNT5 BECNT4 BECNT3 BECNT2 BECNT1 BECNT0  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
R
R
R
QSYNC  
AGC7  
VS_N4  
QS_N3  
AK2  
AFC3  
AGC6  
VS_N3  
QS_N2  
AK1  
AFC2  
AGC5  
AFC1  
AGC4  
AFC0  
AGC3  
VS_N0  
AC2  
VSYNC  
AGC2  
RATE2  
AC1  
RSYNC BEM_END  
W
W
W
W
W
W
W
W
W
W
W
W
AGC1  
RATE1  
BC2  
AGC0  
RATE0  
BC1  
VS_N2  
QS_N1  
VS_N1  
QS_N0  
S_INV AGC_INV AGC_MOD TIMER2 TIMER1 TIMER0  
PLL_CTL MON_SW VS_T3  
DF_SKIP DOUT_INV RS_SKIP  
VS_T2  
VS_T1  
VS_T0 CE_LEV1 CE_LEV0  
SSEL AFC_MOD BER_T2 BER_T1 BER_T0  
SFD18  
SFD10  
SFD2  
SFD17  
SFD9  
SFD16  
SFD8  
SFD15  
SFD7  
SFD14  
SFD6  
SFD13  
SFD5  
SFD12  
SFD4  
SFD11  
SFD3  
SFD1  
SFD0  
PCD2  
NC020  
NC012  
NC04  
PCD1  
NC019  
NC011  
NC03  
PCD0  
NC018  
NC010  
NC02  
REF_SEL REF_LSB  
NC023  
NC015  
NC07  
NC022  
NC014  
NC06  
NC021  
NC013  
NC05  
NC017  
NC09  
NC01  
NC016  
NC08  
NC00  
F
Note)  
1. Above Registers are shared by I2C bus interface and 8 bit CPU bus interface.  
2. To select CPU interface, use CPUSEL (Pin 5) ; H : 8 bit CPU bus / L : I2C bus.  
3. I2C bus interface slave address;  
MSB 6  
1
5
1
4
0
3
1
2
1
1
1
LSB 0  
0
R/W  
Write mode : DC (Hex)  
Read mode : DD (Hex)  
—6—  
CXD1961Q  
CPU Interface Register Brief Explanation  
ADD 0  
ADC_IN (7 : 0)  
BECNT (15 : 0)  
QSYNC  
ADC input level (I2+Q2 at QPSK demodulator)  
Bit Error Count at QPSK demodulator output  
QPSK Synchronization Flag (H : in sync.)  
Auto Frequency Control data  
ADD 1, 2  
ADD 3  
AFC (3 : 0)  
VSYNC  
Viterbi dec. Synchronization Flag (H : in sync)  
Reed-Solomon dec. Synchronization Flag (H : in sync)  
Bit Error Monitor enable Flag (H : enable)  
(when AGC mode is H) AGC Gain control data  
(when AGC mode is L) Reference data for self AGC  
V sync threshold Bit Error Count (see Fig. 1)  
Punctured rate (see Fig. 2)  
RSYNC  
BEM_END  
AGC (7 : 0)  
ADD 4  
ADD 5  
ADD 6  
ADD 7  
VS_N (4 : 0)  
RATE (2 : 0)  
QS_N (3 : 0)  
Threshold data for QPSK sync. judgement (see Fig. 3)  
AC (2 : 1), BC (2 : 1) Parameter for Carrier recovery loop filter (see Fig. 4)  
AK (2 : 1)  
S_INV  
Parameter for Clock recovery loop filter (see Fig. 4)  
I/Q exchange (H : enable)  
AGC_INV  
AGC_MOD  
TIMER (2 : 0)  
PLL_CTL  
MON_SW  
VS_T (3 : 0)  
CE_LEV (1 : 0)  
DF_SKIP  
AGC control voltage polarity (H : positive)  
H : controlled by CPU (slave) L : self AGC mode (master)  
Timer for AGC master mode (see Fig. 5)  
For SONY internal use (input 0 for norma use)  
For SONY internal use (input 0 for norma use)  
Monitor period for Viterbi sync. (see Fig. 6)  
Clock recovery Error feed back level (see Fig. 7)  
Digital Filter skip mode (H : enable)  
ADD 8  
ADD 9  
DOUT_INV  
RS_SKIP  
SSEL  
Data output timing invert (H : falling edge)  
R/S decode skip mode (H : enable)  
For SONY internal use (input 0 for normal use)  
For SONY internal use (input 0 for normal use)  
Monitor period for Bit error Count (see Fig. 8)  
For SONY internal use (input 0 for normal use)  
For SONY internal use (input 0 for normal use)  
For SONY internal use (input 0 for normal use)  
For SONY internal use (input 0 for normal use)  
For SONY internal use (input 0 for normal use)  
Sampling Frequency 2*Fs=NC0 (0 : 23)*8*Fxtal/224  
(Fxtal=Crystal Frequency)  
AFC_MOD  
BER_T (2 : 0)  
HS_PLL  
ADD A  
ADD A, B, C SFD (17 : 11)  
ADD C  
PCD (2 : 0)  
REF_SEL  
REF_LSB  
ADD D, E, F NC0 (23 : 0)  
Fig. 1 V sync threshold (Error Counter Preset data)  
max. : 992  
min. : 32  
Register  
Limit  
VS_N4  
×29  
VS_N3  
×28  
VS_N2  
×27  
VS_N1  
×26  
VS_N0  
×25  
(ex. VS_N (4 : 0)=(1, 1, 0, 0, 1) Limit=0×29+0×28+1×27+1×26+0×25=192)  
Fig. 2 Punctured Rate  
Punc. rate  
RATE2  
1/2  
0
2/3  
0
3/4  
0
4/5  
1
5/6  
1
6/7  
1
7/8  
1
Auto  
0
0
0
RATE1  
0
1
1
0
0
0
1
RATE0  
1
0
1
0
1
0
1
—7—  
CXD1961Q  
Fig. 3 QPSK Synchronization monitor  
QSYNC Threshold  
(QS_N3)×27+(QS_N2)×26+(QS_N1)×25+(QS_N0)×24  
256 (fix)  
QSYNC Monitor Period  
Fig. 4 Costas Loop Filter co-efficiency  
Parameter  
(AC2, AC1)  
(0, 0)  
×1  
(0, 1)  
1/2  
(1, 0)  
1/4  
(1, 1) Item  
1/8 Carrier recovery IIR filter  
×8 Carrier recovery tracking range  
1/8 Clock recovery IIR filter  
(BC2, BC1)  
(AK2, AK1)  
×1  
×2  
×4  
×1  
1/2  
1/4  
Fig. 5 Timer period (Sampling Frequency = 60 MHz)  
TIMER2  
1
1
1
1
1
0
1
0
1
1
0
0
0
1
1
0
1
0
0
0
1
0
0
0
TIMER1  
TIMER0  
Period (ms)  
140 70  
35 17.5 8.75 4.38 2.19 1.09  
Frequency (kHz) 7.14 14.3 28.6 57.1 114 229 457 914  
Fig. 6 V sync monitor period (measurement period counter preset data)  
Register  
VS_T3 VS_T2 VS_T1 VS_T0  
×212 ×211 ×210 ×29  
max. :6656  
min. : 512  
Period (viterbi clock)  
(ex. VS_T (3:0)=(0, 1, 1, 1) Limit=1×212+0×211+0×210+0×29=4096)  
(viterbi clock)  
Fig. 7 Clock recovery error data (8 bit) feed back level  
NCO  
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0  
CE_LEV  
(1, 1)  
(1, 0)  
(0, 1)  
(0, 0)  
Fig. 8 Bit Error Monitor period (Viterbi clock)  
BER_T2  
BER_T1  
BER_T0  
Period  
1
1
1
1
1
0
1
0
0
1
0
1
0
0
0
0
1
219  
0
218  
1
217  
0
216  
1
215  
0
214  
1
213  
0
26  
—8—  
CXD1961Q  
Functional Description  
(1) CPU Interface  
CXD1961Q has two CPU interface, an 8 bit CPU bus and an I2C bus interface. Fix CPUSEL (Pin 5) to DC L or  
H level depending on the choice of bus.  
CPUSEL=L : I2C bus / H : 8 bit bus  
I2C bus Interface  
The CXD1961Q's slave address is "1101110", and the read/write operation is based on Philips standard.  
<Write Data>  
In write operation, the second byte is input as the sub-address of the start position. The 3rd byte then forms  
the data to be written to the start register.  
Successive data bytes are written to successive sub-address register.  
S Slave  
T Address 0 C Address  
A 1101110 K Nhex  
A Sub-  
A
C
K
A
C
K
A
C
K
A S  
C T  
K P  
Input data  
for "N"  
Input data  
for "N+1"  
• • •  
STA : Start condition  
ACK : Acknowledgment by CXD1961Q  
STP : Stop Condition  
Note)  
Registers of Sub-Address 0hex to 3hex are read only  
<Read Data>  
Before read operation, the sub-address of the start register to be read is input by using write operation, and  
terminated by a stop condition.  
Read operation then begins with the second byte which is the data of the start register. Data of successive  
sub-address registers are read successively following by the second byte.  
S Slave  
A Sub-  
A S  
C T  
K P  
T Address 0 C Address  
A 1101110  
S Slave  
K Nhex  
A
A
A
C
K
A S  
C T  
K P  
Output data  
from "N"  
Output data  
T Address 1 C  
C
K
• • •  
from "N+1"  
A 1101110  
K
Note)  
Registers of Sub-Address 4hex to Fhex are write only  
—9—  
CXD1961Q  
8 bit CPU bus Interface  
(Write cycle)  
DS  
RW  
D [7:0]  
Valid input  
ADD [3:0 ]  
CS  
Valid Address  
T1  
T2  
T3  
T4  
T5  
T6  
Timing  
Description  
Min (nsec) Max (nsec)  
T2–T1  
T3–T1  
T3–T2  
T4–T3  
T5–T4  
T6–T4  
Note)  
Address, CS to Data valid  
R/W to DS  
25  
24  
10  
70  
21  
24  
Data valid to DS  
DS pulse width  
Data hold time  
Address, CS, R/W hold time  
Registers of Address 0hex to 3 hex are read only  
(Read cycle)  
DS  
RW  
D [7:0]  
Valid output  
Valid Address  
ADD [3:0]  
CS  
T1  
T2  
T3  
T4  
T5  
T6  
Timing  
T2–T1  
Description  
Min (nsec) Max (nsec)  
Address, CS, R/W to DS  
DS to Data valid  
24  
T3–T2  
T4–T2  
T5–T4  
T6–T4  
Note)  
75  
24  
DS pulse width  
105  
Data hold time  
Address, CS, R/W hold time  
24  
Registers of Address 4hex to Fhex are write only  
—10—  
CXD1961Q  
(2) Analog to Digital Converters  
The Dual 6 bit A to D converters quantize the analog I/Q input data. The input range of the ADC's is  
determined by external resistors. RT0 (RT1) is the top reference voltage, and RB0 (RB1) is the bottom  
reference voltage. RT0 (RT1) and RB0 (RB1) are connected internally with a 320 (Typical value) resistor.  
In the example shown in the following figure, input range is approximately 1.1 V, and center voltage 1.65 V.  
AVD (+3.3V)  
CXD1961Q  
330  
RT  
RB  
Top reference level  
Input range  
Bottom reference level  
320Ω  
330Ω  
AVS (0V)  
(3) AGC  
Input signal level of the A to D Converter is estimated by calculating I2+Q2 in 16 bit precision, and the upper  
8 bits of the estimated data are sent via the CPU I/F as ADC_IN [7:0]. CXD1961Q has two AGC modes that  
can be selected by AGC_MOD. In AGC slave mode, ADC_IN[7:0] is checked and an appropriate gain level  
AGC[7:0] is returned by the micro controller. This value is converted into 8 bit PWM format and output from  
AGCPWM (Pin 68).  
In AGC master mode, reference level AGC[7:0] is set via the CPU I/F and compared to ADC_IN[7:0]  
internally. The updated gain level is then output at the AGCPWM pin. In normal operation, ADC_IN[7:0]  
becomes almost equal to reference level. In AGC master mode, AGC control interval is set by TIMER[2:0].  
In both modes, AGCPWM output should be low pass filtered, and if needed, the level should be converted  
to satisfy the AGC gain control range. Depending on AGC_INV, the polarity can be inverted. (H:positive /  
L:negative)  
CPU Register  
ADC_IN [7 : 0]  
ADD 0h  
ADD 7h  
AGC [7 : 0]  
TIMER [2 : 0]  
ADD 4h  
ADD 7h  
AGC_INV  
ADD 7h  
AGC_MOD  
Reference level  
Input signal level  
ADC_IN [7 : 0]  
to ADC input range ratio  
0F  
3F  
7F  
FF  
0.25  
0.5  
0.7  
1.0 or over range  
Note)  
ADC input range is subject to temperature and VDD level.  
—11—  
CXD1961Q  
(4)Clock Recovery  
Initial sampling clock frequency is set by a 24 bit word via the CPU I/F. This 24 bit word is written to the  
NCO(Numerically Controlled Oscillator).  
The sampling frequency is:  
Fsample= 8*NCO [23:0]*Fxtal/224  
where: NCO [23:0] is the parameter for sampling frequency, "8" is the divider gain of the PLL, Fxtal is the  
reference crystal frequency, whose value should be more than 30MHz (32MHz is recommended).  
The internal digital clock recovery loop feeds clock error data to the above NCO to provide sampling timing  
correction .  
AK [2:1] is the Loop Filter coefficient and CE_LEV [1:0] is the Loop Gain.  
This value limits clock recovery range and resolution. (see the CPU Interface Register  
Brief Explanation Fig.7)  
Sampling clock is output from CKV (pin 69).  
CPU I/F Register  
AK [2:1] ADD 7h  
CE_LEV [1:0] ADD 8h  
NCO [23:0] ADD D, E, Fh  
(Example)  
CE_LEV [1:0]=(0,1), NCO [23:0]=(001110000000000000000000), Fxtal=32 MHz  
Sampling Frequency  
= 8*(221+220+219)*32*106/224  
= 23*7*106 = 56*106  
56 MHz  
Clock recovery range  
= 29/(221+220+219)  
= 1/210/7 = 139.5..*10–6  
= 8*21*32*106/224 = 30.5. . .  
±140 ppm  
31 Hz  
Clock recovery  
resolution  
(5)Carrier Recovery  
The Analog I/Q inputs have a carrier offset frequency, which is not corrected by the tuner's PLL  
Synthesizer. The offset is compensated by a Costas Loop, using a frequency multiplier, loop filter and the  
NCO. AC [2:1] is the coefficient of the loop filter and BC [2:1] is the loop gain parameter. QPSK  
synchronization(QSYNC) is determined by monitoring the output of loop filter. The internal sync detector  
monitors 256 cycles, and checks the value with the threshold set by QS_N [3:0]. In QPSK synchronization,  
AFC [3:0] indicates the offset proportional value which remains at that point. This value is the average data  
of the loop filter output. If AFC3(=MSB) is high, tuner PLL has a negative offset to the carrier frequency ,  
and vice versa if AFC3 is low. By feeding the AFC [3:0] to the tuner's PLL Synthesizer, carrier offset can be  
corrected with the PLL step size.  
CPU I/F Register  
QSYNC,AFC [3:0] ADD 3h  
QS_N [3:0], AC [2:1], BC [2:1] ADD 6h  
—12—  
CXD1961Q  
(6)Viterbi decoder  
By using QPSK demodulated data and Viterbi decoded data, the existence of errors is detected. Bit error  
measured over a certain period is used to determine the correct punctured rate and phase synchronization  
as well as bit error rate (BER). VS_N[4:0] is used to set the error count threshold, and VS_T[3:0] is used to  
set the error count duration. (see Fig.1 and Fig. 6 of CPU Interface Register Brief Explanation)  
For example)  
VS_N[4:0]=(1, 1, 0, 0, 1)  
VS_T[3:0] =(1, 0, 1, 1)  
Error Count threshold =192  
Error Count duration = 2048  
In this case, bit error is checked for 2048 cycles. If the error count is less than 192, CXD1961Q judges that  
punctured decoding is in sync and VSYNC goes high.  
Punctured rate is set by RATE[2:0]. When a certain rate is set by RATE[2:0], only punctured phase search  
is performed. Punctured rate and phase search is performed if RATE[2:0] is set to (0, 0, 0).  
CXD1961Q has 216 (= 65536) bit counter for BER estimation. BER monitor period is set by BER_T[2:0]  
(see Fig. 8), and the error count is read by CPU I/F as BECNT[15:0]. If BEM_END is low, punctured rate or  
phase search is not finished and the error count is not reliable at that moment.  
CPU I/F Register  
BERCNT[15:0] ADD 1, 2h  
VS_N[4:0]  
VSYNC  
ADD 3h BEM_END  
ADD 3h  
ADD 9h  
ADD 5h  
VS_T[3:0] ADD 8h BER_T[2:0]  
(7) Packet synchronization and De-inter leaver  
2 dimensional sync protection starts once sync word 47 hex or inverted sync word B 8 hex is detected. In  
this algorithm, sync status changes with hysteresis depending on sync or non-sync detection every 204  
byte, so that the probability of false-LOCK or Sync-loss is minimized.  
When the packet synchronization is achieved,the convolutional de-inter leaver  
(Forney, depth=12) starts operating.  
(8) Reed - Solomon decoder  
The Galois Field is generated by F(x) = x8+x4+x3+x2+1  
Code is generated by G(x) = (x-α0)(x-α1)(x-α2) • • (x-α15)  
If RS_SKIP is high, no correction is performed.  
CPU I/F Register  
RS_SKIP ADD 9h  
(9) Energy Dispersal  
Energy dispersal descrambling is represented by the polynomial x15+ x14 +1. Initial sequence is loaded  
when inverted sync word B8hex is detected. 1 dimensional sync protection circuit checks the inverted sync  
word every 8 packets. When it is in sync, RSYNC goes high. Even if the sync is lost, the initial sequence  
continues to be loaded at previous time step.  
CPU I/F Register  
RSYNC ADD 3h  
—13—  
CXD1961Q  
(10) Output Data Format  
The following figure shows the output format of BYTCLK, PKTCLK, PKTERR. BYTCLK is generated by  
dividing the internal viterbi clock by 8. Data output DATA[7:0] is output in sync with BYTCLK. DOUT_INV  
determines whether DATA[7:0] is output on the rising edge or the falling edge of BYTCLK. PKTCLK High-  
Time is equal to 188 data bytes period and PKTCLK Low-Time is equal to 16 parity bytes period. PKTERR  
goes H if an uncorrectable error packet is encountered.  
CPU I/F Register  
DOUT_INV ADD 9h  
no error  
data  
correctable error  
data  
uncorrectable error  
data  
parity  
parity  
pa  
BYTCLK  
PKTCLK  
PKTERR  
BYTCLK and PKTCLK have varying forms, depending on the punctured rate. The following figure shows  
Minimum and Maximum values for each rate.  
One unit represents 1 sampling clock (=2 Symbol rate) cycles.  
BYTCLK  
PKTCLK  
Period  
High-Time  
Low-Time  
Period  
High-Time  
Low-Time  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.  
R=1/2  
R=2/3  
R=3/4  
R=4/5  
R=5/6  
R=6/7  
R=7/8  
16  
12  
10  
10  
9
16  
12  
11  
10  
10  
10  
10  
8
6
5
5
4
4
4
8
6
6
5
5
5
5
8
6
5
5
4
4
4
8
6
6
5
5
5
5
3264 3264 3008 3008 256  
2448 2448 2256 2256 192  
2176 1276 2005 2006 170  
2040 2040 1880 1880 160  
1948 1949 1804 1805 153  
1904 1904 1754 1755 149  
1865 1866 1718 1719 146  
256  
192  
171  
160  
154  
150  
147  
9
9
(For example)  
SACLK  
R=1/2  
R=7/8  
Viterbi  
clock  
Byteclock  
Viterbi  
clock  
Byte clock  
—14—  
CXD1961Q  
Package Outline Unit : mm  
100PIN LQFP (PLASTIC)  
16.0 ± 0.2  
14.0 ± 0.1  
75  
51  
76  
50  
A
26  
100  
(0.22)  
1
25  
+ 0.08  
0.18 – 0.03  
+ 0.05  
0.127 – 0.02  
0.5 ± 0.08  
+ 0.2  
1.5 – 0.1  
0.1  
0.1 ± 0.1  
NOTE: Dimension “ ” does not include mold protrusion.  
0° to 10°  
DETAIL A  
PACKAGE STRUCTURE  
PACKAGE MATERIAL  
EPOXY/PHENOL RESIN  
SOLDER PLATING  
LQFP-100P-L01  
LEAD TREATMENT  
LEAD MATERIAL  
SONY CODE  
EIAJ CODE  
QFP100-P-1414-A  
42 ALLOY  
JEDEC CODE  
PACKAGE WEIGHT  
—15—  

相关型号:

CXD1968AR

DVB-T Demodulator
SONY

CXD1969

CableCARDTM INTERFACE CONTROLLER
SONY

CXD2011Q

TV/Video Filter
ETC

CXD2018AQ

Vertical Processor/Deflector
ETC

CXD2024AQ

TV/Video Filter
ETC

CXD2027Q

DBS Audio Signal Processor
SONY

CXD2027Q/R

DBS Audio Signal Processor
ETC

CXD2027R

DBS Audio Signal Processor
SONY

CXD2043

Digital Comb Filter (NTSC)
SONY

CXD2043Q

Digital Comb Filter (NTSC)
SONY

CXD2044Q

Digital Comb Filter (NTSC/PAL/PAL-M/PAL-N)
SONY