LV8121V [SANYO]

For Fan Motor 3-phase Brushless Motor Driver; 对于风扇电机的3相无刷电机驱动器
LV8121V
型号: LV8121V
厂家: SANYO SEMICON DEVICE    SANYO SEMICON DEVICE
描述:

For Fan Motor 3-phase Brushless Motor Driver
对于风扇电机的3相无刷电机驱动器

驱动器 风扇 电机
文件: 总14页 (文件大小:230K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ordering number : ENA2135  
Bi-CMOS IC  
For Fan Motor  
LV8121V  
3-phase Brushless Motor Driver  
Overview  
The LV8121V is a three-phase brushless motor driver that uses a PWM drive technique. The motor speed is controlled  
by changing the PWM duty that based on an analog voltage input. This motor driver includes an automatic return  
constraint protection circuit and is optimal for driving fan motors.  
Features  
PWM control based on an analog voltage input (the CTL voltage), synchronous rectification  
One Hall-effect sensor FG output  
Automatic return constraint protection circuit (ON/OFF=1/15)  
Start/Stop switching circuit, Forward/Reverse switching circuit  
Current limiter circuit, Low-voltage shutdown protection circuit, Thermal shutdown protection circuit  
Specifications  
Absolute Maximum Ratings at Ta = 25°C  
Parameter  
Symbol  
Conditions  
Ratings  
Unit  
V
Supply voltage  
V
max  
V
pin  
36  
42  
CC  
CC  
VG max  
max  
VG pin  
V
Output current  
I
t 500ms  
3.5  
A
O
Allowable power dissipation  
Operation temperature  
Storage temperature  
Junction temperature  
Pd max  
Topr  
Mounted on a specified board *  
1.7  
W
°C  
°C  
°C  
-30 to +100  
-55 to +150  
150  
Tstg  
Tj max  
* Specified board : 114.3mm × 76.1mm × 1.6mm, glass epoxy board  
Caution 1) Absolute maximum ratings represent the values which cannot be exceeded for any length of time.  
Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current,  
high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details.  
Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to  
"standard application", intended for the use as general electronics equipment. The products mentioned herein  
shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life,  
aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system,  
safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives  
in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any  
guarantee thereof. If you should intend to use our products for new introduction or other application different  
from current conditions on the usage of automotive device, communication device, office equipment, industrial  
equipment etc. , please consult with us about usage condition (temperature, operation time etc.) prior to the  
intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely  
responsible for the use.  
Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate  
the performance, characteristics, and functions of the described products in the independent state, and are not  
guarantees of the performance, characteristics, and functions of the described products as mounted in the  
customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent  
device, the customer should always evaluate and test devices mounted in the customer  
's products or  
equipment.  
O2412NKPC 20120919-S00001 No.A2135-1/14  
LV8121V  
Recommendation Operating Conditions at Ta = 25°C  
Parameter  
Symbol  
Conditions  
Ratings  
Unit  
V
Supply voltage range  
V
I
8.0 to 35  
0 to -6  
0 to -7  
0 to 6  
CC  
5V constant voltage output current  
HB output current  
mA  
mA  
V
REG  
HB  
I
FG applied voltage  
V
FG  
FG output current  
I
0 to 5  
mA  
FG  
Electrical Characteristics at Ta = 25°C, V  
= 24V  
CC  
Ratings  
typ  
Parameter  
Symbol  
1
Conditions  
Unit  
min  
max  
4.7  
Supply current 1  
I
I
3.5  
mA  
mA  
CC  
Supply current 2  
2
At stop  
1.1  
1.5  
CC  
Output block  
Lower side output ON resistance  
R
R
R
R
(L1)  
(L2)  
(H1)  
(H2)  
I
I
I
I
= 1.2A  
= 2.0A  
= -1.2A  
= -2.0A  
0.26  
0.26  
0.27  
0.27  
120  
0.9  
0.43  
0.43  
0.45  
0.45  
170  
Ω
Ω
Ω
Ω
μA  
V
ON  
ON  
ON  
ON  
O
O
O
O
Upper side output ON resistance  
Mid output current  
I
(M)  
V
= 12V  
O
O
Lower side diode forward voltage  
V
V
V
V
(L1)  
I
= -1.2A  
= -2.0A  
= 1.2A  
= 2.0A  
1.20  
1.35  
1.20  
1.35  
D
D
(L2)  
(H1)  
(H2)  
I
I
I
1.0  
V
D
D
D
D
D
D
Upper side diode forward voltage  
0.9  
V
1.0  
V
5V Constant voltage Output  
Output voltage  
VREG  
4.6  
5.0  
20  
5
5.4  
100  
100  
V
Line regulation  
ΔV(REG1)  
ΔV(REG2)  
V
= 8.0 to 35V  
mV  
mV  
CC  
I = -1 to -6mA  
O
Load regulation  
Hall Amplifier  
Input bias current  
I (HA)  
-2  
0.3  
0
-0.1  
μA  
V
B
Common mode input voltage range 1  
Common mode input voltage range 2  
V
1
When Hall-effect sensors are used  
VREG-1.7  
VREG  
ICM  
ICM  
V
2
When one-side inputs are biased  
(Hall IC application)  
SIN wave  
V
Hall input sensitivity  
Hysteresis width  
V
80  
9
mVp-p  
mV  
HIN  
ΔV (HA)  
20  
8
35  
16  
-5  
IN  
Input voltage L H  
Input voltage H L  
HB pin  
V
3
mV  
SLH  
V
-20  
-12  
mV  
SHL  
Output voltage  
V
I
= -0.5mA  
= 0V  
O
VREG-0.27  
-10  
VREG-0.18  
VREG-0.10  
V
HBO  
HB  
Output leakage current  
Reference Oscillator (CT pin)  
High level voltage  
Low level voltage  
I (HB)  
V
μA  
L
V
(CT)  
VREG×0.54 VREG×0.56 VREG×0.58  
VREG×0.43 VREG×0.45 VREG×0.47  
VREG×0.10 VREG×0.11 VREG×0.12  
V
V
H
V (CT)  
L
Amplitude  
V(CT)  
V
Oscillation frequency  
RT pin  
f(REF)  
C = 56pF, R = 11kΩ  
1.71  
2.11  
2.51  
MHz  
High level output voltage  
Low level output voltage  
Charge Pump Output (VG pin)  
Output voltage  
V
(RT)  
OH  
I
I
= -0.3mA  
= 0.3mA  
VREG-0.15  
0.05  
VREG-0.1  
0.1  
VREG-0.05  
0.15  
V
V
RT  
RT  
V
(RT)  
OL  
VG  
V
+4.1  
V
+4.7  
V
+5.4  
V
OUT  
CC  
CC  
CC  
CP1 pin  
High level output voltage  
Low level output voltage  
Charge pump frequency  
V
(CP1)  
I
I
= -2mA  
V
-1.4  
V
-1.1  
V
CC  
-0.7  
V
V
OH  
CP1  
CP1  
CC  
CC  
V
(CP1)  
= 2mA  
0.55  
0.75  
f(REF)/32  
0.90  
OL  
f(CP1)  
MHz  
Continued on next page.  
No.A2135-2/14  
LV8121V  
Continued from preceding page.  
Ratings  
typ  
Parameter  
Symbol  
(PWM)  
Conditions  
Unit  
min  
max  
PWM Oscillator  
High level voltage  
Low level voltage  
Amplitude  
V
2.75  
3.05  
3.35  
V
V
H
V (PWM)  
L
1.20  
1.40  
-80  
1.35  
1.70  
-63  
1.50  
2.00  
-45  
V(PWM)  
V
Charge current  
Oscillation frequency  
LIM pin  
I
V
= 2.1V  
μA  
kHz  
CHG  
f(PWM)  
PWM  
C = 1800pF  
15.1  
19.2  
24.8  
Input bias current  
CTL pin  
I (LIM)  
-2  
-0.1  
μA  
B
Input voltage  
V
V
1
2
Output duty: 100%  
Output duty: 0%  
2.74  
1.15  
-2  
3.07  
1.33  
-0.2  
3.40  
1.51  
V
V
CTL  
CTL  
Input bias current  
Current limiter operation  
Limiter voltage  
I (CTL)  
B
μA  
V
0.23  
0.25  
0.275  
V
RF  
CSD Oscillator  
High level voltage  
Low level voltage  
Amplitude  
V
(CSD)  
2.75  
1.43  
1.12  
-13.5  
8.0  
3.05  
1.68  
1.37  
-10.5  
11.5  
83  
3.35  
1.93  
1.62  
-7.0  
14.5  
104  
V
V
H
V (CSD)  
L
V(CSD)  
V
Charge current  
I
I
1
μA  
μA  
Hz  
CSD  
CSD  
Discharge current  
Oscillation frequency  
Thermal shutdown operation  
2
f(CSD)  
C = 0.047μ F  
62  
Thermal shutdown operation  
temperature  
TSD  
Design target value *  
(Junction temperature)  
Design target value *  
(Junction temperature)  
150  
180  
40  
°C  
°C  
Hysteresis width  
ΔTSD  
FG pin  
Low level output voltage  
Output leakage current  
V
(FG)  
I
= 2mA  
0.1  
0.3  
10  
V
OL  
FG  
I (FG)  
V
= 6V  
μA  
L
FG  
Low-voltage shutdown protection circuit  
Operating voltage  
V
V
6.52  
6.98  
0.36  
7.03  
7.49  
0.46  
7.54  
8.00  
0.56  
V
V
V
SDL  
SDH  
Release voltage  
Hysteresis width  
ΔVSD  
F/R pin  
High level input voltage range  
Low level input voltage range  
Input open voltage  
Hysteresis width  
V
V
V
V
(FR)  
2.0  
0
VREG  
1.0  
V
V
IH  
(FR)  
IL  
(FR)  
VREG-0.5  
0.15  
VREG  
0.5  
V
IO  
(FR)  
IS  
0.35  
0
V
High level input current  
Low level input current  
S/S pin  
I
I
(FR)  
IH  
VF/R = VREG  
VF/R = 0V  
-10  
10  
μA  
μA  
(FR)  
IL  
-80  
-50  
-35  
High level input voltage range  
Low level input voltage range  
Input open voltage  
Hysteresis width  
V
V
V
V
(SS)  
2.0  
0
VREG  
1.0  
V
V
IH  
(SS)  
(SS)  
IL  
VREG-0.5  
0.15  
VREG  
0.5  
V
IO  
(SS)  
IS  
0.35  
0
V
High level input current  
Low level input current  
I
I
(SS)  
IH  
VS/S = VREG  
VS/S = 0V  
-10  
10  
μA  
μA  
(SS)  
IL  
-80  
-50  
-35  
* : These items are design target value and are not tested.  
No.A2135-3/14  
LV8121V  
Package Dimensions  
unit : mm (typ)  
3333A  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
15.0  
44  
23  
22  
(4.7)  
1
0.65  
0.22  
0.2  
(0.68)  
SIDE VIEW  
SANYO : SSOP44K(275mil)  
Pd max -- Ta  
Mounted on the specified board: 114.3×76.1×1.6mm3  
glass epoxy  
2.0  
1.7  
1.5  
1.0  
0.68  
0.5  
0
--30  
0
30  
60  
90  
120  
Ambient temperature, Ta -- °C  
Pin Assignment  
44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23  
LV8121V  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22  
Top view  
No.A2135-4/14  
LV8121V  
Block Diagram  
No.A2135-5/14  
LV8121V  
Pin Function  
Pin No. Pin name  
Function  
Equivalent circuit  
1
2
3
4
PWM  
Pin to set the PWM oscillation frequency.  
VREG  
Connect a capacitor between this pin and GND1.  
A frequency of about 19kHz can be set by using  
a 1800pF capacitor.  
200Ω  
950Ω  
1
LIM  
Pin to set the minimum output duty.  
VREG  
A minimum output duty can be set by inputting a fixed  
voltage to the LIM pin through resistor division of VREG.  
Connect the LIM pin to GND1 if this pin is not used, then the  
minimum output duty becomes 0 %.  
500Ω  
2
CTL  
Pin to control the output duty.  
VREG  
The output duty is determined by the result of comparing  
the CTL pin voltage with the PWM oscillation waveform.  
When the CTL pin is open, the output duty becomes 100%.  
Therefore, connect a pull-down resistor to prevent open.  
500Ω  
3
S/S  
Start / Stop control pin.  
Low : 0V to 1.0V  
VREG  
High : 2.0V to VREG  
Goes high when left open.  
Low for start.  
100kΩ  
10kΩ  
The hysteresis width is about 0.35V.  
4
-
5
6
IN3  
Hall input pins.  
VREG  
+
+
-
IN3  
The input is seen as the high level input when IN > IN , and  
as the low level input for the opposite state.  
-
7
IN2  
+
8
IN2  
If noise on the Hall signals is a problem, connect a capacitor  
-
+ -  
between the corresponding IN and IN inputs.  
9
IN1  
+
10  
IN1  
5
7
9
6
8
10  
Continued on next page.  
No.A2135-6/14  
LV8121V  
Continued from preceding page.  
Pin No. Pin name  
Function  
Forward / Reverse control pin.  
Equivalent circuit  
14  
F/R  
VREG  
Low : 0V to 1.0V  
High : 2.0V to VREG  
Goes high when left open.  
Low for forward.  
100kΩ  
10kΩ  
The hysteresis width is about 0.35V.  
14  
34  
V
1
2
Power supply pin.  
CC  
(For systems other than the motor drive output.)  
Connect a capacitor between this pin and GND1 for  
stabilization.  
12, 33  
V
Motor drive output power supply pins.  
CC  
V
CC  
2
12 33  
20, 21  
22, 23  
24, 25  
OUT3  
OUT2  
OUT1  
Motor drive output pins.  
20 21  
22 23  
24 25  
15, 30  
18, 27  
31  
RF  
Source pins of the lower side output FET.  
Connect a resistor (Rf) between these pins and  
GND.  
18 27  
15 30  
GND2  
RFS  
Motor drive output circuit GND pins.  
Output current detection pin.  
VREG  
Connect the RFS pin to the RF pin.  
5kΩ  
31  
35  
37  
VG  
Charge pump output pin.  
V
CC  
2
Connect a capacitor between this pin and V 2.  
CC  
300Ω  
CP2  
Pin to connect the capacitor for charge pump.  
Connect a capacitor between this pin and CP1.  
35  
37  
Continued on next page.  
No.A2135-7/14  
LV8121V  
Continued from preceding page.  
Pin No. Pin name  
Function  
Equivalent circuit  
36  
CP1  
Pin to connect the capacitor for charge pump.  
Connect a capacitor between this pin and CP2.  
V
CC  
2
300Ω  
36  
38  
VREG  
5V constant voltage output pin.  
V
1
CC  
(Power supply pin for the control circuits.)  
Connect a capacitor between this pin and GND1 for  
stabilization.  
50Ω  
38  
39  
40  
GND1  
RT  
GND pin for the control circuits.  
Pin to set the reference oscillation frequency.  
Connect a resistor to charge / discharge the capacitor of CT  
between this pin and CT.  
VREG  
40  
200Ω  
41  
41  
42  
CT  
HB  
Pin to set the reference oscillation frequency.  
Connect a capacitor between this pin and GND1.  
Hall bias switch pin.  
VREG  
Goes off when the S/S input is the stop mode.  
250Ω  
42  
100kΩ  
43  
FG  
One hall-effect sensor FG output pin.  
(This is an open-drain output.)  
VREG  
43  
Continued on next page.  
No.A2135-8/14  
LV8121V  
Continued from preceding page.  
Pin No. Pin name  
Function  
Equivalent circuit  
44  
CSD  
Pin to set the operating time of the constraint protection.  
Connect a capacitor between this pin and GND1.  
VREG  
500Ω  
44  
11, 13  
16, 17  
19, 26  
28, 29  
32  
NC  
No connection pins.  
Backside Die-Pad  
metal  
Exposed Die-Pad.  
The metal of the IC’s backside is the Exposed Die-pad and  
is internally connected to GND1, GND2. For stabilization,  
connect the Exposed Die-pad to GND1 externally.  
+
Three-phase logic truth table (A high level input is the state where IN > IN )  
F/R = L  
F/R = H  
Output  
IN1  
H
H
H
L
IN2  
L
IN3  
H
L
IN1  
L
IN2  
H
H
L
IN3  
L
OUT1  
OUT2  
OUT3  
1
2
3
4
5
6
L
L
H
M
L
M
H
H
M
L
L
L
H
H
H
L
H
H
H
L
L
L
M
H
H
M
L
H
H
H
L
L
L
H
H
L
M
H
L
H
L
L
No.A2135-9/14  
LV8121V  
Description of LV8121V  
1. Motor Drive Output Circuit  
The LV8121V provides a charge pump circuit and implements both upper side and lower side N-channel power FET  
drive circuit. This IC employs the direct PWM drive technique. The motor speed is controlled by changing the output  
duty according to an analog voltage input (CTL). The upper side N-channel power FET is switched so that the output  
duty tracks the CTL voltage.  
The PWM frequency is determined by the capacitor connected between the PWM pin and GND1.  
When the PWM switching of the upper side N-channel power FET is off, the lower side N-channel power FET is  
turned on (synchronous rectification). Therefore, it is possible to reduce the temperature increase of the lower side  
N-channel power FET.  
2. PWM Oscillator  
The PWM frequency is set by the oscillation frequency of the PWM pin. When a capacitor C [F] is connected between  
the PWM pin and GND1, the PWM frequency (fPWM) is calculated as follows.  
fPWM = 1/(28900 × C)  
When a 1800pF capacitor is connected, this frequency becomes about 19kHz.  
By the variance of the IC, “28900” of the above formula has varied from 22400 to 36800.  
If the PWM frequency is too high, since the switching power loss will be large, the IC temperature increase will be  
excessive. The PWM frequency therefore should be normally kept below 50kHz, which is achieved with a capacitor C  
of 1000pF or higher. The GND lead of the connected capacitor to the PWM pin should be connected as close as  
possible to the GND1 pin.  
3. Output Duty  
The CTL voltage and the PWM oscillation waveform are compared to determine the output duty of the upper side  
N-channel power FET.  
If the LIM pin is not used (LIM=GND), the output duty becomes 0% when the CTL voltage is lower than about 1.3V  
and 100% when it exceeds about 3.1V.  
For the application that inputs a fixed voltage to the LIM pin, the LIM voltage and the PWM oscillation waveform are  
compared to determine the minimum output duty. Accordingly, even if the CTL voltage is lower than the LIM voltage,  
the output duty does not decrease below the minimum output duty.  
PWM oscillation waveform  
LIM voltage  
compared result  
CTL voltage  
ON  
Upper side FET  
(PWM)  
OFF  
ON  
Lower side FET  
(synchronous rectification)  
OFF  
If a minus voltage is applied to the CTL pin, this pin current must be limited within 2mA by inserting the resistor of  
about 200Ω.  
When the CTL pin is open, the output duty becomes 100%. Therefore, connect a pull-down resistor to prevent open.  
If the output duty is fast reduced by dropping the CTL voltage quickly when the motor speed is changed from high to  
low, since this IC employs the synchronous rectification, the lower side N-channel power FET can be the short brake  
condition that turns on two phases. If the lower side N-channel power FET (synchronous rectification) is switched  
from on to off while this condition, the motor current may flow on the power supply side, and the power supply  
voltage may bounce. The bounce of the power supply voltage is different on the motor speed, the varied range of the  
CTL voltage and the capacitance of the power supply line. Therefore, check sufficiently that the bounce of the power  
supply voltage does not exceed the maximum rating when the CTL voltage is changed.  
Continued on next page.  
No.A2135-10/14  
LV8121V  
Continued from preceding page.  
In case of limiting the bounce of the power supply voltage, the maximum voltage of  
the V can be limited according to the following method. The maximum voltage of  
To VG  
CC  
the VG is limited by using Zener diode, NPN transistor and some resistors. Normally,  
the relation between VG and V becomes “VG = V + 4.7V”. If V rises above  
160kΩ  
33kΩ  
5.1kΩ  
CC  
CC  
CC  
5.6V  
Zener  
“VG max - 4.7V” when VG is limited to VG max, this relation does not keep.  
Because the sufficient gate voltage cannot be applied to the upper side N-channel  
power FET when this relation does not keep, this IC includes the protective function  
that turns off the upper side N-channel power FET.  
Accordingly, if V  
FET is turned off, and the V  
CC  
rises above “VG max - 4.7V” when VG is limited to VG max, the upper side N-channel power  
bounce caused by dropping the CTL voltage can be limited to  
CC  
“V  
= VG max - 4.7V”. When the above reference circuit is used, VG is limited to about 36.7V, and V  
is limited  
is steeply bounced  
CC  
CC  
CC  
to about 32.0V. But this function does not guarantee that any V  
by dropping the CTL voltage, this function may not limit the V  
bounce can be limited. If V  
bounce.  
CC  
CC  
4. Current Limiter Circuit  
The current limiter circuit limits the output current peak to the value determined by “I = V /Rf” (V = 0.25V typ.,  
RF RF  
Rf: current detection resistor). When the current limiter is operating, the upper side N-channel power FET is switched,  
and the output current is suppressed by reducing the output duty.  
5. Reference Oscillator  
Connect a 56pF capacitor between CT and GND1, and a 11kΩ resistor between RT and CT. Then, the reference  
oscillation frequency becomes about 2.1MHz. The reference oscillation frequency functions as a reference clock for  
the internal logic circuit. The charge pump circuit boosts the voltage using a frequency that is 1/32 of the reference  
oscillation frequency.  
6. Start/Stop Switching Circuit  
When the S/S pin is set to the low level, start/stop switching circuit is the start mode. Inversely, when the S/S pin is set  
to the high level or open, start/stop switching circuit is the stop mode. This IC goes into a power saving state that  
reduces the supply current at the stop mode. In the power saving state, the bias current is removed from most of the  
circuits in the IC.  
The operating circuits in the power saving state are limited to the start/stop switching circuit and the 5V constant  
voltage output. The other circuits do not operate. Both upper side and lower side N-channel power FET are turned off  
in the power saving state.  
If a minus voltage is applied to the S/S pin, this pin current must be limited within 2mA by inserting the resistor of  
about 200Ω.  
7. Forward / Reverse Switching Circuit  
The motor rotation direction can be switched by using the F/R pin. However, the following notes must be observed if  
the F/R pin is switched while the motor is rotating.  
This IC is designed to avoid the through current when the direction is switched. However, the bounce of the V  
CC  
voltage (due to the motor current that flows instantly on the power supply side) may be caused during the direction  
switching. If this bounce is a problem, the capacitance inserted between V and GND must be increased.  
CC  
If the motor current after the direction switching exceeds the current limiter value, the upper side N-channel power  
FET will be turned off, but the lower side N-channel power FET will be the short brake condition. On the short  
brake condition, the current determined by the motor back EMF voltage and the coil resistance will flow. Because  
the current limiter circuit of this IC cannot limit this current, applications must be designed so that this current does  
not exceed the maximum rating (3.5A). When the motor speed is higher, the direction switching is dangerous.  
If a minus voltage is applied to the F/R pin, this pin current must be limited within 2mA by inserting the resistor of  
about 200.  
No.A2135-11/14  
LV8121V  
8. Hall Input Signal  
The input amplitude of 100mVp-p or more (differential) is desirable in the Hall inputs. The closer the input  
wave-form is to a square wave, the required input amplitude is lower. Inversely, the closer the input wave-form is to a  
triangular wave, the higher input amplitude is required. Also, note that the input DC voltage must be set within the  
common mode input voltage range.  
For the Hall IC application, one side (either the + or – side) of the Hall inputs must be fixed at a voltage within the  
common mode input voltage range that applies when the Hall-effect sensors are used, and the input voltage range for  
the other side becomes 0V to VREG.  
If noise on the Hall signals is a problem, that noise must be excluded by inserting capacitor between the Hall inputs as  
close as possible to these pins.  
When the Hall inputs for all three phases are in the same state, all the outputs (the both upper side and lower side  
N-channel power FET) are turned off.  
9. FG Output  
The FG pin is the pulse output that has the same frequency as Hall input IN1 (one Hall-effect sensor FG output).  
10. HB Pin  
The HB pin is the 5V constant voltage output that combines the switch function. This pin is connected to the base of  
external NPN transistor that supplies the bias of the Hall-effect sensors. If the HB output is turned off, this external  
NPN transistor is too turned off, and the bias of the Hall-effect sensors is cut (Hall bias switch).  
The HB output is turned off and is made pull-down by a 100kinternal resistor when the S/S pin is the stop mode.  
Therefore, the bias of the Hall-effect sensors can be cut when the S/S pin is the stop mode.  
In case the LIM pin is not used (LIM = GND), if the CTL voltage falls below 0.7V, the HB output is turned off, and  
the bias of the Hall-effect sensors is cut.  
In case the minimum output duty is determined by the LIM pin, even if the CTL voltage falls below 0.7V, the HB  
output is not turned off.  
If the HB pin is not used, keep open.  
11. Constraint Protection Circuit  
The constraint protection circuit operates to turn the motor drive (the upper side N-channel power FET) on or off  
repeatedly in the motor constrained state. Therefore, the IC and the motor are protected. The drive on/off time can be  
set by adjusting the oscillation frequency of the CSD pin with external capacitor. When a capacitor C [μF] is  
connected between the CSD pin and GND1, the drive on/off time is calculated as follows.  
TCSD1 (drive on time) = 8.21 × C  
TCSD2 (drive off time) = TCSD1 × 15  
When a 0.047μF capacitor is connected, this protection function will iterate an on/off period in which drive is on for  
about 0.39sec and off for about 5.8sec.  
By the variance of the IC, “8.21” of the above formula has varied from 5.41 to 11.01.  
If the switching from L to H of the Hall input IN1 (the rising edge on the FG output) is not caused during the drive on  
time, this protection function turns the motor drive off, and returns the motor drive on after the drive off time.  
If the drive on time to be set is too short, this protection function operates at a normal motor start-up, and the motor  
may not speed up since this protection function iterates an on/off period. Also, if the motor speed is too low, this  
protection function operates when one cycle of the Hall input IN1 is longer than the drive on time. The drive on time  
must be set to a sufficient time so that this protection function does not operate except the motor constrained state.  
The oscillation waveform of the CSD pin is used for some circuits in addition to the constraint protection circuit.  
Therefore, it is desirable to oscillate the CSD pin even if the constraint protection function is unnecessary.  
The CSD pin combines the function as the initial reset pin. The time that the CSD voltage is charged to about 1.25V is  
determined as the initial reset. At the initial reset, all the outputs (the both upper side and lower side N-channel power  
FET) are turned off.  
If the constraint protection function is not used, the oscillation of the CSD pin must be stopped by connecting a 220kΩ  
resistor and a 0.01μF capacitor in parallel between the CSD pin and GND1. However, when the oscillation of the CSD  
pin is stopped, note that some functions do not operate in the following cases.  
If the motor does not rotate at the motor start-up because the motor is constrained, the upper side N-channel power  
FET may be switched by the current limiter. But, the synchronous rectification does not operate when the oscillation  
of the CSD pin is stopped.Continued on next page.  
In case the LIM pin is not used (LIM = GND), even if the CTL voltage falls below 0.7V, the HB output is not turned  
off when the oscillation of the CSD pin is stopped.  
No.A2135-12/14  
LV8121V  
12. Low-voltage Shutdown Protection Circuit  
The IC includes a low-voltage shutdown protection circuit to protect against incorrect operation when the V  
power  
CC  
voltage falls  
supply is switched on or if the V  
voltage falls below the allowable operating range. When the V  
CC  
CC  
below the specified voltage (VSDL), this protection function operates, and all the outputs (the both upper side and  
lower side N-channel power FET) are turned off. When the V  
protection function is released.  
voltage rises above the release voltage (VSDH), this  
CC  
13. Thermal Shutdown Protection Circuit  
If the junction temperature rises to the specified temperature (TSD), this protection function operates, and the upper  
side N-channel power FET is turned off. If the temperature decrease falls to more than the hysteresis width (ΔTSD),  
this protection function is released.  
14. Power Supply Stabilization  
Because a large switching current flows in the V  
line, the line inductance and other factors can lead to V  
CC  
CC  
voltage fluctuations. Sufficient capacitance should be provided between V  
wiring routes are used, choose a capacitor with even larger capacitance.  
and GND for stabilization. When long  
CC  
Ceramic capacitors of about 0.2μF must be connected between the V 1 pin and the GND1 pin as close as possible to  
CC  
these pins for excluding noise.  
15. VREG Pin  
The VREG pin is the power supply for the control circuits. Therefore, a capacitor of about 0.1μF must be connected  
between the VREG pin and the GND1 pin as close as possible to these pins for stabilization.  
16. VG Pin  
When the S/S pin is the stop mode, the VG pin is the high-impedance condition in the IC. If the ambient temperature  
of the capacitor inserted between VG and V 2 becomes high when the VG pin is the high-impedance condition,  
CC  
since the voltage charged in this capacitor may rise due to the temperature characteristic of the capacitor, the VG  
voltage may rise. Therefore, prevent the VG voltage from rising by inserting the resistor of about 200kΩ between VG  
and V 2 or VG and GND1 so that the VG pin is not the high-impedance condition.  
CC  
17. Notes on wiring of a Printed Circuit Board  
Two pins are provided for each of pins (V 2, RF, OUT1, OUT2, OUT3, GND2) where large current flows. Both of  
CC  
these pins should be externally connected.  
18. The Metal of the IC’s Backside  
The metal of the IC’s backside is the Exposed Die-pad and is internally connected to GND1, GND2. For stabilization,  
connect the Exposed Die-pad to GND1 externally. The IC’s generation of heat can be efficiently diffused to a printed  
circuit board by soldering the Exposed Die-pad to the copper of the printed circuit board.  
19. NC Pins  
The NC pins are electrically open. These pins may be used for wiring routes.  
No.A2135-13/14  
LV8121V  
Application (Reference value)  
100Ω 2SC5964 510Ω/0.5W  
5.1kΩ  
Exposed  
24V  
47μF  
100Ω  
Die-Pad  
160kΩ  
27kΩ  
15kΩ  
2SC  
5964  
5.6V  
Zener  
+
0.1μF  
0.1μF  
0.17Ω/1W  
0.2μF  
10kΩ  
FG  
56pF  
0.1μF  
11kΩ  
0.033μF  
1500pF  
0.047μF  
44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23  
LV8121  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22  
1800pF  
4700pF  
100kΩ  
51Ω  
200Ω  
CTL S/S  
F/R  
SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using  
products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition  
ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd.  
products described or contained herein.  
Regarding monolithic semiconductors, if you should intend to use this IC continuously under high temperature,  
high current, high voltage, or drastic temperature change, even if it is used within the range of absolute  
maximum ratings or operating conditions, there is a possibility of decrease reliability. Please contact us for a  
confirmation.  
SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all  
semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or  
malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise  
to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt  
safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not  
limited to protective circuits and error prevention circuits for safe design, redundant design, and structural  
design.  
In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are  
controlled under any of applicable local export control laws and regulations, such products may require the  
export license from the authorities concerned in accordance with the above law.  
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or  
mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise,  
without the prior written consent of SANYO Semiconductor Co.,Ltd.  
Any and all information described or contained herein are subject to change without notice due to  
product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the  
SANYO Semiconductor Co.,Ltd. product that you intend to use.  
Upon using the technical information or products described herein, neither warranty nor license shall be granted  
with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third  
party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's  
intellectual property rights which has resulted from the use of the technical information and products mentioned  
above.  
This catalog provides information as of October, 2012. Specifications and information herein are subject  
to change without notice.  
PS No.A2135-14/14  

相关型号:

LV8127T

3-phase Bipolar PWM Drive Pre-Driver IC
ONSEMI

LV8127T-MPB-H

3-phase Bipolar PWM Drive Pre-Driver IC
ONSEMI

LV8127T-TLM-H

3-phase Bipolar PWM Drive Pre-Driver IC
ONSEMI

LV8136V

Bi-CMOS IC For Brushless Motor Drive Direct PWM Drive, Quiet Predriver IC
SANYO

LV8138V

Bi-CMOS IC For Brushless Motor Drive Sine wave PWM Drive, Pre driver IC
SANYO

LV8139JA

Sine wave PWM Drive, Pre drive IC,
ONSEMI

LV8139JA-AH

Sine wave PWM Drive, Pre drive IC,
ONSEMI

LV8139JA_16

Sine wave PWM Drive, Pre drive IC,
ONSEMI

LV8161MU

Single-Phase Fan Motor Driver
ONSEMI

LV8161MUTAG

Single-Phase Fan Motor Driver
ONSEMI

LV8162TT

Fan Motor Driver Single-Phase Full-Wave Driver
SANYO

LV8206T

CD and MD System Motor Driver
SANYO