MMBT2369L [ONSEMI]

Switcing Transistors; Switcing晶体管
MMBT2369L
型号: MMBT2369L
厂家: ONSEMI    ONSEMI
描述:

Switcing Transistors
Switcing晶体管

晶体 晶体管 开关 光电二极管
文件: 总8页 (文件大小:146K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MMBT2369LT1,  
MMBT2369ALT1  
MMBT2369ALT1 is a Preferred Device  
Switching Transistors  
NPN Silicon  
http://onsemi.com  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
15  
Unit  
Vdc  
COLLECTOR  
3
Collector–Emitter Voltage  
Collector–Emitter Voltage  
Collector–Base Voltage  
V
CEO  
V
40  
Vdc  
CES  
CBO  
EBO  
V
V
40  
Vdc  
1
BASE  
Emitter–Base Voltage  
4.5  
200  
Vdc  
Collector Current – Continuous  
THERMAL CHARACTERISTICS  
Characteristic  
I
C
mAdc  
2
EMITTER  
Symbol  
Max  
Unit  
Total Device Dissipation FR–5 Board  
P
D
225  
mW  
(Note 1) T = 25°C  
3
A
Derate above 25°C  
1.8  
mW/°C  
°C/W  
1
Thermal Resistance,  
Junction to Ambient  
R
556  
q
JA  
2
Total Device Dissipation Alumina  
P
300  
mW  
SOT–23  
CASE 318  
STYLE 6  
D
Substrate, (Note 2) T = 25°C  
A
Derate above 25°C  
2.4  
mW/°C  
°C/W  
Thermal Resistance,  
Junction to Ambient  
R
417  
q
JA  
MARKING DIAGRAMS  
Junction and Storage Temperature  
T , T  
–55 to  
+150  
°C  
J
stg  
1. FR–5 = 1.0 0.75 0.062 in.  
2. Alumina = 0.4 0.3 0.024 in. 99.5% alumina.  
M1J X  
1JA X  
MMBT2369LT1  
MMBT2369ALT1  
M1J, 1JA = Specific Device Code  
= Date Code  
X
ORDERING INFORMATION  
Device  
Package  
Shipping  
MMBT2369LT1  
MMBT2369ALT1  
SOT–23 3000/Tape & Reel  
SOT–23 3000/Tape & Reel  
Preferred devices are recommended choices for future use  
and best overall value.  
Semiconductor Components Industries, LLC, 2002  
1
Publication Order Number:  
May, 2002 – Rev. 3  
MMBT2369LT1/D  
MMBT2369LT1, MMBT2369ALT1  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Collector–Emitter Breakdown Voltage (Note 3)  
(I = 10 mAdc, I = 0)  
V
Vdc  
Vdc  
Vdc  
Vdc  
µAdc  
(BR)CEO  
15  
40  
40  
4.5  
C
B
Collector–Emitter Breakdown Voltage  
(I = 10 µAdc, V = 0)  
V
(BR)CES  
(BR)CBO  
(BR)EBO  
C
BE  
Collector–Base Breakdown Voltage  
(I = 10 mAdc, I = 0)  
V
V
C
E
Emitter–Base Breakdown Voltage  
(I = 10 mAdc, I = 0)  
E
C
Collector Cutoff Current  
(V = 20 Vdc, I = 0)  
I
CBO  
0.4  
30  
CB  
E
(V = 20 Vdc, I = 0, T = 150°C)  
CB  
E
A
Collector Cutoff Current  
(V = 20 Vdc, V = 0)  
I
µAdc  
CES  
MMBT2369A  
0.4  
CE  
BE  
ON CHARACTERISTICS  
DC Current Gain (Note 3)  
h
FE  
(I = 10 mAdc, V = 1.0 Vdc)  
MMBT2369  
MMBT2369A  
MMBT2369A  
MMBT2369A  
MMBT2369A  
MMBT2369  
40  
120  
120  
C
CE  
(I = 10 mAdc, V = 1.0 Vdc)  
C
CE  
(I = 10 mAdc, V = 0.35 Vdc)  
40  
20  
30  
20  
20  
C
CE  
(I = 10 mAdc, V = 0.35 Vdc, T = –55°C)  
C
CE  
A
(I = 30 mAdc, V = 0.4 Vdc)  
C
CE  
(I = 100 mAdc, V = 2.0 Vdc)  
C
CE  
(I = 100 mAdc, V = 1.0 Vdc)  
MMBT2369A  
C
CE  
Collector–Emitter Saturation Voltage (Note 3)  
(I = 10 mAdc, I = 1.0 mAdc)  
V
Vdc  
Vdc  
CE(sat)  
MMBT2369  
MMBT2369A  
MMBT2369A  
MMBT2369A  
MMBT2369A  
0.25  
0.20  
0.30  
0.25  
0.50  
C
B
(I = 10 mAdc, I = 1.0 mAdc)  
C
B
(I = 10 mAdc, I = 1.0 mAdc, T = +125°C)  
C
B
A
(I = 30 mAdc, I = 3.0 mAdc)  
C
B
(I = 100 mAdc, I = 10 mAdc)  
C
B
Base–Emitter Saturation Voltage (Note 3)  
(I = 10 mAdc, I = 1.0 mAdc)  
V
BE(sat)  
MMBT2369A  
MMBT2369A  
MMBT2369A  
MMBT2369A  
0.7  
0.85  
1.02  
1.15  
1.60  
C
B
(I = 10 mAdc, I = 1.0 mAdc, T = –55°C)  
C
B
A
(I = 30 mAdc, I = 3.0 mAdc)  
C
B
(I = 100 mAdc, I = 10 mAdc)  
C
B
SMALL–SIGNAL CHARACTERISTICS  
Output Capacitance  
C
pF  
obo  
(V = 5.0 Vdc, I = 0, f = 1.0 MHz)  
4.0  
CB  
E
Small Signal CurrentGain  
(I = 10 mAdc, V = 10 Vdc, f = 100 MHz)  
h
fe  
5.0  
C
CE  
SWITCHING CHARACTERISTICS  
Storage Time  
t
ns  
ns  
ns  
s
(I = I = I = 10 mAdc)  
5.0  
8.0  
10  
13  
12  
18  
B1  
B2  
C
Turn–On Time  
(V = 3.0 Vdc, I = 10 mAdc, I = 3.0 mAdc)  
CC  
t
t
on  
C
B1  
Turn–Off Time  
off  
(V = 3.0 Vdc, I = 10 mAdc, I = 3.0 mAdc, I = 1.5 mAdc)  
CC  
C
B1  
B2  
3. Pulse Test: Pulse Width v 300 ms, Duty Cycle v 2.0%.  
http://onsemi.com  
2
MMBT2369LT1, MMBT2369ALT1  
SWITCHING TIME EQUIVALENT TEST CIRCUITS FOR 2N2369, 2N3227  
270 Ω  
270 Ω  
t
t
1
1
3 V  
+10.6 V  
0
+10.75 V  
0
-9.15 V  
-1.5 V  
< 1 ns  
3.3 k  
C * < 4 pF  
s
3.3 k  
C * < 4 pF  
s
< 1 ns  
PULSE WIDTH (t ) = 300 ns  
1
DUTY CYCLE = 2%  
PULSE WIDTH (t ) = 300 ns  
1
DUTY CYCLE = 2%  
*Total shunt capacitance of test jig and connectors.  
Figure 1. ton Circuit – 10 mA  
Figure 3. toff Circuit – 10 mA  
95 Ω  
95 Ω  
t
1
t
1
10 V  
10 V  
+11.4 V  
0
+10.8 V  
-2 V  
0
-8.6 V  
1 k  
C * < 12 pF  
s
< 1 ns  
1 k  
C * < 12 pF  
s
< 1 ns  
1N916  
PULSE WIDTH (t ) = 300 ns  
1
DUTY CYCLE = 2%  
PULSE WIDTH (t ) BETWEEN  
1
10 AND 500 µs  
DUTY CYCLE = 2%  
*Total shunt capacitance of test jig and connectors.  
Figure 2. ton Circuit – 100 mA  
Figure 4. toff Circuit – 100 mA  
TO OSCILLOSCOPE  
TURN-ON WAVEFORMS  
INPUT IMPEDANCE = 50 Ω  
RISE TIME = 1 ns  
V
0
in  
0.1 µF  
220 Ω  
10%  
90%  
V
out  
TURN-OFF WAVEFORMS  
V
out  
3.3 kΩ  
V
in  
0
10%  
90%  
= +12 V  
t
on  
V
in  
3.3 k  
50 Ω  
0.0023 µF  
0.0023 µF  
0.005 µF 0.005 µF  
V
out  
PULSE GENERATOR  
ąV RISE TIME < 1 ns  
50 Ω  
in  
V
V
BB  
ąSOURCE IMPEDANCE = 50 Ω  
ąPW 300 ns  
ąDUTY CYCLE < 2%  
+
-
+
V
CC  
0.1 µF 0.1 µF  
V
BB  
= 3 V  
-
t
off  
= -15 V  
in  
Figure 5. Turn–On and Turn–Off Time Test Circuit  
6
5
100  
LIMIT  
T = 25°C  
β
V
V
= 10  
J
F
TYPICAL  
= 10 V  
= 2 V  
CC  
OB  
50  
4
3
C
ib  
t
f
t (V = 3 V)  
CC  
r
C
ob  
20  
10  
5
V
= 10 V  
CC  
t
r
2
t
s
t
d
1
2
0.1  
0.2  
0.5  
1.0  
2.0  
5.0  
10  
1
2
5
10  
20  
50  
100  
REVERSE BIAS (VOLTS)  
I , COLLECTOR CURRENT (mA)  
C
Figure 6. Junction Capacitance Variations  
Figure 7. Typical Switching Times  
http://onsemi.com  
3
MMBT2369LT1, MMBT2369ALT1  
500  
Q , β = 10  
V
CC  
= 10 V  
T
F
25°C  
100°C  
200  
100  
50  
Q , β = 40  
VALUES REFER TO  
I = 10 mA TEST  
C
T
F
270  
t
1
3 V  
10 pF MAX  
+5 V  
V  
0
< 1 ns  
C * < 4 pF  
s
4.3 k  
PULSE WIDTH (t ) = 5 µs  
1
DUTY CYCLE = 2%  
Q , V = 10 V  
A CC  
Q , V = 3 V  
A CC  
20  
10  
Figure 9. QT Test Circuit  
1
2
5
10  
20  
50  
100  
I , COLLECTOR CURRENT (mA)  
C
Figure 8. Maximum Charge Data  
980  
t
1
10 V  
C < C  
+6 V  
OPT  
C = 0  
0
-4 V  
C
C
OPT  
< 1 ns  
500  
C * < 3 pF  
s
PULSE WIDTH (t ) = 300 ns  
1
DUTY CYCLE = 2%  
TIME  
Figure 10. Turn–Off Waveform  
Figure 11. Storage Time Equivalent Test Circuit  
1.0  
0.8  
T = 25°C  
J
I
C
= 3 mA  
I
C
= 10 mA  
I
C
= 30 mA  
I
C
= 50 mA  
I = 100 mA  
C
0.6  
0.4  
0.2  
0.02  
0.05  
0.1  
0.2  
0.5  
1
2
5
10  
20  
I , BASE CURRENT (mA)  
B
Figure 12. Maximum Collector Saturation Voltage Characteristics  
http://onsemi.com  
4
MMBT2369LT1, MMBT2369ALT1  
200  
100  
50  
T = 125°C  
J
V
= 1 V  
CE  
75°C  
25°C  
T = 25°C and 75°C  
J
-15°C  
-55°C  
20  
1
2
5
10  
I , COLLECTOR CURRENT (mA)  
20  
50  
100  
C
Figure 13. Minimum Current Gain Characteristics  
1.4  
1.0  
0.5  
β
= 10  
F
(25°C to 125°C)  
(-55°C to +25°C)  
T = 25°C  
J
1.2  
1.0  
0.8  
θ
for V  
CE(sat)  
VC  
MAX V  
MIN V  
0
-0.5  
-1.0  
-1.5  
BE(sat)  
APPROXIMATE DEVIATION  
FROM NOMINAL  
-55°C to +25°C 25°C to 125°C  
BE(sat)  
θ
θ
±0.15 mV/°C  
±0.4 mV/°C  
±0.15 mV/°C  
±0.3 mV/°C  
VC  
VB  
(-55°C to +25°C)  
(25°C to 125°C)  
0.6  
0.4  
0.2  
θ
for V  
BE(sat)  
VB  
MAX V  
-2.0  
-2.5  
CE(sat)  
1
2
5
10  
20  
50  
100  
0
10  
20  
30  
40  
50  
60  
70  
80 90  
100  
I , COLLECTOR CURRENT (mA)  
C
I , COLLECTOR CURRENT (mA)  
C
Figure 14. Saturation Voltage Limits  
Figure 15. Typical Temperature Coefficients  
http://onsemi.com  
5
MMBT2369LT1, MMBT2369ALT1  
INFORMATION FOR USING THE SOT–23 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the total  
design. The footprint for the semiconductor packages must  
be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.037  
0.95  
0.037  
0.95  
0.079  
2.0  
0.035  
0.9  
0.031  
0.8  
inches  
mm  
SOT–23  
SOT–23 POWER DISSIPATION  
SOLDERING PRECAUTIONS  
The power dissipation of the SOT–23 is a function of the  
pad size. This can vary from the minimum pad size for  
soldering to a pad size given for maximum power  
dissipation. Power dissipation for a surface mount device is  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within  
a short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
determined by T  
, the maximum rated junction  
J(max)  
temperature of the die, R , the thermal resistance from the  
θJA  
device junction to ambient, and the operating temperature,  
T . Using the values provided on the data sheet for the  
A
SOT–23 package, P can be calculated as follows:  
Always preheat the device.  
D
The delta temperature between the preheat and soldering  
should be 100°C or less.*  
T
J(max) – TA  
Rθ  
PD =  
JA  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering method,  
the difference shall be a maximum of 10°C.  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values into  
the equation for an ambient temperature T of 25°C, one can  
A
calculate the power dissipation of the device which in this  
case is 225 milliwatts.  
The soldering temperature and time shall not exceed  
260°C for more than 10 seconds.  
150°C – 25°C  
556°C/W  
PD =  
= 225 milliwatts  
When shifting from preheating to soldering, the maximum  
temperature gradient shall be 5°C or less.  
The 556°C/W for the SOT–23 package assumes the use of  
the recommended footprint on a glass epoxy printed circuit  
board to achieve a power dissipation of 225 milliwatts.  
There are other alternatives to achieving higher power  
dissipation from the SOT–23 package. Another alternative  
would be to use a ceramic substrate or an aluminum core  
board such as Thermal Clad . Using a board material such  
as Thermal Clad, an aluminum core board, the power  
dissipation can be doubled using the same footprint.  
After soldering has been completed, the device should be  
allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and result  
in latent failure due to mechanical stress.  
Mechanical stress or shock should not be applied during  
cooling.  
* Soldering a device without preheating can cause  
excessive thermal shock and stress which can result in  
damage to the device.  
http://onsemi.com  
6
MMBT2369LT1, MMBT2369ALT1  
PACKAGE DIMENSIONS  
SOT–23 (TO–236)  
CASE 318–08  
ISSUE AH  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
A
L
2. CONTROLLING DIMENSION: INCH.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD  
FINISH THICKNESS. MINIMUM LEAD THICKNESS  
IS THE MINIMUM THICKNESS OF BASE  
MATERIAL.  
3
S
C
B
1
2
4. 318-03 AND -07 OBSOLETE, NEW STANDARD  
318-08.  
V
G
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
2.80  
1.20  
0.89  
0.37  
1.78  
MAX  
3.04  
1.40  
1.11  
A
B
C
D
G
H
J
0.1102 0.1197  
0.0472 0.0551  
0.0350 0.0440  
0.0150 0.0200  
0.0701 0.0807  
0.50  
2.04  
0.100  
0.177  
0.69  
1.02  
2.64  
0.60  
H
J
D
K
0.0005 0.0040 0.013  
0.0034 0.0070 0.085  
K
L
0.0140 0.0285  
0.0350 0.0401  
0.0830 0.1039  
0.0177 0.0236  
0.35  
0.89  
2.10  
0.45  
S
V
STYLE 6:  
PIN 1. BASE  
2. EMITTER  
3. COLLECTOR  
http://onsemi.com  
7
MMBT2369LT1, MMBT2369ALT1  
Thermal Clad is a registered trademark of the Bergquist Company.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make  
changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all  
liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death  
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
Literature Fulfillment:  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
For additional information, please contact your local  
Sales Representative.  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
MMBT2369LT1/D  

相关型号:

MMBT2369LT1

Switching Transistors
MOTOROLA

MMBT2369LT1

Switching Transistors(NPN Silicon)
LRC

MMBT2369LT1

Switcing Transistors
ONSEMI

MMBT2369LT1G

Switching Transistors NPN Silicon
ONSEMI

MMBT2369LT1G

Small Signal Bipolar Transistor, 0.2A I(C), 15V V(BR)CEO, 1-Element, NPN, Silicon, TO-236AB, HALOGEN FREE AND ROHS COMPLIANT, CASE 318-08, TO-236, 3 PIN
ROCHESTER

MMBT2369LT1G_09

Switching Transistors
ONSEMI

MMBT2369LT1_07

Switching Transistors NPN Silicon
ONSEMI

MMBT2369LT3

200mA, 15V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-236AB
MOTOROLA

MMBT2369LT3

TRANSISTOR 200 mA, 15 V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-236AB, PLASTIC, CASE 318-08, 3 PIN, BIP General Purpose Small Signal
ONSEMI

MMBT2369LT3G

NPN 双极晶体管
ONSEMI

MMBT2369_08

NPN Switching Transistor
FAIRCHILD

MMBT2369_NL

Small Signal Bipolar Transistor, 0.2A I(C), 15V V(BR)CEO, 1-Element, NPN, Silicon, TO-236AB, SOT-23, 3 PIN
FAIRCHILD