MMBT2369LT1 [MOTOROLA]

Switching Transistors; 开关晶体管
MMBT2369LT1
型号: MMBT2369LT1
厂家: MOTOROLA    MOTOROLA
描述:

Switching Transistors
开关晶体管

晶体 开关 小信号双极晶体管 光电二极管
文件: 总8页 (文件大小:307K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MMBT2369LT1/D  
SEMICONDUCTOR TECHNICAL DATA  
COLLECTOR  
3
NPN Silicon  
*Motorola Preferred Device  
1
BASE  
2
EMITTER  
MAXIMUM RATINGS  
3
Rating  
CollectorEmitter Voltage  
CollectorEmitter Voltage  
CollectorBase Voltage  
Symbol  
Value  
Unit  
Vdc  
1
V
CEO  
15  
40  
2
V
CES  
Vdc  
V
40  
Vdc  
CASE 31808, STYLE 6  
SOT23 (TO236AB)  
CBO  
EBO  
EmitterBase Voltage  
V
4.5  
200  
Vdc  
Collector Current — Continuous  
THERMAL CHARACTERISTICS  
Characteristic  
I
C
mAdc  
Symbol  
Max  
Unit  
(1)  
Total Device Dissipation FR5 Board  
P
225  
mW  
D
T
= 25°C  
A
Derate above 25°C  
1.8  
556  
300  
mW/°C  
°C/W  
mW  
Thermal Resistance, Junction to Ambient  
Total Device Dissipation  
R
JA  
D
P
(2)  
Alumina Substrate,  
T
A
= 25°C  
Derate above 25°C  
2.4  
417  
mW/°C  
°C/W  
°C  
Thermal Resistance, Junction to Ambient  
Junction and Storage Temperature  
DEVICE MARKING  
R
JA  
T , T  
J stg  
55 to +150  
MMBT2369LT1 = M1J; MMBT2369ALT1 = 1JA  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
OFF CHARACTERISTICS  
Symbol  
Min  
Typ  
Max  
Unit  
CollectorEmitter Breakdown Voltage (3)  
V
Vdc  
Vdc  
(BR)CEO  
(I = 10 mAdc, I = 0)  
15  
40  
40  
4.5  
C
B
CollectorEmitter Breakdown Voltage  
(I = 10 µAdc, V = 0)  
V
(BR)CES  
(BR)CBO  
(BR)EBO  
C
BE  
CollectorBase Breakdown Voltage  
(I = 10 Adc, I = 0)  
V
V
Vdc  
C
E
EmitterBase Breakdown Voltage  
(I = 10 Adc, I = 0)  
Vdc  
E
C
Collector Cutoff Current  
I
µAdc  
CBO  
(V  
CB  
(V  
CB  
= 20 Vdc, I = 0)  
0.4  
30  
E
= 20 Vdc, I = 0, T = 150°C)  
E
A
Collector Cutoff Current  
(V = 20 Vdc, V = 0)  
I
µAdc  
CES  
MMBT2369A  
0.4  
CE BE  
1. FR5 = 1.0 0.75 0.062 in.  
2. Alumina = 0.4 0.3 0.024 in. 99.5% alumina.  
3. Pulse Test: Pulse Width 300 µs, Duty Cycle 2.0%.  
Thermal Clad is a trademark of the Bergquist Company.  
Preferred devices are Motorola recommended choices for future use and best overall value.  
Motorola, Inc. 1996
ELECTRICAL CHARACTERISTICS (continued) (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
ON CHARACTERISTICS  
DC Current Gain (3)  
h
FE  
(I = 10 mAdc, V  
= 1.0 Vdc)  
= 1.0 Vdc)  
= 0.35 Vdc)  
= 0.35 Vdc, T = –55°C)  
MMBT2369  
MMBT2369A  
MMBT2369A  
MMBT2369A  
MMBT2369A  
MMBT2369  
MMBT2369A  
40  
40  
20  
30  
20  
20  
120  
120  
C
CE  
CE  
CE  
CE  
CE  
(I = 10 mAdc, V  
C
(I = 10 mAdc, V  
C
(I = 10 mAdc, V  
C
A
(I = 30 mAdc, V  
= 0.4 Vdc)  
C
(I = 100 mAdc, V  
= 2.0 Vdc)  
= 1.0 Vdc)  
C
CE  
CE  
(I = 100 mAdc, V  
C
CollectorEmitter Saturation Voltage (3)  
(I = 10 mAdc, I = 1.0 mAdc)  
V
V
Vdc  
Vdc  
CE(sat)  
MMBT2369  
0.25  
0.20  
0.30  
0.25  
0.50  
C
B
(I = 10 mAdc, I = 1.0 mAdc)  
MMBT2369A  
MMBT2369A  
MMBT2369A  
MMBT2369A  
C
B
(I = 10 mAdc, I = 1.0 mAdc, T = +125°C)  
C
C
B
B
B
A
(I = 30 mAdc, I = 3.0 mAdc)  
(I = 100 mAdc, I = 10 mAdc)  
C
BaseEmitter Saturation Voltage (3)  
(I = 10 mAdc, I = 1.0 mAdc)  
BE(sat)  
MMBT2369A  
MMBT2369A  
MMBT2369A  
MMBT2369A  
0.7  
0.85  
1.02  
1.15  
1.60  
C
B
(I = 10 mAdc, I = 1.0 mAdc, T = –55°C)  
C
C
B
B
B
A
(I = 30 mAdc, I = 3.0 mAdc)  
(I = 100 mAdc, I = 10 mAdc)  
C
SMALLSIGNAL CHARACTERISTICS  
Output Capacitance  
C
pF  
obo  
(V  
CB  
= 5.0 Vdc, I = 0, f = 1.0 MHz)  
4.0  
E
Small Signal CurrentGain  
(I = 10 mAdc, V = 10 Vdc, f = 100 MHz)  
h
fe  
5.0  
C
CE  
SWITCHING CHARACTERISTICS  
Storage Time  
(I = I = I = 10 mAdc)  
B1 B2  
t
ns  
ns  
ns  
s
5.0  
8.0  
10  
13  
12  
18  
C
Turn–On Time  
t
t
on  
off  
(V  
CC  
= 3.0 Vdc, I = 10 mAdc, I = 3.0 mAdc)  
B1  
C
Turn–Off Time  
(V  
= 3.0 Vdc, I = 10 mAdc, I = 3.0 mAdc, I = 1.5 mAdc)  
CC  
C
B1  
B2  
3. Pulse Test: Pulse Width  
300 s, Duty Cycle  
2.0%.  
2
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
SWITCHING TIME EQUIVALENT TEST CIRCUITS FOR 2N2369, 2N3227  
270  
270 Ω  
t
t
1
1
3 V  
+10.6 V  
0
+10.75 V  
0
–1.5 V  
–9.15 V  
< 1 ns  
3.3 k  
C * < 4 pF  
s
3.3 k  
C * < 4 pF  
s
< 1 ns  
PULSE WIDTH (t ) = 300 ns  
1
PULSE WIDTH (t ) = 300 ns  
1
DUTY CYCLE = 2%  
DUTY CYCLE = 2%  
Figure 1. t Circuit — 10 mA  
on  
Figure 3. t Circuit — 10 mA  
off  
95  
95  
t
t
1
1
10 V  
10 V  
+11.4 V  
0
+10.8 V  
–2 V  
0
–8.6 V  
1 k  
C * < 12 pF  
s
< 1 ns  
1 k  
C * < 12 pF  
s
< 1 ns  
1N916  
PULSE WIDTH (t ) = 300 ns  
1
PULSE WIDTH (t ) BETWEEN  
1
DUTY CYCLE = 2%  
10 AND 500  
µs  
DUTY CYCLE = 2%  
Figure 2. t Circuit — 100 mA  
on  
Figure 4. t  
off  
Circuit — 100 mA  
* Total shunt capacitance of test jig and connectors.  
TO OSCILLOSCOPE  
INPUT IMPEDANCE = 50  
RISE TIME = 1 ns  
TURN–ON WAVEFORMS  
V
0
in  
0.1 µF  
220  
10%  
90%  
V
out  
TURN–OFF WAVEFORMS  
V
3.3 kΩ  
out  
V
0
in  
10%  
t
V
on  
in  
3.3 k  
50  
0.0023  
0.005  
µ
µ
F
F
0.0023 µF  
90%  
V
PULSE GENERATOR  
RISE TIME < 1 ns  
50  
out  
0.005  
µF  
V
in  
SOURCE IMPEDANCE = 50  
PW 300 ns  
DUTY CYCLE < 2%  
V
V
= +12 V  
BB  
= –15 V  
in  
+
+
0.1  
µ
F
0.1  
µF  
V
V
= 3 V  
BB  
CC  
t
off  
Figure 5. Turn–On and Turn–Off Time Test Circuit  
6
5
100  
LIMIT  
TYPICAL  
T
= 25  
°C  
β
V
V
= 10  
F
CC  
OB  
J
= 10 V  
= 2 V  
50  
4
3
C
t
ib  
f
t (V  
r
= 3 V)  
CC  
C
ob  
20  
10  
5
V
= 10 V  
CC  
t
r
2
t
s
t
d
1
0.1  
2
0.2  
0.5  
1.0  
2.0  
5.0  
10  
1
2
5
10  
20  
50  
100  
REVERSE BIAS (VOLTS)  
I
, COLLECTOR CURRENT (mA)  
C
Figure 6. Junction Capacitance Variations  
Figure 7. Typical Switching Times  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
3
500  
Q ,  
β = 10  
F
V
= 10 V  
T
CC  
25°C  
100  
°
C
200  
100  
50  
Q ,  
β = 40  
F
VALUES REFER TO  
I = 10 mA TEST  
C
T
270  
t
1
3 V  
10 pF MAX  
+5 V  
V  
0
< 1 ns  
C * < 4 pF  
s
4.3 k  
PULSE WIDTH (t ) = 5 µs  
1
DUTY CYCLE = 2%  
Q
, V = 10 V  
CC  
A
Q
, V = 3 V  
CC  
A
20  
10  
Figure 9. Q Test Circuit  
T
1
2
5
10  
20  
50  
100  
I
, COLLECTOR CURRENT (mA)  
C
Figure 8. Maximum Charge Data  
980  
t
1
10 V  
C < C  
TIME  
+6 V  
OPT  
C = 0  
0
–4 V  
C
C
OPT  
< 1 ns  
500  
C * < 3 pF  
s
PULSE WIDTH (t ) = 300 ns  
1
DUTY CYCLE = 2%  
Figure 10. Turn–Off Waveform  
Figure 11. Storage Time Equivalent Test Circuit  
1.0  
0.8  
T
= 25°C  
J
I
= 3 mA  
I
= 10 mA  
I
= 30 mA  
I
= 50 mA  
I = 100 mA  
C
C
C
C
C
0.6  
0.4  
0.2  
0.02  
0.05  
0.1  
0.2  
0.5  
1
2
5
10  
20  
I
, BASE CURRENT (mA)  
B
Figure 12. Maximum Collector Saturation Voltage Characteristics  
4
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
200  
100  
50  
T
= 125  
°
C
J
V
= 1 V  
CE  
75°  
C
C
25°  
T
= 25  
°
C and 75°C  
J
–15  
°
C
–55°C  
20  
1
2
5
10  
, COLLECTOR CURRENT (mA)  
20  
50  
100  
I
C
Figure 13. Minimum Current Gain Characteristics  
1.4  
1.0  
0.5  
β
T
= 10  
= 25°C  
F
J
(25°C to 125°C)  
1.2  
1.0  
0.8  
θ
for V  
CE(sat)  
VC  
MAX V  
MIN V  
0
BE(sat)  
(–55°C to +25°C)  
APPROXIMATE DEVIATION  
FROM NOMINAL  
–0.5  
–55  
0.15 mV/  
0.4 mV/  
°
C to +25  
°
C
25  
0.15 mV/  
0.3 mV/°C  
°C to 125°C  
BE(sat)  
θ
θ
±
°C  
±
°C  
VC  
VB  
(–55  
°
C to +25  
°C)  
–1.0  
–1.5  
±
°C  
±
0.6  
0.4  
0.2  
(25°C to 125  
°
C)  
θ
for V  
VB  
BE(sat)  
MAX V  
–2.0  
–2.5  
CE(sat)  
1
2
5
10  
20  
50  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
I
, COLLECTOR CURRENT (mA)  
I , COLLECTOR CURRENT (mA)  
C
C
Figure 14. Saturation Voltage Limits  
Figure 15. Typical Temperature Coefficients  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
5
INFORMATION FOR USING THE SOT–23 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the total  
design. The footprint for the semiconductor packages must  
be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.037  
0.95  
0.037  
0.95  
0.079  
2.0  
0.035  
0.9  
0.031  
0.8  
inches  
mm  
SOT–23  
SOT–23 POWER DISSIPATION  
The power dissipation of the SOT–23 is a function of the  
SOLDERING PRECAUTIONS  
pad size. This can vary from the minimum pad size for  
soldering to a pad size given for maximum power dissipation.  
Power dissipation for a surface mount device is determined  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within a  
short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
by T  
, the maximum rated junction temperature of the  
, the thermal resistance from the device junction to  
J(max)  
die, R  
θJA  
ambient, and the operating temperature, T . Using the  
A
values provided on the data sheet for the SOT–23 package,  
P
can be calculated as follows:  
D
Always preheat the device.  
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
T
– T  
A
J(max)  
P
=
D
R
θJA  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering method,  
the difference shall be a maximum of 10°C.  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values into  
the equation for an ambient temperature T of 25°C, one can  
A
calculate the power dissipation of the device which in this  
case is 225 milliwatts.  
The soldering temperature and time shall not exceed  
260°C for more than 10 seconds.  
When shifting from preheating to soldering, the  
maximum temperature gradient shall be 5°C or less.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and result  
in latent failure due to mechanical stress.  
150°C – 25°C  
556°C/W  
P
=
= 225 milliwatts  
D
The 556°C/W for the SOT–23 package assumes the use  
of the recommended footprint on a glass epoxy printed circuit  
board to achieve a power dissipation of 225 milliwatts. There  
are other alternatives to achieving higher power dissipation  
from the SOT–23 package. Another alternative would be to  
use a ceramic substrate or an aluminum core board such as  
Thermal Clad . Using a board material such as Thermal  
Clad, an aluminum core board, the power dissipation can be  
doubled using the same footprint.  
Mechanical stress or shock should not be applied during  
cooling.  
* Soldering a device without preheating can cause excessive  
thermal shock and stress which can result in damage to the  
device.  
6
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
PACKAGE DIMENSIONS  
NOTES:  
A
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
L
2. CONTROLLING DIMENSION: INCH.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD  
FINISH THICKNESS. MINIMUM LEAD THICKNESS  
IS THE MINIMUM THICKNESS OF BASE  
MATERIAL.  
3
S
B
1
2
INCHES  
MIN MAX  
MILLIMETERS  
DIM  
A
B
C
D
G
H
J
MIN  
2.80  
1.20  
0.89  
0.37  
1.78  
0.013  
0.085  
0.45  
0.89  
2.10  
0.45  
MAX  
3.04  
1.40  
1.11  
0.50  
2.04  
0.100  
0.177  
0.60  
1.02  
2.50  
0.60  
V
G
0.1102 0.1197  
0.0472 0.0551  
0.0350 0.0440  
0.0150 0.0200  
0.0701 0.0807  
0.0005 0.0040  
0.0034 0.0070  
0.0180 0.0236  
0.0350 0.0401  
0.0830 0.0984  
0.0177 0.0236  
C
K
L
S
H
J
D
V
K
STYLE 6:  
PIN 1. BASE  
2. EMITTER  
3. COLLECTOR  
CASE 318–08  
SOT–23 (TO–236AB)  
ISSUE AE  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
7
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA/EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MMBT2369LT1/D  

相关型号:

MMBT2369LT1G

Switching Transistors NPN Silicon
ONSEMI

MMBT2369LT1G

Small Signal Bipolar Transistor, 0.2A I(C), 15V V(BR)CEO, 1-Element, NPN, Silicon, TO-236AB, HALOGEN FREE AND ROHS COMPLIANT, CASE 318-08, TO-236, 3 PIN
ROCHESTER

MMBT2369LT1G_09

Switching Transistors
ONSEMI

MMBT2369LT1_07

Switching Transistors NPN Silicon
ONSEMI

MMBT2369LT3

200mA, 15V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-236AB
MOTOROLA

MMBT2369LT3

TRANSISTOR 200 mA, 15 V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-236AB, PLASTIC, CASE 318-08, 3 PIN, BIP General Purpose Small Signal
ONSEMI

MMBT2369LT3G

NPN 双极晶体管
ONSEMI

MMBT2369_08

NPN Switching Transistor
FAIRCHILD

MMBT2369_NL

Small Signal Bipolar Transistor, 0.2A I(C), 15V V(BR)CEO, 1-Element, NPN, Silicon, TO-236AB, SOT-23, 3 PIN
FAIRCHILD

MMBT2484

NPN General Purpose Amplifier
FAIRCHILD

MMBT2484

TRANSISTOR,BJT,NPN,60V V(BR)CEO,50MA I(C),SOT-23
NSC

MMBT2484

NPN 通用放大器
ONSEMI