TDA9615H/A [NXP]

IC SPECIALTY CONSUMER CIRCUIT, PQFP80, Consumer IC:Other;
TDA9615H/A
型号: TDA9615H/A
厂家: NXP    NXP
描述:

IC SPECIALTY CONSUMER CIRCUIT, PQFP80, Consumer IC:Other

文件: 总44页 (文件大小:266K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TDA9615H  
Audio processor for VHS hi-fi  
1997 Jun 16  
Preliminary specification  
File under Integrated Circuits, IC02  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
FEATURES  
All functions controlled via the 2-wire I2C-bus  
Single supply  
Integrated standby modes for low power consumption  
Integrated power muting for line and RFC output  
Full support of video recorder feature modes  
Audio level meter output  
GENERAL DESCRIPTION  
The TDA9615H is an audio control and processing circuit  
for VHS hi-fi video recorders, controlled via the I2C-bus.  
The device is adjustment-free using an integrated  
auto-calibration circuit. Extensive input and output  
selection is offered, including full support for  
(Euro-SCART) pay-TV decoding and video recorder  
feature modes.  
Hi-fi signal processing:  
– Adjustment-free  
– High performance  
– Patented low distortion switching noise suppressor  
– NTSC and PAL (SECAM) standard  
Linear audio input with level adjustment  
5 stereo inputs and additional mono audio input  
2 stereo outputs (line and decoder) with independent  
output selection  
RF converter output with overload protect AGC.  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
TDA9615H  
QFP44 plastic quad flat package; 44 leads (lead length 1.3 mm);  
SOT307-2  
body 10 × 10 × 1.75 mm  
1997 Jun 16  
2
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
BLOCK DIAGRAM  
GM4K71  
a
1997 Jun 16  
3
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
PINNING  
SYMBOL  
PIN  
DESCRIPTION  
SYMBOL  
PIN  
DESCRIPTION  
tuner input left  
DCREFL  
EMPHL  
DCL  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
NR DC reference left  
TUNL  
1
2
NR emphasis left  
NR DC decoupling left  
NR detector left  
TUNR  
tuner input right  
CINL  
3
cinch input left  
DETL  
AGND  
Iref  
CINR  
4
cinch input right  
analog ground  
EXT1L  
EXT1R  
EXT2L  
EXT2R  
AUXL  
5
external 1 input left  
external 1 input right  
external 2 input left  
external 2 input right  
auxiliary input left  
auxiliary input right  
RFC AGC timing input  
RFC output  
reference current standard  
reference voltage filter  
NR detector right  
NR DC decoupling right  
NR emphasis right  
NR DC reference right  
NR DC feedback right  
supply voltage  
6
Vref  
7
DETR  
DCR  
8
9
EMPHR  
DCREFR  
DCFBR  
VCC  
AUXR  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
RFCAGC  
RFCOUT  
MUTEC  
MUTEL  
LINEL  
mute for RFC output  
mute for line output left  
line output left  
FMOUT  
FMIN  
FM output  
FM input  
V5OUT  
ENVOUT  
HID  
5 V decoupling output  
envelope output  
LINER  
MUTER  
DECL  
line output right  
mute for line output right  
decoder output left  
decoder output right  
linear audio output  
linear audio input  
NR DC feedback left  
HID input  
SDA  
I2C-bus SDA input/output  
I2C-bus SCL input  
digital ground  
DECR  
LINOUT  
LININ  
SCL  
DGND  
SAP  
tuner SAP input  
DCFBL  
1997 Jun 16  
4
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
1
2
3
4
5
6
7
8
9
33 DCREFR  
EMPHR  
TUNL  
TUNR  
CINL  
32  
31 DCR  
CINR  
30 DETR  
V
I
EXT1L  
EXT1R  
EXT2L  
EXT2R  
AUXL  
29  
28  
27  
ref  
ref  
TDA9615H  
AGND  
26 DETL  
25 DCL  
AUXR 10  
24 EMPHL  
23 DCREFL  
RFCAGC 11  
MGK470  
Fig.2 Pin configuration.  
FUNCTIONAL DESCRIPTION  
An overview of input/output selections is given in Figs 3 to 5.  
Full control of the TDA9615H is accomplished via the 2-wire I2C-bus. Up to 400 kbits/s bus speed can be used, in  
accordance with the I2C-bus fast-mode specification. The detailed functional description can be found in  
Chapter “I2C-bus protocol”.  
1997 Jun 16  
5
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
GM4K73  
o
1997 Jun 16  
6
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
GM7K4  
f
1997 Jun 16  
7
 d
decoder select  
TUNER  
LOH  
DECL  
DECR  
EXT1  
SAP  
MUTE  
TUNL  
TUNR  
OUTPUT SELECT  
input select  
output select  
0 dB  
+1 dB  
CINL  
CINR  
line select  
EXT1L  
EXT1R  
LINEL  
LINER  
MUTE  
EXT2  
MUTE  
EXT2L  
EXT2R  
OUTPUT SELECT  
SAP  
RFC mute  
AUXL  
AUXR  
0 dB AGC  
MUTE  
RFCOUT  
MGK475  
a. Active standby mode (STBA = 1, STBP = 0); 75% power reduction.  
TUNL  
TUNR  
input select  
CINL  
CINR  
EXT1L  
EXT1R  
MUTE  
EXT2L  
EXT2R  
SAP  
AUXL  
AUXR  
b. Passive standby mode (STBP = 1); 90% power reduction.  
Fig.5 Input/output selections; standby modes.  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
I2C-BUS PROTOCOL  
Addressing and data bytes  
For programming the device (write mode) seven data byte registers are available; they are addressable via eight  
subaddresses. Automatic subaddress incrementing enables the writing of successive data bytes in one transmission.  
During power-on, data byte registers are reset to a default state by use of a Power On Reset (POR) circuit which signal  
is derived from the internally generated I2C-bus supply voltage (V5OUT; pin 38). For reading from the device (read mode)  
one data byte register is available without subaddressing.  
Table 1 TDA9615H addresses and data bytes  
DATA BYTE  
Write mode  
Slave address byte (B8H)  
Subaddress bytes (00H to 07H) 0(1)  
ADDRESS  
1
0
0(1)  
1
1
0(1)  
1
0
0
0
0
0(1)  
SHH  
s5  
0 or 1  
MUTE  
NIL2  
NS1  
LOS  
VL2  
0 or 1  
STBP  
NIL1  
NS0  
DOS  
VL1  
0 or 1  
STBA  
NIL0  
i0  
Control byte (subaddress 00)  
Select byte (subaddress 01)  
Input byte (subaddress 02)  
Output byte (subaddress 03)  
AFM  
DOC  
DOS0  
IS2  
DETH  
s4  
NTSC  
NIL3  
NS2  
EOS  
VL3  
DOS1  
i7  
IS1  
OSR  
VL5  
IS0  
LOH  
I7  
OSN  
VLS  
OSL  
VL4  
RFCM  
VL0  
Left volume byte  
(subaddress 04)  
Right volume byte  
(subaddress 05)  
r7  
VRS  
VR5  
VR4  
VR3  
VR2  
VR1  
VR0  
p0  
Volume byte (subaddress 06)  
Power byte (subaddress 07)  
simultaneous loading of subaddress 04 and subaddress 05 register  
CALS  
VCCH  
TEST  
PORR  
p3  
p2  
p1  
Read mode  
Slave address byte (B9H)  
Read byte  
1
0
1
0(2)  
1
1
0(2)  
0
1(2)  
0
0(2)  
1
0(2)  
CALR  
AUTN  
POR  
Notes  
1. Use of subaddress F0H to F7H (1111 0XXX) instead of 00H to 07H (0000 0XXX) disables the automatic subaddress  
incrementing allowing continuous writing to a single data byte register.  
2. The state of unused read bits are not reliable; their state may change during development.  
Table 2 Status of data bytes after POR  
DATA BYTE  
Control byte  
ADDRESS  
1
0
0
0
0
1
1
0
0
1(1)  
0
1(1)  
1
1
0
0
Select byte  
0
0(1)  
0
0
0
0
0(1)  
Input byte  
0
0
1
1
1
Output byte  
0
0
0
0
0
0
1
Left volume byte  
Right volume byte  
Power byte  
0(1)  
0(1)  
0
0
0
0
0
0
0
0
0
0
0(1)  
0
0(1)  
0
0(1)  
0
0(1)  
0
0
Note  
1. For eventual future compatibility it is advised to keep unused write bits equal to POR state.  
1997 Jun 16  
9
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
Valid transmissions to and from TDA9615H  
Table 3 Examples of valid transmissions  
FUNCTION  
DATA TRANSFER SEQUENCE  
Write  
START - B8H - 00H - data_for_00 - STOP  
Write with auto-increment  
Auto-increment ‘wrap-around’  
Write without auto-increment  
Read  
START - B8H - 00H - data_for_00 - data_for_01 - data_for_02 - STOP  
START - B8H - 07H - data_for_07 - data_for_00 - data_for_01 - STOP  
START - B8H - F6H - data_for_06 - data_for_06 - data_for_06 - STOP  
START - B9H - data_from_ic - STOP  
START - B9H - data_from_ic - data_from_ic - data_from_ic - STOP  
Overview of TDA9615H I2C-bus control  
Table 4 Condensed overview  
FUNCTION  
MODES  
CONTROL BITS  
Audio FM mode  
playback; loop-through(1); record  
AFM, DOC and SHH  
Dropout cancelling  
on; off  
DOC  
SHH  
Headswitch noise cancel  
sample-and-hold time  
6 µs; 8 µs  
Playback hi-fi carrier detection  
Record carrier ratio  
System standard  
Power mute  
slow; fast  
DETH  
0; 6; 8; 9.5; 11; 12.5; 13.5 dB  
NTSC(1); PAL  
output muting(1)  
DOC, SHH and DETH  
NTSC  
MUTE  
Operation mode  
Normal input level  
Input select  
full operation(1); active standby; passive standby  
0 (1) to +14 dB; mute  
Tuner(1); Cinch; Ext1; Ext2; SAP; Dub Mix; Normal; Aux  
STBP and STBA  
NIL3 to NIL0  
IS2, IS1 and IS0  
NS2, NS1 and NS0  
Normal select  
Input Select; Volume; Input-Left; Volume-Left; SAP;  
Tuner; Ext2; mute(1)  
Line output amplification  
Output select  
0 dB(1); +1 dB  
LOH  
mute(1); Left; Right; Stereo; Normal; Mix-Left; Mix-Right;  
Mix-Stereo  
OSN, OSR and OSL  
Envelope output  
Line output select  
Decoder output select  
RFC output  
Output Select(1); Stereo; HF Envelope  
Output Select(1); Ext2  
Output Select(1); Tuner; Ext1; SAP; mute  
0 dB; mute(1)  
EOS and AFM  
LOS  
DOS, DOS1 and DOS0  
RFCM  
Volume left  
47 to 0 dB(1); 0 to +15 dB; mute  
47 to 0 dB(1); 0 to +15 dB; mute  
off(1); start calibration  
9 V(1); 12 V  
standard operation(1); test modes  
VLS, VL5 to VL0  
VRS, VR5 to VR0  
CALS  
Volume right  
Auto-calibration  
Supply voltage  
Test  
VCCH  
TEST, s4 to NIL0  
Note  
1. POR.  
1997 Jun 16  
10  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
Control byte; subaddress 00 (hi-fi and general control)  
Table 5 Bits of control byte  
BIT  
DESCRIPTION  
AFM  
audio FM mode; see Table 6  
dropout cancel; see Table 6  
DOC  
SHH  
sample-and-hold high-state; see Table 6  
detector high; see Table 6  
DETH  
NTSC  
MUTE  
STBP  
STBA  
NTSC television system standard; see Table 7  
power mute; see Table 8  
standby mode passive; see Table 9  
standby mode active; see Table 9  
Table 6 Bits AFM, DOC, SHH and DETH  
AFM DOC SHH DETH MODE  
REMARKS  
DESCRIPTION  
0
0
0
0
X(1)  
0
X(1)  
X(1)  
X(1)  
0
X(1) playback(2)  
X(1) playback  
X(1) playback  
X(1) playback  
hi-fi circuit in playback mode  
no dropout cancelling  
DOC off  
1
X(1)  
DOC on  
dropout cancelling active  
sample-and-  
headswitch noise cancel time is 6 µs  
hold time = 6 µs  
0
X(1)  
1
X(1) playback  
sample-and-  
headswitch noise cancel time is 8 µs  
hold time = 8 µs  
0
0
1
1
1
1
1
1
1
1
1
X(1)  
X(1)  
X(1)  
0
X(1)  
X(1)  
X(1)  
0
0
1
playback  
playback  
detect = fast  
detect = slow  
hi-fi detector timing: fast mode  
hi-fi detector timing: slow mode  
X(1) record/loop-through  
hi-fi circuit in record/loop-through mode  
no FM output signal (EE mode)  
0
1
0
1
0
1
0
1
loop-through(3)(4)  
0
0
record  
0 dB mix  
0 dB FM output carrier ratio (1 : 1)  
6 dB FM output carrier ratio (1 : 2)  
8 dB FM output carrier ratio (1 : 2.5)  
standard 9.5 dB FM output carrier ratio (1 : 3)  
11 dB FM output carrier ratio (1 : 3.5)  
12.5 dB FM output carrier ratio (1 : 4.2)  
13.5 dB FM output carrier ratio (1 : 4.7)  
0
1
record  
6 dB mix  
0
1
record  
8 dB mix  
1
0
record  
9.5 dB mix  
11 dB mix  
12.5 dB mix  
13.5 dB mix  
1
0
record  
1
1
record  
1
1
record  
Notes  
1. X = don’t care.  
2. Auto-normal function: if during hi-fi ‘playback’ mode no FM carrier is detected at FMIN (pin 37) the ‘Normal’ mode  
audio signal (LININ; pin 21) is automatically selected by the output select function.  
a) Hi-fi carrier detection time (i.e. auto-normal release time) can be selected via bit DETH:  
‘fast’ mode: 1 to 2 HID periods (33 to 66 ms NTSC, 40 to 80 ms PAL)  
‘slow’ mode: 7 to 8 HID periods (233 to 267 ms NTSC, 280 to 320 ms PAL).  
b) The status of hi-fi detection can be monitored via the I2C-bus; see bit AUTN of the read byte (see Table 31).  
c) If muting is required instead of automatic selection of the ‘Normal’ mode audio signal the normal input level  
function should be set to mute; see bits NIL3 to NIL0 of the select byte.  
1997 Jun 16  
11  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
3. Modes ‘loop-through’ and ‘record’ are equal in audio signal flow; FMOUT (pin 36) however is muted during  
‘loop-through’ mode.  
4. POR.  
Table 7 Bit NTSC  
NTSC(1)  
MODE  
PAL  
NTSC(2)  
DESCRIPTION  
0
1
hi-fi circuit in ‘PAL’ mode (FM carriers: 1.4 and 1.8 MHz)  
hi-fi circuit in ‘NTSC’ mode (FM carriers: 1.3 and 1.7 MHz)  
Notes  
1. Bit NTSC selects between the system standard settings for NTSC and PAL (SECAM) use. The auto-calibration  
function uses the system standard HID frequency of 29.97 Hz for NTSC and 25 Hz for PAL. After calibration bit NTSC  
allows immediate switching between the NTSC and PAL system standard.  
2. POR.  
Table 8 Bit MUTE  
MUTE(1)  
MODE  
DESCRIPTION  
0
1
power mute function released; mute switches open  
power mute function activated; mute switches closed  
mute(2)  
Notes  
1. Bit MUTE controls the line and RFC output mute switches at pins 13, 14 and 17 (power mute function). Power mute  
is also automatically activated at supply voltage power-up or power-down (VCC; pin 35).  
2. POR.  
Table 9 Bits STBP and STBA  
STBP  
STBA  
MODE  
(note 1)  
DESCRIPTION  
0
0
1(4)  
0
full operation  
1(2)  
X(5)  
active standby(3)  
passive standby(3)  
standby mode; reduced power consumption  
standby mode; minimum power consumption  
Notes  
1. POR.  
2. By selecting STBA = 1 the TDA9615H is switched to low-power ‘active standby’ mode. To reduce power  
consumption most circuits are switched off. RFC, line and decoder outputs however remain active. This way the  
direct audio selections offered via the line output select and decoder output select functions (bits LOS and DOS of  
the output byte) remain operable in this mode. The ‘Output Select’ mode signal is muted.  
3. Calibration and I2C-bus registers are not affected by using ‘active standby’ or ‘passive standby’ mode.  
4. By selecting STBP = 1 the TDA9615H is switched to minimum power ‘passive standby’ mode. All circuits except  
power mute, I2C-bus and the line input reference buffer (voltage at pins 1 to 10 and 44) are switched off for minimum  
power consumption. Use of the power mute function (bit MUTE of control byte) ensures pop-free switching of the line  
and RFC output to and from ‘passive standby’ mode. To obtain minimum power consumption the power mute  
function should be de-activated again during ‘passive standby’ mode.  
5. X = don’t care.  
1997 Jun 16  
12  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
Select byte; subaddress 01 (decoder output select and linear audio volume control)  
Table 10 Bits of select byte  
BIT  
DESCRIPTION  
DOS1  
DOS0  
NIL3  
NIL2  
NIL1  
NIL0  
decoder output select 1; see Table 11  
decoder output select 0; see Table 11  
normal input level 3; see Table 12  
normal input level 2; see Table 12  
normal input level 1; see Table 12  
normal input level 0; see Table 12  
Table 11 Bits DOS1 and DOS0; note 1  
DOS1  
DOS0  
MODE  
DESCRIPTION  
0
0
1
1
0
1
0
1
Tuner  
Ext1  
SAP  
mute  
decoder output signal is TUNL and TUNR input signal  
decoder output signal is EXT1L and EXT1R input signal  
decoder output signal is SAP input signal  
mute  
Note  
1. By selecting bit DOS = 1 of the output byte several independent signal input selections are offered for the decoder  
outputs DECL and DECR (pins 18 and 19) via bits DOS1 and DOS0:  
a) TUNL and TUNR inputs (pins 1 and 2)  
b) EXT1L and EXT1R inputs (pins 5 and 6)  
c) SAP input (pin 44)  
d) Mute.  
These decoder selections are also operable in ‘active standby’ mode (bit STBA = 1 of the control byte).  
1997 Jun 16  
13  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
Table 12 Bits NIL3, NIL2, NIL1 and NIL0; note 1  
NIL3  
NIL2  
NIL1  
NIL0  
DESCRIPTION  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0 dB; note 2  
1 dB  
2 dB  
3 dB  
4 dB  
5 dB  
6 dB  
7 dB  
8 dB  
9 dB  
10 dB  
11 dB  
12 dB  
13 dB  
14 dB  
mute  
Notes  
1. Mute and 15 settings of amplification can be selected for the linear audio input signal (LININ; pin 21). This level  
control can replace the manual adjustment of ‘playback’ mode level at the linear audio circuit.  
2. POR.  
Input byte; subaddress 02 (input selection for hi-fi and normal audio)  
Table 13 Bits of input byte  
BIT  
DESCRIPTION  
IS2  
input select 2; see Table 14  
input select 1; see Table 14  
input select 0; see Table 14  
normal select 2; see Table 15  
normal select 1; see Table 15  
normal select 0; see Table 15  
IS1  
IS0  
NS2  
NS1  
NS0  
1997 Jun 16  
14  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
Table 14 Bits IS2, IS1 and IS0; note 1  
IS2  
IS1  
IS0  
MODE  
Tuner(2)  
DESCRIPTION  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
TUNL and TUNR input  
CINL and CINR input  
Cinch  
Ext1  
EXT1L and EXT1R input (TV input)  
EXT2L and EXT2R input (decoder input)  
SAP; mono input  
Ext2  
SAP  
Dub Mix(3)  
Normal  
Aux  
AUX input signal (L) and selection of hi-fi output signal (R)  
LININ input (linear audio)  
AUXL and AUXR input (e.g. camcorder input)  
Notes  
1. Bits IS2, IS1 and IS0 select the input signal which is led to the volume controls of the hi-fi processing and generally  
via the normal select function to the linear audio circuit (LINOUT; pin 20).  
2. POR.  
3. ‘Dub Mix’ is a special selection for linear audio use supporting audio dubbing (a video recorder feature mode for  
sound recording of linear audio only). ‘Dub Mix’ connects the AUX input signal to the left channel  
(12AUXL + 12AUXR) and the hi-fi output signal to the right channel (generally 12hi-fi left + 12hi-fi right but also  
hi-fi left or hi-fi right can be selected). ‘Dub Mix’ also changes part of the ‘Output Select’ mode settings to ‘Normal’  
mode for monitoring of the linear audio recording (see control bits OSN, OSR and OSL of the output byte for  
‘Dub Mix’ mode input and output selection).  
Table 15 Bits NS2, NS1, NS0; note 1  
NS2  
NS1  
NS0  
MODE  
DESCRIPTION  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Input Select hi-fi input selection  
Volume  
hi-fi volume control  
left channel of hi-fi input selection only  
Input-Left  
Volume-Left left channel of hi-fi volume control  
SAP  
SAP; mono input  
TUNL and TUNR input  
EXT2L and EXT2R input  
mute  
Tuner  
Ext2  
mute(2)  
Notes  
1. With bits NS2, NS1 and NS0 the input signal is selected which is available at the LINOUT output (pin 20) for  
connection to an external linear audio circuit. The signal selected with the input select function (via  
bits IS2, IS1 and IS0) is available in the following ways:  
a) Left and right channel combined, optional including hi-fi volume control (12hi-fi left + 12hi-fi right).  
b) Left channel only (language I), optional including left channel volume control.  
Furthermore the SAP input (pin 44), tuner input (pins 1 and 2) or EXT2 input (pins 7 and 8) can be selected  
independently. Also a mute setting is available.  
2. POR.  
1997 Jun 16  
15  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
Output byte; subaddress 03 (output selection and control)  
Table 16 Bits of output byte  
BIT  
DESCRIPTION  
LOH  
OSN  
OSR  
OSL  
EOS  
LOS  
DOS  
line output high; see Table 17  
output select normal; see Table 18  
output select right; see Table 18  
output select left; see Table 18  
envelope output select; see Table 20  
line output select; see Table 21  
decoder output select; see Table 22  
RFC mute; see Table 23  
RFCM  
Table 17 Bit LOH; note 1  
LOH  
MODE  
0 dB(2)  
1 dB  
DESCRIPTION  
0
1
no line output amplification  
1 dB line output amplification  
Notes  
1. An additional 1 dB amplification can be selected for line and decoder outputs LINEL, LINER, DECL and DECR  
(pins 15, 16, 18 and 19).  
2. POR.  
Table 18 Bits OSN, OSR and OSL; notes 1 and 2  
OSN  
OSR  
OSL  
MODE  
mute(3)  
DESCRIPTION  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
mute; no selection  
Left  
left hi-fi channel selected (language I)  
Right  
right hi-fi channel selected (language II)  
hi-fi stereo selected  
Stereo  
Normal  
Mix-Left  
Mix-Right  
Mix-Stereo  
normal selected (linear audio; LININ input)  
mix of hi-fi left with normal (12hi-fi left + 12normal)  
mix of hi-fi right with normal (12hi-fi right + 12normal)  
mix of hi-fi stereo with normal (12hi-fi stereo + 12normal)  
Notes  
1. When no hi-fi signal is found on tape during ‘playback’ mode the auto-normal function is activated; all output select  
function modes except ‘mute’ will be overruled and changed to ‘Normal’ mode. If muting of the hi-fi sound is desired  
instead of selecting linear audio the normal input level (bits NIL3 to NIL0 of the select byte) should be set to mute.  
Activation of the auto-normal function can be monitored by reading bit AUTN of the read byte.  
2. If ‘Dub Mix’ mode is selected via the input select function (see control bits IS2, IS1 and IS0 of the input byte)  
functionality of the modes ‘Mix-Left’, ‘Mix-Right’ and ‘Mix-Stereo’ are changed to support audio dubbing input mixing.  
Hi-fi channel selection is offered for the input and normal sound is available at the output for monitoring of the linear  
audio recording. See also Table 19.  
3. POR.  
1997 Jun 16  
16  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
Table 19 Dub Mix selections  
MODE  
mute(1)  
DUB MIX OUTPUT SELECTION  
DUB MIX INPUT SELECTION  
mute  
mute  
Left  
left  
hi-fi left  
Right  
right  
hi-fi right  
Stereo  
stereo  
normal  
normal  
normal  
normal  
12hi-fi left + 12hi-fi right  
normal  
Normal  
Mix-Left  
Mix-Right  
Mix-Stereo  
hi-fi left  
hi-fi right  
12hi-fi left + 12hi-fi right  
Note  
1. POR.  
Table 20 Bit EOS  
EOS(1)  
MODE  
DESCRIPTION  
0
1
Output Select(2)  
Stereo or HF envelope(3)  
audio peak envelope of ‘Output Select’ mode signal  
audio peak envelope of hi-fi stereo or HF envelope  
Notes  
1. A signal selection for output ENVOUT (pin 39) is available using bit EOS.  
2. POR.  
3. The selection made for mode ‘Stereo or HF envelope’ depends upon the mode of the hi-fi processing:  
a) Hi-fi ‘loop-through’ mode or ‘record’ mode (bit AFM = 1): audio peak envelope of hi-fi stereo.  
b) Hi-fi ‘playback’ mode (bit AFM = 0): HF envelope of left channel FM carrier.  
Table 21 Bit LOS; notes 1 and 2  
LOS  
MODE  
DESCRIPTION  
0
1
Output Select(3)  
Ext2  
line output signal is set by output select function  
line output signal is EXT2L and EXT2R input  
Notes  
1. An independent selection of EXT2L and EXT2R inputs (pins 7 and 8) to the line outputs LINEL and LINER  
(pins 15 and 16) is possible by setting bit LOS to 1. This direct selection is also operable in ‘active standby’ mode  
(STBA = 1 of the control byte).  
2. Using bit DOS and bits DOS1 and DOS0 of the output byte mode ‘Tuner’ or ‘Ext1’ selection to the outputs DECL and  
DECR (pins 18 and 19) is offered realizing full Euro-SCART pay-TV decoder switching.  
3. POR.  
1997 Jun 16  
17  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
Table 22 Bit DOS; notes 1 and 2  
DOS  
MODE  
Output Select(3) decoder output signal is set by output select function  
decoder select(4) decoder output signal is set by decoder output select function  
DESCRIPTION  
0
1
Notes  
1. An independent selection of TUNL and TUNR (pins 1 and 2), EXT1L and EXT1R (pins 5 and 6), SAP (pin 44) or  
mute is possible for the decoder outputs DECL and DECR (pins 18 and 19) by setting bit DOS to 1. Source selection  
is offered by using bits DOS1 and DOS0 of the select byte. These direct selections are also operable in ‘active  
standby’ mode (STBA = 1 of the control byte).  
2. In combination with the independent EXT2 selection to the outputs LINEL and LINER (pins 15 and 16) via bit LOS  
full Euro-SCART pay-TV decoder switching is offered.  
3. POR.  
4. Internal mode.  
Table 23 Bit RFCM; note 1  
RFCM  
MODE  
DESCRIPTION  
RFC output is set by output select function  
RFC output signal is muted (AGC reset)  
0
1
mute(2)  
Notes  
1. RF converter output RFCOUT (pin 12) can be muted using bit RFCM. During mute the AGC capacitor at pin 11  
(RFCAGC) is discharged, resetting AGC control.  
2. POR.  
1997 Jun 16  
18  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
Volume bytes; subaddresses 04, 05 and 06 (left and right channel volume control)  
Table 24 Bits of volume bytes; see Table 25  
BIT  
DESCRIPTION  
VLS  
VL5  
volume left sign  
volume left 5  
VL0  
VRS  
VR5  
volume left 0  
volume right sign  
volume right 5  
VR0  
volume right 0  
Table 25 bits VLS, VRS, VL5 to VL0 and VR5 to VR0; note 1  
VLS  
VRS  
VL5  
VR5  
VL4  
VR4  
VL3  
VR3  
VL2  
VR2  
VL1  
VR1  
VL0  
MODE  
VR0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0 dB  
1 dB  
2 dB  
3 dB  
4 dB  
0
0
0
0
1
0
0
0
0
0
1
1
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
1
0
1
1
43 dB  
44 dB  
45 dB  
46 dB  
47 dB  
mute  
0 dB(3)  
+1 dB  
+2 dB  
+3 dB  
+4 dB  
1
0
1
1
0
0
1
0
1
1
0
1
1
0
1
1
1
0
1
0
1
X(2)  
1
X(2)  
1
X(2)  
1
X(2)  
1
1
X(2)  
X(2)  
X(2)  
X(2)  
X(2)  
X(2)  
X(2)  
X(2)  
X(2)  
X(2)  
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
1
1
1
1
1
X(2)  
X(2)  
X(2)  
X(2)  
X(2)  
X(2)  
X(2)  
X(2)  
X(2)  
X(2)  
1
0
1
1
+11 dB  
+12 dB  
+13 dB  
+14 dB  
+15 dB  
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
Notes  
1. Left and right volume controls can be set simultaneous by using subaddress 06 (volume byte). Addressing the  
volume byte will load both the left and right volume registers with the same data value.  
2. X = don’t care.  
3. POR.  
1997 Jun 16  
19  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
Power byte; subaddress 07 (power-up control and test)  
Table 26 Bits of power byte  
BIT  
DESCRIPTION  
CALS  
VCCH  
TEST  
PORR  
calibration start; see Table 27  
CC high; see Table 28  
V
test; see Table 29  
POR reset; see Table 30  
Table 27 Bit CALS; note 1  
CALS(2)  
MODE  
(note 3)  
start calibration start of automatic calibration cycle  
DESCRIPTION  
0
1
Notes  
1. Pin 39 (ENVOUT) or bit CALR of the read byte can be monitored to check for successful completion of the calibration.  
It is advised to keep CALS logic 1 after calibration to ensure a reliable CALR state.  
2. After a change of bit CALS from logic 0 to logic 1, an automatic frequency calibration is performed setting hi-fi  
modem, band-pass filter and noise reduction. Use of auto-calibration is only needed after power-up of the supply  
voltage (POR).  
3. POR.  
Table 28 Bit VCCH; notes 1 and 2  
VCCH  
MODE  
9 V; note 3  
12 V  
DESCRIPTION  
0
1
output DC voltage is 4.5 V  
output DC voltage is 6 V  
Notes  
1. To maximize the output drive when using 12 V supply voltage (VCC; pin 35), the DC level of outputs LINEL, LINER,  
DECL and DECR (pins 15, 16, 18 and 19) can be changed using bit VCCH.  
2. Use of the power mute function (bit MUTE of the control byte) ensures disturbance-free switching of the line output  
signal when setting VCCH after power-up.  
3. POR.  
Table 29 Bit TEST; note 1  
TEST  
MODE  
(note 2)  
test  
DESCRIPTION  
0
1
standard operation  
special measurement test modes  
Notes  
1. Several special test modes can be selected for testing and evaluation purposes. Bits s4 to NIL0 of the select byte  
are used for selection of these tests.  
2. POR.  
1997 Jun 16  
20  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
Table 30 Bit PORR; note 1  
PORR  
MODE  
DESCRIPTION  
0
1
(note 2)  
POR reset  
reset of POR signal bit  
Notes  
1. Bit POR of the read byte can be used to detect the occurrence of a power-on reset situation (bit POR reads logic 1  
in case the I2C register contents equal the POR default state). When applying bit POR this way, PORR should be  
used after a power-on reset to force a reset of the POR read bit state to logic 0.  
2. POR.  
Read byte (device state information)  
Table 31 Bits of read byte  
BIT  
CALR  
DESCRIPTION  
DESCRIPTION  
calibration ready; see Table 32  
auto-normal; see Table 33  
power-on reset; see Table 34  
AUTN  
POR  
Table 32 Bit CALR; notes 1 and 2  
CALR  
0
1
device is not calibrated  
device has completed auto-calibration  
Notes  
1. Bit CALR = 0 indicates the device is not calibrated. After an automatic calibration is started by setting bit CALS of the  
power byte the end of calibration is signalled by this bit. If for some reason a calibration cannot be completed (e.g.  
no HID signal available or hi-fi processing is in ‘playback’ mode) CALR remains logic ‘0’. If calibration is lost due to  
a power-on reset situation CALR will return to logic 0 as well.  
2. Also the envelope output (pin 39) can be used to check for end of calibration.  
Table 33 Bit AUTN; notes 1 and 2  
AUTN  
DESCRIPTION  
0
1
audio FM signal is detected at FM input  
no audio FM signal detected; normal sound is selected instead of hi-fi  
Notes  
1. When hi-fi processing is in ‘playback’ mode but no hi-fi carrier input signal is detected the auto-normal function is  
activated. Auto-normal overrules the ‘Output Select’ mode setting, selecting normal sound (i.e. linear audio) instead  
of hi-fi. The state of this auto-normal function can be checked via bit AUTN.  
2. The auto-normal function is only active (bit AUTN = logic 1) for hi-fi ‘playback’ mode (bit AFM = 0); during ‘record’ or  
‘loop-through’ mode bit AUTN is always logic 0.  
1997 Jun 16  
21  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
Table 34 Bit POR; notes 1 and 2  
POR  
DESCRIPTION  
I2C-bus bit state differs from power-on reset state  
I2C-bus bit state equals power-on reset state  
0
1
Notes  
1. At power-on or during a power voltage dip, an internal power-on reset signal is generated which resets the I2C-bus  
data bits to a predefined state. When the internal data bits are found to be in POR state (due to an actual power-on  
reset but also if set via the I2C-bus) bit POR signals logic 1.  
2. Using the POR bit to detect the occurrence of a power-on reset requires bit PORR to be set logic 1 after power-up.  
Setting bit PORR forces the POR bit to logic 0 independent of other I2C-bus bit settings. After calibration is completed  
also the CALR bit can be used to detect a power-on reset; calibration will be lost in such situation which is signalled  
by CALR = 0.  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
VCC  
PARAMETER  
MIN.  
MAX.  
13.2  
UNIT  
supply voltage  
0
V
Tstg  
Tamb  
Ves  
storage temperature  
65  
+150  
70  
°C  
°C  
operating ambient temperature  
electrostatic handling  
machine model  
0
300  
+300  
V
V
human body model  
3000  
+3000  
THERMAL CHARACTERISTICS  
SYMBOL  
Rth j-a  
PARAMETER  
CONDITIONS  
CONDITIONS  
VALUE  
60  
UNIT  
thermal resistance from junction to ambient in free air  
K/W  
DC CHARACTERISTICS  
SYMBOL  
PARAMETER  
MIN. TYP. MAX. UNIT  
Supply voltage  
VCC  
supply voltage; pin 35  
VCCH = 0  
8.1  
8.1  
9
13.2  
13.2  
V
V
VCCH = 1  
12  
Supply current  
ICC  
supply current; pin 35  
45  
12  
60  
18  
mA  
mA  
STBA = 1  
(‘active standby’ mode)  
STBP = 1  
4
6
mA  
(‘passive standby’ mode)  
1997 Jun 16  
22  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN. TYP. MAX. UNIT  
Input voltages (internally generated)  
VI  
input voltage  
pins 1 to 10, 21 and 44  
pin 37  
3.8  
1.9  
V
V
Output voltages  
VO  
output voltage  
pin 12  
3.8  
4.5  
6
V
V
V
V
V
V
pins 15, 16, 18 and 19  
VCCH = 0  
VCCH = 1  
pin 20  
pin 36  
pin 38  
4.5  
1.2  
5
Output current  
IO  
output current at pin 38  
3
mA  
HID input; pin 40  
VIH  
VIL  
HIGH-level input voltage  
LOW-level input voltage  
2.75  
0
5.5  
V
V
2.25  
AC CHARACTERISTICS  
Loop-through mode  
Audio input level 8 dBV for f = 1 kHz at TUN inputs (pins 1 and 2); VCC = 12 V; Tamb = 25 °C; POR state with mute off;  
calibrated; bit NTSC set to logic 1 or logic 0; measured in application diagram of Fig.6; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Line inputs and linear audio input (TUN, CIN, EXT1, EXT2, AUX, SAP and LININ; pins 1 to 10, 44 and 21)  
Ri  
Vi  
input impedance  
input voltage  
100  
130  
kΩ  
9
dBV  
Line and decoder outputs (LINEL, LINER, DECL, DECR; pins 15, 16, 18 and 19)  
Vo  
output voltage  
9  
8  
7
8  
7  
6  
dBV  
dBV  
dBV  
dBV  
%
LOH = 1 (+1 dB output signal)  
note 1  
7  
Vo(max)  
maximum output voltage  
8
note 1; VCCH = 1; VCC = 12 V  
10  
11  
THD  
αcb  
total harmonic distortion  
channel balance  
noise level  
0.01  
0
0.1  
+1  
90  
150  
70  
1  
dB  
Vn  
TUN = −∞ dBV; note 2  
94  
100  
95  
dBV  
Ro  
output impedance  
volume mute  
αmute  
VLS to VL0 and  
dB  
VRS to VR0 = mute  
output mute  
OSN, OSR and OSL = mute  
85  
70  
dB  
1997 Jun 16  
23  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
83  
MAX.  
UNIT  
dB  
αct(ch)  
crosstalk between channels  
channel crosstalk TUNL or  
70  
TUNR = −∞ dBV  
αct(ch)(i)  
Io(max)  
Io  
crosstalk between input channels note 3  
93  
+1  
dB  
output current limiting  
MUTE = 1; power mute  
STBP = 1; passive standby  
mA  
mA  
discharge output current  
1  
Linear audio output (LINOUT; pin 20)  
Vo  
Ro  
output voltage  
9  
8  
7  
dBV  
output impedance  
200  
300  
RF converter output (RFCOUT; pin 12)  
Vo  
output voltage  
9  
4.5  
8  
7  
1.5  
dBV  
dBV  
%
output voltage at high level  
total harmonic distortion  
TUN = +8 dBV  
3  
THD  
0.03  
<0.2  
80  
200  
+1  
TUN = up to +8 dBV  
%
Vn  
noise level  
TUN = −∞ dBV; note 2  
dBV  
Ro  
output impedance  
output current limiting  
discharge output current  
300  
Io(max)  
Io  
MUTE = 1; power mute  
mA  
mA  
STBP = 1; passive standby  
1  
Power mute outputs (MUTEC, MUTEL, MUTER; pins 13, 14 and 17)  
Ro output impedance  
50  
100  
15  
kΩ  
MUTE = 1; DC load = ±1 mA  
Envelope output (ENVOUT; pin 39); audio peak envelope  
Vo  
output voltage  
1.69  
1.8  
1.91  
0.3  
V
V
V
output voltage at zero level  
TUN = −∞ dBV  
output voltage at zero level;  
maximum volume  
TUN = −∞ dBV;  
volume = +15 dB  
0.35  
output voltage at high level  
channel balance  
TUN = +8 dBV  
4.0  
0.11  
4.5  
0
5.0  
V
αcb  
+0.11  
1.5  
V
Ro  
output impedance  
1
kΩ  
Notes  
1. THD = 1%; output load: RL = 5 k; CL = 2.2 nF; volume = +3 dB (12 V); TUN level varied.  
2. Typical value: B = 20 Hz to 20 kHz, ‘unweighted’; production testing: B = 300 Hz to 20 kHz, ‘unweighted’.  
3. Crosstalk of any line input pair (TUN, CIN, EXT1, EXT2, AUX or SAP) to any other line input.  
1997 Jun 16  
24  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
Record mode  
For test modes see Table 38.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Noise reduction (test 25: LINEL and LINER; pins 15 and 16)  
THD  
total harmonic distortion  
0.1  
0.3  
1
%
at high level; TUN = +8 dBV  
0.2  
0
%
αcb  
αlin  
channel balance  
linearity  
1  
+1  
dB  
TUN = 8 to 68 dBV  
31.5 30.2 28.5 dB  
high-level linearity  
TUN = 8 to +8 dBV  
7.5  
8
8.5  
dB  
dB  
αn  
noise level with respect to output  
signal  
TUN = 8 to = −∞ dBV; note 1  
46  
41  
tatt  
attack time  
in accordance with VHS  
specification  
5
ms  
ms  
dB  
dB  
dB  
trec  
fres  
recovery time  
70  
frequency response 300 Hz  
frequency response 10 kHz  
TUN = 1 kHz to 300 Hz  
TUN = 1 kHz to 10 kHz  
0.7  
3.1  
0.2  
3.9  
0.1  
+0.3  
4.7  
+0.5  
audio low-pass filter response  
20 kHz  
TUN = 1 kHz to 20 kHz; test 26 0.5  
audio low-pass filter response  
60 kHz  
TUN = 1 kHz to 60 kHz; test 26  
24  
12  
dB  
FM modulator (test 25, test 26 and no test: FMOUT; pin 36)  
THD  
total harmonic distortion  
f = 50 kHz  
0.1  
150  
0
0.2  
160  
+5  
%
f(max)  
fc(error)  
fc(l-r)  
maximum FM frequency deviation  
carrier frequency error  
140  
5  
kHz  
kHz  
after calibration  
carrier frequency difference  
between left and right channel  
fc(r) fc(l) after NTSC calibration 399.2 401.2 403.2 kHz  
fc  
carrier frequency shift  
temperature coefficient  
NTSC/PAL system switching  
97  
100  
103  
kHz  
TC  
±50  
ppm/K  
Noise reduction and FM modulator (FMOUT; pin 36)  
f FM deviation  
HF output (FMOUT; pin 36)  
Vo(rms) output voltage left carrier  
44.5  
50  
56.1  
kHz  
1st harmonic (RMS value)  
1st harmonic (RMS value)  
53  
60  
68  
mV  
mV  
output voltage right carrier  
160  
2.7  
180  
3.0  
202  
3.3  
Vo(l)/Vo(r)  
output voltage ratio between left  
and right carrier  
D3H  
Ro  
distortion (3rd harmonic)  
output impedance  
3rd harmonic/1st harmonic  
28  
18  
dB  
100  
150  
Note  
1. Typical value: B = 20 Hz to 20 kHz, ‘unweighted’; production testing: B = 300 Hz to 20 kHz, ‘unweighted’.  
1997 Jun 16  
25  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
Playback mode  
VFMIN(rms) = 30 mV (RMS value); f = 50 kHz; fmod = 1 kHz; f = f0; VCC = 12 V; Tamb = 25 °C; bit NTSC set to logic 1 or  
logic 0; measured in application diagram of Fig.6; unless otherwise specified. For test modes see Table 38.  
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX.  
FMIN; pin 37 and HF AGC (test 5 and test 6: FMOUT; pin 36)  
UNIT  
Vi(p-p)  
input voltage level  
left plus right channel; note 1  
0.17  
2
V
(peak-to-peak value)  
AGC start level (at pin 37)  
control bandwidth  
left plus right channel  
note 2  
59  
84  
10  
118  
mV  
B
kHz  
Left channel band-pass filter (test 3: FMOUT; pin 36)  
Vo  
band-pass filter output voltage  
f = f0; VFMIN(rms) = 30 mV  
(RMS value)  
105  
150  
215  
mV  
dB  
Vo1/Vo  
30  
20  
band-pass filter output voltage  
ratio  
f0 400 kHz  
-------------------------------  
f0  
Vo2/Vo  
Vo3/Vo  
Vo4/Vo  
Vo5/Vo  
Vo6/Vo  
Rd(g)  
9  
9  
6  
dB  
dB  
dB  
dB  
dB  
µs  
f 0 150 kHz  
--------------------------------  
f0  
5  
f 0 + 150 kHz  
--------------------------------  
f0  
17  
12  
12  
9  
30  
f 0 + 250 kHz  
--------------------------------  
f0  
f 0 + 250 kHz  
--------------------------------  
f0 + 150 kHz  
f 0 + 400 kHz  
--------------------------------  
f0  
group delay ripple  
f0 150 kHz to f0 + 150 kHz  
<0.5  
1997 Jun 16  
26  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Right channel band-pass filter (test 4: FMOUT; pin 36)  
Vo  
band-pass filter output voltage  
f = f0; VFMIN(rms) = 30 mV  
(RMS value)  
105  
150  
215  
mV  
Vo1/Vo  
30  
dB  
dB  
dB  
dB  
dB  
dB  
µs  
band-pass filter output voltage  
ratio  
f0 400 kHz  
-------------------------------  
f0  
Vo2/Vo  
Vo3/Vo  
Vo4/Vo  
Vo5/Vo  
Vo6/Vo  
Rd(g)  
17  
5  
10  
f 0 250 kHz  
--------------------------------  
f0  
9  
f 0 150 kHz  
--------------------------------  
f0  
12  
6  
9  
f 0 250 kHz  
--------------------------------  
f0 150 kHz  
9  
f 0 + 150 kHz  
--------------------------------  
f0  
30  
<0.5  
20  
f 0 + 400 kHz  
--------------------------------  
f0  
group delay ripple  
f0 150 kHz to f0 + 150 kHz  
Hi-fi detector and dropout cancelling  
Vi(A)  
AUTN activation level  
left channel carrier at FMIN  
(RMS value)  
3.0  
4.2  
5.8  
mV  
dB  
Vi(D)/Vi(A)  
DOC level with respect to AUTN  
level  
left channel carrier at FMIN  
7  
4  
2  
td(A)  
td(D)  
AUTN activation delay  
DOC switch-off delay  
carrier to no carrier at FMIN  
no carrier to carrier at FMIN  
200  
5
300  
9
500  
14  
µs  
µs  
Head switching noise suppressor (test 25: LINEL and LINER; pins 15 and 16)  
th  
hold pulse length  
5
7
6
8
7
µs  
µs  
dB  
SHH = 1  
note 3  
9
THD  
td  
total harmonic distortion (audio  
signal)  
73  
delay from HID to hold  
0.3  
µs  
Envelope output (ENVOUT; pin 39)  
Vo  
output voltage  
FMIN = 2 mV (RMS value);  
left channel  
0.6  
2.5  
4.2  
0.9  
2.9  
4.7  
1.2  
3.3  
5.0  
V
V
V
FMIN = 20 mV (RMS value);  
left channel  
FMIN = 200 mV (RMS value);  
left channel  
1997 Jun 16  
27  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
PLL FM demodulator (test 25: LINEL and LINER; pins 15 and 16)  
Vi  
sensitivity  
f = 150 kHz; S/N = 35 dB  
f = 50 kHz  
0.3  
1.2  
0.3  
1.5  
mV  
THD  
total harmonic distortion  
0.03  
0.2  
%
%
total harmonic distortion at  
maximum  
f = 150 kHz  
S/N  
signal to noise ratio  
channel crosstalk  
f = 50 to 0 kHz  
54  
60  
dB  
dB  
αct(ch)  
left or right carrier f = 0 kHz  
80  
Noise reduction (test 26: LINEL and LINER; pins 15 and 16)  
Vn  
noise level  
TUN = −∞ dBV; note 4  
TUN = 3.5 dBV  
96  
90  
0.2  
dBV  
%
THD  
αl  
total harmonic distortion  
linearity  
0.05  
59.6  
+0.4  
7.7  
TUN = 3.5 to 33.5 dBV  
TUN = 1 kHz to 300 Hz  
TUN = 1 kHz to 10 kHz  
58  
62  
dB  
dB  
dB  
fres  
frequency response 300 Hz  
frequency response 10 kHz  
0.6  
9.2  
+1.4  
6.2  
FM demodulator and noise reduction (LINEL and LINER; pins 15 and 16)  
Vo  
output voltage  
10  
8  
6  
dBV  
dB  
αcb  
channel balance  
1.5  
0
+1.5  
Notes  
1. Signals below maximum input level are handled without internal clipping. Higher input levels however can still be  
handled properly by the demodulators. Typical input level equals two carriers of 30 mV (RMS value).  
2. Single carrier signal at FMIN of 75 mV (RMS value) and amplitude modulated. Control bandwidth is the modulation  
frequency at which the amplitude modulation is attenuated 3 dB by the HF AGC.  
3. Sample-and-hold audio distortion is measured using 500 Hz at HID input (pin 40). FMIN: fmod = 10 kHz; f = 50 kHz.  
Audio distortion is measured using a 3 kHz 4th order low-pass filter. Value is corrected with 24 dB in order to  
calculate equivalent distortion at 30 Hz HID input.  
4. Typical value: B = 20 Hz to 20 kHz, unweighted; production testing: B = 300 Hz to 20 kHz, unweighted.  
1997 Jun 16  
28  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
APPLICATION AND TEST INFORMATION  
GM4K72  
a
1997 Jun 16  
29  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
approximately 401.2 kHz. This value effectively reduces  
the crosstalk from hi-fi carriers to the video colour signal as  
present during ‘playback’ mode using Extended Play (EP)  
tape speed.  
Automatic calibration; see Fig.7  
By means of bit CALS (power byte) the integrated  
auto-calibration system is activated. By adjusting the  
carrier frequencies, band-pass filters and noise reduction  
filters auto-calibration ensures that the hi-fi processing  
always is in accordance with the VHS hi-fi system  
standard. Calibration is only needed after start-up of the  
video recorder; as long as the supply voltage (pin 35) is  
available calibration settings remain stable.  
NTSC calibration uses the standard 29.97 Hz (i.e.  
16.683 ms) HID signal where PAL calibration uses the  
standard 25 Hz (i.e. 20 ms) HID signal. The maximum  
frequency error after auto-calibration is ±5 kHz assuming  
a HID HIGH-time error of maximum 5 µs. To realize NTSC  
EP optimization within ±2 kHz, HID jitter should not exceed  
1 µs. In general the crystal based HID signal available in  
the video recorder can be used without modification.  
Auto-calibration is performed with the device in hi-fi  
‘loop-through’ mode, no standby or test mode should be  
active (auto-calibration demands bit settings AFM = 1,  
STBP = 0, STBA = 0 and TEST = 0). After setting bit  
CALS (power byte) to logic 1 auto-calibration is started.  
Calibration is performed fully automatically, using the HID  
input signal as a reference.  
After calibration of the oscillators, the band-pass filters are  
calibrated together with the integrated ‘weighting’ and  
‘FM de-emphasis’ filter of the noise reduction. The total  
auto-calibration time needed is 17 HID cycles or less.  
End of calibration is signalled by bit CALR of the read byte.  
Calibration of the oscillator frequencies is performed by  
measuring the number of oscillator cycles within one HID  
HIGH period and comparing this with an internal value  
stored in ROM. Four different ROM values are available for  
NTSC or PAL (SECAM) system calibration of both the left  
and right channel carrier.  
The envelope output can also be used to monitor  
calibration; for this purpose ENVOUT (pin 39) is forced  
>2.5 V during calibration. The audio signal to the audio  
envelope (level meter) function should be muted;  
otherwise the audio envelope output may be >2.5 V as  
well making it impossible to detect end of calibration via  
the ENVOUT pin.  
In case of NTSC calibration a special routine is active for  
the right channel carrier calibration resulting in a frequency  
difference between the left and right channel carrier of  
2
I C-bus write (CALS)  
logic 0  
logic 1  
pin 40  
(HID)  
left channel oscillator  
right channel oscillator  
band-pass and  
noise reduction filters  
logic 0 logic 1  
2
I C-bus read (CALR)  
pin 39  
(ENVOUT)  
5 V  
3 V  
4 V  
calibration  
ready  
MGK477  
Fig.7 Example of automatic calibration flow.  
30  
1997 Jun 16  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
After a calibration in ‘NTSC’ or ‘PAL’ mode the oscillators  
and band-pass filters can be switched between NTSC and  
PAL system frequencies without the need for additional  
calibration. Switching between these system modes is  
executed immediately and can be done in any operational  
mode. Frequency accuracy of switching is 100 kHz ±3 kHz  
for both carriers. For ‘record’ mode however it is advised  
to use re-calibration after system switching; this to obtain  
the best possible frequency accuracy. A new  
carrier level (e.g. auto-tracking). At the microcontroller only  
one A/D converter input is needed for reading of all  
necessary information. During ‘playback’ mode I2C-bus  
bit EOS offers selection between audio or carrier level  
information. Audio level information is always output  
during ‘loop-through’ mode and ‘record’ mode however  
now EOS offers a fixed selection of hi-fi stereo (i.e.  
independent of the ‘Output Select’ mode setting); helpful  
when audio level information is used by the microcontroller  
for controlling the hi-fi record volume.  
auto-calibration can be started by first resetting bit CALS  
to logic 0 followed by setting bit CALS to logic 1 again.  
Envelope output; see Figs 8 to 11  
ENVOUT (pin 39) is an analog output for stereo audio level  
(e.g. level meter display) and for ‘playback’ mode FM  
Table 35 Envelope output select  
AFM  
EOS  
ENVELOPE OUTPUT  
FUNCTIONAL USE  
level meter display  
0 (playback mode)  
0 (playback mode)  
0
1
0
AF envelope of output select  
HF envelope  
auto-tracking or manual tracking display  
level meter display  
1 (record mode/  
AF envelope of output select  
loop-through mode)  
1 (record mode/  
1
AF envelope of hi-fi stereo  
record volume control (and level display)  
loop-through mode)  
Audio envelope uses time multiplexing to output both left  
and right channel audio level. A peak hold function and  
dynamic range compression (square root function) are  
included for easy read-out. The peak hold function as well  
as left and right channel multiplexing is controlled by the  
HID input signal (pin 40).  
The HF envelope output signal is continuous and derived  
from the left channel carrier. HF envelope shows a  
logarithmic characteristic.  
1997 Jun 16  
31  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
2
I C-bus  
EOS = 0 or AFM = 1  
EOS = 1 and  
AFM = 0  
registers  
HID input  
0
1
2
3
HID period  
peak right  
in period -1  
peak right  
in period 1  
peak right  
in period 0  
peak right  
in period 2  
peak left  
in period 3  
envelope out  
peak left  
in period 1  
peak left  
in period 0  
HF envelope  
peak left  
in period 2  
MGK478  
Fig.8 Timing diagram of envelope output signal.  
HID  
(pin 40)  
left channel audio:  
output select  
SAMPLE  
RESET  
FULL WAVE  
RECTIFIER  
SQUARE ROOT  
COMPRESSION  
SAMPLE-  
AND-HOLD  
PEAK HOLD  
hi-fi  
right channel audio:  
output select  
ENVOUT  
(pin 39)  
SAMPLE  
RESET  
FULL WAVE  
RECTIFIER  
SQUARE ROOT  
COMPRESSION  
AF  
envelope  
SAMPLE-  
AND-HOLD  
PEAK HOLD  
hi-fi  
EOS • AFM  
HF  
EOS • AFM  
envelope  
1.3/1.4 MHz carrier  
HF LEVEL DETECTOR  
MGK480  
Fig.9 Functional diagram of envelope output circuit.  
32  
1997 Jun 16  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
MGK481  
5
handbook, halfpage  
ENVOUT  
output  
voltage  
(V)  
4
3
2
1
0
40  
30  
20  
10  
0
10  
LINE output level (dBV)  
LOH = 0.  
Fig.10 Envelope output; AF envelope (audio peak level).  
MGK482  
5
handbook, halfpage  
ENVOUT  
output  
voltage  
(V)  
4
3
2
1
0
1  
2
3
10  
1
10  
10  
10  
FMOUT left channel carrier amplitude (RMS value) (V)  
NTSC (1.3 MHz) or PAL (1.4 MHz).  
Fig.11 Envelope output; HF envelope (playback carrier level).  
33  
1997 Jun 16  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
After the output DC voltage is settled the power mute  
function can be deactivated by selecting MUTE = 0.  
Now the mute switches are opened showing a high  
impedance of 100 kto ground and output current limiting  
is deactivated. Note that the time needed for output DC  
settling is proportional to the output capacitor value used;  
with a 10 µF capacitor a safe mute time to use is 200 ms  
(i.e. tmute = C × 20000). Using such controlled muting very  
good performance is achieved for power-up, power-down  
and ‘passive standby’ mode switching.  
Power mute; see Fig.12  
Without countermeasures switching of the power supply  
voltage (VCC; pin 35) or use of the built-in ‘passive  
standby’ mode causes strong disturbances on the output  
pins because of the rise or drop of the output’s DC  
voltages. The TDA9615H includes three integrated mute  
switches to block such disturbances and avoiding the need  
of an external mute circuit. By connecting the power mute  
switches behind the line and RFC output capacitors  
pop-free line and RFC output signals are realized.  
At a sudden supply power loss however (e.g. mains power  
plug pulled) there may be no time to activate the power  
mute function via the I2C-bus. A power-down detector  
however instantly activates the power mute function in  
case the supply voltage falls below 7 V (auto-mute).  
For proper muting supply voltage drop rate should not  
exceed 1 V/10 ms.  
Power muting is active when control byte bit MUTE = 1.  
Because this also is the POR default state, muting is  
automatically activated when the power supply voltage is  
switched on. The integrated mute switches (MUTEC,  
MUTEL and MUTER; pins 13, 14 and 17) are closed,  
forming a low impedance path to ground. Furthermore the  
line and RFC outputs (RFCOUT, LINEL and LINER;  
pins 12, 15 and 16) are current limited to 1 mA to achieve  
good attenuation without the need for a series resistor  
between output and mute switch. Although the decoder  
outputs (DECL and DECR; pins 18 and 19) have no  
integrated muting these are current limited also for use  
with the integrated mute switches or to assist possible  
external muting.  
V
CC  
auto-mute  
(V  
< 7 V)  
CC  
(1)  
(1)  
bit MUTE  
bit STBP  
pins 12, 15 and 16  
output signal  
with power mute  
pins 13, 14 and 17  
auto-mute  
power  
off  
active  
operation  
passive  
standby  
active  
operation  
power off  
(standby)  
active  
operation  
power  
off  
t
t
t
t
t
mute  
MGK476  
mute  
mute  
mute  
mute  
(1) POR.  
Fig.12 Example of power mute control and auto-mute function.  
34  
1997 Jun 16  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
Do not set MUTE and change STBP at the same time;  
to avoid output glitches power muting should precede the  
switching of ‘passive standby’ mode. Power muting takes  
up approximately 4 mA supply current, so to realize the  
minimum power consumption of ‘passive standby’ mode  
muting has to be deactivated. Note also the use of ‘passive  
standby’ mode to initiate a controlled power-off switching.  
The external resistor should have the following  
dimensions: value = 39.0 kΩ ±2%; temperature  
coefficient = ±50 ppm/K.  
Standard hi-fi audio level  
Using the application circuit as proposed in Fig.6, the  
standard FM deviation of 50 kHz equals a 1 kHz audio  
signal of 8 dBV line output level (LOH = 0). A different  
standard audio level can be selected by changing the  
external filter components of the noise reduction at  
pins 24 and 32 (EMPHL and EMPHR); standard audio  
level changes proportional to the impedance of the  
external de-emphasis filter; see Table 36.  
Iref resistor  
The external resistor at pin 28 defines internal reference  
currents and determines temperature stability of the  
circuits adjusted by the auto-calibration function.  
Table 36 Standard audio levels; see application diagram of Fig.6  
COMPONENT VALUES  
LINE OUTPUT LEVEL FOR 50 kHz FM DEVIATION  
(EQUIVALENT TO 1 kHz AUDIO SIGNAL) (dBV)  
R1 (k)  
R2 (k)  
C1 (nF)  
91  
82  
75  
68  
62  
56  
51  
7.5  
6.8  
6.2  
5.6  
5.1  
4.7  
4.3  
2.4  
2.7  
3.0  
3.3  
3.6  
3.9  
4.3  
5.6  
6.4  
7.1  
8.0  
8.8  
9.8  
10.6  
RFC AGC; see Fig.13  
To avoid over modulation in the RF converter unit connected to RFCOUT (pin 12) an AGC function is incorporated,  
limiting the maximum signal level at pin RFCOUT to 3 dBV.  
MGK479  
handbook, halfpage  
RFC output  
(dBV)  
3  
3  
line output (dBV)  
Fig.13 RF converter output AGC.  
1997 Jun 16  
35  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
The RFC output can be muted by setting of bit RFCM = 1.  
When applying this mute the AGC control is reset by  
discharging the capacitor at pin 11 (RFCAGC).  
INPUT MIX  
A new, complete, recording is made on the linear audio  
track; afterwards ‘playback’ mode uses linear audio sound  
only. This way hi-fi stereo quality is lost but there is total  
freedom in defining the new material. Furthermore this  
way ‘playback’ mode is no longer restricted to hi-fi video  
recorders with output mix option.  
Audio dubbing  
TDA9615H includes unparalleled functionality supporting  
the audio dubbing function of hi-fi video recorders. Audio  
dubbing is a feature mode for recording of new sound  
material on the linear audio track (i.e. normal sound) of an  
existing recording. Audio dubbing can be used in two  
different ways.  
Selection ‘Dub Mix’ mode of the input select function,  
when combined with selection ‘Volume’ mode of the  
normal select function, changes the circuit into a mixing  
desk. A new linear audio recording can be created mixing  
together new and original sound. By use of the left and  
right channel volume controls continuous control is offered  
over amplitude and ratio mix of the AUX input signal (e.g.  
a microphone input) and the original hi-fi ‘playback’ mode  
sound.  
OUTPUT MIX  
A new, partly, recording is made on the linear audio track;  
afterwards during ‘playback’ mode the new linear audio  
and the original hi-fi sound are combined. This way  
hi-fi stereo quality remains and linear audio is only partly  
used e.g. for speech only (commentary track). However  
there is no control over the original (hi-fi) sound.  
This functionality is realized by internal connection of the  
AUX input pair to the left channel volume control and by  
internal connection of the hi-fi output signal pair to the right  
channel volume control. For output and hi-fi selection the  
‘Dub Mix’ mode uses, and partly overrules, the output  
select function settings. Output select function modes  
‘Mix-Left’, ‘Mix-Right’ and ‘Mix-Stereo’ make the normal  
sound available at the line outputs for monitoring of the  
‘Dub Mix’ mode recording.  
‘Playback’ mode mixing of hi-fi and normal sound is  
supported by the output select function modes ‘Mix-Left’,  
‘Mix-Right’ and ‘Mix-Stereo’ (OSN, OSR and OSL of the  
output byte) creating a fixed output signal of  
12hi-fi left + 12normal.  
Table 37 Input select function is set to ‘Dub Mix’ mode (IS2, IS1, IS0 = 101); note 1  
DUB MIX INPUT SELECTION  
OUTPUT SELECT  
MODE  
DUB MIX OUTPUT  
SELECTION  
OSN  
OSR  
OSL  
LEFT CHANNEL RIGHT CHANNEL  
Mute  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
mute  
aux stereo  
aux stereo  
aux stereo  
aux stereo  
aux stereo  
aux stereo  
aux stereo  
aux stereo  
mute  
Left  
hi-fi left  
hi-fi right  
stereo  
hi-fi left  
hi-fi right  
stereo  
Right  
Stereo  
Normal  
Mix-Left  
Mix-Right  
Mix-Stereo  
normal  
normal  
normal  
normal  
normal  
hi-fi left  
hi-fi right  
hi-fi stereo  
Note  
1. Modes shown in bold are the most used modes.  
Output select function mode ‘Mix-Stereo’ is the setting  
generally used for audio dubbing. In combination with  
setting the normal select function to ‘Volume’ mode user  
control over amplitude and ratio is offered for the AUX and  
hi-fi signal as follows: (14AUXL + 14AUXR) × volume left +  
(14hi-fi left + 14hi-fi right) × volume right.  
Switching hi-fi to a mode other than ‘playback’ or selection  
of output select function mode ‘Normal’ should be avoided;  
using these settings a signal loop can be closed from  
output to input possibly leading to audio oscillation. For the  
same reason auto-normal switching is not active during  
‘Dub Mix’ mode; in case no hi-fi input signal is detected the  
hi-fi sound is muted.  
1997 Jun 16  
36  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
Test modes; see Table 38  
Special test modes are implemented for testing and evaluation purposes. These test modes are available via the power  
byte TEST bit and selection is enabled via bits of the select byte.  
Table 38 Test modes for evaluation purposes  
TEST  
s4  
X(1)  
NIL3  
X(1)  
NIL2  
X(1)  
NIL1  
X(1)  
NIL0  
X(1)  
DESCRIPTION  
standard operation  
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
1
0
0
1
1
0
1
0
1
0
test 1: left channel FM carrier only (1.3 or 1.4 MHz);  
record mode  
1
1
1
1
1
test 2: right channel FM carrier only (1.7 or  
1.8 MHz); record mode  
test 3: left channel band-pass filter, HF AGC off;  
playback mode (test output = FMOUT)  
test 4: right channel band-pass filter, HF AGC off;  
playback mode (test output = FMOUT)  
test 5: HF AGC (via left channel band-pass filter);  
playback mode (test output = FMOUT)  
test 6: HF AGC (via right channel band-pass filter);  
playback mode (test output = FMOUT)  
100111 to 111000  
product testing; not for evaluation; note 2  
test 25 (note 3)  
1
1
1
0
0
1
a: left channel FM modulator (left carrier only);  
record mode (test input = line in left)  
b: left and right channel noise reduction  
(compressor); record mode (test output = line out)  
c: left and right channel FM demodulator; playback  
mode (test output = line out)  
1
1
1
0
1
0
test 26 (note 3)  
a: right channel FM modulator (right carrier only);  
record mode (test input = line in right)  
b: left and right channel audio low-pass filter;  
record mode (test input = line in, test output = line  
out)  
c: left and right channel noise reduction  
(expander); playback mode (test input = line in);  
note 4  
Notes  
1. X = don’t care.  
2. Calibration may be lost when selecting product testing modes.  
3. Audio output level for tests 25b and 25c (test output = line out) is typical 6.5 dBV (with input = 8 dBV or FM  
deviation = 50 kHz; LOH = 0). Audio input level for tests 25a, 26a and 26c (test input = line in) is typical 6.5 dBV  
(for output = 8 dBV or FM deviation = 50 kHz; hi-fi volume = 3 dB). The test outputs and test inputs used for  
tests 25 and 26 directly connect to internal signal lines. Signals found here are not compensated for temperature or  
tolerance spread, level measurements therefore can be used relative only. Absolute values are no indication of  
overall performance.  
4. Test 26c (expander test) requires the auto-normal function to be deactivated (i.e. carrier available at FMIN pin).  
1997 Jun 16  
37  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
PACKAGE OUTLINE  
QFP44: plastic quad flat package; 44 leads (lead length 1.3 mm); body 10 x 10 x 1.75 mm  
SOT307-2  
y
X
A
33  
23  
34  
22  
Z
E
e
Q
H
E
E
A
2
A
(A )  
3
A
1
w M  
θ
b
p
L
p
pin 1 index  
L
12  
44  
detail X  
1
11  
w M  
Z
v
M
A
D
b
p
e
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
Q
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
10o  
0o  
0.25 1.85  
0.05 1.65  
0.40 0.25 10.1 10.1  
0.20 0.14 9.9 9.9  
12.9 12.9  
12.3 12.3  
0.95 0.85  
0.55 0.75  
1.2  
0.8  
1.2  
0.8  
mm  
2.10  
0.25  
0.8  
1.3  
0.15 0.15 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-11-17  
95-02-04  
SOT307-2  
1997 Jun 16  
38  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
SOLDERING  
Introduction  
Wave soldering  
Wave soldering is not recommended for QFP packages.  
This is because of the likelihood of solder bridging due to  
closely-spaced leads and the possibility of incomplete  
solder penetration in multi-lead devices.  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
If wave soldering cannot be avoided, the following  
conditions must be observed:  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave)  
soldering technique should be used.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “IC Package Databook” (order code 9398 652 90011).  
The footprint must be at an angle of 45° to the board  
direction and must incorporate solder thieves  
downstream and at the side corners.  
Reflow soldering  
Even with these conditions, do not consider wave  
soldering the following packages: QFP52 (SOT379-1),  
QFP100 (SOT317-1), QFP100 (SOT317-2),  
Reflow soldering techniques are suitable for all QFP  
packages.  
QFP100 (SOT382-1) or QFP160 (SOT322-1).  
The choice of heating method may be influenced by larger  
plastic QFP packages (44 leads, or more). If infrared or  
vapour phase heating is used and the large packages are  
not absolutely dry (less than 0.1% moisture content by  
weight), vaporization of the small amount of moisture in  
them can cause cracking of the plastic body. For more  
information, refer to the Drypack chapter in our “Quality  
Reference Handbook” (order code 9397 750 00192).  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder is  
10 seconds, if cooled to less than 150 °C within  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
6 seconds. Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Several techniques exist for reflowing; for example,  
thermal conduction by heated belt. Dwell times vary  
between 50 and 300 seconds depending on heating  
method. Typical reflow temperatures range from  
215 to 250 °C.  
Repairing soldered joints  
Fix the component by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheating duration: 45 minutes at  
45 °C.  
1997 Jun 16  
39  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
PURCHASE OF PHILIPS I2C COMPONENTS  
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the  
components in the I2C system provided the system conforms to the I2C specification defined by  
Philips. This specification can be ordered using the code 9398 393 40011.  
1997 Jun 16  
40  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
NOTES  
1997 Jun 16  
41  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
NOTES  
1997 Jun 16  
42  
Philips Semiconductors  
Preliminary specification  
Audio processor for VHS hi-fi  
TDA9615H  
NOTES  
1997 Jun 16  
43  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Belgium: see The Netherlands  
Brazil: see South America  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 689 211, Fax. +359 2 689 102  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,  
Tel. +65 350 2538, Fax. +65 251 6500  
Colombia: see South America  
Czech Republic: see Austria  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,  
Tel. +45 32 88 2636, Fax. +45 31 57 0044  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,  
Tel. +27 11 470 5911, Fax. +27 11 470 5494  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615800, Fax. +358 9 61580920  
South America: Rua do Rocio 220, 5th floor, Suite 51,  
04552-903 São Paulo, SÃO PAULO - SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 829 1849  
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 3 301 6312, Fax. +34 3 301 4107  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 632 2000, Fax. +46 8 632 2745  
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,  
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2686, Fax. +41 1 481 7730  
Hungary: see Austria  
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd.  
Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874  
Indonesia: see Singapore  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
Tel. +90 212 279 2770, Fax. +90 212 282 6707  
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,  
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,  
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 625 344, Fax.+381 11 635 777  
Middle East: see Italy  
For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications,  
Internet: http://www.semiconductors.philips.com  
Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1997  
SCA54  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
547047/1200/01/pp44  
Date of release: 1997 Jun 16  
Document order number: 9397 750 01744  

相关型号:

TDA9725

Y/C automatic adjustment processor VHS standard
NXP

TDA9800

VIF-PLL demodulator and FM-PLL detector
NXP

TDA9800T

VIF-PLL demodulator and FM-PLL detector
NXP

TDA9800T-T

IC AUDIO/VIDEO DEMODULATOR, PDSO20, Receiver IC
NXP
NXP

TDA9801

Single standard VIF-PLL demodulator and FM-PLL detector
NXP

TDA9801T

Single standard VIF-PLL demodulator and FM-PLL detector
NXP

TDA9801TD-T

IC FM, AUDIO/VIDEO DEMODULATOR, PDSO20, Receiver IC
NXP

TDA9802

Multistandard VIF-PLL demodulator and FM-PLL detector
NXP

TDA9802T

Multistandard VIF-PLL demodulator and FM-PLL detector
NXP

TDA9802T-T

IC AUDIO/VIDEO DEMODULATOR, PDSO20, Receiver IC
NXP

TDA9804

IC AUDIO/VIDEO DEMODULATOR, PDIP20, Receiver IC
NXP