MMRF1011H [NXP]

RF Power LDMOS Transistors;
MMRF1011H
型号: MMRF1011H
厂家: NXP    NXP
描述:

RF Power LDMOS Transistors

文件: 总13页 (文件大小:645K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MMRF1011H  
Rev. 0, 7/2014  
Freescale Semiconductor  
Technical Data  
RF Power LDMOS Transistors  
N--Channel Enhancement--Mode Lateral MOSFETs  
MMRF1011HR5  
MMRF1011HSR5  
RF power transistors designed for applications operating at frequencies  
between 1200 and 1400 MHz, 1% to 12% duty cycle. These devices are  
suitable for use in pulse applications, such as L-- Band radar.  
Typical Pulse Performance: VDD = 50 Vdc, IDQ = 150 mA, Pout =  
330 W Peak (39.6 W Avg.), f = 1400 MHz, Pulse Width = 300 sec,  
Duty Cycle = 12%  
Power Gain — 18 dB  
1400 MHz, 330 W, 50 V  
PULSE L--BAND  
RF POWER MOSFETs  
Drain Efficiency — 60.5%  
Capable of Handling 5:1 VSWR @ 50 Vdc, 1400 MHz, 330 W Peak Power  
Features  
Characterized with Series Equivalent Large--Signal Impedance Parameters  
Internally Matched for Ease of Use  
Qualified Up to a Maximum of 50 VDD Operation  
Integrated ESD Protection  
Greater Negative Gate--Source Voltage Range for Improved Class C  
Operation  
NI--780H--2L  
MMRF1011HR5  
In Tape and Reel. R5 Suffix = 50 Units, 56 mm Tape Width, 13--inch Reel.  
NI--780S--2L  
MMRF1011HSR5  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
--0.5, +100  
--6.0, +10  
-- 65 to +150  
150  
Unit  
Vdc  
Vdc  
C  
Gate  
Drain  
1
2
Drain--Source Voltage  
V
DSS  
Gate--Source Voltage  
V
GS  
Storage Temperature Range  
Case Operating Temperature  
Operating Junction Temperature  
T
stg  
(Top View)  
T
C
C  
Figure 1. Pin Connections  
(1,2)  
T
J
225  
C  
Table 2. Thermal Characteristics  
(2,3)  
Characteristic  
Symbol  
Value  
Unit  
C/W  
Thermal Resistance, Junction to Case  
Z
0.13  
JC  
Case Temperature 65C, 330 W Peak, 300 sec Pulse Width, 12% Duty Cycle  
1. Continuous use at maximum temperature will affect MTTF.  
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.  
Select Documentation/Application Notes -- AN1955.  
Freescale Semiconductor, Inc., 2014. All rights reserved.  
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
1C  
A
Human Body Model (per JESD22--A114)  
Machine Model (per EIA/JESD22--A115)  
Charge Device Model (per JESD22--C101)  
IV  
Table 4. Electrical Characteristics (T = 25C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Off Characteristics  
Gate--Source Leakage Current  
I
100  
10  
Adc  
Vdc  
GSS  
(V = 5 Vdc, V = 0 Vdc)  
GS  
DS  
Drain--Source Breakdown Voltage  
(V = 0 Vdc, I = 100 mA)  
V
(BR)DSS  
GS  
D
Zero Gate Voltage Drain Leakage Current  
(V = 50 Vdc, V = 0 Vdc)  
I
50  
2.5  
Adc  
mA  
DSS  
DSS  
DS  
GS  
Zero Gate Voltage Drain Leakage Current  
I
(V = 90 Vdc, V = 0 Vdc)  
DS  
GS  
On Characteristics  
Gate Threshold Voltage  
(V = 10 Vdc, I = 662 Adc)  
V
V
0.9  
1.5  
1.6  
2.4  
2.4  
3
Vdc  
Vdc  
Vdc  
GS(th)  
GS(Q)  
DS(on)  
DS  
D
Gate Quiescent Voltage  
(V = 50 Vdc, I = 150 mAdc, Measured in Functional Test)  
DD  
D
Drain--Source On--Voltage  
(V = 10 Vdc, I = 1.63 Adc)  
V
0.26  
GS  
D
(1)  
Dynamic Characteristics  
Reverse Transfer Capacitance  
(V = 50 Vdc 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
0.6  
350  
330  
pF  
pF  
pF  
rss  
GS  
Output Capacitance  
(V = 50 Vdc 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
oss  
GS  
Input Capacitance  
C
iss  
(V = 50 Vdc, V = 0 Vdc 30 mV(rms)ac @ 1 MHz)  
DS  
GS  
Functional Tests (In Freescale Test Fixture, 50 ohm system) V = 50 Vdc, I = 150 mA, P = 330 W Peak (39.6 W Avg.), f = 1400 MHz,  
DD  
DQ  
out  
Pulsed, 300 sec Pulse Width, 12% Duty Cycle  
Power Gain  
G
16.5  
18  
19.5  
dB  
%
ps  
D
(2)  
(2)  
Drain Efficiency  
59  
60.5  
Input Return Loss  
IRL  
-- 1 2  
-- 9  
dB  
Pulse RF Performance (In Freescale Application Test Fixture, 50 ohm system) V = 50 Vdc, I = 150 mA, P = 330 W Peak  
DD  
DQ  
out  
(39.6 W Avg.), f1 = 1200 MHz, f2 = 1300 MHz and f3 = 1400 MHz, 300 sec Pulse Width, 12% Duty Cycle, t = 50 ns  
r
Relative Insertion Phase  
Gain Flatness  
  
10  
0.5  
0.3  
-- 2 0  
-- 6 5  
G
dB  
F
Pulse Amplitude Droop  
Harmonic 2nd and 3rd  
Spurious Response  
D
rp  
dB  
H2 & H3  
dBc  
dBc  
Load Mismatch Stability  
(VSWR = 3:1 at all Phase Angles)  
VSWR--S  
VSWR--T  
All Spurs Below --60 dBc  
Load Mismatch Tolerance  
No Degradation in Output Power  
(VSWR = 5:1 at all Phase Angles)  
1. Part internally matched both on input and output.  
100 × Pout  
VDD × Ipeak  
2. Drain efficiency is calculated by:  
where: I  
= (I  
-- I ) / Duty Cycle (%) + I  
DQ  
.
DQ  
peak  
AVG  
ηD  
=
MMRF1011HR5 MMRF1011HSR5  
RF Device Data  
Freescale Semiconductor, Inc.  
2
V
SUPPLY  
+
+
C3  
C5  
C6  
C7  
C4  
R1  
V
BIAS  
Z23  
+
RF  
OUTPUT  
C9 C8  
Z22  
Z13  
Z14 Z15 Z16 Z17 Z18 Z19 Z20  
Z21  
RF  
INPUT  
C2  
Z1  
Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11  
Z12  
C1  
DUT  
Z1  
Z2  
Z3  
Z4  
Z5  
Z6  
Z7  
Z8  
0.205x 0.080Microstrip  
0.721x 0.022Microstrip  
0.080x 0.104Microstrip  
0.128x 0.022Microstrip  
0.062x 0.134Microstrip  
0.440x 0.022Microstrip  
0.262x 0.496Microstrip  
0.030x 0.138Microstrip  
0.256x 0.028Microstrip  
0.058x 0.254Microstrip  
0.344x 0.087Microstrip  
0.110x 0.087Microstrip  
Z13  
0.110x 0.866Microstrip  
0.630x 0.866Microstrip  
0.307x 0.470Microstrip  
0.045x 0.221Microstrip  
0.171x 0.136Microstrip  
0.120x 0.430Microstrip  
0.964x 0.136Microstrip  
0.177x 0.078Microstrip  
0.215x 0.078Microstrip  
1.577x 0.070Microstrip  
1.459x 0.070Microstrip  
Z14  
Z15  
Z16  
Z17  
Z18  
Z19  
Z20  
Z21  
Z22  
Z23  
PCB  
Z9  
Z10  
Z11  
Z12  
Arlon CuClad 250GX--0300--55--22, 0.030, = 2.55  
r
Figure 2. MMRF1011HR5(HSR5) Test Circuit Schematic  
Table 5. MMRF1011HR5(HSR5) Test Circuit Component Designations and Values  
Part  
Description  
Part Number  
ATC100B430JT500XT  
ATC100B180JT500XT  
ATC100B330JT500XT  
ATC100B270JT500XT  
2225X7R225KT3AB  
Manufacturer  
ATC  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
R1  
43 pF Chip Capacitor  
18 pF Chip Capacitor  
ATC  
33 pF Chip Capacitor  
ATC  
27 pF Chip Capacitor  
ATC  
2.2 F, 100 V Chip Capacitor  
470 F, 63 V Electrolytic Capacitor  
330 pF, 63 V Electrolytic Capacitor  
0.1 F, 35 V Chip Capacitor  
10 F, 35 V Tantalum Capacitor  
10 , 1/4 W Chip Resistor  
ATC  
EMVY630GTR471MMH0S  
EMVY630GTR331MMH0S  
CDR33BX104AKYS  
Multicomp  
Multicomp  
Kemet  
Kemet  
Vishay  
T491D106K035AT  
CRCW120610R0FKEA  
MMRF1011HR5 MMRF1011HSR5  
RF Device Data  
Freescale Semiconductor, Inc.  
3
C9  
C3  
C4  
C6  
C5  
R1  
C8  
C7  
C2  
C1  
Figure 3. MMRF1011HR5(HSR5) Test Circuit Component Layout  
MMRF1011HR5 MMRF1011HSR5  
RF Device Data  
Freescale Semiconductor, Inc.  
4
TYPICAL CHARACTERISTICS  
1000  
100  
160  
140  
120  
C
oss  
C
iss  
100  
80  
Measured with 30 mV(rms)ac @ 1 MHz  
= 0 Vdc  
P
= 300 W  
out  
V
GS  
10  
1
P
= 270 W  
out  
P
= 330 W  
60  
out  
C
rss  
40  
V
= 50 Vdc, I = 150 mA  
DQ  
DD  
20  
0
f = 1200 MHz, Pulse Width = 300 sec  
0.1  
0
10  
V
20  
30  
40  
50  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
, DRAIN--SOURCE VOLTAGE (VOLTS)  
DUTY CYCLE (%)  
DS  
Figure 4. Capacitance versus Drain--Source Voltage  
Figure 5. Safe Operating Area  
24  
65  
59  
58  
57  
56  
55  
54  
53  
52  
Ideal  
P3dB = 55.30 dBm (339 W)  
P1dB = 54.77 dBm (300 W)  
22  
20  
55  
45  
35  
25  
Actual  
G
ps  
D
51  
50  
49  
48  
47  
18  
16  
V
= 50 Vdc, I = 150 mA, f = 1400 MHz  
DQ  
Pulse Width = 300 sec, Duty Cycle = 12%  
V
= 50 Vdc, I = 150 mA, f = 1400 MHz  
DQ  
Pulse Width = 300 sec, Duty Cycle = 12%  
DD  
DD  
50  
100  
400  
27  
29  
31  
33  
35  
37  
39  
P
, OUTPUT POWER (WATTS) PEAK  
P , INPUT POWER (dBm) PEAK  
in  
out  
Figure 6. Power Gain and Drain Efficiency  
versus Output Power  
Figure 7. Output Power versus Input Power  
22  
21  
20  
19  
18  
17  
22  
I
= 150 mA, f = 1400 MHz  
DQ  
Pulse Width = 300 sec  
21  
20  
19  
18  
17  
16  
15  
I
= 600 mA  
DQ  
Duty Cycle = 12%  
300 mA  
150 mA  
450 mA  
45 V  
50 V  
40 V  
35 V  
V
= 50 Vdc, f = 1400 MHz  
DD  
Pulse Width = 300 sec, Duty Cycle = 12%  
V
= 30 V  
DD  
50  
100  
400  
50  
100  
, OUTPUT POWER (WATTS) PEAK  
400  
P
, OUTPUT POWER (WATTS) PEAK  
P
out  
out  
Figure 9. Power Gain versus Output Power  
Figure 8. Power Gain versus Output Power  
MMRF1011HR5 MMRF1011HSR5  
RF Device Data  
Freescale Semiconductor, Inc.  
5
TYPICAL CHARACTERISTICS  
400  
300  
200  
100  
0
24  
70  
58  
-- 3 0 _C  
T
= --30_C  
C
25_C  
55_C  
25_C  
22  
85_C  
G
ps  
85_C  
T
= --30_C  
C
25_C  
85_C  
20  
18  
16  
46  
34  
D
55_C  
V
= 50 Vdc, I = 150 mA, f = 1400 MHz  
DQ  
DD  
V
= 50 Vdc, I = 150 mA, f = 1400 MHz  
DQ  
Pulse Width = 300 sec, Duty Cycle = 12%  
DD  
Pulse Width = 300 sec, Duty Cycle = 12%  
22  
0
1
2
3
4
5
6
50  
100  
400  
P , INPUT POWER (WATTS) PEAK  
in  
P
, OUTPUT POWER (WATTS) PEAK  
out  
Figure 10. Output Power versus Input Power  
Figure 11. Power Gain and Drain Efficiency  
versus Output Power  
19  
63  
18  
17  
16  
15  
14  
13  
12  
11  
G
62  
61  
60  
59  
0
ps  
D
-- 5  
IRL  
-- 1 0  
-- 1 5  
V
= 50 Vdc, I = 150 mA, P = 330 W Peak (39.6 W Avg.)  
DQ out  
DD  
-- 2 0  
-- 2 5  
10  
9
Pulse Width = 300 sec, Duty Cycle = 12%  
1200 1225 1250 1275 1300 1325  
1350 1375 1400  
f, FREQUENCY (MHz)  
Figure 12. Broadband Performance @ Pout = 330 Watts Peak  
8
10  
7
10  
6
10  
5
10  
90  
110  
130  
150  
170  
190  
210  
230  
250  
T , JUNCTION TEMPERATURE (C)  
J
This above graph displays calculated MTTF in hours when the device  
is operated at V = 50 Vdc, P = 330 W Peak, Pulse Width = 300 sec,  
DD  
out  
Duty Cycle = 12%, and = 60.5%.  
D
MTTF calculator available at http://www.freescale.com/rf. Select  
Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
Figure 13. MTTF versus Junction Temperature  
MMRF1011HR5 MMRF1011HSR5  
RF Device Data  
Freescale Semiconductor, Inc.  
6
Z = 10   
o
f = 1400 MHz  
f = 1400 MHz  
Z
load  
Z
source  
f = 1200 MHz  
f = 1200 MHz  
V
= 50 Vdc, I = 150 mA, P = 330 W Peak  
DQ out  
DD  
f
Z
Z
load  
source  
MHz  
1200  
1300  
1400  
2.70 -- j4.10  
4.93 -- j2.66  
7.01 -- j2.87  
2.97 -- j2.66  
2.85 -- j2.40  
3.17 -- j1.78  
Z
Z
=
Test circuit impedance as measured from  
gate to ground.  
source  
=
Test circuit impedance as measured  
from drain to ground.  
load  
Output  
Matching  
Network  
Device  
Under  
Test  
Input  
Matching  
Network  
Z
Z
source  
load  
Figure 14. Series Equivalent Source and Load Impedance  
MMRF1011HR5 MMRF1011HSR5  
RF Device Data  
Freescale Semiconductor, Inc.  
7
PACKAGE DIMENSIONS  
MMRF1011HR5 MMRF1011HSR5  
RF Device Data  
Freescale Semiconductor, Inc.  
8
MMRF1011HR5 MMRF1011HSR5  
RF Device Data  
Freescale Semiconductor, Inc.  
9
MMRF1011HR5 MMRF1011HSR5  
RF Device Data  
Freescale Semiconductor, Inc.  
10  
MMRF1011HR5 MMRF1011HSR5  
RF Device Data  
Freescale Semiconductor, Inc.  
11  
PRODUCT DOCUMENTATION AND SOFTWARE  
Refer to the following resources to aid your design process.  
Application Notes  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
Software  
Electromigration MTTF Calculator  
For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software  
& Tools tab on the part’s Product Summary page to download the respective tool.  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
0
July 2014  
Initial Release of Data Sheet  
MMRF1011HR5 MMRF1011HSR5  
RF Device Data  
Freescale Semiconductor, Inc.  
12  
Information in this document is provided solely to enable system and software  
implementers to use Freescale products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits based on the  
information in this document.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale reserves the right to make changes without further notice to any products  
herein. Freescale makes no warranty, representation, or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters that may be provided in Freescale data sheets and/or  
specifications can and do vary in different applications, and actual performance may  
vary over time. All operating parameters, including “typicals,” must be validated for  
each customer application by customer’s technical experts. Freescale does not convey  
any license under its patent rights nor the rights of others. Freescale sells products  
pursuant to standard terms and conditions of sale, which can be found at the following  
address: freescale.com/SalesTermsandConditions.  
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,  
Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their  
respective owners.  
E 2014 Freescale Semiconductor, Inc.  
Document Number: MMRF1011H  
Rev. 0, 7/2014  

相关型号:

MMRF1011HR5

RF Power LDMOS Transistors
NXP

MMRF1011HSR5

RF Power LDMOS Transistors
NXP

MMRF1013H

RF Power LDMOS Transistors
NXP

MMRF1013HR5

RF Power LDMOS Transistors
NXP

MMRF1013HSR5

RF Power LDMOS Transistors
NXP

MMRF1014N

RF Power LDMOS Transistor
NXP

MMRF1014NT1

RF Power LDMOS Transistor
NXP

MMRF1015GNR1

RF Power LDMOS Transistors
NXP

MMRF1015N

RF Power LDMOS Transistors
NXP

MMRF1015NR1

RF Power LDMOS Transistors
NXP

MMRF1017N

RF Power LDMOS Transistor
NXP

MMRF1017NR3

RF Power LDMOS Transistor
NXP