GTL2003PW [NXP]

8-bit bidirectional low voltage translator; 8位双向低电压转换器
GTL2003PW
型号: GTL2003PW
厂家: NXP    NXP
描述:

8-bit bidirectional low voltage translator
8位双向低电压转换器

转换器 驱动程序和接口 接口集成电路 光电二极管
文件: 总19页 (文件大小:113K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GTL2003  
8-bit bidirectional low voltage translator  
Rev. 01 — 27 July 2007  
Product data sheet  
1. General description  
The Gunning Transceiver Logic - Transceiver Voltage Clamps (GTL-TVC) provide  
high-speed voltage translation with low ON-state resistance and minimal propagation  
delay. The GTL2003 provides 8 NMOS pass transistors (Sn and Dn) with a common gate  
(GREF) and a reference transistor (SREF and DREF). The device allows bidirectional  
voltage translations between 1.0 V and 5.0 V without use of a direction pin.  
When the Sn or Dn port is LOW, the clamp is in the ON-state and a low resistance  
connection exists between the Sn and Dn ports. Assuming the higher voltage is on the Dn  
port, when the Dn port is HIGH, the voltage on the Sn port is limited to the voltage set by  
the reference transistor (SREF). When the Sn port is HIGH, the Dn port is pulled to VCC by  
the pull-up resistors. This functionality allows a seamless translation between higher and  
lower voltages selected by the user, without the need for directional control.  
All transistors have the same electrical characteristics and there is minimal deviation from  
one output to another in voltage or propagation delay. This is a benefit over discrete  
transistor voltage translation solutions, since the fabrication of the transistors is  
symmetrical. Because all transistors in the device are identical, SREF and DREF can be  
located on any of the other eight matched Sn/Dn transistors, allowing for easier board  
layout. The translator's transistors provide excellent ESD protection to lower voltage  
devices and at the same time protect less ESD-resistant devices.  
2. Features  
I 8-bit bidirectional low voltage translator  
I Allows voltage level translation between 1.0 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.3 V, and 5 V  
buses which allows direct interface with GTL, GTL+, LVTTL/TTL and 5 V CMOS levels  
I Provides bidirectional voltage translation with no direction pin  
I Low 6.5 ON-state resistance (Ron) between input and output pins (Sn/Dn)  
I Supports hot insertion  
I No power supply required: will not latch up  
I 5 V tolerant inputs  
I Low standby current  
I Flow-through pinout for ease of printed-circuit board trace routing  
I ESD protection exceeds 2000 V HBM per JESD22-A114, 200 V MM per  
JESD22-A115, and 1000 V CDM per JESD22-C101  
I Packages offered: TSSOP20, DHVQFN20  
GTL2003  
NXP Semiconductors  
8-bit bidirectional low voltage translator  
3. Applications  
I Any application that requires bidirectional or unidirectional voltage level translation  
from any voltage from 1.0 V to 5.0 V to any voltage from 1.0 V to 5.0 V  
I The open-drain construction with no direction pin is ideal for bidirectional low voltage  
(for example, 1.0 V, 1.2 V, 1.5 V, or 1.8 V) processor I2C-bus port translation to the  
normal 3.3 V and/or 5.0 V I2C-bus signal levels or GTL/GTL+ translation to LVTTL/TTL  
signal levels.  
4. Ordering information  
Table 1.  
Ordering information  
Type number Package  
Name  
Description  
Version  
GTL2003BQ  
DHVQFN20 plastic dual in-line compatible thermal enhanced very SOT764-1  
thin quad flat package; no leads; 20 terminals;  
body 2.5 × 4.5 × 0.85 mm  
GTL2003PW TSSOP20  
plastic thin shrink small outline package; 20 leads;  
body width 4.4 mm  
SOT360-1  
4.1 Ordering options  
Table 2.  
Ordering options  
Topside mark  
Type number  
GTL2003BQ  
GTL2003PW  
Temperature range  
40 °C to +85 °C  
40 °C to +85 °C  
2003  
GTL2003  
5. Functional diagram  
DREF  
GREF  
D1  
D8  
SREF  
S1  
S8  
002aac641  
Fig 1. Functional diagram  
GTL2003_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 27 July 2007  
2 of 19  
GTL2003  
NXP Semiconductors  
8-bit bidirectional low voltage translator  
6. Pinning information  
6.1 Pinning  
terminal 1  
index area  
2
3
4
5
6
7
8
9
19  
18  
17  
16  
15  
14  
13  
12  
SREF  
S1  
DREF  
D1  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
GND  
SREF  
S1  
GREF  
DREF  
D1  
S2  
D2  
S3  
D3  
3
GTL2003BQ  
S4  
D4  
4
S2  
D2  
5
S3  
D3  
S5  
D5  
GTL2003PW  
6
S4  
D4  
S6  
D6  
7
S5  
D5  
S7  
D7  
8
S6  
D6  
9
S7  
D7  
002aac640  
10  
S8  
D8  
002aac639  
Transparent top view  
Fig 2. Pin configuration for TSSOP20  
Fig 3. Pin configuration for DHVQFN20  
6.2 Pin description  
Table 3.  
Symbol  
Pin description  
Pin  
Description  
GND  
1[1]  
ground (0 V)  
SREF  
2
source of reference transistor  
Port S1 to Port S8  
S1 to S8  
D1 to D8  
DREF  
3, 4, 5, 6, 7, 8, 9, 10  
18, 17, 16, 15, 14, 13, 12, 11  
Port D1 to Port D8  
19  
20  
drain of reference transistor  
gate of reference transistor  
GREF  
[1] DHVQFN package die supply ground is connected to both GND pin and exposed center pad. GND pin must  
be connected to supply ground for proper device operation. For enhanced thermal, electrical, and board  
level performance, the exposed pad needs to be soldered to the board using a corresponding thermal pad  
on the board and for proper heat conduction through the board, thermal vias need to be incorporated in the  
printed-circuit board in the thermal pad region.  
GTL2003_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 27 July 2007  
3 of 19  
GTL2003  
NXP Semiconductors  
8-bit bidirectional low voltage translator  
7. Functional description  
Refer also to Figure 1 “Functional diagram”.  
7.1 Function selection  
Table 4.  
Function selection, HIGH-to-LOW translation  
Assumes Dn is at the higher voltage level.  
H = HIGH voltage level; L = LOW voltage level; X = Don’t care  
GREF[1]  
DREF  
SREF  
Input Dn  
Output Sn  
Transistor  
H
H
H
L
H
H
H
L
0 V  
X
H
L
X
off  
on  
on  
off  
[2]  
[2][3]  
VT  
VT  
L[4]  
[2]  
VT  
[2]  
0 V VT  
X
X
[1] GREF should be at least 1.5 V higher than SREF for best translator operation.  
[2] VT is equal to the SREF voltage.  
[3] Sn is not pulled up or pulled down.  
[4] Sn follows the Dn input LOW.  
Table 5.  
Function selection, LOW-to-HIGH translation  
Assumes Dn is at the higher voltage level.  
H = HIGH voltage level; L = LOW voltage level; X = Don’t care  
GREF[1]  
DREF  
SREF  
Input Sn  
Output Dn  
Transistor  
H
H
H
L
H
H
H
L
0 V  
X
X
off  
[2]  
[2]  
VT  
VT  
H[3]  
L[4]  
X
nearly off  
[2]  
VT  
L
on  
off  
[2]  
0 V VT  
X
[1] GREF should be at least 1.5 V higher than SREF for best translator operation.  
[2] VT is equal to the SREF voltage.  
[3] Dn is pulled up to VCC through an external resistor.  
[4] Dn follows the Sn input LOW.  
GTL2003_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 27 July 2007  
4 of 19  
GTL2003  
NXP Semiconductors  
8-bit bidirectional low voltage translator  
8. Application design-in information  
8.1 Bidirectional translation  
For the bidirectional clamping configuration, higher voltage to lower voltage or lower  
voltage to higher voltage, the GREF input must be connected to DREF and both pins  
pulled to HIGH side VCC through a pull-up resistor (typically 200 k). A filter capacitor on  
DREF is recommended. The processor output can be totem pole or open-drain (pull-up  
resistors may be required) and the chip set output can be totem pole or open-drain  
(pull-up resistors are required to pull the Dn outputs to VCC). However, if either output is  
totem pole, data must be unidirectional or the outputs must be 3-stateable and the outputs  
must be controlled by some direction control mechanism to prevent HIGH-to-LOW  
contentions in either direction. If both outputs are open-drain, no direction control is  
needed. The opposite side of the reference transistor (SREF) is connected to the  
processor core power supply voltage. When DREF is connected through a 200 kresistor  
to a 3.3 V to 5.5 V VCC supply and SREF is set between 1.0 V to (VCC 1.5 V), the output  
of each Sn has a maximum output voltage equal to SREF and the output of each Dn has  
a maximum output voltage equal to VCC  
.
1.8 V  
1.5 V  
1.2 V  
1.0 V  
5 V  
200 k  
totem pole or  
open-drain I/O  
GTL2002  
GND  
SREF  
S1  
GREF  
DREF  
D1  
V
V
CORE  
CC  
CPU I/O  
CHIPSET I/O  
S2  
D2  
increase bit size  
by using 8-bit GTL2003,  
10-bit GTL2010,  
3.3 V  
or 22-bit GTL2000  
V
CC  
S3  
S4  
S5  
Sn  
D3  
D4  
D5  
Dn  
CHIPSET I/O  
002aac642  
Typical bidirectional voltage translation.  
Fig 4. Bidirectional translation to multiple higher voltage levels such as an I2C-bus  
application  
GTL2003_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 27 July 2007  
5 of 19  
GTL2003  
NXP Semiconductors  
8-bit bidirectional low voltage translator  
8.2 Unidirectional down translation  
For unidirectional clamping, higher voltage to lower voltage, the GREF input must be  
connected to DREF and both pins pulled to the higher side VCC through a pull-up resistor  
(typically 200 k). A filter capacitor on DREF is recommended. Pull-up resistors are  
required if the chip set I/O are open-drain. The opposite side of the reference transistor  
(SREF) is connected to the processor core supply voltage. When DREF is connected  
through a 200 kresistor to a 3.3 V to 5.5 V VCC supply and SREF is set between 1.0 V  
to (VCC 1.5 V), the output of each Sn has a maximum output voltage equal to SREF.  
1.8 V  
1.5 V  
1.2 V  
1.0 V  
5 V  
200 kΩ  
GTL2002  
GND GREF  
easy migration to lower voltage  
as processor geometry shrinks  
SREF  
S1  
DREF  
D1  
V
V
CORE  
CC  
CPU I/O  
CHIPSET I/O  
S2  
D2  
totem pole I/O  
002aac061  
Typical unidirectional HIGH-to-LOW voltage translation.  
Fig 5. Unidirectional down translation to protect low voltage processor pins  
8.3 Unidirectional up translation  
For unidirectional up translation, lower voltage to higher voltage, the reference transistor is  
connected the same as for a down translation. A pull-up resistor is required on the higher  
voltage side (Dn or Sn) to get the full HIGH level, since the GTL-TVC device will only pass  
the reference source (SREF) voltage as a HIGH when doing an up translation. The driver  
on the lower voltage side only needs pull-up resistors if it is open-drain.  
1.8 V  
1.5 V  
1.2 V  
1.0 V  
5 V  
200 kΩ  
GTL2002  
GND GREF  
easy migration to lower voltage  
as processor geometry shrinks  
SREF  
S1  
DREF  
D1  
V
V
CORE  
CC  
CPU I/O  
CHIPSET I/O  
S2  
D2  
totem pole I/O  
or open-drain  
002aac062  
Typical unidirectional LOW-to-HIGH voltage translation.  
Fig 6. Unidirectional down translation to protect low voltage processor pins  
GTL2003_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 27 July 2007  
6 of 19  
GTL2003  
NXP Semiconductors  
8-bit bidirectional low voltage translator  
8.4 Sizing pull-up resistor  
The pull-up resistor value needs to limit the current through the pass transistor when it is  
in the ‘on’ state to about 15 mA. This will guarantee a pass voltage of 260 mV to 350 mV.  
If the current through the pass transistor is higher than 15 mA, the pass voltage will also  
be higher in the ‘on’ state. To set the current through each pass transistor at 15 mA, the  
pull-up resistor value is calculated as follows:  
pull-up voltage (V) 0.35 V  
resistor value (Ω) =  
-----------------------------------------------------------------------------  
0.015 A  
Table 6 summarizes resistor values for various reference voltages and currents at 15 mA  
and also at 10 mA and 3 mA. The resistor value shown in the +10 % column or a larger  
value should be used to ensure that the pass voltage of the transistor would be 350 mV or  
less. The external driver must be able to sink the total current from the resistors on both  
sides of the GTL-TVC device at 0.175 V, although the 15 mA only applies to current  
flowing through the GTL-TVC device. See application note AN10145 Bidirectional low  
voltage translators for more information.  
Table 6.  
Pull-up resistor values  
Calculated for VOL = 0.35 V. Assumes output driver VOL = 0.175 V at stated current.  
Pull-up resistor value ()  
Voltage  
15 mA  
Nominal  
+ 10 %[1]  
310 341  
10 mA  
Nominal  
+ 10 %[1]  
465 512  
3 mA  
Nominal  
+ 10 %[1]  
1550 1705  
5.0 V  
3.3 V  
2.5 V  
1.8 V  
1.5 V  
1.2 V  
197  
143  
97  
217  
158  
106  
85  
295  
215  
145  
115  
85  
325  
237  
160  
127  
94  
983  
717  
483  
383  
283  
1082  
788  
532  
422  
312  
77  
57  
63  
[1] + 10 % to compensate for VDD range and resistor tolerance.  
GTL2003_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 27 July 2007  
7 of 19  
GTL2003  
NXP Semiconductors  
8-bit bidirectional low voltage translator  
9. Limiting values  
Table 7.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol Parameter  
Conditions  
Min  
Max  
Unit  
V
VSREF  
VDREF  
VGREF  
VSn  
voltage on pin SREF  
0.5[2] +7.0  
0.5[2] +7.0  
0.5[2] +7.0  
0.5[2] +7.0  
0.5[2] +7.0  
voltage on pin DREF  
voltage on pin GREF  
voltage on port Sn  
voltage on port Dn  
input clamping current  
V
V
V
VDn  
V
IIK  
SREF, DREF, GREF; VI < 0 V  
port Sn; VI < 0 V  
-
50  
mA  
mA  
mA  
mA  
°C  
-
50  
port Dn; VI < 0 V  
-
50  
Ich  
channel current (DC)  
storage temperature  
channel in ON-state  
-
±128  
+150  
Tstg  
65  
[1] The performance capability of a high-performance integrated circuit in conjunction with its thermal  
environment can create junction temperatures which are detrimental to reliability. The maximum junction  
temperature of this integrated circuit should not exceed 150 °C.  
[2] The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings  
are observed.  
10. Recommended operating conditions  
Table 8.  
Recommended operating conditions  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VI/O  
voltage on an input/output  
Sn, Dn  
0
-
5.5  
V
pin  
[1]  
VSREF  
VDREF  
VGREF  
Isw(pass)  
Tamb  
voltage on pin SREF  
voltage on pin DREF  
voltage on pin GREF  
pass switch current  
ambient temperature  
0
-
-
-
-
-
5.5  
5.5  
5.5  
64  
V
0
V
0
V
-
mA  
°C  
operating in free-air  
40  
+85  
[1]  
VSREF VDREF 1.5 V for best results in level shifting applications.  
GTL2003_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 27 July 2007  
8 of 19  
GTL2003  
NXP Semiconductors  
8-bit bidirectional low voltage translator  
11. Static characteristics  
Table 9.  
Static characteristics  
Tamb = 40 °C to +85 °C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
VOL  
LOW-level output voltage  
VDD = 3.0 V; VSREF = 1.365 V;  
-
260  
350  
mV  
VSn or VDn = 0.175 V; IIK = 15.2 mA  
VIK  
input clamping voltage  
gate input leakage current  
input capacitance at gate  
II = 18 mA; VGREF = 0 V  
VI = 5 V; VGREF = 0 V  
-
-
-
-
-
1.2  
V
ILI(G)  
Cig  
-
5
-
µA  
pF  
pF  
GREF; VI = 3 V or 0 V  
VO = 3 V or 0 V; VGREF = 0 V  
56  
7.4  
Cio(off)  
off-state input/output  
capacitance  
-
Cio(on)  
Ron  
on-state input/output  
capacitance  
VO = 3 V or 0 V; VGREF = 3 V  
-
18.6  
-
pF  
[2]  
ON-state resistance  
VI = 0 V; IO = 64 mA  
VGREF = 4.5 V  
-
-
-
-
-
-
-
-
3.5  
4.4  
5.5  
67  
9
5
VGREF = 3 V  
7
VGREF = 2.3 V  
9
VGREF = 1.5 V  
105  
15  
10  
80  
70  
[2]  
[2]  
[2]  
[2]  
VI = 0 V; IO = 30 mA; VGREF = 1.5 V  
VI = 2.4 V; IO = 15 mA; VGREF = 4.5 V  
VI = 2.4 V; IO = 15 mA; VGREF = 3 V  
VI = 1.7 V; IO = 15 mA; VGREF = 2.3 V  
7
58  
50  
[1] All typical values are measured at Tamb = 25 °C.  
[2] Measured by the voltage drop between the Sn and the Dn terminals at the indicated current through the switch. ON-state resistance is  
determined by the lowest voltage of the two (Sn or Dn) terminals.  
GTL2003_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 27 July 2007  
9 of 19  
GTL2003  
NXP Semiconductors  
8-bit bidirectional low voltage translator  
12. Dynamic characteristics  
12.1 Dynamic characteristics for translator-type application  
Table 10. Dynamic characteristics  
Tamb = 40 °C to +85 °C; Vref = 1.365 V to 1.635 V; VDD1 = 3.0 V to 3.6 V; VDD2 = 2.36 V to 2.64 V;  
GND = 0 V; tr = tf 3.0 ns; unless otherwise specified. Refer to Figure 9.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1] Max  
Unit  
[2][3]  
[2][3]  
tPLH  
LOW-to-HIGH  
propagation delay  
Sn to Dn; Dn to Sn  
0.5  
1.5  
5.5  
ns  
tPHL  
HIGH-to-LOW  
Sn to Dn; Dn to Sn  
0.5  
1.5  
5.5  
ns  
propagation delay  
[1] All typical values are measured at VDD1 = 3.3 V, VDD2 = 2.5 V, Vref = 1.5 V and Tamb = 25 °C.  
[2] Propagation delay is measured using Figure 9 and is a difference measurement. It is not production tested  
and is guaranteed by ON-state resistance.  
[3] Cio(on) maximum of 30 pF and Cio(off) maximum of 15 pF is guaranteed by design.  
V
I
input  
V
V
M
M
GND  
V
V
V
V
DD2  
test jig output  
HIGH-to-LOW  
LOW-to-HIGH  
V
V
M
M
OL  
t
t
PLH  
PHL  
DD2  
DUT output  
HIGH-to-LOW  
LOW-to-HIGH  
V
M
V
M
OL  
002aad197  
VM = 1.5 V; VI = GND to 3.0 V.  
Fig 7. The input (Sn) to output (Dn) propagation delays  
GTL2003_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 27 July 2007  
10 of 19  
GTL2003  
NXP Semiconductors  
8-bit bidirectional low voltage translator  
12.2 Dynamic characteristics for CBT-type application  
Table 11. Dynamic characteristics  
Tamb = 40 °C to +85 °C; VGREF = 5 V ± 0.5 V; GND = 0 V; CL = 50 pF; unless otherwise specified.  
Refer to Figure 10.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
tPD  
propagation delay  
-
-
250  
ps  
[1] This parameter is warranted by the ON-state resistance, but is not production tested. The propagation delay  
is based on the RC time constant of the typical ON-state resistance of the switch and a load capacitance of  
50 pF, when driven by an ideal voltage source (zero output impedance).  
3.0 V  
input  
1.5 V  
1.5 V  
0 V  
V
t
t
PHL  
PLH  
OH  
output  
1.5 V  
1.5 V  
V
OL  
002aab664  
VM = 1.5 V; VI = GND to 3.0 V.  
tPD is equal to the maximum of tPLH or tPHL  
.
Fig 8. Input (Sn) to output (Dn) propagation delays  
GTL2003_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 27 July 2007  
11 of 19  
GTL2003  
NXP Semiconductors  
8-bit bidirectional low voltage translator  
13. Test information  
V
V
V
V
DD1  
200 kΩ  
DD2  
150 kΩ  
DD2  
DD2  
150 kΩ  
150 kΩ  
DREF  
SREF  
GREF  
D1  
S1  
D8  
S8  
DUT  
test jig  
V
ref  
pulse  
generator  
002aac643  
Fig 9. Load circuit for translator-type applications  
R
7 V  
open  
GND  
S1  
L
from output under test  
500 Ω  
C
50 pF  
R
L
500 Ω  
L
002aab667  
Test data are given in Table 12.  
CL = load capacitance; includes jig and probe capacitance.  
RL = load resistance.  
Fig 10. Load circuit for CBT-type application  
Table 12. Test data  
Test  
Load  
CL  
Switch  
RL  
tPD  
50 pF  
50 pF  
50 pF  
500 Ω  
500 Ω  
500 Ω  
open  
7 V  
tPLZ, tPZL  
tPHZ, tPZH  
open  
GTL2003_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 27 July 2007  
12 of 19  
GTL2003  
NXP Semiconductors  
8-bit bidirectional low voltage translator  
14. Package outline  
TSSOP20: plastic thin shrink small outline package; 20 leads; body width 4.4 mm  
SOT360-1  
D
E
A
X
c
H
v
M
A
y
E
Z
11  
20  
Q
A
2
(A )  
3
A
A
1
pin 1 index  
θ
L
p
L
1
10  
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
Z
θ
1
2
3
p
E
p
max.  
8o  
0o  
0.15  
0.05  
0.95  
0.80  
0.30  
0.19  
0.2  
0.1  
6.6  
6.4  
4.5  
4.3  
6.6  
6.2  
0.75  
0.50  
0.4  
0.3  
0.5  
0.2  
mm  
1.1  
0.65  
0.25  
1
0.2  
0.13  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT360-1  
MO-153  
Fig 11. Package outline SOT360-1 (TSSOP20)  
GTL2003_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 27 July 2007  
13 of 19  
GTL2003  
NXP Semiconductors  
8-bit bidirectional low voltage translator  
DHVQFN20: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads;  
20 terminals; body 2.5 x 4.5 x 0.85 mm  
SOT764-1  
B
A
D
A
A
1
E
c
detail X  
terminal 1  
index area  
C
terminal 1  
index area  
e
1
y
y
e
b
v
M
C
C
A
B
C
1
w
M
2
9
L
1
10  
E
h
e
20  
11  
19  
12  
D
h
X
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
A
(1)  
(1)  
UNIT  
A
b
c
E
e
e
1
y
D
D
E
L
v
w
y
1
1
h
h
max.  
0.05 0.30  
0.00 0.18  
4.6  
4.4  
3.15  
2.85  
2.6  
2.4  
1.15  
0.85  
0.5  
0.3  
mm  
0.05  
0.1  
1
0.2  
0.5  
3.5  
0.1  
0.05  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
02-10-17  
03-01-27  
SOT764-1  
- - -  
MO-241  
- - -  
Fig 12. Package outline SOT764-1 (DHVQFN20)  
GTL2003_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 27 July 2007  
14 of 19  
GTL2003  
NXP Semiconductors  
8-bit bidirectional low voltage translator  
15. Soldering  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
15.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
15.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus PbSn soldering  
15.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
GTL2003_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 27 July 2007  
15 of 19  
GTL2003  
NXP Semiconductors  
8-bit bidirectional low voltage translator  
15.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 13) than a PbSn process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 13 and 14  
Table 13. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 14. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 13.  
GTL2003_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 27 July 2007  
16 of 19  
GTL2003  
NXP Semiconductors  
8-bit bidirectional low voltage translator  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 13. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
16. Abbreviations  
Table 15. Abbreviations  
Acronym  
CDM  
CMOS  
DUT  
Description  
Charged Device Model  
Complementary Metal Oxide Semiconductor  
Device Under Test  
ESD  
ElectroStatic Discharge  
GTL  
Gunning Transceiver Logic  
Human Body Model  
HBM  
I2C-bus  
LVTTL  
MM  
Inter-Integrated Circuit bus  
Low Voltage Transistor-Transistor Logic  
Machine Model  
NMOS  
TTL  
Negative-channel Metal Oxide Semiconductor  
Transistor-Transistor Logic  
Transceiver Voltage Clamps  
TVC  
17. Revision history  
Table 16. Revision history  
Document ID  
Release date  
20070727  
Data sheet status  
Change notice  
Supersedes  
GTL2003_1  
Product data sheet  
-
-
GTL2003_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 27 July 2007  
17 of 19  
GTL2003  
NXP Semiconductors  
8-bit bidirectional low voltage translator  
18. Legal information  
18.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of a NXP Semiconductors product can reasonably be expected to  
18.2 Definitions  
result in personal injury, death or severe property or environmental damage.  
NXP Semiconductors accepts no liability for inclusion and/or use of NXP  
Semiconductors products in such equipment or applications and therefore  
such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
18.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
18.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
19. Contact information  
For additional information, please visit: http://www.nxp.com  
For sales office addresses, send an email to: salesaddresses@nxp.com  
GTL2003_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 27 July 2007  
18 of 19  
GTL2003  
NXP Semiconductors  
8-bit bidirectional low voltage translator  
20. Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 2  
Functional diagram . . . . . . . . . . . . . . . . . . . . . . 2  
3
4
4.1  
5
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 3  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3  
7
Functional description . . . . . . . . . . . . . . . . . . . 4  
7.1  
Function selection. . . . . . . . . . . . . . . . . . . . . . . 4  
8
Application design-in information . . . . . . . . . . 5  
Bidirectional translation. . . . . . . . . . . . . . . . . . . 5  
Unidirectional down translation. . . . . . . . . . . . . 6  
Unidirectional up translation . . . . . . . . . . . . . . . 6  
Sizing pull-up resistor . . . . . . . . . . . . . . . . . . . . 7  
8.1  
8.2  
8.3  
8.4  
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Recommended operating conditions. . . . . . . . 8  
Static characteristics. . . . . . . . . . . . . . . . . . . . . 9  
10  
11  
12  
12.1  
Dynamic characteristics . . . . . . . . . . . . . . . . . 10  
Dynamic characteristics for translator-type  
application. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Dynamic characteristics for CBT-type  
12.2  
application. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
13  
14  
Test information. . . . . . . . . . . . . . . . . . . . . . . . 12  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 13  
15  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Introduction to soldering . . . . . . . . . . . . . . . . . 15  
Wave and reflow soldering . . . . . . . . . . . . . . . 15  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 15  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 16  
15.1  
15.2  
15.3  
15.4  
16  
17  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 17  
18  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 18  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 18  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
18.1  
18.2  
18.3  
18.4  
19  
20  
Contact information. . . . . . . . . . . . . . . . . . . . . 18  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2007.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 27 July 2007  
Document identifier: GTL2003_1  

相关型号:

GTL2003PW,112

GTL2003 - 8-bit bidirectional low voltage translator TSSOP2 20-Pin
NXP

GTL2003PW,118

GTL2003 - 8-bit bidirectional low voltage translator TSSOP2 20-Pin
NXP

GTL2003PW-T

NXP bidirectional low-voltage translators
NXP

GTL2004

Quad GTL/GTL to LVTTL/TTL bidirectional latched translator
NXP

GTL2004PWDH

Quad GTL/GTL to LVTTL/TTL bidirectional latched translator
NXP

GTL2005

Quad GTL/GTL to LVTTL/TTL bidirectional non-latched translator
NXP

GTL2005PW

Quad GTL/GTL to LVTTL/TTL bidirectional non-latched translator
NXP

GTL2005PW-T

IC SPECIALTY INTERFACE CIRCUIT, PDSO14, 4.40 MM, PLASTIC, MO-153, SOT402-1, TSSOP-14, Interface IC:Other
NXP

GTL2005PW/DG,118

GTL2005 - Quad GTL/GTL+ to LVTTL/TTL bidirectional non-latched translator TSSOP 14-Pin
NXP

GTL2005PWDH

Quad GTL/GTL to LVTTL/TTL bidirectional non-latched translator
NXP

GTL2005PWDH-T

IC SPECIALTY INTERFACE CIRCUIT, PDSO14, PLASTIC, SOT-402, TSSOP2-14, Interface IC:Other
NXP

GTL2006

13-bit GTL-/GTL/GTL+ to LVTTL translator
NXP