GTL2006 [NXP]

13-bit GTL-/GTL/GTL+ to LVTTL translator; 13位GTL- / GTL / GTL +至LVTTL翻译
GTL2006
型号: GTL2006
厂家: NXP    NXP
描述:

13-bit GTL-/GTL/GTL+ to LVTTL translator
13位GTL- / GTL / GTL +至LVTTL翻译

文件: 总14页 (文件大小:130K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
GTL2006  
13-bit GTL–/GTL/GTL+ to LVTTL translator  
Product data  
2004 Jun 21  
Supersedes data of 2003 Dec 18  
Philips  
Semiconductors  
Philips Semiconductors  
Product data  
13-bit GTL–/GTL/GTL+ to LVTTL translator  
GTL2006  
FEATURES  
PIN CONFIGURATION  
Operates as a GTL–/GTL/GTL+ to LVTTL sampling receiver or  
V
1
2
3
4
5
6
7
8
9
28  
27  
V
REF  
CC  
LVTTL to GTL–/GTL/GTL+ driver  
1AO  
1BI  
3.0 V to 3.6 V operation  
LVTTL I/O not 5 V tolerant  
Series termination on the LVTTL outputs of 30 Ω  
2AO  
5A  
26 2BI  
25 7BO1  
6A  
24  
7BO2  
ESD protection exceeds 2000 V HBM per JESD22-A114,  
8AI  
11BI  
11A  
9BI  
23 8BO  
22 11BO  
21 5BI  
20 6BI  
19 3BI  
200 V MM per JESD22-A115 and 250 V CDM per JESD22-C101  
Latch-up testing is done to JESDEC Standard JESD78 which  
exceeds 500 mA  
Package offered: TSSOP28  
3AO 10  
4AO 11  
18  
17  
16  
15  
4BI  
DESCRIPTION  
10AI1 12  
10BOI  
The GTL2006 is a 13-bit translator to interface between the 3.3 V  
LVTTL chip set I/O and the Xeon processor GTL–/GTL/GTL+ I/O.  
The GTL2006 is designed for platform health management in dual  
processor applications.  
10AI2  
13  
10BO2  
9AO  
GND  
14  
SW01091  
Figure 1. Pin configuration  
PIN DESCRIPTION  
PIN NUMBER SYMBOL  
NAME AND FUNCTION  
1
V
REF  
GTL reference voltage  
2–6, 8,  
10–13, 15  
Data inputs/outputs  
(LVTTL)  
nAn  
7, 9, 16,  
17–27  
Data inputs/outputs  
(GTL–/GTL/GTL+)  
nBn  
14  
28  
GND  
Ground (0 V)  
V
CC  
Positive supply voltage  
QUICK REFERENCE DATA  
TYPICAL  
CONDITIONS  
SYMBOL  
PARAMETER  
UNIT  
T
amb  
= 25 °C  
B to A  
5.5  
A to B  
5.5  
t
t
Propagation delay  
PLH  
PHL  
C = 50 pF; V = 3.3 V  
ns  
L
CC  
An to Bn or Bn to An  
I/O pin capacitance  
C
Outputs disabled; V = 0 V or 3.0 V  
7.8  
4.5  
pF  
I/O  
I/O  
ORDERING INFORMATION  
PACKAGES  
TEMPERATURE RANGE  
ORDER CODE  
TOPSIDE MARK  
GTL2006  
DWG NUMBER  
28-Pin Plastic TSSOP  
–40 °C to +85 °C  
GTL2006PW  
SOT361-1  
Standard packing quantities and other packaging data are available at www.philipslogic.com/packaging.  
2
2004 Jun 21  
Philips Semiconductors  
Product data  
13-bit GTL–/GTL/GTL+ to LVTTL translator  
GTL2006  
FUNCTION TABLES  
INPUT  
OUTPUT  
INPUT  
OUTPUT  
1BI/2BI/3BI/4BI/9BI  
1AO/2AO/3AO/4AO/9AO  
8AI  
L
8BO  
L
L
L
H
H
H
H
INPUT  
INPUT  
OUTPUT  
10AI1/10AI2  
9BI  
L
10BO1/10BO2  
L
L
L
L
H
H
H
L
L
H
H
INPUT  
INPUT/OUTPUT  
OUTPUT  
5BI/6BI  
5A/6A (OPEN DRAIN)  
7BO1/7BO2  
1
L
H
H
L
H
2
L
L
H
H
INPUT  
INPUT/OUTPUT  
11A (OPEN DRAIN)  
H
OUTPUT  
11BI  
L
11BO  
L
H
H
2
L
L
H
L
H = HIGH voltage level  
L = LOW voltage level  
NOTES:  
1. The enable on 7BO1/7BO2 include a delay that prevents the transient condition where 5BI/6BI go from LOW to HIGH, and the LOW to HIGH  
on 5A/6A lags up to 100 ns from causing a low glitch on the 7BO1/7BO2 outputs.  
2. Open Drain Input/Output terminal is driven to logic LOW state by other driver.  
3
2004 Jun 21  
Philips Semiconductors  
Product data  
13-bit GTL–/GTL/GTL+ to LVTTL translator  
GTL2006  
LOGIC SYMBOL  
GTL2006  
1
GTL V  
REF  
27  
26  
2
3
1BI  
1AO  
GTL  
INPUTS  
LVTTL  
OUTPUTS  
2BI  
2AO  
25  
24  
4
5
5A (OPEN DRAIN)  
6A (OPEN DRAIN)  
7BO1  
7BO2  
LVTTL I/O  
GTL  
OUTPUTS  
23  
22  
6
7
LVTTL INPUT 8AI  
GTL INPUT 11BI  
8BO  
11BO  
1
DELAY  
1
8
9
LVTTL I/O 11A (OPEN DRAIN)  
GTL INPUT 9BI  
21  
5BI  
DELAY  
20  
19  
18  
6BI  
3BI  
4BI  
GTL  
INPUTS  
10  
11  
3AO  
LVTTL  
OUTPUTS  
4AO  
17  
16  
10BO1  
10BO2  
12  
13  
10AI1  
LVTTL  
INPUTS  
GTL  
OUTPUTS  
10AI2  
15  
9AO LVTTL OUTPUT  
SW01092  
NOTE:  
1. The enable on 7BO1/7BO2 include a delay that prevents the transient condition where 5BI/6BI go from LOW to HIGH, and the LOW to HIGH  
on 5A/6A lags up to 100 ns from causing a low glitch on the 7BO1/7BO2 outputs.  
Figure 2. Logic symbol  
4
2004 Jun 21  
Philips Semiconductors  
Product data  
13-bit GTL–/GTL/GTL+ to LVTTL translator  
GTL2006  
APPLICATION INFORMATION  
V
V
TT  
TT  
56 Ω  
R
56 Ω  
V
CC  
1.5 kto 1.2 kΩ  
1.5 kΩ  
2R  
V
CC  
PLATFORM  
HEALTH  
MANAGEMENT  
CPU1  
V
V
CC  
REF  
CPU1 IERR_L  
IERR_L  
1AO  
2AO  
5A  
1BI  
2BI  
CPU1 THRMTRIP L  
CPU1 PROCHOT L  
CPU2 PROCHOT L  
THRMTRIP L  
FORCEPR_L  
PROCHOT L  
7BO1  
6A  
7BO2  
8BO  
NMI  
8AI  
11BI  
11A  
9BI  
FORCEPR_L  
NMI_L  
CPU1 SMI L  
11B0  
5BI  
6BI  
FORCEPR_L  
PROCHOT L  
CPU2 IERR_L  
3AO  
3BI  
IERR_L  
THRMTRIP L  
NMI  
4AO  
CPU2 THRMTRIP L  
CPU1 SMI L  
4BI  
10AI1  
10AI2  
10BO1  
10BO2  
9AO  
CPU2 SMI L  
SMI_BUFF_L  
CPU2 SMI L  
CPU2  
GND  
GTL2006  
SOUTHBRIDGE NMI  
OPTIONAL SIGNAL LINE  
SOUTHBRIDGE SMI_L  
SW01094  
Figure 3. Application diagram  
5
2004 Jun 21  
Philips Semiconductors  
Product data  
13-bit GTL–/GTL/GTL+ to LVTTL translator  
GTL2006  
Frequently Asked Questions  
Question 1: On the GTL2006 LVTTL inputs, specifically 10AI1 and  
10AI2, when the GTL2006 is unpowered, these inputs may be pulled  
up to 3.3 V S/B and we want to make sure that there is no leakage  
path to the power rail under this condition. Are the LVTTL inputs  
HIGH Impedance when the device is unpowered and will there be  
any leakage?  
Question 6: Please explain the timing specification of Bn to Bn in  
the AC Characteristics table. Which specific inputs/outputs does it  
cover, and why is the H > L transition so slow?  
Answer 6: The Bn to Bn refers to the 4BI to 7BO1 path and to the  
6BI to 7BO2 path. The times are disable and enable times since a  
LOW on 5BI or 6BI should not be reflected as a LOW on 7BO1 or  
7BO2.  
Answer 1: When the device is unpowered, the LVTTL inputs will  
be in a high-impedance state and will not leak to V if they are  
pulled high while the device is unpowered.  
DD  
The t  
corresponds to the disable time, and the t  
corresponds  
PLH  
PHL  
to the enable time. The enable time is deliberately slow to prevent  
glitches/false LOWs on the 7BOn outputs, because a LOW on 5BI  
drives a LOW on 5A, which is an open-drain I/O and may have a  
slow rise time. And a LOW on 6BI drives a LOW on 6A that is an  
open-drain I/O that may also have a slow rise time.  
Question 2: Do all the LVTTL inputs have the same unpowered  
characteristic?  
Answer 2: Yes.  
Question 3: What is the condition of the other GTL I/O and LVTTL  
output pins when the device is unpowered?  
Question 6A: Now that I try to examine the circuit from the  
data sheet, I am just a little bit concerned. Let me try to describe the  
function first:  
Answer 3: The open drain outputs, both GTL and LVTTL, will not  
leak to the power supply if they are pulled high while the device is  
unpowered. The GTL inputs will also not leak to the power supply  
under the same conditions. The LVTTL totem pole outputs, however,  
are not open drain type outputs and there will be current flow on  
This circuit is used for monitoring and driving the CPU PROCHOT#.  
The monitor device is a Heceta7 part and its output is bi-directional,  
CPU1_PROCHOT# and is connected to 5A.  
these pins if they are pulled high when V is at ground.  
DD  
The CPU has an output called PROCHOT#, which goes to 5BI and  
an input call FRCPROCHOT# that comes from 7BO1.  
Question 4: When this sequence occurs:  
1) Pin 11BI is driven LOW (at time t0)  
2) Pin 11A is driven LOW (at time t1)  
When the CPU is generating PROCHPT# (5BI), we do not want the  
CPU input FRCPROCHOT# (7BO1) to also see this signal.  
Scenario 1: CPU driving PROCHOT#  
3) Pin 11BI stops driving LOW (at time t2)  
– 5BI input is HIGH and goes LOW; output 5A is HIGH and goes  
LOW following 5BI. The output 7BO should stay HIGH.  
4)Pin 11A stops driving LOW (at time t3)  
Are there wired-OR glitches at pin 11BO at time t1 and t2?  
Answer 4: The output of 11BI is physically wired to the 11A pin.  
There will be no glitch at t1 when the external driver turns on and  
drives LOW, unless the external driver is a long distance away and  
the pull-up is a low value. If the pull-up R = Z of the line and the  
current were equally shared, the bounce would be to / the pull-up  
– 5BI input is LOW and goes HIGH; output 5A is LOW and goes  
HIGH following 5BI. The output 7BO1 should stay HIGH.  
Scenario 2: Heceta7 driving CPU1_PROCHOT#  
– 5A input is HIGH and goes LOW; output 7BO1 is HIGH and goes  
LOW following 5A. The input 5BI should stay HIGH.  
O
1
2
1
voltage, presumably V . The input is a / V threshold input, so  
DD  
2
DD  
– 5A input is LOW and goes HIGH; output 7BO1 is LOW and goes  
HIGH following 5A. The output 5BI should stay HIGH.  
the glitch may propagate to the 11BO. If the glitch is very short it  
may not propagate, or if the pull-up were higher the amplitude would  
be too small to propagate, or if the external driver were sinking more  
than half of the total current, it would not propagate. If the external  
driver is weak and a long way away you will most likely see a glitch  
on 11BO, because there will be a large glitch on 11A.  
Now I can see the reason for the delay in the enable path so that we  
keep the output disabled to account for the potentially slow riser time  
on 5A. In my mind, there should also be a delay block shown in the  
path 5BI to 5A so that the 5BI H-to-L can disable the driver for 7BO1  
before the signal appears on the 5A input/output, thus appearing as  
an input to the driver for 7BO1.  
Question 5: Can you give us some guideline on how high the  
pull-up resistor value at pin 11A needs to be to avoid glitches on  
11BO?  
Answer 5: The 11A pin is a TTL pin, generally the pull-up resistor  
used on TTL pins are chosen to minimize power rather than to  
match the line impedance. Most line impedances are in the range of  
Have you characterized what sort of glitch you get on the 7BO1  
output on an H-to-L transition on 5BI?  
Answer 6A: The disable for 7BO1 comes directly from the internal  
5BI signal, and by design it always disables the LOW on 7BO1  
before the LOW on the 5BI can propagate to the 5AI/O and back to  
the 7BO1.  
50 . If the pull-up is 3 × Z , that is 150 ; even if all the current is  
O
being sunk by the GTL2006, the initial bounce on 11A would only be  
1
/ V , and would only last for the round trip time to the external  
3
DD  
Question 7: Can I operate the GTL2006 at V of 1.2 V and  
TT  
driver, provided that the external driver can sink all of the current,  
V
REF  
of 0.6 V?  
1
the bounce will return LOW. The / V is not a high level to the  
3
DD  
Answer 7: Yes; you can operate V up to 3.6 V and V  
TT  
REF  
GTL2006 11A pin, so no bounce would show up on the 11BO pin.  
Normal choices for the pull-up on 11A would be in the 1 kto  
several krange, depending on speed and current considerations.  
between 0.5 V to 1.8 V at any V to adjust the high and low noise  
TT  
margins to your application. You don’t have to follow the  
GTL–/GTL/GTL+ specifications. The GTL V and V will be 50 mV  
IL  
IH  
around V  
within the range of 0.5 V to 1.8 V.  
REF  
6
2004 Jun 21  
Philips Semiconductors  
Product data  
13-bit GTL–/GTL/GTL+ to LVTTL translator  
GTL2006  
1
ABSOLUTE MAXIMUM RATINGS  
In accordance with the Absolute Maximum System (IEC 134); voltages are referenced to GND (ground = 0 V).  
SYMBOL  
PARAMETER  
DC supply voltage  
CONDITIONS  
RATING  
UNIT  
V
–0.5 to +4.6  
–50  
V
mA  
V
CC  
IK  
I
DC input diode current  
V < 0 V  
I
A port (LVTTL)  
B port(GTL)  
–0.5 to +4.6  
–0.5 to +4.6  
–50  
3
V
I
DC input voltage  
V
I
DC output diode current  
V
O
< 0 V  
mA  
V
OK  
Output in Off or HIGH state; A port  
–0.5 to +4.6  
–0.5 to +4.6  
32  
3
V
O
DC output voltage  
Output in Off or HIGH state; B port  
V
A port  
B port  
A port  
mA  
mA  
mA  
°C  
°C  
I
OL  
Current into any output in the LOW state  
30  
I
Current into any output in the HIGH state  
Storage temperature range  
–32  
OH  
T
stg  
–60 to +150  
+125  
T
Maximum junction temperature  
J(MAX)  
NOTES:  
1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the  
device at these or any other conditions beyond those indicated under “Recommended Operating Conditions” is not implied. Exposure to  
absolute-maximum-rated conditions for extended periods may affect device reliability.  
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction  
temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.  
3. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.  
RECOMMENDED OPERATING CONDITIONS  
SYMBOL  
PARAMETER  
Supply voltage  
CONDITIONS  
MIN  
3.0  
0.85  
1.14  
1.35  
0.5  
0.5  
0.76  
0.87  
0
TYP  
3.3  
0.9  
1.2  
1.5  
MAX  
3.6  
UNIT  
V
CC  
V
GTL–  
GTL  
0.95  
1.26  
1.65  
1.8  
V
TT  
Termination voltage  
V
V
GTL+  
Overall  
GTL–  
GTL  
2
/ V  
3
TT  
0.6  
0.8  
1.0  
3.3  
0.63  
0.84  
1.10  
3.6  
V
REF  
Supply voltage  
GTL+  
A port  
B port  
A port  
B port  
A port  
B port  
A port  
A port  
B port  
V
I
Input voltage  
V
V
V
0
V
TT  
3.6  
2
V
IH  
HIGH-level input voltage  
V
+ 50 mV  
REF  
0.8  
V
IL  
LOW-level input voltage  
V
– 50 mV  
–16  
16  
REF  
I
HIGH-level output current  
LOW-level output current  
mA  
mA  
mA  
°C  
OH  
I
OL  
15  
T
amb  
Operating free-air temperature range  
–40  
85  
7
2004 Jun 21  
Philips Semiconductors  
Product data  
13-bit GTL–/GTL/GTL+ to LVTTL translator  
GTL2006  
DC ELECTRICAL CHARACTERISTICS  
Over recommended operating conditions. Voltages are referenced to GND (ground = 0 V).  
LIMITS  
–40 °C to +85 °C  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
UNIT  
1
MIN  
V –0.2  
CC  
TYP  
MAX  
V
V
V
V
V
V
V
V
V
V
V
= 3.0 V to 3.6 V I = –100 µA  
7.8  
4.5  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
; OH  
V
A port  
V
OH  
= 3.0 V I = –16 mA  
2.1  
; OH  
A port  
B port  
= 3.0 V I = 16 mA  
0.8  
; OL  
V
V
OL  
= 3.0 V I = 15 mA  
0.4  
; OL  
= 3.6 V; V = V  
± 1  
I
CC  
A port  
= 3.6 V; V = 0 V  
± 1  
± 1  
12  
I
I
µA  
I
B port  
= 3.6 V; V = V or GND  
I TT  
I
A or B port  
= 3.6 V;V = V or GND; I = 0 mA  
mA  
CC  
I
CC  
O
3
I  
CC  
A port or control inputs  
= 3.6 V; V = V – 0.6 V  
500  
µA  
I
CC  
A port  
B port  
= 3.0 V or 0 V  
O
O
C
pF  
IO  
= V or 0 V  
TT  
NOTES:  
1. All typical values are measured at V = 3.3 V and T  
= 25 °C.  
amb  
CC  
2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.  
3. This is the increase in supply current for each input that is at the specified LVTTL voltage level rather than V or GND  
CC  
.
AC CHARACTERISTICS (3.3 V ± 0.3 V RANGE)  
LIMITS (GTL–)  
LIMITS (GTL)  
= 3.3 V ± 0.3 V  
LIMITS (GTL+)  
V = 3.3 V ± 0.3 V  
CC  
V
= 3.3 V ± 0.3 V  
V
CC  
CC  
SYMBOL  
PARAMETER  
WAVEFORM  
UNIT  
V
REF  
= 0.6 V  
V
REF  
= 0.8 V  
V = 1.0 V  
REF  
1
1
1
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
t
t
2
2
4
5.5  
8
10  
2
2
4
5.5  
8
10  
2
2
4
5.5  
8
10  
PLH  
PHL  
An to Bn  
1
2
ns  
ns  
ns  
ns  
ns  
ns  
t
t
2
2
5.5  
5.5  
10  
10  
2
2
5.5  
5.5  
10  
10  
2
2
5.5  
5.5  
10  
10  
PLH  
PHL  
Bn to An  
t
t
2
2
6
6
11  
11  
2
2
6
6
11  
11  
2
2
6
6
11  
11  
PLH  
PHL  
9BI to 10BOn  
11BI to 11BO  
Bn to An (I/O)  
Bn to Bn  
t
2
2
8
14  
13  
21  
2
2
8
14  
13  
21  
2
2
8
14  
13  
21  
PLH  
2
t
PHL  
t
2
2
5
5
10  
10  
2
2
5
5
10  
10  
2
2
5
5
10  
10  
PLZ  
3
3
t
PZH  
t
t
4
120  
7
205  
11  
350  
4
120  
7
205  
11  
350  
4
120  
7
205  
11  
350  
PLH  
PHL  
NOTES:  
1. All typical values are at V = 3.3 V and T  
= 25 °C.  
amb  
CC  
2. Includes 7.6 ns RC rise time of test load pull-up on 11A, 1.5 kpull-up and 21 pF load on 11A has about 23 ns RC rise time.  
8
2004 Jun 21  
Philips Semiconductors  
Product data  
13-bit GTL–/GTL/GTL+ to LVTTL translator  
GTL2006  
AC WAVEFORMS  
V
= 1.5 V at V 3.0 V for A ports; V = V  
for B ports  
REF  
M
CC  
M
V
TT  
t
pulse  
V
H
Input  
V
REF  
V
REF  
V
M
V
M
0 V  
V
0 V  
t
t
PHL  
PLH  
VOLTAGE WAVEFORMS PULSE DURATION  
V
V
= 1.5 V for A port and V  
for B port  
OH  
M
H
REF  
= 3 V for A port and V for B port  
TT  
1.5 V  
1.5 V  
Output  
3.0 V  
V
OL  
Input  
1.5 V  
1.5 V  
PRR 10 MHz, Z = 50 , t 2.5 ns, t 2.5 ns.  
O
r
f
0 V  
t
t
PHL  
PLH  
SW00469  
V
V
OH  
OL  
Waveform 2.  
V
V
REF  
REF  
Output  
VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES  
A port to B port  
INPUT  
3 V  
1.5 V  
1.5 V  
SW01093  
0 V  
Waveform 1.  
t
t
PLZ  
PZL  
OUTPUT  
3.5 V  
1.5 V  
V
+ 0.3 V  
OL  
SW02235  
Waveform 3.  
9
2004 Jun 21  
Philips Semiconductors  
Product data  
13-bit GTL–/GTL/GTL+ to LVTTL translator  
GTL2006  
PERFORMANCE CURVES  
1100  
1100  
1000  
V
= 3.0 V  
V
= 3.3 V  
CC  
CC  
T
amb  
= –40 °C  
T
amb  
= +25 °C  
V
(mV)  
V
ref  
(mV)  
ref  
1000  
900  
VTH+  
VTH–  
VTH+  
VTH–  
900  
800  
700  
800  
700  
600  
500  
600  
500  
400  
400  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
V
ref  
(V)  
V
ref  
(V)  
1100  
1000  
V
= 3.6 V  
CC  
T
amb  
= +85 °C  
V
(mV)  
ref  
VTH+  
VTH–  
900  
800  
700  
600  
500  
400  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
V
ref  
(V)  
SW02255  
Figure 4. GTL V  
and V  
versus V  
TH– REF  
TH+  
10  
2004 Jun 21  
Philips Semiconductors  
Product data  
13-bit GTL–/GTL/GTL+ to LVTTL translator  
GTL2006  
TEST CIRCUIT  
V
CC  
V
V
TT  
CC  
V
V
O
I
50 Ω  
PULSE  
GENERATOR  
D.U.T.  
V
V
O
I
50 pF  
PULSE  
GENERATOR  
R
T
R
= 500 Ω  
L
D.U.T.  
C
L
R
T
C
30 pF  
L
Test circuit for switching times  
DEFINITIONS  
SW02066  
R
L
C
L
R
T
= Load resistor  
Figure 7. Load circuit for B outputs  
= Load capacitance includes jig and probe capacitance  
= Termination resistance should be equal to Z of pulse generators.  
OUT  
SW00471  
Figure 5. Load circuitry for A outputs  
2 × V  
CC  
V
CC  
R
= 500 Ω  
= 500 Ω  
V
V
O
L
I
PULSE  
GENERATOR  
D.U.T.  
50 pF  
R
T
R
L
C
L
Test Circuit for open drain LVTTL I/O  
DEFINITIONS  
R
L
C
L
R
T
= Load resistor  
= Load capacitance includes jig and probe capacitance  
= Termination resistance should be equal to Z  
of pulse generators.  
OUT  
SW02067  
Figure 6. Load circuitry for open drain LVTTL I/O  
11  
2004 Jun 21  
Philips Semiconductors  
Product data  
13-bit GTL–/GTL/GTL+ to LVTTL translator  
GTL2006  
TSSOP28: plastic thin shrink small outline package; 28 leads; body width 4.4 mm  
SOT361-1  
12  
2004 Jun 21  
Philips Semiconductors  
Product data  
13-bit GTL–/GTL/GTL+ to LVTTL translator  
GTL2006  
REVISION HISTORY  
Rev  
Date  
Description  
_2  
20040621  
Product data (9397 750 13063). Supersedes data of 2003 Dec 18.  
Modifications:  
All figures numbered.  
Figure 2, “Logic symbol” modified.  
Page 6, Frequently asked Questions: add questions/answers 4, 5, 6, 6A, and 7.  
Page 8, AC Characteristics (3.3 V ± 0.3 Range); t  
Add “Performance curves” section on page 10.  
An to Bn, GTL+ maximum: change from ‘1. ns’ to ‘10 ns’.  
PHL  
_1  
20031218  
Product data (9397 750 12562); ECN 853-2440 01-A14985 dated 15 December 2003.  
13  
2004 Jun 21  
Philips Semiconductors  
Product data  
13-bit GTL–/GTL/GTL+ to LVTTL translator  
GTL2006  
Data sheet status  
Product  
status  
Definitions  
[1]  
Level  
Data sheet status  
[2] [3]  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development.  
Philips Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Product data  
Qualification  
Production  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1] Please consult the most recently issued data sheet before initiating or completing a design.  
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL  
http://www.semiconductors.philips.com.  
[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
Definitions  
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
LimitingvaluesdefinitionLimiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given  
in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no  
representation or warranty that such applications will be suitable for the specified use without further testing or modification.  
Disclaimers  
Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be  
expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree  
to fully indemnify Philips Semiconductors for any damages resulting from such application.  
Right to make changes — Philips Semiconductors reserves the right to make changes in the products—including circuits, standard cells, and/or software—described  
or contained herein in order to improve design and/or performance. When the product is in full production (status ‘Production’), relevant changes will be communicated  
viaaCustomerProduct/ProcessChangeNotification(CPCN).PhilipsSemiconductorsassumesnoresponsibilityorliabilityfortheuseofanyoftheseproducts,conveys  
nolicenseortitleunderanypatent, copyright, ormaskworkrighttotheseproducts, andmakesnorepresentationsorwarrantiesthattheseproductsarefreefrompatent,  
copyright, or mask work right infringement, unless otherwise specified.  
Koninklijke Philips Electronics N.V. 2004  
Contact information  
All rights reserved. Printed in U.S.A.  
For additional information please visit  
http://www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
Date of release: 06-04  
9397 750 13063  
For sales offices addresses send e-mail to:  
sales.addresses@www.semiconductors.philips.com.  
Document order number:  
Philips  
Semiconductors  

相关型号:

GTL2006PW

13-bit GTL-/GTL/GTL+ to LVTTL translator
NXP

GTL2007

13-bit GTL to LVTTL translator with power good control
NXP

GTL2007PW

13-bit GTL to LVTTL translator with power good control
NXP

GTL2007PW,112

GTL2007 - 12-bit GTL to LVTTL translator with power good control TSSOP2 28-Pin
NXP

GTL2007PW,118

GTL2007 - 12-bit GTL to LVTTL translator with power good control TSSOP2 28-Pin
NXP

GTL2008

12-bit GTL to LVTTL translator with power good control and high-impedance LVTTL and GTL outputs
NXP

GTL2008PW

12-bit GTL to LVTTL translator with power good control and high-impedance LVTTL and GTL outputs
NXP

GTL2008PW,118

GTL2008 - 12-bit GTL to LVTTL translator with power good control and high-impedance LVTTL and GTL outputs TSSOP2 28-Pin
NXP

GTL2009

3-bit GTL Front-Side Bus frequency comparator
NXP

GTL2009PW

3-bit GTL Front-Side Bus frequency comparator
NXP

GTL2010

10-bit GTL Processor Voltage Clamp
NXP

GTL2010

10-BIT BIDIRECTIONAL LOW-VOLTAGE TRANSLATOR
TI