MC100EP221TB [MOTOROLA]

100E SERIES, LOW SKEW CLOCK DRIVER, 20 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP52, EXPOSED PAD, PLASTIC, LQFP-52;
MC100EP221TB
型号: MC100EP221TB
厂家: MOTOROLA    MOTOROLA
描述:

100E SERIES, LOW SKEW CLOCK DRIVER, 20 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP52, EXPOSED PAD, PLASTIC, LQFP-52

时钟驱动器
文件: 总5页 (文件大小:128K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SEMICONDUCTOR TECHNICAL DATA  
The MC100EP221 is a low skew 1–to–20 differential driver, designed  
with clock distribution in mind. It accepts two clock sources into an input  
multiplexer. The input signals can be either differential or single–ended if  
LOW–VOLTAGE  
1:20 DIFFERENTIAL  
the V  
output is used. The selected signal is fanned out to 20 identical  
BB  
differential outputs.  
ECL/PECL CLOCK DRIVER  
150ps Part–to–Part Skew  
50ps Output–to–Output Skew  
Differential Design  
V  
Output  
BB  
Voltage and Temperature Compensated Outputs  
Low Voltage V Range of –2.375 to –3.8V  
EE  
75kInput Pulldown Resistors  
The EP221 is specifically designed, modeled and produced with low  
skew as the key goal. Optimal design and layout serve to minimize gate–  
to–gate skew within a device, and empirical modeling is used to  
determine process control limits that ensure consistent t distributions  
pd  
from lot to lot. The net result is a dependable, guaranteed low skew  
device.  
FA SUFFIX  
52–LEAD TQFP PACKAGE  
CASE 848D–03  
To ensure that the tight skew specification is met it is necessary that  
both sides of the differential output are terminated into 50, even if only  
one side is being used. In most applications, all ten differential pairs will  
be used and therefore terminated. In the case where fewer than ten pairs  
are used, it is necessary to terminate at least the output pairs on the same  
package side as the pair(s) being used on that side, in order to maintain  
minimum skew. Failure to do this will result in small degradations of  
propagation delay (on the order of 10–20ps) of the output(s) being used  
which, while not being catastrophic to most designs, will mean a loss of  
skew margin.  
The MC100EP221, as with most other ECL devices, can be operated from a positive V  
CC  
supply in PECL mode. This allows  
the EP221 to be used for high performance clock distribution in +3.3V or +2.5V systems. Designers can take advantage of the  
EP221’s performance to distribute low skew clocks across the backplane. In a PECL environment, series or Thevenin line  
terminations are typically used as they require no additional power supplies. For more information on using PECL, designers  
should refer to Motorola Application Note AN1406/D.  
This document contains information on a product under development. Motorola reserves the right to change or  
discontinue this product without notice.  
2/97  
REV 0.1  
Motorola, Inc. 1997  
MC100EP221  
Pinout: 52–Lead TQFP  
(Top View)  
39 38 37 36  
35 34 33 32 31 30 29 28 27  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
VCCO  
Q5B  
Q5  
Q12  
Q12B  
Q13  
Q4B  
Q4  
Q13B  
Q14  
Q3B  
Q3  
Q14B  
Q15  
MC100EP211  
Q2B  
Q2  
Q15B  
Q16  
Q1B  
Q1  
Q16B  
Q17  
Q0B  
Q0  
Q17B  
VCCO  
1
2
3
4
5
6
7
8
9
10 11 12 13  
PIN NAMES  
Pins  
Function  
CLKn, CLKn  
Q0:19, Q0:19  
CLK_SEL  
VBB  
Differential Input Pairs  
Differential Outputs  
Active Clock Select Input  
V
BB  
Output  
FUNCTION  
CLK_SEL  
Active Input  
0
1
CLK0, CLK0  
CLK1, CLK1  
LOGIC SYMBOL  
CLK0  
0
Q0  
Q0  
CLK0  
CLK1  
1
16  
Q1:18  
Q1:18  
CLK1  
CLK_SEL  
Q19  
Q19  
MOTOROLA  
2
TIMING SOLUTIONS  
BR1333 — Rev 6  
MC100EP221  
ECL DC CHARACTERISTICS  
–40°C  
0°C  
25°C  
85°C  
Typ  
Symbol  
Characteristic  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Max  
Unit  
V
V
–1.025 –0.955 –0.880 –1.025 –0.955 –0.880 –1.025 –0.955 –0.880 –1.025 –0.955 –0.880  
–1.810 –1.705 –1.620 –1.810 –1.705 –1.620 –1.810 –1.705 –1.620 –1.810 –1.705 –1.620  
OH  
V
V
OL  
V
–1.165  
–1.810  
–1.38  
–0.880 –1.165  
–1.475 –1.810  
–0.880 –1.165  
–1.475 –1.810  
–0.880 –1.165  
–1.475 –1.810  
–0.880  
–1.475  
–1.26  
V
IH  
V
V
IL  
V
Output Reference  
Voltage  
–1.26  
–1.38  
–1.26  
–1.38  
–1.26  
–1.38  
V
BB  
V
Power Supply Voltage –2.375  
Input HIGH Current  
–3.8  
150  
–2.375  
–3.8  
150  
–2.375  
–3.8  
150  
–2.375  
–3.8  
150  
V
EE  
I
µA  
mA  
IH  
I
Power Supply Current  
EE  
PECL DC CHARACTERISTICS  
–40°C  
Typ  
0°C  
Typ  
25°C  
Typ  
85°C  
Symbol  
Characteristic  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Typ  
Max  
Unit  
V
Output HIGH Voltage  
(NO TAG)  
2.275  
2.345  
2.420  
1.680  
2.420  
1.825  
2.04  
2.275  
2.345  
2.420  
1.680  
2.420  
1.825  
2.04  
2.275  
2.345  
2.420  
1.680  
2.420  
1.825  
2.04  
2.275 2.345 2.420  
V
OH  
V
Output LOW Voltage  
(NO TAG)  
1.490  
2.135  
1.490  
1.92  
1.595  
1.490  
2.135  
1.490  
1.92  
1.595  
1.490  
2.135  
1.490  
1.92  
1.595  
1.490 1.595 1.680  
V
V
V
V
OL  
V
Input HIGH Voltage  
(NO TAG)  
2.135  
1.490  
1.92  
2.420  
1.825  
2.04  
IH  
V
Input LOW Voltage  
(NO TAG)  
IL  
V
Output Reference  
Voltage (Note NO TAG)  
BB  
V
Power Supply Voltage  
Input HIGH Current  
Power Supply Current  
2.375  
3.8  
2.375  
3.8  
2.375  
3.8  
2.375  
3.8  
V
CC  
I
150  
150  
150  
150  
µA  
mA  
IH  
I
EE  
1. These values are for V  
= 3.3V. Level Specifications will vary 1:1 with V .  
CC  
CC  
AC CHARACTERISTICS (V  
= V  
(min) to V  
(max); V  
= V  
= GND)  
EE  
EE  
EE  
CC  
CCO  
–40°C  
0°C  
25°C  
85°C  
Symbol  
Characteristic  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Condition  
t
Propagation Delay to Output  
IN (differential)  
ps  
PLH  
t
500  
500  
PHL  
IN (single–ended)  
t
Within–Device Skew  
Part–to–Part Skew (Diff)  
50  
150  
50  
150  
50  
150  
50  
150  
ps  
skew  
f
Maximum Input Frequency  
Minimum Input Swing  
Common Mode Range  
Output Rise/Fall Time  
1.5  
1.5  
1.5  
1.5  
GHz  
mV  
V
max  
V
500  
500  
500  
500  
PP  
V
CMR  
t /t  
r f  
200  
200  
200  
200  
ps  
20%–80%  
3
MOTOROLA  
MC100EP221  
OUTLINE DIMENSIONS  
FA SUFFIX  
PLASTIC TQFP PACKAGE  
CASE 848D–03  
ISSUE C  
4X  
4X TIPS  
–X–  
X=L, M, N  
0.20 (0.008)  
H
L–M  
N
0.20 (0.008) T L–M N  
C
52  
40  
L
1
39  
AB  
AB  
G
3X VIEW Y  
–L–  
–M–  
VIEW Y  
F
B
V
BASE METAL  
PLATING  
B1  
V1  
13  
27  
J
U
14  
26  
D
–N–  
M
S
S
0.13 (0.005)  
T
L–M  
N
A1  
S1  
SECTION AB–AB  
ROTATED 90 CLOCKWISE  
A
NOTES:  
S
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M,  
1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE –H– IS LOCATED AT BOTTOM OF LEAD AND  
IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS  
THE PLASTIC BODY AT THE BOTTOM OF THE PARTING  
LINE.  
4. DATUMS –L–, –M– AND –N– TO BE DETERMINED AT DATUM  
PLANE –H–.  
4X θ2  
4X θ3  
C
0.10 (0.004)  
T
5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING  
PLANE –T–.  
–H–  
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 (0.010)  
PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD  
MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.  
7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION.  
DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD  
WIDTH TO EXCEED 0.46 (0.018). MINIMUM SPACE  
BETWEEN PROTRUSION AND ADJACENT LEAD OR  
PROTRUSION 0.07 (0.003).  
–T–  
SEATING  
PLANE  
VIEW AA  
MILLIMETERS  
MIN MAX  
10.00 BSC  
5.00 BSC  
10.00 BSC  
5.00 BSC  
INCHES  
MIN MAX  
0.394 BSC  
0.197 BSC  
0.394 BSC  
0.197 BSC  
DIM  
A
A1  
B
B1  
C
C1  
C2  
D
S
0.05 (0.002)  
W
2 X R R1  
θ1  
–––  
0.05  
1.30  
0.20  
0.45  
0.22  
1.70  
–––  
0.002  
0.051  
0.008  
0.018  
0.009  
0.067  
0.20  
1.50  
0.40  
0.75  
0.35  
0.008  
0.059  
0.016  
0.030  
0.014  
0.25 (0.010)  
C2  
θ
E
F
GAGE PLANE  
G
0.65 BSC  
0.026 BSC  
J
K
R1  
S
S1  
U
0.07  
0.50 REF  
0.08  
12.00 BSC  
6.00 BSC  
0.20  
0.003  
0.020 REF  
0.003  
0.472 BSC  
0.236 BSC  
0.004 0.006  
0.008  
K
E
C1  
0.20  
0.008  
Z
0.09  
0.16  
V
12.00 BSC  
0.472 BSC  
0.236 BSC  
0.008 REF  
0.039 REF  
VIEW AA  
V1  
W
Z
6.00 BSC  
0.20 REF  
1.00 REF  
θ
0
7
0
7
–––  
REF  
13  
–––  
REF  
13  
θ
θ
θ
1
2
3
0
12  
5
0
12  
5
MOTOROLA  
4
TIMING SOLUTIONS  
BR1333 — Rev 6  
MC100EP221  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 5405; Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 81–3–3521–8315  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://www.mot.com/sps/  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MC100EP221/D  

相关型号:

MC100EP221TBR2

100E SERIES, LOW SKEW CLOCK DRIVER, 20 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP52, EXPOSED PAD, PLASTIC, LQFP-52
MOTOROLA

MC100EP223

Low-Voltage 1:22 Differential PECL/HSTL Clock Driver
MOTOROLA

MC100EP223

Low-Voltage 1:22 Differential PECL/HSTL Clock Driver
FREESCALE

MC100EP223FA

Low Skew Clock Driver, 100E Series, 22 True Output(s), 0 Inverted Output(s), ECL, PQFP64, PLASTIC, TQFP-64
MOTOROLA

MC100EP223TC

Low-Voltage 1:22 Differential PECL/HSTL Clock Driver
MOTOROLA

MC100EP223TC

Low-Voltage 1:22 Differential PECL/HSTL Clock Driver
FREESCALE

MC100EP29

3.3V / 5V ECL Dual Differential Data and Clock D Flip−Flop With Set and Reset
ONSEMI

MC100EP29DT

3.3V / 5V ECL Dual Differential Data and Clock D Flip-Flop With Set and Reset
ONSEMI

MC100EP29DTG

3.3V / 5V ECL Dual Differential Data and Clock D Flip−Flop With Set and Reset
ONSEMI

MC100EP29DTR2

3.3V / 5V ECL Dual Differential Data and Clock D Flip-Flop With Set and Reset
ONSEMI

MC100EP29DTR2G

3.3V / 5V ECL Dual Differential Data and Clock D Flip−Flop With Set and Reset
ONSEMI

MC100EP29MNG

3.3V / 5V ECL Dual Differential Data and Clock D Flip−Flop With Set and Reset
ONSEMI