MC100EP223TC [FREESCALE]

Low-Voltage 1:22 Differential PECL/HSTL Clock Driver; 低电压1:22差分PECL / HSTL时钟驱动器
MC100EP223TC
型号: MC100EP223TC
厂家: Freescale    Freescale
描述:

Low-Voltage 1:22 Differential PECL/HSTL Clock Driver
低电压1:22差分PECL / HSTL时钟驱动器

时钟驱动器 逻辑集成电路
文件: 总8页 (文件大小:87K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SEMICONDUCTOR TECHNICAL DATA  
The MC100EP223 is a low skew 1–to–22 differential driver, designed  
with clock distribution in mind. It accepts two clock sources into an input  
multiplexer. The selected signal is fanned out to 22 identical differential  
outputs.  
LOW–VOLTAGE  
1:22 DIFFERENTIAL  
PECL/HSTL CLOCK DRIVER  
200ps Part–to–Part Skew  
50ps Output–to–Output Skew  
Differential Design  
Open Emitter HSTL Compatible Outputs  
3.3V V  
CC  
Both PECL and HSTL Inputs  
75kInput Pulldown Resistors  
Thermally Enhanced 64 lead Exposed Pad LQFP  
The EP223 is specifically designed, modeled and produced with low  
skew as the key goal. Optimal design and layout serve to minimize  
gate–to–gate skew within a device, and empirical modeling is used to  
determine process control limits that ensure consistent t distributions  
from lot to lot. The net result is a dependable, guaranteed low skew  
device.  
TC SUFFIX  
64–LEAD LQFP PACKAGE  
CASE 840K–01  
pd  
The EP223 HSTL outputs are not realized in the conventional  
manner. To minimize part–to–part and output–to–output skew, the HSTL  
compatible output levels are generated with an open emitter  
architecture. The outputs are pulled down with 50to ground, rather  
than the typical 50to V  
pullup of a “standard” HSTL output.  
DDQ  
Because the HSTL outputs are pulled to ground, the EP223 does not  
utilize the V supply of the HSTL standard. The output levels are  
DDQ  
derived from V  
.
CC  
In the case of an asynchronous control, there is a chance of  
generating a ‘runt’ clock pulse when the device is enabled/disabled. To  
avoid this, the output enable (OE) is synchronous so that the outputs  
will only be enabled/disabled when they are already in the LOW state.  
To ensure that the tight skew specification is met it is necessary that both sides of the differential output are terminated into  
50, even if only one side is being used. In most applications, all 22 differential pairs will be used and therefore terminated. In  
the case where fewer than 22 pairs are used, it is necessary to terminate at least the output pairs on the same package side as  
the pair(s) being used on that side, in order to maintain minimum skew. Failure to do this will result in small degradations of  
propagation delay (on the order of 10–20ps) of the output(s) being used which, while not being catastrophic to most designs, will  
mean a loss of skew margin.  
This document contains information on a product under development. Motorola reserves the right to change or  
discontinue this product without notice.  
03/01  
REV 2  
Motorola, Inc. 2001  
MC100EP223  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
VCCO  
Q6B  
Q6  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VCCO  
Q14  
Q14B  
Q15  
Q5B  
Q5  
Q15B  
Q16  
Q4B  
Q4  
Q16B  
Q17  
Q3B  
Q3  
MC100EP223  
Q17B  
Q18  
Q2B  
Q2  
Q18B  
Q19  
Q1B  
Q1  
Q19B  
Q20  
Q0B  
Q0  
Q20B  
VCCO  
VCCO  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
Figure 1. 64–Lead Pinout (Top View)  
CLK_SEL  
PIN NAMES  
Pins  
HSTL_CLK  
0
1
Function  
Differential HSTL Inputs  
HSTL_CLK  
22  
22  
Q0 – Q21  
Q0 – Q21  
HSTL_CLK, HSTL_CLKB  
PECL_CLK, PECL_CLKB Differential PECL Inputs  
Q0:21, Q0B:21B  
CLK_SEL  
OE  
LVPECL_CLK  
LVPECL_CLK  
Differential HSTL Outputs  
Active Clock Select Input  
Output Enable  
Ground  
LEN  
Q
D
OE  
GND  
VCCI  
VCCO  
Core VCC  
I/O VCC  
Figure 2. Logic Symbol  
SIGNAL GROUPS  
FUNCTION  
OE  
CLK_SEL  
Q0:21, Q0B:21B  
Level  
Direction  
Signal  
0
0
1
1
0
1
0
1
Q = Low, QB = High  
Q = Low, QB = High  
HSTL_CLK, HSTL_CLKB  
PECL_CLK, PECL_CLKB  
HSTL  
HSTL  
LVPECL  
LVCMOS/LVTTL  
Input  
Output  
Input  
HSTL_CLK, HSTL_CLKB  
Q0:21, Q0B:21B  
PECL_CLK, PECL_CLKB  
CLK_SEL, OE  
Input  
MOTOROLA  
2
TIMING SOLUTIONS  
DL207 — Rev 0  
MC100EP223  
HSTL DC CHARACTERISTICS  
0°C  
25°C  
85°C  
Symbol  
Characteristic  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
V
V
V
V
V
V
1.0  
OH  
OL  
IH  
0.4  
1.6  
V
V +0.1  
–0.3  
V
Input LOW Voltage  
V –0.1  
0.9  
V
IL  
Input Crossover Voltage  
0.68  
V
PECL DC CHARACTERISTICS  
0°C  
25°C  
85°C  
Symbol  
Characteristic  
Input HIGH Voltage (Note 1.)  
Input LOW Voltage (Note 1.)  
Input HIGH Current  
Min  
Typ  
Max  
2.420  
1.825  
150  
Min  
Typ  
Max  
2.420  
1.825  
150  
Min  
Typ  
Max  
2.420  
1.825  
150  
Unit  
V
V
V
2.135  
1.490  
2.135  
1.490  
2.135  
1.490  
IH  
V
IL  
I
IH  
µA  
1. These values are for V  
CC  
= 3.3V. Level specifications vary 1:1 with V  
.
CC  
AC CHARACTERISTICS (V  
EE  
= GND, V  
=V  
to V  
)
CC(max)  
CC  
CC(min)  
0°C  
25°C  
85°C  
Symbol  
Characteristic  
Propagation Delay to Output  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
t
t
,
ns  
PLH  
PHL  
IN (Differential)  
1.0  
1.0  
1.0  
t
Within–Device Skew  
Part–to–Part Skew (Diff)  
50  
200  
50  
200  
50  
200  
ps  
skew  
f
Maximum Input Frequency  
250  
250  
250  
MHz  
mV  
V
max  
V
V
Minimum Input Swing PECL_CLK  
CommonMode Range PECL_CLK  
Output Rise/Fall Time (20–80%)  
600  
600  
600  
PP  
CMR  
t , t  
r f  
300  
600  
300  
600  
300  
600  
ps  
Power Supply Characteristics  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit  
V
V
CCI  
Core V  
CC  
3.0  
1.6  
3.3  
1.8  
3.6  
2.0  
V
CCO  
I/O V  
CC  
V
I
I
Power Supply Current  
Power Supply Current  
mA  
mA  
CC  
EE  
TIMING SOLUTIONS  
DL207 — Rev 0  
3
MOTOROLA  
MC100EP223  
APPLICATIONS INFORMATION  
Using the thermally enhanced package of the  
Thermal Resistance  
MC100EP223  
a
b
c
d
Convection  
LFPM  
R
R
R
R
THJB  
THJA  
THJA  
THJC  
The MC100EP223 uses a thermally enhanced 64 lead  
LQFP package. This package provides the low thermal  
impedance that supports the power consumption of the  
MC100EP223 high-speed bipolar integrated circuit and  
eases the power management task for the system design. An  
exposed pad at the bottom of the package establishes  
thermal conductivity from the package to the printed circuit  
board. In order to take advantage of the enhanced thermal  
capabilitites of this package, it is recommended to solder the  
exposed pad of the package to the printed circuit board. The  
attachment process for exposed pad package is the same as  
for any standard surface mount package. Vias are  
recommended from the pad on the board down to an  
appropriate plane in the board that is capable of distributing  
the heat. In order to supply enough solder paste to fill those  
vias and not starve the solder joints, it may be required to  
stencil print solder paste onto the printed circuit pad. This pad  
should match the dimensions of the exposed pad. The  
dimensions of the exposed pad are shown on the package  
outline in this specification. For thermal system analysis and  
junction temperature calculation the thermal resistance  
parameters of the package is provided:  
°C/W  
°C/W  
°C/W  
°C/W  
Natural  
100  
57.1  
50.0  
46.9  
43.4  
38.6  
24.9  
21.3  
20.0  
18.7  
16.9  
200  
15.8  
9.7  
400  
800  
a. Junction to ambient, single layer test board, per JESD51-6  
b. Junction to ambient, four conductor layer test board (2S2P),  
per JES51-6  
c. Junction to case, per MIL-SPEC 883E, method 1012.1  
d. Junction to board, four conductor layer test board (2S2P) per  
JESD 51-8  
It is recommended that users employ thermal modeling  
analysis to assist in applying the general recommendations  
to their particular application. The exposed pad of the  
MC100EP223 package does not have an electrical low  
impedance path to the substrate of the integrated circuit and  
its terminals.  
MOTOROLA  
4
TIMING SOLUTIONS  
DL207 — Rev 0  
MC100EP223  
OUTLINE DIMENSIONS  
TC SUFFIX  
PLASTIC LQFP PACKAGE, EXPOSED PAD  
CASE 840K–01  
ISSUE O  
4X  
4X 16 TIPS  
A2  
0.2 H AB D  
0.2  
C
AB D  
S
0.05  
D
(S)  
PIN 1  
IDENTIFIER  
64  
49  
R
Z1  
1
48  
0.25  
GAGE PLANE  
Z
A
B
R1  
A1  
L
E
E1  
(L1)  
VIEW AA  
3X  
E1/2  
VIEW Y  
E/2  
NOTES:  
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES PER  
ASME Y14.5M1994.  
3. DATUMS A, B AND D TO BE DETERMINED AT DATUM  
PLANE H.  
16  
33  
17  
32  
4. DIMENSIONS D AND E TO BE DETERMINED AT  
SEATING PLANE C.  
D1/2  
5. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION  
SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED  
THE MAXIMUM b DIMENSION BY MORE THAN 0.08 mm.  
DAMBAR CANNOT BE LOCATED ON THE LOWER  
RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN  
PROTRUSION AND ADJACENT LEAD OR  
PROTRUSION 0.07 mm.  
6. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm  
PER SIDE. D1 AND E1 ARE MAXIMUM PLASTIC BODY  
SIZE DIMENSIONS INCLUDING MOLD MISMATCH.  
7. EXACT SHAPE OF EACH CORNER IS OPTIONAL.  
D/2  
D1  
D
H
A
4X Z2  
4X Z3  
0.08 C  
J
J
64X b  
8. THESE DIMENSIONS APPLY TO THE FLAT SECTION  
OF THE LEAD BETWEEN 0.10 mm AND 0.25 mm FROM  
THE LEAD TIP.  
SEATING  
PLANE  
C
VIEW AA  
M
0.08  
C AB D  
MILLIMETERS  
DIM MIN  
MAX  
1.60  
0.15  
1.45  
0.27  
0.23  
0.20  
0.16  
X
A
A1  
A2  
b
b1  
c
–––  
0.05  
1.35  
0.17  
0.17  
0.09  
0.09  
12.00 BSC  
10.00 BSC  
0.50 BSC  
X=A, B OR D  
C
L
c1  
D
AB  
AB  
e/2  
D1  
e
60X e  
F
E
E1  
L
12.00 BSC  
10.00 BSC  
BASE METAL  
VIEW Y  
0.45  
0.75  
L1  
R1  
R2  
S
F
G
1.00 REF  
8
b1  
0.08  
0.08  
0.20  
6.00  
6.00  
0
–––  
–––  
–––  
7.00  
7.00  
7
G
8
c1  
8
c
Z
Z1  
Z2  
Z3  
0
11  
11  
–––  
13  
13  
8
b
PLATING  
SECTION AB–AB  
ROTATED 90 CLOCKWISE  
EXPOSED PAD  
VIEW J–J  
TIMING SOLUTIONS  
DL207 — Rev 0  
5
MOTOROLA  
MC100EP223  
NOTES  
MOTOROLA  
6
TIMING SOLUTIONS  
DL207 — Rev 0  
MC100EP223  
NOTES  
TIMING SOLUTIONS  
DL207 — Rev 0  
7
MOTOROLA  
MC100EP223  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the  
applicationor use of any product or circuit, and specifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidental  
damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in differentapplications  
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application  
by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are  
not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application,  
BuyershallindemnifyandholdMotorolaanditsofficers, employees, subsidiaries, affiliates, anddistributorsharmlessagainstallclaims, costs,  
damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated  
with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the  
part. Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3–20–1,  
P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447 Minami–Azabu. Minato–ku, Tokyo 106–8573 Japan. 81–3–3440–3569  
Technical Information Center: 1–800–521–6274  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre,  
2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.  
852–26668334  
HOME PAGE: http://www.motorola.com/semiconductors/  
MC100EP223/D  
DL207 — Rev 0  

相关型号:

MC100EP29

3.3V / 5V ECL Dual Differential Data and Clock D Flip−Flop With Set and Reset
ONSEMI

MC100EP29DT

3.3V / 5V ECL Dual Differential Data and Clock D Flip-Flop With Set and Reset
ONSEMI

MC100EP29DTG

3.3V / 5V ECL Dual Differential Data and Clock D Flip−Flop With Set and Reset
ONSEMI

MC100EP29DTR2

3.3V / 5V ECL Dual Differential Data and Clock D Flip-Flop With Set and Reset
ONSEMI

MC100EP29DTR2G

3.3V / 5V ECL Dual Differential Data and Clock D Flip−Flop With Set and Reset
ONSEMI

MC100EP29MNG

3.3V / 5V ECL Dual Differential Data and Clock D Flip−Flop With Set and Reset
ONSEMI

MC100EP29MNTXG

3.3V / 5V ECL Dual Differential Data and Clock D Flip−Flop With Set and Reset
ONSEMI

MC100EP31

3.3V / 5V ECL D Flip−Flop with Set and Reset
ONSEMI

MC100EP31D

D Flip Flop with Set and Reset
ONSEMI

MC100EP31DG

3.3V / 5V ECL D Flip−Flop with Set and Reset
ONSEMI

MC100EP31DR2

D Flip Flop with Set and Reset
ONSEMI

MC100EP31DR2G

3.3V / 5V ECL D Flip−Flop with Set and Reset
ONSEMI