MC100EP221TBR2 [MOTOROLA]

100E SERIES, LOW SKEW CLOCK DRIVER, 20 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP52, EXPOSED PAD, PLASTIC, LQFP-52;
MC100EP221TBR2
型号: MC100EP221TBR2
厂家: MOTOROLA    MOTOROLA
描述:

100E SERIES, LOW SKEW CLOCK DRIVER, 20 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP52, EXPOSED PAD, PLASTIC, LQFP-52

驱动 输出元件 逻辑集成电路
文件: 总8页 (文件大小:130K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁ ꢂ ꢁꢃ ꢁ ꢄꢅ  
SEMICONDUCTOR TECHNICAL DATA  
Order this document  
by MC100EP221/D  
ꢄ ꢆꢇꢈꢉꢆꢊꢋ ꢌ ꢍ ꢎ ꢏ ꢐꢑ ꢒ ꢓꢔꢕꢕꢎ ꢖꢎꢗ ꢋ ꢔꢌ ꢊ  
ꢘꢙ ꢄ ꢚꢛ ꢘ ꢙꢄ ꢙꢊꢆꢜ ꢝ ꢓꢖ ꢔꢞ ꢎꢖ  
See Upgrade Product – MC100ES6221  
The MC100EP221 is a low skew 1–to–20 differential driver, designed  
with clock distribution in mind. It accepts two clock sources into an input  
multiplexer. The input signals can be either differential or single–ended if  
the VBB output is used. The selected signal is fanned out to 20 identical  
differential outputs.  
LOW–VOLTAGE  
1:20 DIFFERENTIAL  
270ps max. Part–to–Part Skew  
50ps max. Output–to–Output Skew  
Differential Design  
ECL/PECL CLOCK DRIVER  
VBB Output  
Voltage and Temperature Compensated Outputs  
Supports 3.3V and 2.5V, ECL and PECL Operation  
Supports HSTL and PECL Clock Systems  
The EP221 is specifically designed, modeled and produced with low  
skew as the key goal. Optimal design and layout serve to minimize gate–  
to–gate skew within a device, and empirical modeling is used to deter-  
mine process control limits that ensure consistent tpd distributions from lot  
to lot. The net result is a dependable, guaranteed low skew device.  
To ensure that the tight skew specification is met it is necessary that  
both sides of the differential output are terminated into 50, even if only  
one side is being used. In most applications, all ten differential pairs will  
be used and therefore terminated. In the case where fewer than ten pairs  
are used, it is necessary to terminate at least the output pairs on the same  
package side as the pair(s) being used on that side, in order to maintain  
minimum skew. Failure to do this will result in small degradations of prop-  
agation delay (on the order of 10–20ps) of the output(s) being used  
which, while not being catastrophic to most designs, will mean a loss of  
skew margin.  
TB SUFFIX  
52–LEAD LQFP PACKAGE  
EXPOSED PAD  
CASE 1336  
6
The MC100EP221, as with most other ECL devices, can be operated from a positive VCC supply in PECL mode. This allows  
the EP221 to be used for high performance clock distribution in +3.3V or +2.5V systems. Designers can take advantage of the  
EP221’s performance to distribute low skew clocks across the backplane. In a PECL environment, series or Thevenin line  
terminations are typically used as they require no additional power supplies.  
Rev 1  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
639  
MC100EP221  
Pinout: 52–Lead LQFP  
(Top View)  
MC100EP221  
FUNCTION  
CLK_SEL  
Active Input  
6
0
1
CLK0, CLK0  
CLK1, CLK1  
LOGIC SYMBOL  
ꢃ ꢃ  
W
W
ꢈ ꢈ  
W
ꢃ ꢃ  
W
W
ꢈ ꢈ  
W
ꢈ ꢈ  
W
ꢈ ꢈ  
640  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
MC100EP221  
Table 1: PIN CONFIGURATION  
Pin  
I/O  
Type  
Function  
CLK0, CLK0  
Input  
ECL/LVPECL  
Differential reference clock signal input  
CLK1, CLK1  
CLK_SEL  
Input  
Input  
ECL/LVPECL or HSTL  
LVPECL  
Alternative differential reference clock signal input  
Output frequency divider select  
Q[0-19], Q[0-19]  
Output  
Supply  
Supply  
LVPECL  
Differential clock outputs  
Negative power supply  
a
VEE  
V
CC  
, V  
CCO  
Positive power supply. All V and V  
pins must be connected to  
CC  
CCO  
the positive power supply for correct DC and AC operation  
VBB  
Output  
DC bias output for single ended input operation  
a. In ECL mode (negative power supply mode), VEE is either -3.3V or -2.5V and VCC is connected to GND (0V).  
In PECL mode (positive power supply mode), VEE is connected to GND (0V) and VCC is either +3.3V or +2.5V.  
In both modes, the input and output levels are referrenced to the most positive supply (VCC).  
Table 2: ABSOLUTE MAXIMUM RATINGSa  
Symbol  
Characteristics  
Min  
-0.3  
-0.3  
-0.3  
Max  
Unit  
V
Condition  
V
CC  
Supply Voltage  
4.6  
V
IN  
DC Input Voltage  
V
V
+0.3  
V
CC  
CC  
V
OUT  
DC Output Voltage  
DC Input Current  
+0.3  
V
I
IN  
20  
50  
mA  
mA  
°C  
I
DC Output Current  
Storage temperature  
OUT  
T
S
-65  
125  
a. Absolute maximum continuos ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions  
or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated conditions is not  
implied.  
Table 3: GENERAL SPECIFICATIONS  
Symbol  
Characteristics  
Output termination voltage  
Min  
Typ  
Max  
Unit  
V
Condition  
6
a
V
TT  
V
- 2  
CC  
MM  
HBM  
CDM  
LU  
ESD Protection (Machine model)  
ESD Protection (Human body model)  
ESD Protection (Charged device model)  
Latch-up immunity  
75  
1500  
500  
200  
V
V
V
mA  
pF  
C
4.0  
Inputs  
IN  
b
θ
Thermal resistance junction to ambient  
Thermal resistance junction to case  
See application information  
See application information  
JA  
JC  
θ
a. Output termination voltage V = 0V for V =2.5V operation is supported but the power consumption of the device will increase.  
TT  
CC  
b. Proper thermal management is critical for reliable system operation. This especially true for high-fanout and high drive capability products.  
Thermal package information and exposed pad land pattern design recommendations are available in the applications section of this data-  
sheet. In addition, the means of calculating die power consumption, the corresponding die temperature and the relationsship to long-term  
reliability is addressed in the Motorola application note AN1545. Thermal modeling is recommended for the MC100EP221.  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
641  
MC100EP221  
Table 4: PECL and HSTL DC Characteristics (VCCO = VCC = 2.375V to 3.8V, VEE = GND)  
Symbol  
Characteristics  
T
A
= -40°C  
T
A
= 25°C  
T = 85°C  
A
Unit  
Condition  
Min  
Max  
Min  
Max  
Min  
Max  
a
Clock input pair CLK0, CLK0, CLK1, CLK1 (LVPECL differential signals)  
V
PP  
Differential input  
b
voltage  
V
CC  
V
CC  
=3.3V  
=2.5V  
0.10  
0.15  
0.10  
0.15  
0.10  
0.15  
V
V
V
CMR  
Differential cross point  
c
voltage  
CLK0  
1.0  
0.1  
V
CC  
V
CC  
-0.4  
-1.0  
1.0  
0.1  
V
CC  
V
CC  
-0.4  
-1.0  
1.0  
0.1  
V
CC  
V
CC  
-0.4  
-1.0  
V
V
CLK1  
d
Clock input pair CLK1, CLK1 (HSTL differential signals)  
V
DIF  
Differential input  
e
voltage  
V
CC  
V
CC  
=3.3V  
=2.5V  
0.4  
0.4  
1.0  
1.0  
0.4  
0.4  
1.0  
1.0  
0.4  
0.4  
1.0  
1.0  
V
V
V
X
Differential cross point  
voltage  
0.68  
0.9  
0.68  
0.9  
0.68  
0.9  
V
f
V
Input high voltage  
Input low voltage  
V +0.2  
V +0.5  
V +0.2  
V +0.5  
V +0.2  
V +0.5  
V
V
IH  
X
X
X
X
X
X
V
V -0.5  
X
V -0.2  
X
V -0.5  
X
V -0.2  
X
V -0.5  
X
V -0.2  
X
IL  
All inputs (LVPECL single ended signals)  
V
Input high voltage  
Input low voltage  
Input Current  
V
-1.165  
-1.810  
V
V
-0.880  
V
V
-1.165  
V
V
-0.880  
V
V
-1.165  
V
V
-0.880  
V
V
IH  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
V
I
V
-1.480  
-1.810  
-1.480  
-1.810  
-1.480  
IL  
CC  
CC  
CC  
CC  
CC  
150  
150  
150  
µA  
V
IN  
= V to  
CC  
IH  
V
EE  
LVPECL clock outputs (Q0-19, Q0-19)  
g
V
Output High Voltage  
Output Low Voltage  
V
-1.20  
-1.90  
V
-0.82  
V
-1.15  
-1.90  
V
-0.82  
V
-1.15  
V
-0.82  
V
V
I
= -30mA  
OH  
OH  
CC  
CC  
CC  
CC  
CC  
CC  
g
V
V
CC  
V
CC  
-1.40  
V
CC  
V
CC  
-1.40  
V
-1.9  
V
CC  
-1.40  
I
OL  
= -5mA  
OL  
CC  
Supply current and V  
BB  
6
I
Max. Supply Current  
Max. Supply Current  
190  
750  
190  
750  
190  
750  
mA  
mA  
V
V
pin  
EE  
CC  
EE  
h
I
pins  
CC  
V
BB  
Output reference  
i
voltage  
V
CC  
V
CC  
=3.3V  
=2.5V  
V
CC  
V
CC  
-1.35  
-1.35  
V
CC  
V
CC  
-1.24  
-1.24  
V
CC  
V
CC  
-1.35  
-1.35  
V
CC  
V
CC  
-1.24  
-1.22  
V
V
-1.35  
-1.35  
V
CC  
V
CC  
-1.24  
-1.22  
V
V
CC  
CC  
a. The input pairs CLK0, CLK1 are compatible to differential signaling standards. CLK0 is compatible to LVPECL signals and CLK1 meets  
both HSTL and LVPECL differential signal specifications. The difference between CLK0 and CLK1 is the differential input threshold voltage  
(V  
CMR  
).  
b. V is the minimum differential input voltage swing required to maintain device functionality.  
PP  
c. V  
(DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V  
(DC)  
(DC)  
CMR  
CMR  
range and the input swing lies within the V (DC) specification.  
d. Clock inputs driven by differential HSTL compatible signals. Only applicable to CLK1, CLK1.  
PP  
e. V  
(DC) is the minimum differential HSTL input voltage swing required for device functionality. Only applicable to CLK1, CLK1.  
(DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V  
DIF  
f.  
V
C
M
R
C
M
R
range and the input swing lies within the V (DC) specification.  
PP  
g. Equivalent to an output termination of 50to V  
.
TT  
h. I includes current through the output resistors (all outputs terminated 50W to V ).  
CC  
TT  
i.  
V output can be used to bias the complementary input when the device is used with single ended clock signals. V can sink max. 0.3  
BB BB  
mA DC current.  
642  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
MC100EP221  
Table 5: ECL DC Characteristics (VCC = VCCO = GND, VEE = -3.8V to -2.375V)  
Symbol  
Characteristics  
T
A
= -40°C  
T
A
= 25°C  
T = 85°C  
A
Unit  
Condition  
Min  
Max  
Min  
Max  
Min  
Max  
a
Clock input pair CLK0, CLK0, CLK1, CLK1 for ECL differential signals  
b
V
PP  
Differential input voltage  
V
V
=-3.3V  
=-2.5V  
c
0.10  
0.15  
0.10  
0.15  
0.10  
0.15  
V
V
EE  
EE  
V
CMR  
Differential cross point voltage  
CLK0  
CLK1  
V
EE  
V
EE  
+1.0  
+0.1  
-0.4  
–1.0  
V
EE  
V
EE  
+1.0  
+0.1  
-0.4  
–1.0  
V
EE  
V
EE  
+1.0  
+0.1  
-0.4  
–1.0  
V
V
All inputs ECL single ended signals  
V
Input high voltage  
Input low voltage  
Input Current  
-1.165  
-1.810  
-0.880  
-1.480  
150  
-1.165  
-1.810  
-0.880  
-1.480  
150  
-1.165  
-1.810  
-0.880  
-1.480  
150  
V
V
IH  
V
IL  
I
IH  
µA  
V
V
= V  
to  
IN  
CC  
EE  
LVPECL clock outputs (Q0-19, Q0-19)  
d
V
Output High Voltage  
Output Low Voltage  
-1.20  
-1.90  
-0.82  
-1.40  
-1.20  
-1.90  
-0.82  
-1.40  
-1.20  
-1.90  
-0.82  
-1.40  
V
V
I
= -30 mA  
OH  
OH  
d
V
I = -5 mA  
OL  
OL  
Supply current and V  
BB  
I
Max. Supply Current  
Max. Supply Current  
190  
750  
190  
750  
190  
750  
mA  
mA  
V
V
pin  
EE  
CC  
EE  
e
I
Pins  
CC  
f
V
BB  
Output reference voltage  
V
EE  
V
EE  
=-3.3V  
=-2.5V  
-1.35  
-1.35  
-1.24  
-1.24  
-1.35  
-1.35  
-1.24  
-1.22  
-1.35  
-1.35  
-1.24  
-1.22  
V
V
a. The input pairs CLK0, CLK1 are compatible to differential signaling standards such as ECL. The difference between CLK0 and CLK1 is the  
differential input threshold voltage (V ).  
CMR  
b. V is the minimum differential input voltage swing required to maintain device functionality.  
PP  
c. V  
(DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V  
(DC)  
CMR  
CMR  
range and the input swing lies within the V (DC) specification.  
PP  
6
d. Equivalent to an output termination of 50to V  
.
TT  
e. I includes current through the output resistors (all outputs terminated 50W to V ).  
CC  
TT  
f.  
V output can be used to bias the complementary input when the device is used with single ended clock signals. V can sink max. 0.3  
BB BB  
mA DC current.  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
643  
MC100EP221  
Table 6: PECL/ECL/HSTL AC Characteristicsa (VCC = VCCO = 2.375V to 3.8V, VEE = GND) or (VEE = -3.8V to -2.375V,  
V
CC = VCCO = GND)  
Symbol  
Characteristics  
T
A
= -40°C  
T
A
= 25°C  
T = 85°C  
A
Unit Condition  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
b
Clock input pair CLK0, CLK0, CLK1, CLK1 for PECL differential signals  
c
V
PP  
Differential input voltage  
(peak-to-peak)  
0.5  
1.0  
0.5  
1.0  
0.5  
1.0  
V
V
CMR  
Differential cross point  
voltage  
d
CLK0  
CLK1  
1.0  
0.3  
V
CC  
V
CC  
-0.4  
-1.3  
1.0  
0.3  
V
V
-0.4  
-1.3  
1.0  
0.3  
V
V
-0.4  
-1.3  
V
V
CC  
CC  
CC  
CC  
f
Input Frequency (PECL)  
0
1.0  
1.0  
1.0  
GHz  
CLK  
Clock input pair CLK0, CLK0, CLK1, CLK1 for ECL differential signals  
V
PP  
Differential input voltage  
(peak-to-peak)  
0.5  
1.0  
0.5  
1.0  
0.5  
1.0  
V
V
CMR  
Differential cross point  
voltage  
CLK0  
CLK1  
V
EE  
V
EE  
+1.0  
+0.3  
-0.4  
-1.3  
V
EE  
V
EE  
+1.0  
+0.3  
-0.4  
–1.3  
V
EE  
V
EE  
+1.0  
+0.3  
-0.4  
-1.3  
V
V
f
Input Frequency (ECL)  
0
1.0  
1.0  
1.0  
GHz  
CLK  
Clock input pair CLK1, CLK1 for HSTL differential signals  
e
V
DIF  
Differential input voltage  
0.4  
1.0  
0.5  
1.0  
0.5  
1.0  
V
(peak-to-peak)  
CLK1  
V
X
Differential cross point  
voltage  
f
CLK1  
0.68  
0
0.9  
1.0  
0.68  
0.9  
1.0  
0.68  
0.9  
1.0  
V
f
Input Frequency (HSTL)  
GHz  
CLK  
PECL/ECL clock outputs (Q0-19, Q0-19)  
Propagation Delay  
CLK to Qx  
t
PD  
350  
370  
460  
500  
600  
640  
390  
440  
520  
570  
660  
710  
480  
530  
630  
680  
750  
800  
ps  
ps  
Diff.  
Diff.  
0
CLK to Qx  
1
6
V
O(P-P)  
Differential output voltage  
(peak-to-peak) f < 50 MHz  
450  
400  
375  
550  
500  
400  
550  
500  
400  
mV  
mV  
mV  
O
f
O
f
O
< 0.8 GHz  
< 1.0 GHz  
t
Output-to-output skew  
(within device)  
sk(O)  
30  
50  
50  
30  
50  
50  
30  
50  
50  
ps  
ps  
Diff.  
Diff.  
t
Output-to-output skew  
(part-to-part)  
sk(PP)  
270  
270  
270  
t
Output cycle-to-cycle jitter  
(RMS)  
JIT(CC)  
TBD  
50.5  
500  
TBD  
50.5  
500  
TBD  
50.5  
500  
ps  
%
DC  
Output duty cycle  
49.5  
100  
49.5  
100  
.
49.5  
100  
DC = 50%  
O
fref  
t , t  
Output Rise/Fall Time  
ps  
20% to 80%  
r
f
a. AC characteristics apply for parallel output termination of 50to V  
TT  
b. The input pairs CLK0, CLK1 are compatible to differential signaling standards such as ECL. The difference between CLK0 and CLK1 is the  
differential input threshold voltage (V ).  
CMR  
c. V (AC) is the minimum differential input voltage swing required to maintain AC characteristics including tpd and device-to-device skew.  
PP  
d. V  
(AC) is the crosspoint of the differential input signal. AC operation is obtained when the crosspoint is within the V  
range and the  
CMR  
CMR  
input swing lies within the V (AC) specification. Violation of V  
(AC) or V  
(AC) impacts the device propagation delay and part-to-  
PP  
CMR  
PP  
part skew.  
e. V (AC) is the minimum differential HSTL input voltage swing required to maintain AC characteristics. Only applicable to CLK1.  
DIF  
f.  
V (AC) is the crosspoint of the differential HSTL input signal. AC operation is obtained when the crosspoint is within the V (AC) range  
X X  
and the input swing lies within the V  
to-part skew.  
(AC) specification. Violation of V (AC) or V  
(AC) impacts the device propagation delay and part-  
DIF  
DIF  
X
644  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
MC100EP221  
Ω  
ꢤ ꢥ ꢏ ꢁΩ  
ꢖ ꢗꢘꢘ ꢙꢚꢙ ꢛꢜ ꢗꢝꢞ  
ꢟ ꢠꢞꢡꢙ ꢢ ꢙꢛꢙ ꢚꢝ ꢜꢣꢚ  
ꢤ ꢥ ꢏꢁ W  
ꢦ ꢥ ꢏ ꢁΩ  
ꢧ ꢧ  
ꢧ ꢧ  
Figure 1. MC100EP221 AC test reference  
ꢟ ꢟ  
ꢥ ꢁ ꢯꢊ ꢍ  
ꢍ ꢥ ꢍ ꢮꢂ ꢯ ꢑꢍ  
ꢃ ꢩ ꢦ ꢃ ꢃ  
ꢜ ꢪꢃꢄ ꢅ ꢜ ꢣ ꢀ ꢭ  
ꢟ ꢖ ꢫ ꢬ  
Figure 2. MC100EP221 AC reference measurement waveform  
6
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
645  
MC100EP221  
APPLICATIONS INFORMATION  
Using the thermally enhanced package of the  
MC100EP221  
array. Because a large solder mask opening may result in a  
poor release, the opening should be subdivided as shown in  
Figure 4 For the nominal package standoff 0.1 mm, a stencil  
thickness of 5 to 8 mils should be considered.  
The MC100EP221 uses a thermally enhanced exposed pad  
(EP) 52 lead LQFP package. The package is molded so that  
the leadframe is exposed at the surface of the package bottom  
side. The exposed metal pad will provide the low thermal im-  
pedance that supports the power consumption of the  
MC100EP221 high-speed bipolar integrated circuit and eases  
the power management task for the system design. A thermal  
land pattern on the printed circuit board and thermal vias are  
recommended in order to take advantage of the enhanced  
thermal capabilities of the MC100EP221. Direct soldering of  
the exposed pad to the thermal land will provide an efficient  
thermal path. In multilayer board designs, thermal vias ther-  
mally connect the exposed pad to internal copper planes.  
Number of vias, spacing, via diameters and land pattern de-  
sign depend on the application and the amount of heat to be  
removed from the package. A nine thermal via array, arranged  
in a 3 x 3 array and using a 1.2 mm pitch in the center of the  
thermal land is the absolute minimum requirement for  
MC100EP221 applications on multi-layer boards. The recom-  
mended thermal land design comprises a 5 x 5 thermal via  
array as shown in Figure 3 “Recommended thermal land pat-  
tern”, providing an efficient heat removal path.  
ꢝ ꢞꢞ ꢠ ꢛ ꢗꢜꢡ ꢱꢱ  
ꢂ ꢯꢁ  
ꢶꢣ  
ꢸ ꢗꢝꢱ ꢙꢜ ꢙ ꢚ  
ꢞꢝ ꢛꢸ ꢶ ꢝꢜ ꢜ ꢙꢚ  
Figure 4. Recommended solder mask openings  
ꢝꢞ ꢞ ꢠ ꢛꢗꢜ ꢡ ꢱꢱ  
For thermal system analysis and junction temperature cal-  
culation the thermal resistance parameters of the package is  
provided. For thermal system analysis and junction tempera-  
ture calculation the thermal resistance parameters of the pack-  
age is provided:  
6
Table 7: Thermal Resistancea  
b
c
d
e
Convection-  
LFPM  
R
R
R
°C/W  
R
THJB  
°C/W  
THJA  
THJA  
THJC  
°C/W  
57.1  
50.0  
46.9  
43.4  
38.6  
°C/W  
24.9  
21.3  
20.0  
18.7  
16.9  
Natural  
100  
200  
15.8  
9.7  
400  
800  
a. Thermal data pattern with a 3 x 3 thermal via array on  
2S2P boards (based on empirical results)  
b. Junction to ambient, single layer test board, per JESD51-6  
c. Junction to ambient, four conductor layer test board  
(2S2P), per JES51-6  
ꢸ ꢗꢝ ꢱꢙ ꢜꢙ ꢚ  
Figure 3. Recommended thermal land pattern  
The via diameter is should be approx. 0.3 mm with 1 oz.  
d. Junction to case, per MIL-SPEC 883E, method 1012.1  
copper via barrel plating. Solder wicking inside the via resulting e. Junction to board, four conductor layer test board (2S2P)  
in voids during the solder process must be avoided. If the cop-  
per plating does not plug the vias, stencil print solder paste  
per JESD 51-8  
It is recommended that users employ thermal modeling  
onto the printed circuit pad. This will supply enough solder analysis to assist in applying the general recommendations to  
paste to fill those vias and not starve the solder joints. The their particular application. The exposed pad of the  
attachment process for exposed pad package is equivalent to MC100EP221 package does not have an electrical low imped-  
standard surface mount packages. Figure 4 “Recommended ance path to the substrate of the integrated circuit and its termi-  
solder mask openings” shows a recommend solder mask nals. The thermal land should be connected to GND through  
opening with respect to the recommended 5 x 5 thermal via connection of internal board layers.  
646  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  

相关型号:

MC100EP223

Low-Voltage 1:22 Differential PECL/HSTL Clock Driver
MOTOROLA

MC100EP223

Low-Voltage 1:22 Differential PECL/HSTL Clock Driver
FREESCALE

MC100EP223FA

Low Skew Clock Driver, 100E Series, 22 True Output(s), 0 Inverted Output(s), ECL, PQFP64, PLASTIC, TQFP-64
MOTOROLA

MC100EP223TC

Low-Voltage 1:22 Differential PECL/HSTL Clock Driver
MOTOROLA

MC100EP223TC

Low-Voltage 1:22 Differential PECL/HSTL Clock Driver
FREESCALE

MC100EP29

3.3V / 5V ECL Dual Differential Data and Clock D Flip−Flop With Set and Reset
ONSEMI

MC100EP29DT

3.3V / 5V ECL Dual Differential Data and Clock D Flip-Flop With Set and Reset
ONSEMI

MC100EP29DTG

3.3V / 5V ECL Dual Differential Data and Clock D Flip−Flop With Set and Reset
ONSEMI

MC100EP29DTR2

3.3V / 5V ECL Dual Differential Data and Clock D Flip-Flop With Set and Reset
ONSEMI

MC100EP29DTR2G

3.3V / 5V ECL Dual Differential Data and Clock D Flip−Flop With Set and Reset
ONSEMI

MC100EP29MNG

3.3V / 5V ECL Dual Differential Data and Clock D Flip−Flop With Set and Reset
ONSEMI

MC100EP29MNTXG

3.3V / 5V ECL Dual Differential Data and Clock D Flip−Flop With Set and Reset
ONSEMI