APT36GA60SD15 [MICROSEMI]

High Speed PT IGBT; 高速PT IGBT
APT36GA60SD15
型号: APT36GA60SD15
厂家: Microsemi    Microsemi
描述:

High Speed PT IGBT
高速PT IGBT

晶体 晶体管 功率控制 瞄准线 双极性晶体管 栅
文件: 总9页 (文件大小:242K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APT36GA60BD15  
APT36GA60SD15  
600V  
High Speed PT IGBT  
APT36GA60SD15  
POWER MOS 8® is a high speed Punch-Through switch-mode IGBT. Low Eoff is  
achieved through leading technology silicon design and lifetime control processes. A  
reduced Eoff - VCE(ON) tradeoff results in superior efciency compared to other IGBT  
technologies. Low gate charge and a greatly reduced ratio of Cres/Cies provide excel-  
lent noise immunity, short delay times and simple gate drive. The intrinsic chip gate  
resistance and capacitance of the poly-silicone gate structure help control di/dt during  
switching, resulting in low EMI, even when switching at high frequency.  
D3PAK  
APT36GA60BD15  
Combi (IGBT and Diode)  
FEATURES  
TYPICAL APPLICATIONS  
• Fast switching with low EMI  
• Very Low Eoff for maximum efciency  
• Ultra low Cres for improved noise immunity  
• Low conduction loss  
• ZVS phase shifted and other full bridge  
• Half bridge  
• High power PFC boost  
• Welding  
• Low gate charge  
• UPS, solar, and other inverters  
• High frequency, high efciency industrial  
• Increased intrinsic gate resistance for low EMI  
• RoHS compliant  
Absolute Maximum Ratings  
Symbol Parameter  
Ratings  
Unit  
Collector Emitter Voltage  
600  
V
Vces  
IC1  
Continuous Collector Current @ TC = 25°C  
Continuous Collector Current @ TC = 100°C  
Pulsed Collector Current 1  
65  
36  
A
IC2  
ICM  
109  
VGE  
Gate-Emitter Voltage 2  
±30  
V
PD  
Total Power Dissipation @ TC = 25°C  
Switching Safe Operating Area @ TJ = 150°C  
Operating and Storage Junction Temperature Range  
290  
W
SSOA  
TJ, TSTG  
TL  
109A @ 600V  
-55 to 150  
°C  
Lead Temperature for Soldering: 0.063" from Case for 10 Seconds  
300  
Static Characteristics  
Symbol Parameter  
T = 25°C unless otherwise specied  
J
Test Conditions  
Min  
Typ  
Max  
Unit  
VBR(CES)  
Collector-Emitter Breakdown Voltage  
VGE = 0V, IC = 1.0mA  
600  
TJ = 25°C  
TJ = 125°C  
2.0  
1.9  
4.5  
2.5  
VGE = 15V,  
IC = 20A  
V
VCE(on)  
VGE(th)  
ICES  
Collector-Emitter On Voltage  
Gate Emitter Threshold Voltage  
Zero Gate Voltage Collector Current  
Gate-Emitter Leakage Current  
VGE =VCE , IC = 1mA  
3
6
TJ = 25°C  
275  
VCE = 600V,  
VGE = 0V  
μA  
TJ = 125°C  
3000  
±100  
IGES  
VGS = ±30V  
nA  
Microsemi Website - http://www.microsemi.com  
APT36GA60B_SD15  
Dynamic Characteristics  
T = 25°C unless otherwise specied  
J
Symbol  
Cies  
Parameter  
Test Conditions  
Capacitance  
Min  
Typ  
2880  
226  
328  
102  
18  
Max  
Unit  
Input Capacitance  
Coes  
Output Capacitance  
Reverse Transfer Capacitance  
VGE = 0V, VCE = 25V  
f = 1MHz  
pF  
Cres  
3
Qg  
Total Gate Charge  
Gate Charge  
Qge  
Gate-Emitter Charge  
VGE = 15V  
VCE= 300V  
nC  
A
Qgc  
Gate- Collector Charge  
36  
IC = 20A  
TJ = 150°C, RG = 10Ω4, VGE = 15V,  
L= 100uH, VCE = 600V  
Inductive Switching (25°C)  
VCC = 400V  
SSOA  
Switching Safe Operating Area  
109  
td(on)  
tr  
td(off)  
tf  
Turn-On Delay Time  
Current Rise Time  
16  
14  
ns  
μJ  
ns  
μJ  
Turn-Off Delay Time  
Current Fall Time  
122  
77  
VGE = 15V  
IC = 20A  
RG = 10Ω4  
Eon2  
Eoff  
td(on)  
tr  
Turn-On Switching Energy  
307  
254  
14  
6
Turn-Off Switching Energy  
TJ = +25°C  
Turn-On Delay Time  
Current Rise Time  
Inductive Switching (125°C)  
15  
VCC = 400V  
td(off)  
tf  
Turn-Off Delay Time  
Current Fall Time  
149  
113  
508  
439  
VGE = 15V  
IC = 20A  
RG = 10Ω4  
Eon2  
Eoff  
Turn-On Switching Energy  
6
Turn-Off Switching Energy  
TJ = +125°C  
Thermal and Mechanical Characteristics  
Symbol Characteristic  
Min  
Typ  
Max  
Unit  
RθJC  
Junction to Case Thermal Resistance (IGBT)  
-
-
.43  
°C/W  
RθJC  
WT  
Junction to Case Thermal Resistance (Diode)  
Package Weight  
1.35  
-
-
5.9  
g
Torque  
Mounting Torque (TO-247 Package), 4-40 or M3 screw  
10  
in·lbf  
1
2
3
4
5
Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.  
Pulse test: Pulse Width < 380μs, duty cycle < 2%.  
See Mil-Std-750 Method 3471.  
RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)  
Eon2 is the clamped inductive turn on energy that includes a commutating diode reverse recovery current in the IGBT turn on energy loss. A combi device is used for the  
clamping diode.  
Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1.  
Microsemi reserves the right to change, without notice, the specications and information contained herein.  
6
Typical Performance Curves  
APT36GA60BD_S15  
280  
240  
200  
160  
120  
80  
60  
15V  
V
= 15V  
GE  
13V  
50  
40  
30  
20  
10  
0
TJ= 125°C  
TJ= 150°C  
TJ= 55°C  
TJ= 25°C  
12V  
11V  
10V  
9V  
40  
8V  
6V  
0
0
V
4
8
12 16 20  
24 28 32  
0
1
2
3
4
5
6
V
, COLLECTOR-TO-EMITTER VOLTAGE (V)  
, COLLECTOR-TO-EMITTER VOLTAGE (V)  
CE  
CE  
FIGURE 1, Output Characteristics (T = 25°C)  
FIGURE 2, Output Characteristics (T = 25°C)  
J
J
16  
14  
12  
10  
300  
250  
200  
150  
100  
50  
250μs PULSE  
TEST<0.5 % DUTY  
CYCLE  
I
= 20A  
C
T
= 25°C  
J
V
= 120V  
CE  
V
= 300V  
CE  
V
= 480V  
8
CE  
6
4
2
0
TJ= 25°C  
TJ= -55°C  
TJ= 125°C  
0
0
2
4
6
8
10  
12  
14  
0
10 20 30 40 50 60 70 80 90 100  
GATE CHARGE (nC)  
V
, GATE-TO-EMITTER VOLTAGE (V)  
GE  
FIGURE 4, Gate charge  
FIGURE 3, Transfer Characteristics  
5
4
3
2
1
0
4
TJ = 25°C.  
250μs PULSE TEST  
<0.5 % DUTY CYCLE  
3
2
1
0
I
= 40A  
C
I
= 20A  
C
I
= 40A  
= 20A  
C
I
C
I
= 10A  
C
I
= 10A  
C
VGE = 15V.  
250μs PULSE TEST  
<0.5 % DUTY CYCLE  
6
8
10  
12  
14  
16  
0
25  
50  
75  
100  
125  
150  
V
, GATE-TO-EMITTER VOLTAGE (V)  
T , Junction Temperature (°C)  
GE  
J
FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage  
FIGURE 6, On State Voltage vs Junction Temperature  
1.15  
80  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
70  
60  
50  
40  
30  
20  
10  
0
25  
50  
75  
100  
125  
150  
-50 -25  
0
25 50 75 100 125 150  
T , JUNCTION TEMPERATURE  
T , Case Temperature (°C)  
J
C
FIGURE 7, Threshold Voltage vs Junction Temperature  
FIGURE 8, DC Collector Current vs Case Temperature  
Typical Performance Curves  
APT36GA60BD_S15  
200  
160  
120  
80  
20  
18  
16  
VGE =15V,TJ=125°C  
V
= 15V  
VGE =15V,TJ=25°C  
GE  
14  
12  
10  
VCE = 400V  
TJ = 25°C, or 125°C  
G = 10  
40  
VCE = 400V  
RG = 10ꢀ  
L = 100μH  
R
L = 100μH  
0
0
5
10  
15 20 25 30  
35 40  
0
I
5
10 15 20  
, COLLECTOR-TO-EMITTER CURRENT (A)  
25 30 35  
40  
I
, COLLECTOR-TO-EMITTER CURRENT (A)  
CE  
CE  
FIGURE 9, Turn-On Delay Time vs Collector Current  
FIGURE 10, Turn-Off Delay Time vs Collector Current  
40  
35  
30  
25  
20  
15  
10  
5
150  
R
G = 10, L = 100μH, VCE = 400V  
R
G = 10, L = 100μH, VCE = 400V  
125  
100  
75  
50  
25  
0
TJ = 125°C, VGE = 15V  
TJ = 25°C, VGE = 15V  
TJ = 25 or 125°C,VGE = 15V  
0
0
5
10  
15  
20 25 30  
35 40  
0
, C
5
OLL
1
E
0
CTO
1
R
5
-TO
2
-E
0
MIT
2
T
5
ER
3
C
0
URR
3
E
5
NT
4
(A
0
)  
CE  
I
, COLLECTOR-TO-EMITTER CURRENT (A)  
I
CE  
FIGURE 12, Current Fall Time vs Collector Current  
FIGURE 11, Current Rise Time vs Collector Current  
1200  
1000  
800  
1500  
1250  
1000  
750  
V
V
=
=
400V  
+15V  
V
V
=
=
400V  
+15V  
CE  
GE  
CE  
GE  
R
= 10ꢀ  
R
=10ꢀ  
G
G
TJ = 125°C  
TJ = 125°C  
600  
400  
500  
TJ = 25°C  
200  
250  
TJ = 25°C  
0
0
0
5
10 15 20 25  
30 35 40  
0
5
10 15  
20 25 30  
35 40  
I
, COLLECTOR-TO-EMITTER CURRENT (A)  
I
, COLLECTOR-TO-EMITTER CURRENT (A)  
CE  
CE  
FIGURE 13, Turn-On Energy Loss vs Collector Current  
FIGURE 14, Turn-Off Energy Loss vs Collector Current  
2000  
1800  
1600  
1400  
1200  
1000  
800  
1600  
V
V
T
=
=
400V  
+15V  
V
V
=
=
400V  
+15V  
CE  
GE  
CE  
GE  
= 125°C  
1400  
1200  
1000  
800  
R
= 10ꢀ  
J
G
Eon2,40A  
Eon2,40A  
Eoff,40A  
Eoff,40A  
600  
Eon2,20A  
Eoff,20A  
Eon2,20A  
Eoff,20A  
600  
400  
Eon2,10A  
Eoff,10A  
400  
Eon2,10A  
Eoff,10A  
200  
200  
0
0
0
10  
G
20  
30  
40  
50  
0
25  
50  
75  
100  
125  
R , GATE RESISTANCE (OHMS)  
T , JUNCTION TEMPERATURE (°C)  
J
FIGURE 15, Switching Energy Losses vs Gate Resistance  
FIGURE 16, Switching Energy Losses vs Junction Temperature  
Typical Performance Curves  
APT36GA60B_SD15  
10000  
200  
100  
Cies  
1000  
10  
1
Coes  
100  
10  
Cres  
0.1  
0
100  
200  
300  
400  
500  
1
10  
100  
800  
V
, COLLECTOR-TO-EMITTER VOLTAGE  
V
, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)  
CE  
CE  
FIGURE 18, Minimum Switching Safe Operating Area  
FIGURE 17, Capacitance vs Collector-To-Emitter Voltage  
0.50  
0.45  
D = 0.9  
0.40  
0.35  
0.7  
0.30  
0.25  
0.5  
Note:  
0.20  
t
1
0.3  
0.15  
0.10  
0.05  
0
t
2
t
1
t
/
2
0.1  
Duty Factor D =  
Peak T = P  
x Z  
+ T  
θJC C  
J
DM  
0.05  
SINGLE PULSE  
10-3  
-4  
10-5  
10  
10 -2  
10-1  
1.0  
RECTANGULAR PULSE DURATION (SECONDS)  
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration  
APT36GA60BD_S15  
10%  
Gate Voltage  
td(on)  
T
= 125°C  
J
90%  
APT15DQ60  
tr  
Collector Current  
Collector Voltage  
10%  
VCE  
VCC  
IC  
5%  
5%  
Switching Energy  
A
D.U.T.  
Figure 20, Inductive Switching Test Circuit  
Figure 21, Turn-on Switching Waveforms and Denitions  
T
= 125°C  
90%  
td(off)  
J
Gate Voltage  
Collector Voltage  
tf  
10%  
0
Collector Current  
Switching Energy  
Figure 22, Turn-off Switching Waveforms and Denitions  
ULTRAFAST SOFT RECOVERY RECTIFIER DIODE  
MAXIMUM RATINGS  
Symbol Characteristic / Test Conditions  
All Ratings: TC = 25°C unless otherwise specified.  
APT36GA60B_SD15  
Unit  
15  
30  
IF(AV)  
IF(RMS)  
IFSM  
Maximum Average Forward Current (TC = 129°C, Duty Cycle = 0.5)  
RMS Forward Current (Square wave, 50% duty)  
Amps  
110  
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3 ms)  
STATIC ELECTRICAL CHARACTERISTICS  
Symbol Characteristic / Test Conditions  
Min  
Type  
2.0  
Max  
Unit  
IF = 15A  
IF = 30A  
Forward Voltage  
2.5  
Volts  
VF  
1.56  
IF = 15A, TJ = 125°C  
DYNAMIC CHARACTERISTICS  
Symbol Characteristic  
Test Conditions  
Min  
Typ  
Max  
Unit  
IF = 1A, diF/dt = -100A/µs ,  
VR = 30V, TJ = 25°C  
Reverse Recovery Time  
trr  
-
-
15  
ns  
Reverse Recovery Time  
trr  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
19  
21  
2
IF = 15A, diF/dt = -200A/µs  
Reverse Recovery Charge  
Qrr  
nC  
Amps  
ns  
V
R = 400V, TC = 25°C  
Maximum Reverse Recovery Current  
IRRM  
trr  
Reverse Recovery Time  
105  
250  
5
IF = 15A, diF/dt = -200A/µs  
VR = 400V, TC = 125°C  
nC  
Reverse Recovery Charge  
Maximum Reverse Recovery Current  
Reverse Recovery Time  
Qrr  
IRRM  
trr  
Amps  
ns  
55  
420  
IF = 15A, diF/dt = -1000A/µs  
VR = 400V, TC = 125°C  
Reverse Recovery Charge  
nC  
Qrr  
Maximum Reverse Recovery Current  
-
-
Amps  
15  
IRRM  
1.40  
D = 0.9  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0
0.7  
0.5  
0.3  
Note:  
t
1
t
2
t
1
t
/
Duty Factor D =  
2
0.1  
Peak T = P  
x Z  
+ T  
C
SINGLE PULSE  
J
DM  
θJC  
0.05  
10-5  
10-4  
10-3  
10-2  
10-1  
1.0  
RECTANGULAR PULSE DURATION (seconds)  
FIGURE 1a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION  
Dynamic Characteristics  
T = 25°C unless otherwise specied  
J
APT36GA60B_SD15  
60  
140  
120  
T
V
=125°C  
=400V  
J
R
50  
30A  
T
= 175°C  
J
100  
80  
40  
30  
20  
15A  
T
= 125°C  
J
7.5A  
60  
40  
10  
0
20  
0
T
= 25°C  
J
T
= -55°C  
J
0
1
2
3
4
0
200 400 600 800 1000 1200 1400 1600  
V , ANODE-TO-CATHODE VOLTAGE (V)  
Figure 2. Forward Current vs. Forward Voltage  
-di /dt, CURRENT RATE OF CHANGE(A/µs)  
Figure 3. Reverse Recovery Time vs. Current Rate of Change  
F
F
700  
600  
500  
400  
300  
200  
25  
T
V
=125°C  
=400V  
T
V
=125°C  
=400V  
J
J
R
R
20  
15  
10  
5
30A  
30A  
15A  
15A  
7.5A  
7.5A  
100  
0
0
0
200 400 600 800 1000 1200 1400 1600  
0
200 400 600 800 1000 1200 1400 1600  
-di /dt, CURRENT RATE OF CHANGE (A/µs)  
Figure 4. Reverse Recovery Charge vs. Current Rate of Change  
-di /dt, CURRENT RATE OF CHANGE (A/µs)  
Figure 5. Reverse Recovery Current vs. Current Rate of Change  
F
F
1.2  
35  
Duty cycle = 0.5  
Q
rr  
T
=175°C  
J
t
rr  
30  
25  
20  
15  
10  
1.0  
0.8  
I
RRM  
0.6  
t
rr  
0.4  
Q
rr  
0.2  
0.0  
5
0
0
25  
50  
75  
100  
125  
150  
25  
50  
75  
Case Temperature (°C)  
Figure 7. Maximum Average Forward Current vs. CaseTemperature  
100  
125  
150  
175  
T , JUNCTION TEMPERATURE (°C)  
Figure 6. Dynamic Parameters vs. Junction Temperature  
J
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
10  
100 200  
V , REVERSE VOLTAGE (V)  
R
Figure 8. Junction Capacitance vs. Reverse Voltage  
Dynamic Characteristics  
T = 25°C unless otherwise specied  
J
APT36GA60B_SD15  
V
r
diF/dt Adjust  
+18V  
0V  
D.U.T.  
t
Q
/
30μH  
rr rr  
Waveform  
PEARSON 2878  
CURRENT  
TRANSFORMER  
Figure 9. Diode Test Circuit  
1
2
IF - Forward Conduction Current  
1
4
5
diF/dt - Rate of Diode Current Change Through Zero Crossing.  
IRRM - Maximum Reverse Recovery Current.  
Zero  
3
4
0.25 I  
RRM  
t
- Reverse Recovery Time, measured from zero crossing where diode  
current goes from positive to negative, to the point at which the straight  
3
rr  
2
line through IRRM and 0.25 IRRM passes through zero.  
5
Q
- Area Under the Curve Defined by IRRM and t .  
rr  
rr  
Figure 10, Diode Reverse Recovery Waveform and Definitions  
D3PAK Package Outline  
TO-247 (B) Package Outline  
e3 100% Sn Plated  
4.98 (.196)  
5.08 (.200)  
1.47 (.058)  
1.57 (.062)  
4.69 (.185)  
5.31 (.209)  
15.95 (.628)  
16.05(.632)  
13.41 (.528)  
13.51(.532)  
15.49 (.610)  
16.26 (.640)  
1.04 (.041)  
1.15(.045)  
1.49 (.059)  
2.49 (.098)  
5.38 (.212)  
6.20 (.244)  
6.15 (.242) BSC  
Revised  
8/29/97  
11.51 (.453)  
11.61 (.457)  
13.79 (.543)  
13.99(.551)  
20.80 (.819)  
21.46 (.845)  
3.50 (.138)  
3.81 (.150)  
0.46 (.018)  
0.56 (.022)  
{3 Plcs}  
1.27 (.050)  
1.40 (.055)  
0.020 (.001)  
0.178 (.007)  
2.87 (.113)  
3.12 (.123)  
3.81 (.150)  
4.50 (.177) Max.  
1.98 (.078)  
2.08 (.082)  
4.06 (.160)  
2.67 (.105)  
2.84 (.112)  
(Base of Lead)  
1.65 (.065)  
2.13 (.084)  
1.22 (.048)  
1.32 (.052)  
0.40 (.016)  
0.79 (.031)  
19.81 (.780)  
20.32 (.800)  
Heat Sink (Collector)  
and Leads  
are Plated  
5.45 (.215) BSC  
{2 Plcs.}  
1.01 (.040)  
1.40 (.055)  
Gate  
Collector (Cathode)  
Emitter (Anode)  
Emitter (Anode)  
Collector (Cathode)  
Gate  
Dimensions in Millimeters (Inches)  
2.21 (.087)  
2.59 (.102)  
5.45 (.215) BSC  
2-Plcs.  
Dimensions in Millimeters and (Inches)  
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583  
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262  
and foreign patents. US and Foreign patents pending. All Rights Reserved.  

相关型号:

APT36N90BC3G

Super Junction MOSFET
MICROSEMI

APT36N90BC3G_10

Super Junction MOSFET
MICROSEMI

APT37F50B

N-Channel FREDFET
MICROSEMI

APT37F50B_09

N-Channel FREDFET
MICROSEMI

APT37F50S

N-Channel FREDFET
MICROSEMI

APT37M100B2

N-Channel MOSFET
MICROSEMI

APT37M100B2_09

N-Channel MOSFET
MICROSEMI

APT37M100L

N-Channel MOSFET
MICROSEMI

APT38-102M5-20-PF

Data Line Filter, 1 Function(s), 5A,
TDK

APT38-152M4-20-PF

Data Line Filter, 1 Function(s), 4A,
TDK

APT38-471M10-10-PF

Data Line Filter, 1 Function(s), 10A,
TDK

APT38-680M20-10-PF

Data Line Filter, 1 Function(s), 20A,
TDK