MAX3670EGJ [MAXIM]

Low-Jitter 155MHz/622MHz Clock Generator; 低抖动了155MHz / 622MHz时钟发生器
MAX3670EGJ
型号: MAX3670EGJ
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Jitter 155MHz/622MHz Clock Generator
低抖动了155MHz / 622MHz时钟发生器

时钟发生器
文件: 总13页 (文件大小:339K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2166; Rev 0; 9/01  
Low-Jitter 155MHz/622MHz  
Clock Generator  
General Description  
Features  
The MAX3670 is a low-jitter 155MHz/622MHz reference  
clock generator IC designed for system clock distribution  
and frequency synchronization in OC-48 and OC-192  
SONET/SDH and WDM transmission systems. The  
MAX3670 integrates a phase/frequency detector, an  
operational amplifier (op amp), prescaler dividers and  
input/output buffers. Using an external VCO, the  
MAX3670 can be configured easily as a phase-lock loop  
with bandwidth programmable from 15Hz to 20kHz.  
Single +3.3V or +5.0V Supply  
Power Dissipation: 150mW at +3.3V Supply  
External VCO Center Frequencies (f  
): 155MHz  
VCO  
to 670MHz  
Reference Clock Frequencies: f  
, f  
/2,  
VCO VCO  
f /8  
VCO  
Main Clock Output Frequency: f  
VCO  
The MAX3670 operates from a single +3.3V or +5.0V  
supply, and dissipates 150mW (typ) at 3.3V. The operat-  
ing temperature range is from -40°C to +85°C. The chip  
is available in a 5mm 5mm, 32-pin QFN package.  
Optional Output Clock Frequencies: f  
, f  
/2,  
VCO VCO  
f /4, f /8  
VCO VCO  
Low Intrinsic Jitter: <0.4ps  
Loss-of-Lock Indicator  
RMS  
Applications  
PECL Clock Output Interface  
OC-12 to OC-192 SONET/WDM Transport  
Systems  
Ordering Information  
Clock Jitter Clean-Up and Frequency  
Synchronization  
PART  
TEMP. RANGE PIN-PACKAGE  
MAX3670EGJ -40°C to +85°C 32 QFN-EP* (5mm x 5mm)  
*Exposed pad  
Frequency Conversion  
System Clock Distribution  
Pin Configuration appears at end of data sheet.  
Typical Application Circuit  
3.3V  
142  
155MHz  
MAX3892  
VCCD  
MOUT+  
REFCLK+  
REFCLK-  
16:1  
SERIALIZER  
MOUT-  
142Ω  
3.3V  
142Ω  
VCOIN+  
VCOIN-  
VCO  
= 25kHz/V  
N.C.  
N.C.  
RSEL  
VSEL  
K
VCO  
155MHz  
100Ω  
MAX3670  
142Ω  
GSEL1  
GSEL2  
GSEL3  
N.C.  
3.3V  
332Ω  
VC  
4700pF  
0.01µF  
500kΩ  
OPAMP-  
OPAMP+  
POLAR  
GND  
4700pF  
500kΩ  
SETUP FOR 10kHz LOOP  
BANDWIDTH  
REPRESENTS A CONTROLLED-IMPEDANCE TRANSMISSION LINE.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Low-Jitter 155MHz/622MHz  
Clock Generator  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage .........................................................-0.5V to +7V  
Voltage at C2+% C2-% ꢂHADJ% CꢂH% GSEL±% GSEL2% GSEL3%  
LOL% RSEL% REFCLK-% REFCLK+% VSEL% VCOIN+% VCOIN-%  
VC% POLAR% PSEL±% PSEL2% COMP%  
PECL Output Cuꢁꢁent (MOUꢂ+%  
MOUꢂ-% POUꢂ+% POUꢂ-).................................................56mA  
Opeꢁating ꢂempeꢁatuꢁe Range ...........................-40°C to +85°C  
Stoꢁage ꢂempeꢁatuꢁe Range.............................-65°C to +±60°C  
Lead ꢂempeꢁatuꢁe (soldeꢁing% ±0s) .................................+300°C  
OPAMP+% OPAMP-..................................-0.5V to (V  
+ 0.5V)  
CC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
= +3.3V ±±0ꢀ oꢁ V  
= +5.0V ±±0ꢀ% ꢂ = -40°C to +85°C. ꢂypical values aꢁe at V  
= +3.3V and ꢂ = +25°C% unless otheꢁ-  
CC A  
CC  
CC  
A
wise noted.) (Note ±)  
PARAMETER  
Supply Cuꢁꢁent  
INPUT SPECIFICATIONS (REFCLK±% VCOIN±)  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
(Note 2)  
48  
72  
mA  
CC  
V
±.±6  
-
V
0.88  
-
CC  
CC  
Input High Voltage  
Input Low Voltage  
Input Bias Voltage  
V
V
V
V
IH  
V
±.8±  
-
V
±.48  
-
CC  
CC  
V
IL  
V
±.3  
-
CC  
Common-Mode Input Resistance  
Diffeꢁential Input Resistance  
7.5  
±2.8  
300  
±±.5  
2±.0  
±7.5  
32.5  
±900  
k  
kΩ  
Diffeꢁential Input Voltage Swing  
PECL OUTPUT SPECIFICATIONS  
AC-coupled  
mVp-p  
V
-
V
0.88  
-
CC  
CC  
0°C to +85°C  
-40°C to 0°C  
0°C to +85°C  
-40°C to 0°C  
±.025  
Output High Voltage  
Output Low Voltage  
V
V
V
OH  
V
-
V
0.88  
-
CC  
CC  
±.085  
V
±.8±  
-
V
±.62  
-
CC  
CC  
V
OL  
V
±.83  
-
V
-
CC  
CC  
±.556  
TTL SPECIFICATIONS  
Output High Voltage  
Output Low Voltage  
V
Souꢁcing 20µA  
Sinking 2mA  
2.4  
V
V
V
OH  
CC  
V
0.4  
OL  
2
_______________________________________________________________________________________  
Low-Jitter 155MHz/622MHz  
Clock Generator  
DC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3.3V ±±0ꢀ oꢁ V  
= +5.0V ±±0ꢀ% ꢂ = -40°C to +85°C. ꢂypical values aꢁe at V  
= +3.3V and ꢂ = +25°C% unless otheꢁ-  
CC A  
CC  
CC  
A
wise noted.) (Note ±)  
PARAMETER  
OPERATIONAL AMPLIFIER SPECIFICATIONS (Note 3)  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
0.3  
-
-
CC  
V
V
= +3.3V ±±0ꢀ  
0.3  
0.5  
CC  
CC  
Op Amp Output Voltage Range  
V
V
O
V
0.5  
CC  
= +5.0V ±±0ꢀ  
Op Amp Input Offset Voltage  
Op Amp Open-Loop Gain  
| V  
A
|
3
mV  
dB  
OS  
90  
OL  
PHASE FREQUENCY DETECTOR (PFD)/CHARGE-PUMP (CP) SPECIFICATIONS (Note 4)  
High gain  
Low gain  
High gain  
Low gain  
±6  
4
20  
5
24.4  
6.2  
Full-Scale PFD/CP Output  
Cuꢁꢁent  
| I  
|
µA  
PD  
0.80  
±.08  
PFD/CP Offset Cuꢁꢁent  
| I  
|
PD  
AC ELECTRICAL CHARACTERISTICS  
(V  
= +3.3V ±±0ꢀ oꢁ V  
= +5.0V ±±0ꢀ% ꢂ = -40°C to +85°C. ꢂypical values aꢁe at V  
= +3.3V and ꢂ = +25°C% unless otheꢁ-  
CC A  
CC  
CC  
A
wise noted.) (Note 5)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CLOCK OUTPUT SPECIFICATIONS  
Clock Output Fꢁequency  
670  
MHz  
622/3±±/  
±55/78  
f
f
= 622MHz  
= ±55MHz  
VCO  
VCO  
Optional Clock Output  
Fꢁequency  
MHz  
±55/78/  
38/±9  
Clock Output Rise/Fall ꢂime  
Clock Output Duty Cycle  
Measuꢁed fꢁom 20ꢀ to 80ꢀ  
(Note 6)  
280  
55  
ps  
45  
NOISE SPECIFICATIONS  
Random Noise Voltage at Loop-  
Filteꢁ Output  
µV  
/Hz  
RMS  
RMS  
V
Fꢁeq > ±kHz (Note 7)  
(Note 8)  
±.±4  
NOISE  
PSR  
Spuꢁious Noise Voltage at Loop-  
Filteꢁ Output  
50  
µV  
Poweꢁ-Supply Rejection at Loop-  
Filteꢁ Output  
(Note 9)  
30  
30  
dB  
REFERENCE CLOCK INPUT SPECIFICATIONS  
Refeꢁence Clock Fꢁequency  
622/  
±55/78  
670  
70  
MHz  
Refeꢁence Clock Duty Cycle  
_______________________________________________________________________________________  
3
Low-Jitter 155MHz/622MHz  
Clock Generator  
AC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3.3V ±±0ꢀ oꢁ V  
= +5.0V ±±0ꢀ% ꢂ = -40°C to +85°C. ꢂypical values aꢁe at V  
= +3.3V and ꢂ = +25°C% unless otheꢁ-  
CC A  
CC  
CC  
A
wise noted.) (Note 5)  
PARAMETER  
PLL SPECIFICATIONS  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
PLL Jitteꢁ ꢂꢁansfeꢁ Bandwidth  
Jitteꢁ ꢂꢁansfeꢁ Function  
OP AMP SPECIFICATION  
Unity-Gain Bandwidth  
BW  
(Note ±0)  
BW (Note ±±)  
±5  
20%000  
0.±  
Hz  
dB  
F
JIꢂꢂER  
7
MHz  
VCO INPUT SPECIFICATION  
VCO Input Fꢁequency  
f
622/±55  
670  
MHz  
V/ns  
VCO  
VCO Input Slew Rate  
0.5  
Note 1: Specifications at -40°C aꢁe guaꢁanteed by design and chaꢁacteꢁization.  
Note 2: Measuꢁed with PECL outputs unteꢁminated.  
Note 3: OPAMP specifications met with ±0kload to gꢁound oꢁ 5kload to V (POLAR = 0 and POLAR = V ).  
CC  
CC  
Note 4: PFD/CP cuꢁꢁents aꢁe measuꢁed fꢁom pins OPAMP+ to OPAMP-. See ꢂable 3 foꢁ gain settings.  
Note 5: AC chaꢁacteꢁistics aꢁe guaꢁanteed by design and chaꢁacteꢁization.  
Note 6: Measuꢁed with 50ꢀ VCO input duty cycle.  
Note 7: Random noise voltage at op amp output with 800kꢁesistoꢁ connected between VC and OPAMP-% PFD/CP gain (K ) =  
PD  
5µA/UI% and POLAR = 0. Measuꢁed with the PLL open loop and no REFCLK oꢁ VCO input.  
Note 8: Spuꢁious noise voltage due to PFD/CP output pulses measuꢁed at op amp output with R = 800k% K = 5µA/UI% and  
±
PD  
compaꢁe fꢁequency 400 times gꢁeateꢁ than the higheꢁ-oꢁdeꢁ pole fꢁequency (see Design Procedure).  
Note 9: PSR measuꢁed with a ±00mVp-p sine wave on V in a fꢁequency ꢁange fꢁom ±00Hz to 2MHz. Exteꢁnal ꢁesistoꢁs R matched  
CC  
±
to within ±ꢀ% exteꢁnal capacitoꢁs C matched to within ±0ꢀ. Measuꢁed closed loop with PLL bandwidth set to 200Hz.  
±
Note 10:ꢂhe PLL 3dB bandwidth is adjusted fꢁom ±5Hz to 20kHz by changing exteꢁnal components R and C % by selecting the inteꢁ-  
±
±
nal pꢁogꢁammable divideꢁ ꢁatio and phase-detectoꢁ gain. Measuꢁed with VCO gain of 220ppm/V and C limited to 2.2µF.  
±
Note 11:Measuꢁed at BW = 20kHz. When input jitteꢁ fꢁequency is above PLL tꢁansfeꢁ bandwidth (BW)% the jitteꢁ tꢁansfeꢁ function ꢁolls  
off at -20dB/decade.  
4
_______________________________________________________________________________________  
Low-Jitter 155MHz/622MHz  
Clock Generator  
Typical Operating Characteristics  
(ꢂ = +25°C% unless otheꢁwise noted.)  
A
SUPPLY CURRENT  
vs. TEMPERATURE  
EDGE SPEED  
vs. TEMPERATURE  
POWER-SUPPLY REJECTION  
vs. FREQUENCY  
280  
270  
260  
250  
240  
230  
220  
210  
200  
190  
180  
170  
160  
150  
60  
0
-10  
-20  
-30  
-40  
-50  
-60  
BW = 1kHz  
HOP = 5kHz  
5.0V  
3.3V  
50  
40  
LOOP FILTER OUTPUT  
622.08MHz  
30  
20  
155.52MHz  
-40  
-20  
0
20  
40  
60  
80  
-40 -20  
0
20  
40  
60  
80  
1k  
10k  
100k  
1M  
10M  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
622MHz CLOCK OUTPUT  
(DIFFERENTIAL OUTPUT)  
155MHz CLOCK OUTPUT  
(DIFFERENTIAL OUTPUT)  
200mV/  
div  
200mV/  
div  
500ps/div  
2.0ns/div  
_______________________________________________________________________________________  
5
Low-Jitter 155MHz/622MHz  
Clock Generator  
Pin Description  
PIN  
NAME  
FUNCTION  
Positive Filteꢁ Input. Exteꢁnal capacitoꢁ connected between C2+ and C2- used foꢁ setting the higheꢁ-oꢁdeꢁ  
pole fꢁequency (see Setting the Higher-Order Poles).  
±
C2+  
Negative Filteꢁ Input. Exteꢁnal capacitoꢁ connected between C2+ and C2- used foꢁ setting the higheꢁ-  
oꢁdeꢁ pole fꢁequency (see Setting the Higher-Order Poles).  
2
C2-  
3% 9% ±5  
4
VCCD  
Positive Digital Supply Voltage  
ꢂHADJ  
ꢂhꢁeshold Adjust Input. Used to adjust the Loss-of-Lock thꢁeshold (see LOL Setup).  
ꢂhꢁeshold Capacitoꢁ Input. A capacitoꢁ connected between CꢂH and gꢁound used to contꢁol the Loss-of-  
Lock conditions (see LOL Setup).  
5
6
7
8
CꢂH  
Gain Select ± Input. ꢂhꢁee-level pin used to set the phase-detectoꢁ gain (K ) and the fꢁequency-divideꢁ  
PD  
GSEL±  
GSEL2  
GSEL3  
ꢁatio (N ) (see ꢂable 3).  
2
Gain Select 2 Input. ꢂhꢁee-level pin used to set the phase-detectoꢁ gain (K ) and the fꢁequency-divideꢁ  
PD  
ꢁatio (N ) (see ꢂable 3).  
2
Gain Select 3 Input. ꢂhꢁee-level pin used to set the phase-detectoꢁ gain (K ) and the fꢁequency-divideꢁ  
PD  
ꢁatio (N ) (see ꢂable 3).  
2
Loss-of-Lock. LOL signals a ꢂꢂL low when the ꢁefeꢁence fꢁequency diffeꢁs fꢁom the VCO fꢁequency. LOL  
signals a ꢂꢂL high when the ꢁefeꢁence fꢁequency equals the VCO fꢁequency.  
±0  
±±  
±2  
LOL  
GND  
RSEL  
Supply Gꢁound  
Refeꢁence Clock Select Input. ꢂhꢁee-level pin used to set the pꢁedivideꢁ ꢁatio (N ) foꢁ the input ꢁefeꢁence  
3
clock (see ꢂable ±).  
±3  
±4  
REFCLK+  
REFCLK-  
Positive Refeꢁence Clock Input  
Negative Refeꢁence Clock Input  
VCO Clock Select Input. ꢂhꢁee-level pin used to set the pꢁedivideꢁ ꢁatio (N ) foꢁ the input VCO clock (see  
±
ꢂable 2).  
±6  
VSEL  
±7  
±8  
POUꢂ-  
POUꢂ+  
VCCO  
MOUꢂ-  
MOUꢂ+  
VCOIN-  
VCOIN+  
VC  
Negative Optional Clock Output% PECL  
Positive Optional Clock Output% PECL  
±9% 22  
20  
Positive Supply Voltage foꢁ PECL Outputs  
Negative Main Clock Output% PECL  
2±  
Positive Main Clock Output% PECL  
23  
Negative VCO Clock Input  
24  
Positive VCO Clock Input  
25  
Contꢁol Voltage Output. ꢂhe voltage output fꢁom the op amp that contꢁols the VCO.  
Polaꢁity Contꢁol Input. Polaꢁity contꢁol of op amp input. POLAR = GND foꢁ VCOs with positive gain  
26  
POLAR  
tꢁansfeꢁ. POLAR = V  
foꢁ VCOs with negative gain tꢁansfeꢁ.  
CC  
27  
28  
29  
PSEL±  
PSEL2  
VCCA  
Optional Clock Select ± Input. Used to set the divideꢁ ꢁatio foꢁ the optional clock output (see ꢂable 4).  
Optional Clock Select 2 Input. Used to set the divideꢁ ꢁatio foꢁ the optional clock output (see ꢂable 4).  
Positive Analog Supply Voltage foꢁ the Chaꢁge Pump and Op Amp  
Compensation Contꢁol Input. Op amp compensation ꢁefeꢁence contꢁol input. COMP = GND foꢁ VCOs  
30  
COMP  
whose contꢁol pin is V  
ꢁefeꢁenced. COMP = V foꢁ VCOs whose contꢁol pin is GND ꢁefeꢁenced.  
CC  
CC  
3±  
32  
OPAMP-  
OPAMP+  
Negative Op Amp Input (POLAR = 0)% Positive Op Amp Input (POLAR = ±)  
Positive Op Amp Input (POLAR = 0)% Negative Op Amp Input (POLAR = ±)  
Exposed  
Pad  
Gꢁound. ꢂhe exposed pad must be soldeꢁed to the ciꢁcuit boaꢁd gꢁound plane foꢁ pꢁopeꢁ theꢁmal and  
electꢁical peꢁfoꢁmance.  
EP  
6
_______________________________________________________________________________________  
Low-Jitter 155MHz/622MHz  
Clock Generator  
Functional Diagram  
C1  
C1  
R1  
R3  
VCO  
VCO  
K
C3  
R1  
LOL  
THADJ  
CTH  
VC  
COMP  
POLAR  
OPAMP-  
OPAMP+  
OPAMP  
LOL  
REFCLK+  
REFCLK-  
DIV  
(N3)  
DIV  
(N2)  
PFD/CP  
PD  
K
RSEL  
VSEL  
C2-  
C2+  
MOUT+  
DIV  
DIV  
(N2)  
(N1)  
VCOIN+  
VCOIN-  
PECL  
PECL  
MOUT-  
POUT+  
POUT-  
DIV  
GAIN-CONTROL LOGIC  
GSEL1 GSEL2 GSEL3  
1/2/4/8  
MAX3670  
PSEL1 PSEL2  
Input Buffer for Reference  
Clock and VCO  
Detailed Description  
ꢂhe MAX3670 contains all the blocks needed to foꢁm a  
PLL except foꢁ the VCO% which must be supplied sepa-  
ꢁately. ꢂhe MAX3670 consists of input buffeꢁs foꢁ the ꢁef-  
eꢁence clock and VCO% input and output clock-divideꢁ  
ciꢁcuitꢁy% LOL detection ciꢁcuitꢁy% gain-contꢁol logic% a  
phase-fꢁequency detectoꢁ and chaꢁge pump% an op  
amp% and PECL output buffeꢁs.  
ꢂhe MAX3670 contains diffeꢁential inputs foꢁ the ꢁefeꢁ-  
ence clock and the VCO. ꢂhese inputs can be DC-cou-  
pled and aꢁe inteꢁnally biased with high impedance so  
that they can be AC-coupled (Figuꢁe ± in the Interface  
Schematic section). A single-ended VCO oꢁ ꢁefeꢁence  
clock can also be applied.  
Input and Output Clock-Divider Circuitry  
ꢂhe ꢁefeꢁence clock and VCO input buffeꢁs aꢁe followed  
by a paiꢁ of clock divideꢁs that pꢁescale the input fꢁe-  
quency of the ꢁefeꢁence clock and VCO to 77.76MHz.  
ꢂhis device is designed to clean up the noise on the  
ꢁefeꢁence clock input and pꢁovide a low-jitteꢁ system  
clock output.  
_______________________________________________________________________________________  
7
Low-Jitter 155MHz/622MHz  
Clock Generator  
Depending on the input clock fꢁequency of 77.76MHz%  
Table 1. Reference Clock Divider  
±55.52MHz% oꢁ 622.08MHz% the clock divideꢁ ꢁatio must  
be set to ±% 2% oꢁ 8% ꢁespectively. ꢂhe POUꢂ output  
buffeꢁ is pꢁeceded by a clock divideꢁ that scales the  
main clock output by ±% 2% 4% oꢁ 8 to pꢁovide an optional  
clock.  
INPUT  
PIN  
RSEL  
REFERENCE  
CLOCK INPUT  
FREQ. (MHz)  
PREDIVIDER  
OUTPUT  
FREQ. (MHz)  
DIVIDER  
RATIO N  
3
V
77.76  
±55.52  
622.08  
±
2
8
77.76  
77.76  
77.76  
CC  
OPEN  
GND  
LOL Detection Circuitry  
ꢂhe MAX3670 incoꢁpoꢁates a loss-of-lock (LOL) monitoꢁ  
that consists of an XOR gate% filteꢁ% and compaꢁatoꢁ  
with adjustable thꢁeshold (see LOL Setupin the  
Applications section). A loss-of-lock condition is sig-  
naled with a ꢂꢂL low when the ꢁefeꢁence clock fꢁequen-  
cy diffeꢁs fꢁom the VCO fꢁequency.  
ꢂhe MAX3670 is designed to accept 77.76MHz%  
±55.52MHz% oꢁ 622.08MHz (including FEC ꢁates) volt-  
age-contꢁolled oscillatoꢁ (VCO) fꢁequencies. ꢂhe VSEL  
input must be set so that the VCO input is pꢁescaled to  
77.76MHz (oꢁ FEC ꢁate)% to pꢁovide the pꢁopeꢁ ꢁange foꢁ  
the PFD and LOL detection ciꢁcuitꢁy. ꢂable 2 shows the  
divideꢁ ꢁatio foꢁ the diffeꢁent VCO fꢁequencies.  
Gain-Control Logic  
ꢂhe gain-contꢁol ciꢁcuitꢁy facilitates the tuning of the  
loop bandwidth by setting phase-detectoꢁ gain and fꢁe-  
quency-divideꢁ ꢁatio. ꢂhe gain-contꢁol logic can be pꢁo-  
gꢁammed to divide fꢁom ± to ±024% in binaꢁy multiples%  
and to adjust the phase detectoꢁ gain to 5µA/UI oꢁ  
20µA/UI (see ꢂable 3 in Setting the Loop Bandwidth  
section).  
Table 2. VCO Clock Divider  
INPUT  
PIN  
VSEL  
VCO CLOCK  
INPUT FREQ.  
(MHz)  
PREDIVIDER  
OUTPUT  
FREQ. (MHz)  
DIVIDER  
RATIO N  
1
V
77.76  
±55.52  
622.08  
±
2
8
77.76  
77.76  
77.76  
CC  
Phase-Frequency Detector and  
Charge Pump  
ꢂhe phase-fꢁequency detectoꢁ incoꢁpoꢁated into the  
MAX3670 pꢁoduces pulses pꢁopoꢁtional to the phase  
diffeꢁence between the ꢁefeꢁence clock and the VCO  
input. ꢂhe chaꢁge pump conveꢁts this pulse tꢁain to a  
cuꢁꢁent signal that is fed to the op amp.  
OPEN  
GND  
Setting the Loop Bandwidth  
ꢂo eliminate jitteꢁ pꢁesent on the ꢁefeꢁence clock% the  
pꢁopeꢁ selection of loop bandwidth is cꢁitical. If the total  
output jitteꢁ is dominated by the noise at the ꢁefeꢁence  
clock input% then loweꢁing the loop bandwidth will  
ꢁeduce system jitteꢁ. ꢂhe loop bandwidth (K) is a func-  
Op Amp  
ꢂhe op amp is used to foꢁm an active PLL loop filteꢁ  
capable of dꢁiving the VCO contꢁol voltage input. Using  
the POLAR input% the op amp input polaꢁity can be select-  
ed to woꢁk with VCOs having positive oꢁ negative gain-  
tꢁansfeꢁ functions. ꢂhe COMP pin selects the op amp  
inteꢁnal compensation. Connect COMP to gꢁound if the  
tion of the VCO gain (K  
)% the gain of the phase  
VCO  
detectoꢁ (K )% the loop filteꢁ ꢁesistoꢁ (R )% and the total  
PD  
±
feedback-divideꢁ ꢁatio (N = N± N2). ꢂhe loop band-  
width of the MAX3670 can be appꢁoximated by  
VCO contꢁol voltage is V  
ꢁefeꢁenced. Connect COMP  
CC  
to V if the VCO contꢁol voltage is gꢁound ꢁefeꢁenced.  
CC  
K
R K  
2πN  
PD ± VCO  
K =  
Design Procedure  
Setting Up the VCO and  
Reference Clock  
Foꢁ stability% a zeꢁo must be added to the loop in the foꢁm  
of ꢁesistoꢁ R in seꢁies with capacitoꢁ C (see Functional  
±
±
ꢂhe MAX3670 accepts 77.76MHz% ±55.52MHz% oꢁ  
622.08MHz (including FEC ꢁates) ꢁefeꢁence clock fꢁe-  
quencies. ꢂhe RSEL input must be set so that the ꢁefeꢁ-  
ence clock is pꢁescaled to 77.76MHz (oꢁ FEC ꢁate)% to  
pꢁovide the pꢁopeꢁ ꢁange foꢁ the PFD and LOL detec-  
tion ciꢁcuitꢁy. ꢂable ± shows the divideꢁ ꢁatio foꢁ the dif-  
feꢁent ꢁefeꢁence fꢁequencies.  
Diagram). ꢂhe location of the zeꢁo can be appꢁoximated as  
±
f
=
Z
2πR C  
± ±  
Due to the second-oꢁdeꢁ natuꢁe of the PLL jitteꢁ tꢁans-  
feꢁ% peaking will occuꢁ and is pꢁopoꢁtional to f /K. Foꢁ  
Z
ceꢁtain applications% it may be desiꢁable to limit jitteꢁ  
8
_______________________________________________________________________________________  
Low-Jitter 155MHz/622MHz  
Clock Generator  
quency to be (K 4) < f  
f  
% wheꢁe K is  
HOP  
COMPARE  
Table 3. Gain Logic Pin Setup  
the loop bandwidth.  
INPUT  
PIN  
INPUT  
PIN  
INPUT  
PIN  
DIVIDER  
RATIO  
KPD  
(µA/UI)  
ꢂhe HOP can be implemented eitheꢁ by pꢁoviding a  
compensation capacitoꢁ C % which pꢁoduces a pole at  
2
GSEL1  
GSEL2  
GSEL3  
N
2
V
V
V
V
V
V
V
V
V
V
V
V
V
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
5
±
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
±
f
=
HOP  
OPEN  
GND  
2
4
2π(20k)(C )  
2
V
OPEN  
OPEN  
OPEN  
GND  
8
oꢁ by adding a lowpass filteꢁ% consisting of R and C %  
diꢁectly on the VCO tuning poꢁt% which pꢁoduces a pole at  
CC  
3
3
OPEN  
GND  
±6  
32  
±
f =  
HOP  
V
64  
CC  
2πR C  
3
3
OPEN  
GND  
GND  
±28  
256  
5±2  
±024  
±
GND  
Using R and C may be pꢁefeꢁable foꢁ filteꢁing moꢁe  
3
3
noise in the PLL% but it may still be necessaꢁy to pꢁovide  
V
V
V
V
V
V
GND  
GND  
CC  
CC  
CC  
CC  
CC  
CC  
filteꢁing via C when using laꢁge values of R and N N  
2
±
±
2
OPEN  
to pꢁevent clipping in the op amp.  
V
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
GND  
CC  
Setting the Optional Output  
ꢂhe MAX3670 optional clock output can be set to bina-  
ꢁy subdivisions of the main clock fꢁequency. ꢂhe PSEL±  
and PSEL2 pins contꢁol the binaꢁy divisions. ꢂable 4  
shows the pin configuꢁation along with the possible  
divideꢁ ꢁatios.  
OPEN  
GND  
5
2
5
4
V
OPEN  
OPEN  
OPEN  
GND  
5
8
CC  
OPEN  
GND  
5
±6  
5
32  
V
5
64  
CC  
OPEN  
GND  
GND  
5
±28  
256  
5±2  
±024  
Table 4. Setting the Optional Clock  
Output Driver  
GND  
5
V
OPEN  
OPEN  
5
CC  
INPUT PIN  
PSEL1  
INPUT PIN  
PSEL2  
VCO TO POUT  
DIVIDER RATIO  
OPEN  
GND  
5
V
V
V
±
2
4
8
CC  
CC  
CC  
peaking in the PLL passband ꢁegion to less than 0.±dB.  
GND  
ꢂhis can be achieved by setting f K/±00.  
Z
V
GND  
GND  
CC  
ꢂhe thꢁee-level GSEL pins (see Functional Diagram)  
GND  
select the phase-detectoꢁ gain (K ) and the fꢁequency-  
PD  
divideꢁ ꢁatio (N ). ꢂable 3 summaꢁizes the settings foꢁ  
2
the GSEL pins. A moꢁe detailed analysis of the loop filteꢁ  
is located in application note HFDN-±3.0 on  
www.maxim-ic.com.  
Applications Information  
PECL Interfacing  
ꢂhe MAX3670 outputs (MOUꢂ+% MOUꢂ-% POUꢂ+%  
POUꢂ-) aꢁe designed to inteꢁface with PECL signal lev-  
els. It is impoꢁtant to bias these poꢁts appꢁopꢁiately. A  
ciꢁcuit that pꢁovides a ꢂhévenin equivalent of 50to  
Setting the Higher-Order Poles  
Spuꢁious noise is geneꢁated by the phase detectoꢁ  
switching at the compaꢁe fꢁequency% wheꢁe f  
COMPARE  
= f  
/(N N ). Reduce the spuꢁious noise fꢁom the  
VCO  
± 2  
V
CC  
- 2V can be used with fixed-impedance tꢁansmis-  
digital phase detectoꢁ by placing a higheꢁ-oꢁdeꢁ pole  
(HOP) at a fꢁequency much less than the compaꢁe fꢁe-  
quency. ꢂhe HOP should% howeveꢁ% be placed high  
enough in fꢁequency that it does not decꢁease the oveꢁ-  
all loop-phase maꢁgin and impact jitteꢁ peaking. ꢂhese  
two conditions can be met by selecting the HOP fꢁe-  
sion lines with pꢁopeꢁ teꢁmination. ꢂo ensuꢁe best peꢁ-  
foꢁmance% the diffeꢁential outputs must have balanced  
loads. It is impoꢁtant to note that if optional clock output  
is not used% it should be left floating to save poweꢁ (see  
Figuꢁe 2).  
_______________________________________________________________________________________  
9
Low-Jitter 155MHz/622MHz  
Clock Generator  
quencies above the loop bandwidth may degꢁade LOL  
Layout  
ꢂhe MAX3670 peꢁfoꢁmance can be significantly affect-  
ed by ciꢁcuit boaꢁd layout and design. Use good high-  
fꢁequency design techniques% including minimizing  
gꢁound inductance and using fixed-impedance tꢁans-  
mission lines on the ꢁefeꢁence and VCO clock signals.  
Poweꢁ-supply decoupling should be placed as close to  
functionality.  
ꢂhe useꢁ can set the amount of fꢁequency oꢁ phase dif-  
feꢁence between VCO and ꢁefeꢁence clock at which  
LOL indicates an out-of-lock condition. ꢂhe fꢁequency  
diffeꢁence is called the beat fꢁequency. ꢂhe CꢂH pin  
can be connected to an exteꢁnal capacitoꢁ% which sets  
the lowpass filteꢁ fꢁequency to appꢁoximately  
V
pins as possible. ꢂake caꢁe to isolate the input  
CC  
fꢁom the output signals to ꢁeduce feedthꢁough.  
±
f =  
VCO Selection  
L
2πC 60kΩ  
ꢂH  
ꢂhe MAX3670 is designed to accommodate a wide  
ꢁange of VCO gains% positive oꢁ negative tꢁansfeꢁ  
ꢂhis lowpass filteꢁ fꢁequency should be set about ±0  
times loweꢁ than the beat fꢁequency to make suꢁe the  
filteꢁed signal at CꢂH does not dꢁop below the ꢂHADJ  
thꢁeshold voltage. ꢂhe inteꢁnal compaꢁe fꢁequency of  
the paꢁt is 77.78MHz. Foꢁ a ±ppm sensitivity (beat fꢁe-  
quency of 77Hz)% the filteꢁ needs to be at 7.7Hz% and  
CꢂH should be at 0.33µF.  
slopes% and V -ꢁefeꢁenced oꢁ gꢁound-ꢁefeꢁenced con-  
CC  
tꢁol voltages. ꢂhese featuꢁes allow the useꢁ a wide  
ꢁange of options in VCO selection; howeveꢁ% the pꢁopeꢁ  
VCO must be selected to allow the clock geneꢁatoꢁ ciꢁ-  
cuitꢁy to opeꢁate at the optimum levels. When selecting  
a VCO% the useꢁ needs to take into account the phase  
noise and modulation bandwidth. Phase noise is impoꢁ-  
tant because the phase noise above the PLL bandwidth  
will be dominated by the VCO noise peꢁfoꢁmance.  
ꢂhe modulation bandwidth of the VCO contꢁibutes an  
additional higheꢁ-oꢁdeꢁ pole (HOP) to the system and  
should be gꢁeateꢁ than the HOP set with the exteꢁnal fil-  
teꢁ components.  
ꢂhe voltage at ꢂHADJ will deteꢁmine the level at which  
the LOL output flags. ꢂHADJ is set to a default value of  
0.6V which coꢁꢁesponds in a 45° phase diffeꢁence. ꢂhis  
value can be oveꢁꢁidden by applying the desiꢁed  
thꢁeshold voltage to the pin. ꢂhe ꢁange of ꢂHADJ is  
fꢁom 0V (0°) to 2.4V (±80°).  
Noise Performance Optimization  
Depending on the application% theꢁe aꢁe many diffeꢁent  
ways to optimize the PLL peꢁfoꢁmance. ꢂhe following  
aꢁe geneꢁal guidelines to impꢁove the noise on the sys-  
tem output clock.  
Interface Schematics  
±) If the ꢁefeꢁence clock noise dominates the total sys-  
tem-clock output jitteꢁ% then decꢁeasing the loop  
bandwidth (K) ꢁeduces the output jitteꢁ.  
V
CC  
2) If the VCO noise dominates the total system clock  
output jitteꢁ% then incꢁeasing the loop bandwidth (K)  
ꢁeduces the output jitteꢁ.  
V
- 1.3V  
CC  
3) Smalleꢁ total divideꢁ ꢁatio (N± N2)% loweꢁ HOP% and  
10.5k  
10.5kΩ  
smalleꢁ R ꢁeduce the spuꢁious output jitteꢁ.  
±
4) Smalleꢁ R ꢁeduces the ꢁandom noise due to the op amp.  
±
REFLCK+  
REFLCK-  
LOL Setup  
ꢂhe LOL output indicates if the PLL has locked onto the  
ꢁefeꢁence clock using an XOR gate and compaꢁatoꢁ.  
ꢂhe compaꢁatoꢁ thꢁeshold can be adjusted with ꢂHADJ%  
and the XOR gate output can be filteꢁed with a capaci-  
toꢁ between CꢂH and gꢁound (Figuꢁe 3 in the Interface  
Schematic section). When the voltage at pin CꢂH  
exceeds the voltage at pin ꢂHADJ% then the LOL output  
goes low and indicates that the PLL is not locked. Note  
that excessive jitteꢁ on the ꢁefeꢁence clock input at fꢁe-  
MAX3670  
Figure 1. Input Interface  
10 ______________________________________________________________________________________  
Low-Jitter 155MHz/622MHz  
Clock Generator  
Interface Schematics (continued)  
V
CC  
LOL  
60kΩ  
THADJ  
OUT+  
OUT-  
0.6V  
CTH  
60kΩ  
REFCLK  
MAX3670  
MAX3670  
VCO  
Figure 2. Output Interface  
Figure 3. Loss-of-Lock Indicator  
Pin Configuration  
Chip Information  
ꢂRANSISꢂOR COUNꢂ: 2478  
32  
31  
30  
29  
28  
27  
26  
25  
C2+  
C2-  
24  
23  
22  
1
2
3
4
5
6
7
8
VCOIN+  
VCOIN-  
VCCO  
VCCD  
THADJ  
21 MOUT+  
20 MOUT-  
19 VCCO  
18 POUT+  
17 POUT-  
MAX3670*  
CTH  
GSEL1  
GSEL2  
GSEL3  
9
10  
11  
12  
13  
14  
15  
16  
*THE EXPOSED PAD MUST BE SOLDERED TO SUPPLY GROUND.  
______________________________________________________________________________________ 11  
Low-Jitter 155MHz/622MHz  
Clock Generator  
Package Information  
12 ______________________________________________________________________________________  
Low-Jitter 155MHz/622MHz  
Clock Generator  
Package Information (continued)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13  
© 200± Maxim Integꢁated Pꢁoducts  
Pꢁinted USA  
is a ꢁegisteꢁed tꢁademaꢁk of Maxim Integꢁated Pꢁoducts.  

相关型号:

MAX3670EGJ-T

Clock Generator, 670MHz, CMOS, 5 X 5 MM, QFN-32
MICROSEMI

MAX3670ETJ+

Low-Jitter 155MHz/622MHz Clock Generator
MAXIM

MAX3670ETJ+

Clock Generator, 670MHz, CMOS, TQFN-32
MICROSEMI

MAX3670ETJ+D

Clock Generator, 670MHz, CMOS, 5 X 5 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WHHD-2, TQFN-32
MICROSEMI

MAX3670ETJ+T

Clock Generator, 670MHz, CMOS, 5 X 5 MM, ROHS COMPLIANT, TQFN-32
MICROSEMI

MAX3670ETJ+TD

Clock Generator, 670MHz, CMOS, 5 X 5 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WHHD-2, TQFN-32
MICROSEMI

MAX3670EVKIT

Evaluation Kit for the MAX3670
MAXIM

MAX3670_09

Low-Jitter 155MHz/622MHz Clock Generator
MAXIM

MAX3671

Low-Jitter Frequency Synthesizer with Selectable Input Reference
MAXIM

MAX3671ETN+

Low-Jitter Frequency Synthesizer with Selectable Input Reference
MAXIM

MAX3672

Low-Jitter 155MHz/622MHz Clock Generator
MAXIM

MAX3672E/D

Low-Jitter 155MHz/622MHz Clock Generator
MAXIM