MAX3670EGJ-T [MICROSEMI]

Clock Generator, 670MHz, CMOS, 5 X 5 MM, QFN-32;
MAX3670EGJ-T
型号: MAX3670EGJ-T
厂家: Microsemi    Microsemi
描述:

Clock Generator, 670MHz, CMOS, 5 X 5 MM, QFN-32

时钟 外围集成电路 晶体
文件: 总13页 (文件大小:293K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2166; Rev 2; 9/09  
Low-Jitter 155MHz/622MHz  
Clock Generator  
MAX3670  
General Description  
Features  
The MAX3670 is a low-jitter 155MHz/622MHz reference  
clock generator IC designed for system clock distribution  
and frequency synchronization in OC-48 and OC-192  
SONET/SDH and WDM transmission systems. The  
MAX3670 integrates a phase/frequency detector, an  
operational amplifier (op amp), prescaler dividers and  
input/output buffers. Using an external VCO, the  
MAX3670 can be configured easily as a phase-lock loop  
with bandwidth programmable from 15Hz to 20kHz.  
Single +3.3V or +5.0V Supply  
Power Dissipation: 150mW at +3.3V Supply  
External VCO Center Frequencies (f  
): 155MHz  
VCO  
to 670MHz  
Reference Clock Frequencies: f  
Main Clock Output Frequency: f  
, f  
/2, f /8  
VCO VCO VCO  
VCO  
Optional Output Clock Frequencies: f  
, f  
/2,  
VCO VCO  
The MAX3670 operates from a single +3.3V or +5.0V  
supply, and dissipates 150mW (typ) at 3.3V. The operat-  
ing temperature range is from -40°C to +85°C. The chip  
is available in a 5mm 5mm, 32-pin QFN package.  
f /4, f /8  
VCO VCO  
Low Intrinsic Jitter: < 0.4ps  
Loss-of-Lock Indicator  
RMS  
PECL Clock Output Interface  
Applications  
OC-12 to OC-192 SONET/WDM Transport  
Systems  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
32 QFN-EP*  
Clock Jitter Clean-Up and Frequency  
Synchronization  
MAX3670EGJ  
MAX3670ETJ+  
32 Thin QFN-EP*  
Frequency Conversion  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
System Clock Distribution  
Pin Configuration appears at end of data sheet.  
Typical Application Circuit  
3.3V  
142Ω  
155MHz  
MAX3892  
VCCD  
MOUT+  
REFCLK+  
REFCLK-  
16:1  
SERIALIZER  
MOUT-  
142Ω  
3.3V  
142Ω  
VCOIN+  
VCOIN-  
VCO  
= 25kHz/V  
155MHz  
N.C.  
N.C.  
RSEL  
VSEL  
K
VCO  
100Ω  
MAX3670  
142Ω  
GSEL1  
GSEL2  
GSEL3  
N.C.  
3.3V  
332Ω  
4700pF  
VC  
0.01μF  
500kΩ  
OPAMP-  
OPAMP+  
POLAR  
GND  
4700pF  
500kΩ  
SETUP FOR 10kHz LOOP  
BANDWIDTH  
REPRESENTS A CONTROLLED-IMPEDANCE TRANSMISSION LINE.  
1
Low-Jitter 155MHz/622MHz  
Clock Generator  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage Range..............................................-0.5V to +7V  
Voltage Range at C2+, C2-, THADJ, CTH, GSEL1, GSEL2,  
GSEL3, LOL, RSEL, REFCLK-, REFCLK+, VSEL, VCOIN+,  
VCOIN-, VC, POLAR, PSEL1, PSEL2, COMP,  
PECL Output Current (MOUT+,  
MOUT-, POUT+, POUT-).................................................56mA  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +160°C  
Lead Temperature (soldering, 10s) .................................+300°C  
OPAMP+, OPAMP-..................................-0.5V to (V  
+ 0.5V)  
CC  
Continuous Power Dissipation (T = +70°C)  
A
32 QFN (derate 33.3mW/°C above +70°C) .....................2.7W  
32 Thin QFN (derate 34.5mW/°C above +70°C)..............2.8W  
MAX3670  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
CC  
= +3.3V 10ꢀ or V  
= +5.0V 10ꢀ, T = -40°C to +85°C. Typical values are at V  
= +3.3V and T = +25°C, unless other-  
CC A  
CC  
A
wise noted.) (Note 1)  
PARAMETER  
Supply Current  
INPUT SPECIFICATIONS (REFCLK , VCOIN )  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
(Note 2)  
48  
72  
mA  
CC  
V
1.16  
-
V
0.88  
-
CC  
CC  
Input High Voltage  
Input Low Voltage  
Input Bias Voltage  
V
V
V
V
IH  
V
1.81  
-
V
1.48  
-
CC  
CC  
V
IL  
V
1.3  
-
CC  
Common-Mode Input Resistance  
Differential Input Resistance  
7.5  
12.8  
300  
11.5  
21.0  
17.5  
32.5  
1900  
kΩ  
kΩ  
Differential Input Voltage Swing  
PECL OUTPUT SPECIFICATIONS  
AC-coupled  
mVp-p  
V
-
V
0.88  
-
CC  
CC  
0°C to +85°C  
-40°C to 0°C  
0°C to +85°C  
-40°C to 0°C  
1.025  
Output High Voltage  
Output Low Voltage  
V
V
V
OH  
V
-
V
0.88  
-
CC  
CC  
1.085  
V
1.81  
-
V
1.62  
-
CC  
CC  
V
OL  
V
1.83  
-
V
-
CC  
CC  
1.556  
TTL SPECIFICATIONS  
Output High Voltage  
Output Low Voltage  
V
Sourcing 20µA  
Sinking 2mA  
2.4  
V
V
V
OH  
CC  
V
0.4  
OL  
2
_______________________________________________________________________________________  
Low-Jitter 155MHz/622MHz  
Clock Generator  
MAX3670  
DC ELECTRICAL CHARACTERISTICS (continued)  
(V  
CC  
= +3.3V 10ꢀ or V  
= +5.0V 10ꢀ, T = -40°C to +85°C. Typical values are at V  
= +3.3V and T = +25°C, unless other-  
CC A  
CC  
A
wise noted.) (Note 1)  
PARAMETER  
OPERATIONAL AMPLIFIER SPECIFICATIONS (Note 3)  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
0.3  
-
-
CC  
V
V
= +3.3V 10ꢀ  
0.3  
0.5  
CC  
CC  
Op Amp Output Voltage Range  
V
V
O
V
0.5  
CC  
= +5.0V 10ꢀ  
Op Amp Input Offset Voltage  
Op Amp Open-Loop Gain  
| V  
A
|
3
mV  
dB  
OS  
90  
OL  
PHASE FREQUENCY DETECTOR (PFD)/CHARGE-PUMP (CP) SPECIFICATIONS (Note 4)  
High gain  
Low gain  
High gain  
Low gain  
16  
4
20  
5
24.4  
6.2  
Full-Scale PFD/CP Output  
Current  
| I  
|
µA  
PD  
0.80  
1.08  
PFD/CP Offset Current  
| I  
|
PD  
AC ELECTRICAL CHARACTERISTICS  
(V  
CC  
= +3.3V 10ꢀ or V  
= +5.0V 10ꢀ, T = -40°C to +85°C. Typical values are at V  
= +3.3V and T = +25°C, unless other-  
CC A  
CC  
A
wise noted.) (Note 5)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CLOCK OUTPUT SPECIFICATIONS  
Clock Output Frequency  
670  
MHz  
622/311/  
155/78  
f
f
= 622MHz  
= 155MHz  
VCO  
Optional Clock Output  
Frequency  
MHz  
155/78/  
38/19  
VCO  
Clock Output Rise/Fall Time  
Clock Output Duty Cycle  
Measured from 20ꢀ to 80ꢀ  
(Note 6)  
280  
55  
ps  
45  
NOISE SPECIFICATIONS  
Random Noise Voltage at Loop-  
Filter Output  
µV  
/Hz  
RMS  
RMS  
V
Freq > 1kHz (Note 7)  
(Note 8)  
1.14  
NOISE  
PSR  
Spurious Noise Voltage at Loop-  
Filter Output  
50  
µV  
Power-Supply Rejection at Loop-  
Filter Output  
(Note 9)  
30  
30  
dB  
REFERENCE CLOCK INPUT SPECIFICATIONS  
Reference Clock Frequency  
622/  
155/78  
670  
70  
MHz  
Reference Clock Duty Cycle  
_______________________________________________________________________________________  
3
Low-Jitter 155MHz/622MHz  
Clock Generator  
AC ELECTRICAL CHARACTERISTICS (continued)  
(V  
CC  
= +3.3V 10ꢀ or V  
= +5.0V 10ꢀ, T = -40°C to +85°C. Typical values are at V  
= +3.3V and T = +25°C, unless other-  
CC A  
CC  
A
wise noted.) (Note 5)  
PARAMETER  
PLL SPECIFICATIONS  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
PLL Jitter Transfer Bandwidth  
Jitter Transfer Function  
OP AMP SPECIFICATION  
Unity-Gain Bandwidth  
BW  
(Note 10)  
BW (Note 11)  
15  
20,000  
0.1  
Hz  
dB  
F
JITTER  
MAX3670  
7
MHz  
VCO INPUT SPECIFICATION  
VCO Input Frequency  
f
622/155  
670  
MHz  
V/ns  
VCO  
VCO Input Slew Rate  
0.5  
Note 1: Specifications at -40°C are guaranteed by design and characterization.  
Note 2: Measured with PECL outputs unterminated.  
Note 3: OPAMP specifications met with 10kΩ load to ground or 5kΩ load to V (POLAR = 0 and POLAR = V ).  
CC  
CC  
Note 4: PFD/CP currents are measured from pins OPAMP+ to OPAMP-. See Table 3 for gain settings.  
Note 5: AC characteristics are guaranteed by design and characterization.  
Note 6: Measured with 50ꢀ VCO input duty cycle.  
Note 7: Random noise voltage at op amp output with 800kΩ resistor connected between VC and OPAMP-, PFD/CP gain (K ) =  
PD  
5µA/UI, and POLAR = 0. Measured with the PLL open loop and no REFCLK or VCO input.  
Note 8: Spurious noise voltage due to PFD/CP output pulses measured at op amp output with R = 800kΩ, K = 5µA/UI, and  
1
PD  
compare frequency 400 times greater than the higher-order pole frequency (see Design Procedure).  
Note 9: PSR measured with a 100mVp-p sine wave on V in a frequency range from 100Hz to 2MHz. External resistors R matched  
CC  
1
to within 1ꢀ, external capacitors C matched to within 10ꢀ. Measured closed loop with PLL bandwidth set to 200Hz.  
1
Note 10:The PLL 3dB bandwidth is adjusted from 15Hz to 20kHz by changing external components R and C , by selecting the inter-  
1
1
nal programmable divider ratio and phase-detector gain. Measured with VCO gain of 220ppm/V and C limited to 2.2µF.  
1
Note 11:Measured at BW = 20kHz. When input jitter frequency is above PLL transfer bandwidth (BW), the jitter transfer function rolls  
off at -20dB/decade.  
4
_______________________________________________________________________________________  
Low-Jitter 155MHz/622MHz  
Clock Generator  
MAX3670  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
EDGE SPEED  
vs. TEMPERATURE  
SUPPLY CURRENT  
vs. TEMPERATURE  
POWER-SUPPLY REJECTION  
vs. FREQUENCY  
280  
270  
260  
250  
240  
230  
220  
210  
200  
190  
180  
170  
160  
150  
60  
0
BW = 1kHz  
HOP = 5kHz  
-10  
5.0V  
3.3V  
50  
-20  
40  
-30  
-40  
-50  
-60  
LOOP FILTER OUTPUT  
622.08MHz  
30  
20  
155.52MHz  
0
-40 -20  
20  
40  
60  
80  
1k  
10k  
100k  
1M  
10M  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
622MHz CLOCK OUTPUT  
(DIFFERENTIAL OUTPUT)  
155MHz CLOCK OUTPUT  
(DIFFERENTIAL OUTPUT)  
200mV/  
div  
200mV/  
div  
500ps/div  
2.0ns/div  
_______________________________________________________________________________________  
5
Low-Jitter 155MHz/622MHz  
Clock Generator  
Pin Description  
PIN  
NAME  
FUNCTION  
Positive Filter Input. External capacitor connected between C2+ and C2- used for setting the higher-  
order pole frequency (see Setting the Higher-Order Poles).  
1
C2+  
Negative Filter Input. External capacitor connected between C2+ and C2- used for setting the higher-  
order pole frequency (see Setting the Higher-Order Poles).  
2
C2-  
3, 9, 15  
4
VCCD  
Positive Digital Supply Voltage  
MAX3670  
THADJ  
Threshold Adjust Input. Used to adjust the Loss-of-Lock threshold (see LOL Setup).  
Threshold Capacitor Input. A capacitor connected between CTH and ground used to control the Loss-  
of-Lock conditions (see LOL Setup).  
5
6
7
8
CTH  
Gain Select 1 Input. Three-level pin used to set the phase-detector gain (K ) and the frequency-  
PD  
GSEL1  
GSEL2  
GSEL3  
divider ratio (N ) (see Table 3).  
2
Gain Select 2 Input. Three-level pin used to set the phase-detector gain (K ) and the frequency-  
PD  
divider ratio (N ) (see Table 3).  
2
Gain Select 3 Input. Three-level pin used to set the phase-detector gain (K ) and the frequency-  
PD  
divider ratio (N ) (see Table 3).  
2
Loss-of-Lock. LOL signals a TTL low when the reference frequency differs from the VCO frequency.  
LOL signals a TTL high when the reference frequency equals the VCO frequency.  
10  
11  
12  
LOL  
GND  
RSEL  
Supply Ground  
Reference Clock Select Input. Three-level pin used to set the predivider ratio (N ) for the input  
3
reference clock (see Table 1).  
Positive Reference Clock Input  
Negative Reference Clock Input  
REFCLK  
REFCLK-  
13  
14  
VCO Clock Select Input. Three-level pin used to set the predivider ratio (N ) for the input VCO clock  
1
(see Table 2).  
16  
VSEL  
17  
18  
POUT-  
POUT+  
VCCO  
MOUT-  
MOUT+  
VCOIN-  
VCOIN+  
VC  
Negative Optional Clock Output, PECL  
Positive Optional Clock Output, PECL  
19, 22  
20  
Positive Supply Voltage for PECL Outputs  
Negative Main Clock Output, PECL  
21  
Positive Main Clock Output, PECL  
23  
Negative VCO Clock Input  
24  
Positive VCO Clock Input  
25  
Control Voltage Output. The voltage output from the op amp that controls the VCO.  
Polarity Control Input. Polarity control of op amp input. POLAR = GND for VCOs with positive gain  
transfer. POLAR = V for VCOs with negative gain transfer.  
CC  
26  
POLAR  
27  
28  
29  
PSEL1  
PSEL2  
VCCA  
Optional Clock Select 1 Input. Used to set the divider ratio for the optional clock output (see Table 4).  
Optional Clock Select 2 Input. Used to set the divider ratio for the optional clock output (see Table 4).  
Positive Analog Supply Voltage for the Charge Pump and Op Amp  
Compensation Control Input. Op amp compensation reference control input. COMP = GND for VCOs  
30  
COMP  
whose control pin is V referenced. COMP = V for VCOs whose control pin is GND referenced.  
CC  
CC  
31  
32  
OPAMP-  
Negative Op Amp Input (POLAR = 0), Positive Op Amp Input (POLAR = 1)  
Positive Op Amp Input (POLAR = 0), Negative Op Amp Input (POLAR = 1)  
OPAMP+  
Exposed Pad. The exposed pad must be soldered to the circuit board ground plane for proper thermal  
and electrical performance.  
EP  
6
_______________________________________________________________________________________  
Low-Jitter 155MHz/622MHz  
Clock Generator  
MAX3670  
Functional Diagram  
C1  
C1  
R1  
R3  
VCO  
K
VCO  
C3  
R1  
LOL  
THADJ  
CTH  
VC  
COMP  
POLAR  
OPAMP-  
OPAMP+  
OPAMP  
LOL  
REFCLK+  
REFCLK-  
DIV  
(N3)  
DIV  
(N2)  
PFD/CP  
K
PD  
RSEL  
VSEL  
C2-  
C2+  
MOUT+  
DIV  
(N1)  
DIV  
(N2)  
VCOIN+  
VCOIN-  
PECL  
PECL  
MOUT-  
POUT+  
POUT-  
DIV  
1/2/4/8  
GAIN-CONTROL LOGIC  
GSEL1 GSEL2 GSEL3  
MAX3670  
PSEL1 PSEL2  
Input Buffer for Reference  
Clock and VCO  
Detailed Description  
The MAX3670 contains all the blocks needed to form a  
PLL except for the VCO, which must be supplied sepa-  
rately. The MAX3670 consists of input buffers for the ref-  
erence clock and VCO, input and output clock-divider  
circuitry, LOL detection circuitry, gain-control logic, a  
phase-frequency detector and charge pump, an op  
amp, and PECL output buffers.  
The MAX3670 contains differential inputs for the refer-  
ence clock and the VCO. These inputs can be DC-cou-  
pled and are internally biased with high impedance so  
that they can be AC-coupled (Figure 1 in the Interface  
Schematic section). A single-ended VCO or reference  
clock can also be applied.  
Input and Output Clock-Divider Circuitry  
The reference clock and VCO input buffers are followed  
by a pair of clock dividers that prescale the input fre-  
quency of the reference clock and VCO to 77.76MHz.  
This device is designed to clean up the noise on the  
reference clock input and provide a low-jitter system  
clock output.  
_______________________________________________________________________________________  
7
Low-Jitter 155MHz/622MHz  
Clock Generator  
Depending on the input clock frequency of 77.76MHz,  
Table 1. Reference Clock Divider  
155.52MHz, or 622.08MHz, the clock divider ratio must  
be set to 1, 2, or 8, respectively. The POUT output  
buffer is preceded by a clock divider that scales the  
main clock output by 1, 2, 4, or 8 to provide an optional  
clock.  
INPUT  
PIN  
RSEL  
REFERENCE  
CLOCK INPUT  
FREQ. (MHz)  
PREDIVIDER  
OUTPUT  
FREQ. (MHz)  
DIVIDER  
RATIO N  
3
V
77.76  
155.52  
622.08  
1
2
8
77.76  
77.76  
77.76  
CC  
OPEN  
GND  
LOL Detection Circuitry  
The MAX3670 incorporates a loss-of-lock (LOL) monitor  
that consists of an XOR gate, filter, and comparator  
with adjustable threshold (see “LOL Setup” in the  
Applications section). A loss-of-lock condition is sig-  
naled with a TTL low when the reference clock frequen-  
cy differs from the VCO frequency.  
MAX3670  
The MAX3670 is designed to accept 77.76MHz,  
155.52MHz, or 622.08MHz (including FEC rates) volt-  
age-controlled oscillator (VCO) frequencies. The VSEL  
input must be set so that the VCO input is prescaled to  
77.76MHz (or FEC rate), to provide the proper range for  
the PFD and LOL detection circuitry. Table 2 shows the  
divider ratio for the different VCO frequencies.  
Gain-Control Logic  
The gain-control circuitry facilitates the tuning of the  
loop bandwidth by setting phase-detector gain and fre-  
quency-divider ratio. The gain-control logic can be pro-  
grammed to divide from 1 to 1024, in binary multiples,  
and to adjust the phase detector gain to 5µA/UI or  
20µA/UI (see Table 3 in Setting the Loop Bandwidth  
section).  
Table 2. VCO Clock Divider  
INPUT  
PIN  
VCO CLOCK  
INPUT FREQ.  
(MHz)  
PREDIVIDER  
OUTPUT  
FREQ. (MHz)  
DIVIDER  
RATIO N  
1
VSEL  
V
77.76  
155.52  
622.08  
1
2
8
77.76  
77.76  
77.76  
CC  
Phase-Frequency Detector and  
Charge Pump  
The phase-frequency detector incorporated into the  
MAX3670 produces pulses proportional to the phase  
difference between the reference clock and the VCO  
input. The charge pump converts this pulse train to a  
current signal that is fed to the op amp.  
OPEN  
GND  
Setting the Loop Bandwidth  
To eliminate jitter present on the reference clock, the  
proper selection of loop bandwidth is critical. If the total  
output jitter is dominated by the noise at the reference  
clock input, then lowering the loop bandwidth will  
reduce system jitter. The loop bandwidth (K) is a func-  
Op Amp  
The op amp is used to form an active PLL loop filter  
capable of driving the VCO control voltage input. Using  
the POLAR input, the op amp input polarity can be select-  
ed to work with VCOs having positive or negative gain-  
transfer functions. The COMP pin selects the op amp  
internal compensation. Connect COMP to ground if the  
tion of the VCO gain (K  
), the gain of the phase  
VCO  
detector (K ), the loop filter resistor (R ), and the total  
PD  
1
feedback-divider ratio (N = N1 N2). The loop band-  
width of the MAX3670 can be approximated by  
VCO control voltage is V  
referenced. Connect COMP  
CC  
to V if the VCO control voltage is ground referenced.  
CC  
K
R K  
2πN  
PD 1 VCO  
K =  
Design Procedure  
Setting Up the VCO and  
Reference Clock  
For stability, a zero must be added to the loop in the form  
of resistor R in series with capacitor C (see Functional  
1
1
The MAX3670 accepts 77.76MHz, 155.52MHz, or  
622.08MHz (including FEC rates) reference clock fre-  
quencies. The RSEL input must be set so that the refer-  
ence clock is prescaled to 77.76MHz (or FEC rate), to  
provide the proper range for the PFD and LOL detec-  
tion circuitry. Table 1 shows the divider ratio for the dif-  
ferent reference frequencies.  
Diagram). The location of the zero can be approximated as  
1
f
=
Z
2πR C  
1 1  
Due to the second-order nature of the PLL jitter trans-  
fer, peaking will occur and is proportional to f /K. For  
Z
certain applications, it may be desirable to limit jitter  
8
_______________________________________________________________________________________  
Low-Jitter 155MHz/622MHz  
Clock Generator  
MAX3670  
quency to be (K 4) < f  
f  
, where K is  
COMPARE  
HOP  
Table 3. Gain Logic Pin Setup  
the loop bandwidth.  
INPUT  
PIN  
INPUT  
PIN  
INPUT  
PIN  
DIVIDER  
RATIO  
KPD  
The HOP can be implemented either by providing a  
compensation capacitor C , which produces a pole at  
2
(µA/UI)  
GSEL1  
GSEL2  
GSEL3  
N
2
V
V
V
V
V
V
V
V
V
V
V
V
V
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
5
1
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
1
f
=
HOP  
OPEN  
GND  
2
4
2π(20kΩ)(C )  
2
V
OPEN  
OPEN  
OPEN  
GND  
8
or by adding a lowpass filter, consisting of R and C ,  
directly on the VCO tuning port, which produces a pole at  
CC  
3
3
OPEN  
GND  
16  
32  
1
f =  
HOP  
V
64  
CC  
2πR C  
3
3
OPEN  
GND  
GND  
128  
256  
512  
1024  
1
GND  
Using R and C may be preferable for filtering more  
3
3
noise in the PLL, but it may still be necessary to provide  
V
V
V
V
V
V
GND  
GND  
CC  
CC  
CC  
CC  
CC  
CC  
filtering via C when using large values of R and N N  
2
1
1
2
OPEN  
to prevent clipping in the op amp.  
V
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
GND  
CC  
Setting the Optional Output  
The MAX3670 optional clock output can be set to bina-  
ry subdivisions of the main clock frequency. The PSEL1  
and PSEL2 pins control the binary divisions. Table 4  
shows the pin configuration along with the possible  
divider ratios.  
OPEN  
GND  
5
2
5
4
V
OPEN  
OPEN  
OPEN  
GND  
5
8
CC  
OPEN  
GND  
5
16  
5
32  
V
5
64  
CC  
OPEN  
GND  
GND  
5
128  
256  
512  
1024  
Table 4. Setting the Optional Clock  
Output Driver  
GND  
5
V
OPEN  
OPEN  
5
CC  
INPUT PIN  
PSEL1  
INPUT PIN  
PSEL2  
VCO TO POUT  
DIVIDER RATIO  
OPEN  
GND  
5
V
V
V
1
2
4
8
CC  
CC  
CC  
peaking in the PLL passband region to less than 0.1dB.  
GND  
This can be achieved by setting f K/100.  
Z
V
GND  
GND  
CC  
The three-level GSEL pins (see Functional Diagram)  
GND  
select the phase-detector gain (K ) and the frequency-  
PD  
divider ratio (N ). Table 3 summarizes the settings for  
2
the GSEL pins. A more detailed analysis of the loop filter  
Applications Information  
.
is located in application note HFDN-13.0
PECL Interfacing  
The MAX3670 outputs (MOUT+, MOUT-, POUT+,  
POUT-) are designed to interface with PECL signal lev-  
els. It is important to bias these ports appropriately. A  
circuit that provides a Thévenin equivalent of 50Ω to  
Setting the Higher-Order Poles  
Spurious noise is generated by the phase detector  
switching at the compare frequency, where f  
COMPARE  
= f  
/(N N ). Reduce the spurious noise from the  
VCO  
1 2  
V
CC  
- 2V can be used with fixed-impedance transmis-  
digital phase detector by placing a higher-order pole  
(HOP) at a frequency much less than the compare fre-  
quency. The HOP should, however, be placed high  
enough in frequency that it does not decrease the over-  
all loop-phase margin and impact jitter peaking. These  
two conditions can be met by selecting the HOP fre-  
sion lines with proper termination. To ensure best per-  
formance, the differential outputs must have balanced  
loads. It is important to note that if optional clock output  
is not used, it should be left unconnected to save  
power (see Figure 2).  
_______________________________________________________________________________________  
9
Low-Jitter 155MHz/622MHz  
Clock Generator  
quencies above the loop bandwidth may degrade LOL  
Layout  
The MAX3670 performance can be significantly affect-  
ed by circuit board layout and design. Use good high-  
frequency design techniques, including minimizing  
ground inductance and using fixed-impedance trans-  
mission lines on the reference and VCO clock signals.  
Power-supply decoupling should be placed as close to  
functionality.  
The user can set the amount of frequency or phase dif-  
ference between VCO and reference clock at which  
LOL indicates an out-of-lock condition. The frequency  
difference is called the beat frequency. The CTH pin  
can be connected to an external capacitor, which sets  
the lowpass filter frequency to approximately  
V
pins as possible. Take care to isolate the input  
CC  
from the output signals to reduce feedthrough.  
MAX3670  
1
f =  
VCO Selection  
L
2πC 60kΩ  
TH  
The MAX3670 is designed to accommodate a wide  
range of VCO gains, positive or negative transfer  
This lowpass filter frequency should be set about 10  
times lower than the beat frequency to make sure the  
filtered signal at CTH does not drop below the THADJ  
threshold voltage. The internal compare frequency of  
the part is 77.78MHz. For a 1ppm sensitivity (beat fre-  
quency of 77Hz), the filter needs to be at 7.7Hz, and  
CTH should be at 0.33µF.  
slopes, and V -referenced or ground-referenced con-  
CC  
trol voltages. These features allow the user a wide  
range of options in VCO selection; however, the proper  
VCO must be selected to allow the clock generator cir-  
cuitry to operate at the optimum levels. When selecting  
a VCO, the user needs to take into account the phase  
noise and modulation bandwidth. Phase noise is impor-  
tant because the phase noise above the PLL bandwidth  
will be dominated by the VCO noise performance.  
The modulation bandwidth of the VCO contributes an  
additional higher-order pole (HOP) to the system and  
should be greater than the HOP set with the external fil-  
ter components.  
The voltage at THADJ will determine the level at which  
the LOL output flags. THADJ is set to a default value of  
0.6V which corresponds in a 45° phase difference. This  
value can be overridden by applying the desired  
threshold voltage to the pin. The range of THADJ is  
from 0V (0°) to 2.4V (180°).  
Noise Performance Optimization  
Depending on the application, there are many different  
ways to optimize the PLL performance. The following  
are general guidelines to improve the noise on the sys-  
tem output clock.  
Interface Schematics  
1) If the reference clock noise dominates the total sys-  
tem-clock output jitter, then decreasing the loop  
bandwidth (K) reduces the output jitter.  
V
CC  
2) If the VCO noise dominates the total system clock  
output jitter, then increasing the loop bandwidth (K)  
reduces the output jitter.  
V
CC  
- 1.3V  
3) Smaller total divider ratio (N1 N2), lower HOP, and  
10.5kΩ  
10.5kΩ  
smaller R reduce the spurious output jitter.  
1
4) Smaller R reduces the random noise due to the op amp.  
1
REFLCK+  
REFLCK-  
LOL Setup  
The LOL output indicates if the PLL has locked onto the  
reference clock using an XOR gate and comparator.  
The comparator threshold can be adjusted with THADJ,  
and the XOR gate output can be filtered with a capaci-  
tor between CTH and ground (Figure 3 in the Interface  
Schematic section). When the voltage at pin CTH  
exceeds the voltage at pin THADJ, then the LOL output  
goes low and indicates that the PLL is not locked. Note  
that excessive jitter on the reference clock input at fre-  
MAX3670  
Figure 1. Input Interface  
10 ______________________________________________________________________________________  
Low-Jitter 155MHz/622MHz  
Clock Generator  
MAX3670  
Interface Schematics (continued)  
V
CC  
LOL  
60kΩ  
THADJ  
OUT+  
OUT-  
0.6V  
CTH  
60kΩ  
REFCLK  
VCO  
MAX3670  
MAX3670  
Figure 2. Output Interface  
Figure 3. Loss-of-Lock Indicator  
Pin Configuration  
Chip Information  
TRANSISTOR COUNT: 2478  
Package Information  
32  
31  
30  
29  
28  
27  
26  
25  
For the latest package outline information and land  
patterns, go to www.microsemi.com. Note that a “+”, “#”,  
or“-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character,  
but the drawing pertains to the package regardless of  
RoHS status.  
C2+  
C2-  
24  
23  
22  
1
2
3
4
5
6
7
8
VCOIN+  
VCOIN-  
VCCO  
VCCD  
THADJ  
21 MOUT+  
20 MOUT-  
19 VCCO  
18 POUT+  
17 POUT-  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
MAX3670  
CTH  
GSEL1  
GSEL2  
GSEL3  
32 QFN-EP  
G3255-1  
21-0091  
21-0140  
32 TQFN-EP  
T3255+3  
*EP  
9
10  
11  
12  
13  
14  
15  
16  
QFN/TQFN  
*THE EXPOSED PAD MUST BE SOLDERED TO SUPPLY GROUND.  
______________________________________________________________________________________ 11  
Low-Jitter 155MHz/622MHz  
Clock Generator  
Revision History  
REVISION REVISION  
DESCRIPTION  
PAGES  
CHANGED  
NUMBER  
DATE  
0
9/01  
Initial release.  
Added the PKG CODE column to the Ordering Information table; updated the  
package outline drawing in the Package Information section.  
1
2
5/03  
9/09  
1, 12  
1, 11  
Added the lead(Pb)-free TQFN package to the Ordering Information table; replaced  
the package outline drawing with a table in the Package Information section.  
MAX3670  
ꢀ ꢀ 12  
Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor  
solutions for: aerospace, defense and security; enterprise and communications; and industrial  
and alternative energy markets. Products include high-performance, high-reliability analog and  
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and  
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at  
www.microsemi.com.  
Microsemi Corporate Headquarters  
One Enterprise, Aliso Viejo CA 92656 USA  
Within the USA: +1 (949) 380-6100  
Sales: +1 (949) 380-6136  
© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of  
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.  
Fax: +1 (949) 215-4996  

相关型号:

MAX3670ETJ+

Low-Jitter 155MHz/622MHz Clock Generator
MAXIM

MAX3670ETJ+

Clock Generator, 670MHz, CMOS, TQFN-32
MICROSEMI

MAX3670ETJ+D

Clock Generator, 670MHz, CMOS, 5 X 5 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WHHD-2, TQFN-32
MICROSEMI

MAX3670ETJ+T

Clock Generator, 670MHz, CMOS, 5 X 5 MM, ROHS COMPLIANT, TQFN-32
MICROSEMI

MAX3670ETJ+TD

Clock Generator, 670MHz, CMOS, 5 X 5 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WHHD-2, TQFN-32
MICROSEMI

MAX3670EVKIT

Evaluation Kit for the MAX3670
MAXIM

MAX3670_09

Low-Jitter 155MHz/622MHz Clock Generator
MAXIM

MAX3671

Low-Jitter Frequency Synthesizer with Selectable Input Reference
MAXIM

MAX3671ETN+

Low-Jitter Frequency Synthesizer with Selectable Input Reference
MAXIM

MAX3672

Low-Jitter 155MHz/622MHz Clock Generator
MAXIM

MAX3672E/D

Low-Jitter 155MHz/622MHz Clock Generator
MAXIM

MAX3673

Low-Jitter Frequency Synthesizer with Selectable Input Reference
MAXIM