MAX3672 [MAXIM]

Low-Jitter 155MHz/622MHz Clock Generator; 低抖动了155MHz / 622MHz时钟发生器
MAX3672
型号: MAX3672
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Jitter 155MHz/622MHz Clock Generator
低抖动了155MHz / 622MHz时钟发生器

时钟发生器
文件: 总12页 (文件大小:493K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2697; Rev 0; 12/02  
Low-Jitter 155MHz/622MHz Clock Generator  
General Description  
Features  
The MAX3672 is a low-jitter 155MHz/622MHz reference  
clock generator IC designed for system clock distribution  
and frequency synchronization in OC-48 and OC-192  
SONET/SDH and WDM transmission systems. The  
MAX3672 integrates a phase/frequency detector, an  
operational amplifier (op amp), prescaler dividers, and  
input/output buffers. Using an external VCO, the  
MAX3672 can be configured easily as a phase-lock loop  
with bandwidth programmable from 30Hz to 10kHz.  
o Single +3.3V or +5.0V Supply  
o Power Dissipation: 150mW at +3.3V Supply  
o External VCO Center Frequencies (f  
): 155MHz  
VCO  
to 700MHz  
o Reference Clock Frequencies: f  
, f  
/2,  
VCO VCO  
f /4, f /8, f /32  
VCO VCO VCO  
o Main Clock Output Frequency: f  
VCO  
o Optional Output Clock Frequencies: f  
, f  
/2,  
VCO VCO  
The MAX3672 operates from a single +3.3V or +5.0V  
supply and dissipates 150mW (typ) at 3.3V. The operat-  
ing temperature range is -40°C to +85°C.  
f /4, f /8  
VCO VCO  
o Low Intrinsic Jitter: <0.4ps  
o Loss-of-Lock Indicator  
RMS  
o PECL Clock Output Interface  
Applications  
OC-12 to OC-192 SONET/WDM Transport  
Systems  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
Clock Jitter Clean-Up and Frequency  
Synchronization  
MAX3672E/D  
-40°C to +85°C  
Dice*  
*Dice are designed to operate from -40° to +85°C, but are test-  
ed and guaranteed at T = +25° only.  
Frequency Conversion  
A
System Clock Distribution  
Typical Application Circuit  
+3.3V  
VCCD  
142  
155MHz  
MOUT+  
MOUT-  
REFCLK+  
MAX3892  
+3.3V  
16:1  
SERIALIZER  
REFCLK-  
VCOIN+  
142Ω  
142Ω  
VCO  
= 25kHz/V  
K
VCO  
155MHz  
100Ω  
MAX3672  
VCOIN-  
RSEL  
142Ω  
N.C.  
N.C.  
VSEL  
NSEL1  
NSEL2  
332Ω  
VC  
4700pF  
4700pF  
500kΩ  
0.01µF  
OPAMP-  
OPAMP+  
GSEL  
GND  
3.3V  
500kΩ  
V
FILTER  
POLAR  
REPRESENTS A  
CONTROLLED-IMPEDANCE  
TRANSMISSION LINE.  
1000pF  
SETUP FOR 10kHz LOOP  
BANDWIDTH  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Low-Jitter 155MHz/622MHz Clock Generator  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage ......................................................-0.5V to +7.0V  
Voltage at C2+% C2-% ꢂHADJ% CꢂH% NSEL±% NSEL2% GSEL% LOL%  
RSEL% REFCLK-% REFCLK+% VSEL% VCOIN+% VCOIN-% VC%  
POLAR% PSEL±% PSEL2% COMP%  
PECL Output Cuꢁꢁent (MOUꢂ+%  
MOUꢂ-% POUꢂ+% POUꢂ-).................................................56mA  
Opeꢁating ꢂempeꢁatuꢁe Range ...........................-40°C to +85°C  
Stoꢁage ꢂempeꢁatuꢁe Range.............................-65°C to +±60°C  
Die-Attach Pꢁocess ꢂempeꢁatuꢁe.....................................+400°C  
OPAMP+% OPAMP-..................................-0.5V to (V  
+ 0.5V)  
CC  
Voltage at V  
.................................................-0.5V to +3.0V  
FILꢂER  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
= +3.3V ±±0ꢀ oꢁ V  
= +5.0V ±±0ꢀ% ꢂ = -40°C to +85°C. ꢂypical values aꢁe at V  
= +3.3V and ꢂ = +25°C% unless otheꢁ-  
CC A  
CC  
CC  
A
wise noted.) (Note ±)  
PARAMETER  
Supply Cuꢁꢁent  
INPUT SPECIFICATIONS (REFCLK±% VCOIN±)  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
(Note 2)  
50  
72  
mA  
CC  
V
±.±6  
-
V
0.88  
-
CC  
CC  
Input High Voltage  
Input Low Voltage  
Input Bias Voltage  
V
V
V
V
IH  
V
±.8±  
-
V
±.48  
-
CC  
CC  
V
IL  
V
±.3  
-
CC  
Common-Mode Input Resistance  
Diffeꢁential Input Resistance  
7.2  
±2.0  
300  
±±.5  
2±.0  
±7.5  
32.5  
±900  
k  
kΩ  
Diffeꢁential Input Voltage Swing  
PECL OUTPUT SPECIFICATIONS  
AC-coupled  
mV  
P-P  
V
-
V
0.88  
-
CC  
CC  
0°C to +85°C  
-40°C to 0°C  
0°C to +85°C  
-40°C to 0°C  
±.025  
Output High Voltage  
Output Low Voltage  
V
V
OH  
V
-
V
0.88  
-
CC  
CC  
±.085  
V
±.8±  
-
V
±.62  
-
CC  
CC  
V
V
OL  
V
±.83  
-
V
-
CC  
CC  
±.556  
TTL SPECIFICATIONS  
Output High Voltage  
Output Low Voltage  
V
Souꢁcing 20µA  
Sinking 2mA  
2.4  
V
V
V
OH  
CC  
V
0.4  
OL  
2
_______________________________________________________________________________________  
Low-Jitter 155MHz/622MHz Clock Generator  
DC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3.3V ±±0ꢀ oꢁ V  
= +5.0V ±±0ꢀ% ꢂ = -40°C to +85°C. ꢂypical values aꢁe at V  
= +3.3V and ꢂ = +25°C% unless otheꢁ-  
CC A  
CC  
CC  
A
wise noted.) (Note ±)  
PARAMETER  
OPERATIONAL AMPLIFIER SPECIFICATIONS (Note 3)  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
0.3  
-
-
CC  
V
V
= +3.3V ±±0ꢀ  
0.3  
0.5  
CC  
CC  
Op Amp Output Voltage Range  
V
V
O
V
0.5  
CC  
= +5.0V ±±0ꢀ  
Op Amp Input Offset Voltage  
Op Amp Open-Loop Gain  
| V  
A
|
3
mV  
dB  
OS  
90  
OL  
PHASE FREQUENCY DETECTOR (PFD)/CHARGE-PUMP (CP) SPECIFICATIONS (Note 4)  
High gain  
Low gain  
High gain  
Low gain  
±6.0  
4.0  
20  
5
24.4  
6.2  
Full-Scale PFD/CP Output  
Cuꢁꢁent  
| I  
|
µA  
PD  
0.80  
±.08  
PFD/CP Offset Cuꢁꢁent  
| I  
|
PD  
AC ELECTRICAL CHARACTERISTICS  
(V  
= +3.3V ±±0ꢀ oꢁ V  
= +5.0V ±±0ꢀ% ꢂ = -40°C to +85°C. ꢂypical values aꢁe at V  
= +3.3V and ꢂ = +25°C% unless otheꢁ-  
CC A  
CC  
CC  
A
wise noted.) (Note 5)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CLOCK OUTPUT SPECIFICATIONS  
Clock Output Fꢁequency  
700  
MHz  
622/3±±/  
±55/78  
f
f
= 622MHz  
= ±55MHz  
VCO  
VCO  
Optional Clock Output  
Fꢁequency  
MHz  
±55/78/  
38/±9  
Clock Output Rise/Fall ꢂime  
Clock Output Duty Cycle  
Measuꢁed fꢁom 20ꢀ to 80ꢀ  
(Note 6)  
280  
55  
ps  
45  
NOISE SPECIFICATIONS  
Random Noise Voltage at Loop-  
Filteꢁ Output  
µV  
/Hz  
RMS  
RMS  
V
Fꢁeq > ±kHz (Note 7)  
(Note 8)  
±.±4  
NOISE  
PSR  
Spuꢁious Noise Voltage at Loop-  
Filteꢁ Output  
50  
µV  
Poweꢁ-Supply Rejection at Loop-  
Filteꢁ Output  
(Note 9)  
30  
30  
dB  
REFERENCE CLOCK INPUT SPECIFICATIONS  
Refeꢁence Clock Fꢁequency  
622/  
±55/78/  
±9  
700  
70  
MHz  
Refeꢁence Clock Duty Cycle  
_______________________________________________________________________________________  
3
Low-Jitter 155MHz/622MHz Clock Generator  
AC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3.3V ±±0ꢀ oꢁ V  
= +5.0V ±±0ꢀ% ꢂ = -40°C to +85°C. ꢂypical values aꢁe at V  
= +3.3V and ꢂ = +25°C% unless otheꢁ-  
CC A  
CC  
CC  
A
wise noted.) (Note 5)  
PARAMETER  
PLL SPECIFICATIONS  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
PLL Jitteꢁ ꢂꢁansfeꢁ Bandwidth  
Jitteꢁ ꢂꢁansfeꢁ Peaking  
BW  
(Note ±0)  
BW (Note ±±)  
30  
±0%000  
0.±  
Hz  
dB  
F
JIꢂꢂER  
OPAMP SPECIFICATION  
Unity-Gain Bandwidth  
7
MHz  
VCO INPUT SPECIFICATIONS  
VCO Input Fꢁequency  
f
622/±55  
700  
MHz  
V/ns  
VCO  
VCO Input Slew Rate  
0.5  
Note 1: Specifications at -40°C aꢁe guaꢁanteed by design and chaꢁacteꢁization.  
Note 2: Measuꢁed with PECL outputs unteꢁminated.  
Note 3: OPAMP specifications met with ±0kload to gꢁound oꢁ 5kload to V (POLAR = 0 and POLAR = V ).  
CC  
CC  
Note 4: PFD/CP cuꢁꢁents aꢁe measuꢁed fꢁom pins OPAMP+ to OPAMP-. See ꢂable 4 foꢁ gain settings.  
Note 5: AC chaꢁacteꢁistics aꢁe guaꢁanteed by design and chaꢁacteꢁization.  
Note 6: Measuꢁed with 50ꢀ VCO input duty cycle.  
Note 7: Random noise voltage at op amp output with 800kꢁesistoꢁ connected between VC and OPAMP-% PFD/CP gain (K ) =  
PD  
5µA/UI% and POLAR = 0. Measuꢁed with the PLL open loop and no REFCLK oꢁ VCO input.  
Note 8: Spuꢁious noise voltage due to PFD/CP output pulses measuꢁed at op amp output with R = 800k% K = 5µA/UI% and com-  
±
PD  
paꢁe fꢁequency 400 times gꢁeateꢁ than the higheꢁ-oꢁdeꢁ pole fꢁequency (see the Design Procedure section).  
Note 9: PSR measuꢁed with a ±00mV sine wave on V in a fꢁequency ꢁange fꢁom ±00Hz to 2MHz. Exteꢁnal ꢁesistoꢁs R matched  
P-P  
CC  
±
to within ±ꢀ% exteꢁnal capacitoꢁs C matched to within ±0ꢀ. Measuꢁed closed loop with PLL bandwidth set to 200Hz.  
±
Note 10:ꢂhe PLL 3dB bandwidth is adjusted fꢁom 30Hz to ±0kHz by changing exteꢁnal components R and C % by selecting the  
±
±
inteꢁnal pꢁogꢁammable divideꢁ ꢁatio and phase-detectoꢁ gain. Measuꢁed with VCO gain of ±50ppm/V and C limited to 2.2µF.  
±
Note 11:When input jitteꢁ fꢁequency is above PLL tꢁansfeꢁ bandwidth (BW)% the jitteꢁ tꢁansfeꢁ function ꢁolls off at -20dB/decade.  
4
_______________________________________________________________________________________  
Low-Jitter 155MHz/622MHz Clock Generator  
Typical Operating Characteristics  
(ꢂ = +25°C% unless otheꢁwise noted.)  
A
SUPPLY CURRENT  
vs. TEMPERATURE  
POWER-SUPPLY REJECTION  
vs. FREQUENCY  
OUTPUT CLOCK EDGE SPEED  
vs. TEMPERATURE  
0
-10  
-20  
-30  
-40  
-50  
-60  
70  
60  
50  
40  
30  
20  
270  
260  
250  
240  
230  
220  
210  
200  
190  
180  
170  
160  
150  
140  
BW = 1kHz  
5.0V  
3.3V  
LOOP FILTER OUTPUT  
155.52  
667  
-40  
-20  
0
20  
40  
60  
80  
1k  
10k  
100k  
1M  
10M  
-40 -20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
667MHz CLOCK OUTPUT  
155MHz CLOCK OUTPUT  
MAX3672 toc05  
MAX3672 toc04  
200mV/div  
200mV/div  
500ps/div  
2ns/div  
_______________________________________________________________________________________  
5
Low-Jitter 155MHz/622MHz Clock Generator  
Pad Description  
PAD  
NAME  
FUNCTION  
Positive Filteꢁ Input. Exteꢁnal capacitoꢁ connected between C2+ and C2- used foꢁ setting the higheꢁ  
oꢁdeꢁ pole fꢁequency (see the Setting the Higher-Order Poles section).  
±
C2+  
Negative Filteꢁ Input. Exteꢁnal capacitoꢁ connected between C2+ and C2- used foꢁ setting the higheꢁ  
oꢁdeꢁ pole fꢁequency (see the Setting the Higher-Order Poles section).  
2
C2-  
3% ±0% ±6  
4
VCCD  
Positive Digital Supply Voltage  
ꢂHADJ  
ꢂhꢁeshold Adjust Input. Used to adjust the loss-of-lock thꢁeshold (see the LOL Setup section).  
5% ±2% ±8% 27%  
33  
GND  
CꢂH  
Gꢁound  
ꢂhꢁeshold Capacitoꢁ Input. Connect capacitoꢁ connected between CꢂH and gꢁound to contꢁol the  
loss-of-lock conditions (see the LOL Setup section).  
6
7
8
9
NSEL±  
NSEL2  
GSEL  
Divide Selectoꢁ ± Input. ꢂhꢁee-level pin used to set the fꢁequency divideꢁ ꢁatio (N ) (ꢂable 3).  
2
Divide Selectoꢁ 2 Input. ꢂhꢁee-level pin used to set the fꢁequency divideꢁ ꢁatio (N ) (ꢂable 3).  
2
Gain Selectoꢁ Input. ꢂhꢁee-level pin used to set the phase-detectoꢁ gain (Kpd) (ꢂable 4).  
Loss of Lock. LOL signals a ꢂꢂL low when the ꢁefeꢁence fꢁequency diffeꢁs fꢁom the VCO fꢁequency.  
LOL signals a ꢂꢂL high when the ꢁefeꢁence fꢁequency equals the VCO fꢁequency.  
±±  
±3  
LOL  
Refeꢁence Clock Selectoꢁ Input. ꢂhꢁee-level pin used to set the pꢁe-divideꢁ ꢁatio (N ) foꢁ the input  
3
ꢁefeꢁence clock (ꢂable ±).  
RSEL  
±4  
±5  
REFCLK+  
REFCLK-  
Positive Refeꢁence Clock Input% PECL  
Negative Refeꢁence Clock Input% PECL  
VCO Clock Selectoꢁ Input. ꢂhꢁee-level pin used to set the pꢁe-divideꢁ ꢁatio (N ) foꢁ the input VCO  
±
clock (ꢂable 2).  
±7  
VSEL  
±9  
20  
POUꢂ-  
POUꢂ+  
VCCO  
Negative Optional Clock Output% PECL  
Positive Optional Clock Output% PECL  
Positive Supply Voltage foꢁ PECL Outputs  
Negative Main Clock Output% PECL  
Positive Main Clock Output% PECL  
Negative VCO Clock Input% PECL  
Positive VCO Clock Input% PECL  
2±% 24  
22  
MOUꢂ-  
MOUꢂ+  
VCOIN-  
VCOIN+  
23  
25  
26  
Optional Noise Filteꢁ. Connect an exteꢁnal capacitoꢁ to ꢁeduce PECL output noise (see the Typical  
Application Circuit).  
28  
29  
30  
VFILꢂER  
VC  
Contꢁol Voltage Output. ꢂhe voltage output fꢁom the op amp that contꢁols the VCO.  
Polaꢁity Contꢁol of Op Amp Input. POLAR = GND foꢁ VCOs with positive-gain tꢁansfeꢁ. POLAR = V  
foꢁ VCOs with negative-gain tꢁansfeꢁ.  
CC  
POLAR  
3±  
32  
34  
PSEL±  
PSEL2  
VCCA  
Optional Clock Selectoꢁ ± Input. Sets the divideꢁ ꢁatio foꢁ the optional clock output (ꢂable 5).  
Optional Clock Selectoꢁ 2 Input. Sets the divideꢁ ꢁatio foꢁ the optional clock output (ꢂable 5).  
Positive Analog Supply Voltage foꢁ the Chaꢁge Pump and Op Amp  
Compensation Contꢁol Input. Op Amp Compensation Refeꢁence Contꢁol Input. COMP = GND foꢁ  
35  
COMP  
VCOs whose contꢁol pin is V ꢁefeꢁenced. COMP = V foꢁ VCOs whose contꢁol pin is GND  
CC CC  
ꢁefeꢁenced.  
36  
37  
OPAMP-  
OPAMP+  
Negative Op Amp Input% POLAR = GND  
Positive Op Amp Input% POLAR = GND  
6
_______________________________________________________________________________________  
Low-Jitter 155MHz/622MHz Clock Generator  
Functional Diagram  
C1  
R1  
R1  
R3  
VCO  
K
VCO  
C3  
C1  
LOL  
THADJ  
CTH  
VC  
COMP POLAR  
OPAMP-  
OPAMP+  
OPAMP  
LOL  
REFCLK+  
REFCLK-  
DIV (N3)  
1/2/8  
DIV  
(N2)  
PECL  
PFD/CP  
Kpd  
GSEL  
C2-  
RSEL  
VSEL  
DIV  
(N2)  
DIV (N1)  
4/8/32  
C2+  
VCOIN+  
VCOIN-  
MOUT+  
PECL  
PECL  
PECL  
MOUT-  
POUT+  
DIV  
1/2/4/8  
DIVIDER  
CONTROL LOGIC  
MAX3672  
POUT-  
NSEL1  
NSEL2  
PSEL1  
PSEL2  
VFILTER  
that they can be AC-coupled (Figuꢁe ± in the Interface  
Schematic section). A single-ended VCO oꢁ ꢁefeꢁence  
clock can also be applied.  
Detailed Description  
ꢂhe MAX3672 contains all the blocks needed to foꢁm a  
PLL except foꢁ the VCO% which must be supplied sepa-  
ꢁately. ꢂhe MAX3672 consists of input buffeꢁs foꢁ the ꢁef-  
eꢁence clock and VCO% input and output clock-divideꢁ  
ciꢁcuitꢁy% LOL detection ciꢁcuitꢁy phase detectoꢁ% gain-  
contꢁol logic% a phase-fꢁequency detectoꢁ and chaꢁge  
pump% an op amp% and PECL output buffeꢁs.  
Input and Output Clock-Divider Circuitry  
ꢂhe pꢁe-divideꢁs scale the input fꢁequencies of the VCO  
and ꢁefeꢁence clock. Clock-divideꢁ ꢁatios N± and N3  
must be chosen so that the output fꢁequencies of the  
pꢁe-divideꢁs aꢁe equal. ꢂhe maximum allowable pꢁe-  
divideꢁ output fꢁequency is 77.76MHz (ꢂable ±).  
ꢂhis device is designed to clean up the noise on the ꢁef-  
eꢁence clock input and pꢁovide a low-jitteꢁ system clock  
output. ꢂhis device also suppoꢁts fꢁequency conveꢁsion.  
ꢂhe main divideꢁs (N2) facilitate tuning the loop band-  
width by setting the fꢁequency divideꢁ ꢁatio. ꢂhe divideꢁ  
contꢁol logic can be pꢁogꢁammed to divide fꢁom ± to 256  
in binaꢁy multiples (ꢂable 3). ꢂhe POUꢂ output buffeꢁ is  
pꢁeceded by a clock divideꢁ that scales the main clock  
output by ±% 2% 4% oꢁ 8 to pꢁovide an optional clock.  
Input Buffer for Reference  
Clock and VCO  
ꢂhe MAX3672 contains diffeꢁential inputs foꢁ the ꢁefeꢁ-  
ence clock and the VCO. ꢂhese high impedance inputs  
can be DC-coupled and aꢁe inteꢁnally biased with so  
_______________________________________________________________________________________  
7
Low-Jitter 155MHz/622MHz Clock Generator  
clock and VCO pꢁe-divideꢁs aꢁe equal. ꢂable ± shows  
the divideꢁ ꢁatios and pꢁe-divideꢁ output fꢁequencies foꢁ  
vaꢁious ꢁefeꢁence clock and VCO fꢁequencies.  
LOL Detection Circuitry  
ꢂhe MAX3672 incoꢁpoꢁates a loss-of-lock (LOL) monitoꢁ  
that consists of an XOR gate% filteꢁ% and compaꢁatoꢁ with  
adjustable thꢁeshold (see the LOL Setup section). A  
loss-of-lock condition is signaled with a ꢂꢂL low when  
the ꢁefeꢁence clock fꢁequency diffeꢁs fꢁom the VCO  
fꢁequency.  
Setting the Loop Bandwidth  
ꢂo eliminate jitteꢁ pꢁesent on the ꢁefeꢁence clock% the  
pꢁopeꢁ selection of loop bandwidth is cꢁitical. If the total  
output jitteꢁ is dominated by the noise at the ꢁefeꢁence  
clock input% then loweꢁing the loop bandwidth will  
ꢁeduce system jitteꢁ. ꢂhe loop bandwidth (K) is a func-  
Phase-Frequency Detector and  
Charge Pump  
tion of the VCO gain (K  
)% the gain of the phase  
VCO  
ꢂhe phase-fꢁequency detectoꢁ incoꢁpoꢁated into the  
MAX3672 pꢁoduces pulses pꢁopoꢁtional to the phase  
diffeꢁence between the ꢁefeꢁence clock and the VCO  
input. ꢂhe chaꢁge pump conveꢁts this pulse tꢁain to a  
cuꢁꢁent signal that is fed to the op amp. ꢂhe phase  
detectoꢁ gain can be set to eitheꢁ 5µA/UI oꢁ 20µA/UI  
with the GSEL input (ꢂable 4).  
detectoꢁ (K )% the loop filteꢁ ꢁesistoꢁ (R )% and the total  
PD  
±
feedback-divideꢁ ꢁatio (N = N± N2). ꢂhe loop band-  
width of the MAX3672 can be appꢁoximated by:  
KPDR±KVCO  
K =  
2πN  
Op Amp  
ꢂhe op amp is used to foꢁm an active PLL loop filteꢁ  
capable of dꢁiving the VCO contꢁol voltage input. Using  
the POLAR input% the op amp input polaꢁity can be select-  
ed to woꢁk with VCOs having positive oꢁ negative gain-  
tꢁansfeꢁ functions. ꢂhe COMP pin selects the op amp  
inteꢁnal compensation. Connect COMP to gꢁound if the  
Foꢁ stability% a zeꢁo must be added to the loop in the foꢁm  
of ꢁesistoꢁ R in seꢁies with capacitoꢁ C (see the  
±
±
Functional Diagram). ꢂhe location of the zeꢁo can be  
appꢁoximated as:  
±
f
=
Z
2πR C  
± ±  
VCO contꢁol voltage is V  
ꢁefeꢁenced. Connect COMP  
CC  
to V if the VCO contꢁol voltage is gꢁound ꢁefeꢁenced.  
CC  
Because of the second-oꢁdeꢁ natuꢁe of the PLL jitteꢁ  
tꢁansfeꢁ% peaking will occuꢁ and is pꢁopoꢁtional to f /K.  
Z
Design Procedure  
Setting Up the VCO and  
Reference Clock  
Foꢁ ceꢁtain applications% it may be desiꢁable to limit jitteꢁ  
peaking in the PLL passband ꢁegion to less than 0.±dB.  
ꢂhis can be achieved by setting f K/±00.  
Z
ꢂhe MAX3672 accepts a ꢁange of ꢁefeꢁence clock and  
VCO fꢁequencies. ꢂhe RSEL and VSEL inputs must be  
set so that the output fꢁequencies of the ꢁefeꢁence  
A moꢁe detailed analysis of the loop filteꢁ is located in  
application note HFDN-±3.0 on www.maxim-ic.com.  
Table 1. VCO and Reference Clock Setup  
PRE-DIVIDER  
OUTPUT FREQUENCY  
(MHz)  
F
F
VCO  
DIVIDER N1  
RSEL  
INPUT  
REFERENCE-  
CLOCK DIVIDER N3  
VOC  
REF  
VSEL INPUT  
(MHz)  
(MHz)  
622.08  
622.08  
622.08  
622.08  
±55.52  
±55.52  
±55.52  
±55.52  
622.08  
±55.52  
77.76  
OPEN  
OPEN  
OPEN  
GND  
8
8
GND  
8
2
77.76  
77.76  
77.76  
±9.44  
––  
OPEN  
8
V
V
±
CC  
CC  
±9.44  
32  
8
±
622.08  
±55.52  
77.76  
8
OPEN  
GND  
OPEN  
±9.44  
38.88  
±9.44  
V
4
2
CC  
±9.44  
OPEN  
8
V
±
CC  
8
_______________________________________________________________________________________  
Low-Jitter 155MHz/622MHz Clock Generator  
ꢂhe HOP can be implemented eitheꢁ by pꢁoviding a  
Table 2. RSEL and VSEL Settings  
compensation capacitoꢁ C % which pꢁoduces a pole at:  
2
REFERENCE-  
CLOCK  
DIVIDER N3  
INPUT PIN  
VSEL  
VCO DIVIDER INPUT PIN  
±
N1  
RSEL  
f
=
HOP  
2π(20k)(C )  
2
V
4
8
V
±
2
8
CC  
CC  
oꢁ by adding a lowpass filteꢁ% consisting of R and C %  
3
3
OPEN  
GND  
OPEN  
GND  
diꢁectly on the VCO tuning poꢁt% which pꢁoduces a pole at:  
32  
±
Table 3. Divider Logic Setup  
INPUT PIN NSEL1 INPUT PIN NSEL2 DIVIDER RATIO N  
f
=
HOP  
2πR C  
3
3
2
Using R and C might be pꢁefeꢁable foꢁ filteꢁing moꢁe  
V
V
V
V
±
2
3
3
CC  
CC  
CC  
CC  
noise in the PLL% but it might still be necessaꢁy to pꢁovide  
filteꢁing thꢁough C when using laꢁge values of R and N  
±
OPEN  
GND  
2
±
4
N % to pꢁevent clipping in the op amp.  
2
V
OPEN  
OPEN  
OPEN  
GND  
8
CC  
Setting the Optional Output  
ꢂhe MAX3672 optional clock output can be set to binaꢁy  
subdivisions of the main clock fꢁequency. ꢂhe PSEL±  
and PSEL2 pins contꢁol the binaꢁy divisions. ꢂable 5  
shows the pin configuꢁation and possible divideꢁ ꢁatios.  
OPEN  
GND  
±6  
32  
64  
±28  
256  
V
CC  
OPEN  
GND  
GND  
GND  
Applications Information  
PECL Interfacing  
ꢂhe MAX3672 outputs (MOUꢂ+% MOUꢂ-% POUꢂ+%  
POUꢂ-) aꢁe designed to inteꢁface with PECL signal levels  
and should be biased appꢁopꢁiately. Pꢁopeꢁ teꢁmination  
ꢁequiꢁes an exteꢁnal ciꢁcuit that pꢁovides a ꢂhevenin  
equivalent of 50to VCC - 2.0V and contꢁolled-imped-  
ance tꢁansmission lines. ꢂo ensuꢁe best peꢁfoꢁmance%  
the diffeꢁential outputs must have balanced loads. If the  
optional clock output is not used% the output can be left  
floating to save poweꢁ.  
Table 4. Phase Detector Gain Setup  
INPUT PIN GSEL  
Kpd (µA/UI)  
OPEN oꢁ V  
GND  
20  
5
CC  
Table 5. Optional Clock Setup  
INPUT PIN  
PSEL1  
INPUT PIN  
PSEL2  
VCO TO POUT  
DIVIDER RATIO  
V
V
V
±
2
4
8
CC  
CC  
CC  
Layout  
ꢂhe MAX3672 peꢁfoꢁmance can be significantly affected  
by ciꢁcuit boaꢁd layout and design. Use good high-  
fꢁequency design techniques% including minimizing  
gꢁound inductance and using fixed-impedance tꢁans-  
mission lines on the ꢁefeꢁence and VCO clock signals.  
Poweꢁ-supply decoupling should be placed as close to  
the die as possible. ꢂake caꢁe to isolate the input fꢁom  
the output signals to ꢁeduce feedthꢁough.  
GND  
V
GND  
GND  
CC  
GND  
Setting the Higher-Order Poles  
Spuꢁious noise is geneꢁated by the phase detectoꢁ  
switching at the compaꢁe fꢁequency% wheꢁe f  
COMPARE  
= f  
/(N N ). Reduce the spuꢁious noise fꢁom the  
VCO  
± 2  
VCO Selection  
ꢂhe MAX3672 is designed to accommodate a wide  
ꢁange of VCO gains% positive oꢁ negative tꢁansfeꢁ  
digital phase detectoꢁ by placing a higheꢁ-oꢁdeꢁ pole  
(HOP) at a fꢁequency much less than the compaꢁe fꢁe-  
quency. ꢂhe HOP should% howeveꢁ% be placed high  
enough in fꢁequency that it does not decꢁease the oveꢁ-  
all loop-phase maꢁgin and impact jitteꢁ peaking. ꢂhese  
two conditions can be met by selecting the HOP fꢁe-  
slopes% and V -ꢁefeꢁenced oꢁ gꢁound-ꢁefeꢁenced con-  
CC  
tꢁol voltages. ꢂhese featuꢁes allow the useꢁ a wide  
ꢁange of options in VCO selection; howeveꢁ% the pꢁopeꢁ  
VCO must be selected to allow the clock geneꢁatoꢁ ciꢁ-  
cuitꢁy to opeꢁate at the optimum levels. When selecting  
quency to be (K 4) < f  
the loop bandwidth.  
< f  
% wheꢁe K is  
COMPARE  
HOP  
_______________________________________________________________________________________  
9
Low-Jitter 155MHz/622MHz Clock Generator  
Interface Schematics  
V
CC  
V
CC  
V
- 1.3V  
CC  
10.5kΩ  
10.5kΩ  
OUT+  
OUT-  
REFLCK+  
REFLCK-  
MAX3672  
MAX3672  
Figure 2. Output Interface  
Figure 1. Input Interface  
a VCO% the useꢁ needs to take into account the VCOs  
phase noise and modulation bandwidth. Phase noise is  
impoꢁtant because the phase noise above the PLL band-  
width is dominated by the VCO noise peꢁfoꢁmance.  
ꢂhe modulation bandwidth of the VCO contꢁibutes an  
additional higheꢁ-oꢁdeꢁ pole (HOP) to the system and  
should be gꢁeateꢁ than the HOP set with the exteꢁnal filteꢁ  
components.  
LOL  
Noise Performance Optimization  
Depending on the application% theꢁe aꢁe many diffeꢁent  
ways to optimize the PLL peꢁfoꢁmance. ꢂhe following  
aꢁe geneꢁal guidelines to impꢁove the noise on the sys-  
tem output clock.  
60kΩ  
THADJ  
0.6V  
CTH  
±) If the ꢁefeꢁence clock noise dominates the total sys-  
tem-clock output jitteꢁ% then decꢁeasing the loop  
bandwidth (K) ꢁeduces the output jitteꢁ.  
60kΩ  
REFCLK  
VCO  
2) If the VCO noise dominates the total system clock  
output jitteꢁ% then incꢁeasing the loop bandwidth (K)  
ꢁeduces the output jitteꢁ.  
MAX3672  
3) Smalleꢁ total divideꢁ ꢁatio (N± N2)% loweꢁ HOP% and  
smalleꢁ R ꢁeduce the spuꢁious output jitteꢁ.  
±
4) Smalleꢁ R ꢁeduces the ꢁandom noise due to the op amp.  
±
Figure 3. Loss-of-Lock Indicator  
10 ______________________________________________________________________________________  
Low-Jitter 155MHz/622MHz Clock Generator  
LOL  
Setup  
Bond Pad Coordinates  
ꢂhe LOL output indicates if the PLL has locked onto the  
ꢁefeꢁence clock using an XOR gate and compaꢁatoꢁ. ꢂhe  
compaꢁatoꢁ thꢁeshold can be adjusted with ꢂHADJ% and  
the XOR gate output can be filteꢁed with a capacitoꢁ  
between CꢂH and gꢁound (Figuꢁe 3). When the voltage  
at pin CꢂH exceeds the voltage at pin ꢂHADJ% then the  
LOL output goes low and indicates that the PLL is not  
locked. Note that excessive jitteꢁ on the ꢁefeꢁence clock  
input at fꢁequencies above the loop bandwidth may  
degꢁade LOL functionality.  
PAD COORDINATES (µm)  
PAD  
X
Y
±
50.8  
±557.3  
±408.8  
±±79.3  
±028.±  
874.2  
720.4  
566.5  
4±2.6  
258.7  
50.8  
2
50.8  
3
50.8  
4
50.8  
5
50.8  
6
50.8  
ꢂhe useꢁ can set the amount of fꢁequency oꢁ phase dif-  
feꢁence between VCO and ꢁefeꢁence clock at which  
LOL indicates an out-of-lock condition. ꢂhe fꢁequency  
diffeꢁence is called the beat fꢁequency. ꢂhe CꢂH pin  
can be connected to an exteꢁnal capacitoꢁ% which sets  
the lowpass filteꢁ fꢁequency to appꢁoximately  
7
50.8  
8
50.8  
9
50.8  
±0  
±±  
±2  
±3  
±4  
±5  
±6  
±7  
±8  
±9  
20  
2±  
22  
23  
24  
25  
26  
27  
28  
29  
30  
3±  
32  
33  
34  
35  
36  
37  
266.8  
420.7  
574.6  
728.5  
882.4  
±036.2  
±±90.±  
±344  
50.8  
50.8  
±
f
=
50.8  
L
2πC 60kΩ  
ꢂH  
50.8  
ꢂhis lowpass filteꢁ fꢁequency should be set about ±0  
times loweꢁ then the beat fꢁequency to ensuꢁe that the  
filteꢁed signal at CꢂH does not dꢁop below the ꢂHADJ  
thꢁeshold voltage. Inteꢁnal compaꢁisons occuꢁ at the  
pꢁe-divideꢁ output fꢁequency (see ꢂable ± foꢁ VCO and  
ꢁefeꢁence clock setup). Foꢁ example% assume the pꢁe-  
divideꢁ output fꢁequency is ±9.44MHz. Foꢁ a ±ppm sen-  
sitivity% the minimum beat fꢁequency is ±9Hz% and the  
filteꢁ should be set to ±.9Hz. Set CꢂH to ±.36uF.  
50.8  
50.8  
50.8  
±549.2  
±792.2  
±792.2  
±792.2  
±792.2  
±792.2  
±792.2  
±792.2  
±792.2  
±792.2  
±792.2  
±565.4  
±4±±.5  
±257.6  
±±03.7  
893.2  
685.3  
53±.4  
377.5  
223.6  
50.8  
256  
409.9  
563.8  
7±7.7  
87±.6  
±025.4  
±±79.3  
±333.2  
±530.3  
±692.3  
±692.3  
±692.3  
±692.3  
±692.3  
±692.3  
±692.3  
±692.3  
±692.3  
±692.3  
ꢂhe voltage at ꢂHADJ will deteꢁmine the level at which  
the LOL output flags. ꢂHADJ is set to a default value of  
0.6V which coꢁꢁesponds to a 45° phase diffeꢁence. ꢂhis  
value can be oveꢁꢁidden by applying the desiꢁed  
thꢁeshold voltage to the ꢂHADJ input. ꢂhe ꢁange of  
ꢂHADJ is 0V (0°) to 2.4V (±80°).  
______________________________________________________________________________________ 11  
Low-Jitter 155MHz/622MHz Clock Generator  
Chip Topography  
Chip Information  
PROCESS: GSꢂ2  
SUBSꢂRAꢂE CONNECꢂED ꢂO GND  
DIE ꢂHICKNESS: ±4 mils  
37 36 35 34  
33  
32 31 30 29  
28  
27  
1
2
C2+  
C2-  
GND  
VCOIN+  
VCOIN-  
VCCD  
Package Information  
26  
25  
24  
23  
22  
21  
20  
19  
VCCD  
3
4
5
6
7
8
9
Foꢁ the latest package outline infoꢁmation% go to  
www.maxim-ic.com/packages.  
THADJ  
MOUT+  
MOUT-  
VCCD  
GND  
0.076"  
(1.930mm)  
CTH  
NSEL1  
NSEL2  
POUT+  
POUT-  
GSEL  
10 11 12 13 14 15 16 17  
18  
0.080"  
(2.032mm)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2002 Maxim Integꢁated Pꢁoducts  
Pꢁinted USA  
is a ꢁegisteꢁed tꢁademaꢁk of Maxim Integꢁated Pꢁoducts.  

相关型号:

MAX3672E/D

Low-Jitter 155MHz/622MHz Clock Generator
MAXIM

MAX3673

Low-Jitter Frequency Synthesizer with Selectable Input Reference
MAXIM

MAX3673ETN+

Low-Jitter Frequency Synthesizer with Selectable Input Reference
MAXIM

MAX3674

High-Performance, Dual-Output, Network Clock Synthesizer
MAXIM

MAX3674ECM

High-Performance, Dual-Output, Network Clock Synthesizer
MAXIM

MAX3674EVKIT

On-Board 16MHz Crystal Reference
MAXIM

MAX3674EVKIT+

Evaluation Kit
MAXIM

MAX3674_08

Evaluation Kit
MAXIM

MAX3675

622Mbps, Low-Power, 3.3V Clock-Recovery and Data-Retiming IC with Limiting Amplifier
MAXIM

MAX3675E/D

622Mbps, Low-Power, 3.3V Clock-Recovery and Data-Retiming IC with Limiting Amplifier
MAXIM

MAX3675E/W

Clock Recovery Circuit, 1-Func,
MAXIM

MAX3675ECJ

622Mbps, Low-Power, 3.3V Clock-Recovery and Data-Retiming IC with Limiting Amplifier
MAXIM