MAX146BEAP-T [MAXIM]

ADC, Successive Approximation, 12-Bit, 1 Func, 8 Channel, Serial Access, CMOS, PDSO20, SSOP-20;
MAX146BEAP-T
型号: MAX146BEAP-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Successive Approximation, 12-Bit, 1 Func, 8 Channel, Serial Access, CMOS, PDSO20, SSOP-20

光电二极管 转换器
文件: 总24页 (文件大小:646K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0465; Rev 2; 10/01  
+2.7V, Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
General Description  
____________________________Features  
The MAX146/MAX147 12-bit data-acquisition systems  
combine an 8-channel multiplexer, high-bandwidth  
track/hold, and serial interface with high conversion  
speed and low power consumption. The MAX146 oper-  
ates from a single +2.7V to +3.6V supply; the MAX147  
operates from a single +2.7V to +5.25V supply. Both  
devices’ analog inputs are software configurable for  
unipolar/bipolar and single-ended/differential operation.  
8-Channel Single-Ended or 4-Channel  
Differential Inputs  
Single-Supply Operation  
+2.7V to +3.6V (MAX146)  
+2.7V to +5.25V (MAX147)  
Internal 2.5V Reference (MAX146)  
Low Power  
The 4-wire serial interface connects directly to SPI™/  
QSPI™ and MICROWIRE™ devices without external  
logic. A serial strobe output allows direct connection to  
TMS320-family digital signal processors. The  
MAX146/MAX147 use either the internal clock or an exter-  
nal serial-interface clock to perform successive-approxi-  
mation analog-to-digital conversions.  
1.2mA (133ksps, 3V supply)  
54µA (1ksps, 3V supply)  
1µA (power-down mode)  
SPI/QSPI/MICROWIRE/TMS320-Compatible  
4-Wire Serial Interface  
Software-Configurable Unipolar or Bipolar Inputs  
The MAX146 has an internal 2.5V reference, while the  
MAX147 requires an external reference. Both parts have  
a reference-buffer amplifier with a 1.5ꢀ voltage-  
adjustment range.  
20-Pin DIP/SSOP Packages  
Ordering Information  
INL  
These devices provide a hard-wired SHDN pin and a  
software-selectable power-down, and can be pro-  
grammed to automatically shut down at the end of a con-  
version. Accessing the serial interface automatically  
powers up the MAX146/MAX147, and the quick turn-on  
time allows them to be shut down between all conver-  
sions. This technique can cut supply current to under  
60µA at reduced sampling rates.  
PART  
TEMP RANGE PIN-PACKAGE  
(LSB)  
MAX146ACPP  
MAX146BCPP  
MAX146ACAP  
MAX146BCAP  
MAX146BC/D  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
20 Plastic DIP  
20 Plastic DIP  
20 SSOP  
1/2  
1
1/2  
1
20 SSOP  
Dice*  
1
Ordering Information continued at end of data sheet.  
*Dice are specified at T = +25°C, DC parameters only.  
The MAX146/MAX147 are available in 20-pin DIP and  
SSOP packages.  
A
For 4-channel versions of these devices, see the  
MAX1246/MAX1247 data sheet.  
Typical Operating Circuit  
________________________Applications  
+3V  
Portable Data Logging Data Acquisition  
V
V
CH0  
DD  
DD  
0.1µF  
Medical Instruments  
Pen Digitizers  
Battery-Powered Instruments  
Process Control  
0V TO  
+2.5V  
ANALOG  
INPUTS  
DGND  
MAX146  
AGND  
COM  
CPU  
CH7  
I/O  
VREF  
CS  
4.7µF  
SCLK  
SCK (SK)  
MOSI (SO)  
MISO (SI)  
DIN  
Pin Configuration appears at end of data sheet.  
DOUT  
REFADJ  
0.047µF  
SSTRB  
SHDN  
V
SS  
SPI and QSPI are registered trademarks of Motorola, Inc.  
MICROWIRE is a registered trademark of National Semiconductor  
Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
+2.7V, Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
ABSOLUTE MAXIMUM RATINGS  
DD  
V
to AGND, DGND................................................. -0.3V to 6V  
Continuous Power Dissipation (T = +70°C)  
A
AGND to DGND...................................................... -0.3V to 0.3V  
CH0–CH7, COM to AGND, DGND ............ -0.3V to (V + 0.3V)  
Plastic DIP (derate 11.11mW/°C above +70°C) ......... 889mW  
SSOP (derate 8.00mW/°C above +70°C) ................... 640mW  
CERDIP (derate 11.11mW/°C above +70°C).............. 889mW  
Operating Temperature Ranges  
DD  
VREF, REFADJ to AGND ........................... -0.3V to (V + 0.3V)  
DD  
Digital Inputs to DGND .............................................. -0.3V to 6V  
Digital Outputs to DGND ........................... -0.3V to (V + 0.3V)  
Digital Output Sink Current .................................................25mA  
MAX146_C_P/MAX147_C_P.............................. 0°C to +70°C  
MAX146_E_P/MAX147_E_P............................ -40°C to +85°C  
MAX146_MJP/MAX147_MJP........................ -55°C to +125°C  
Storage Temperature Range............................ -60°C to +150°C  
Lead Temperature (soldering, 10s) ................................ +300°C  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +2.7V to +3.6V (MAX146); V = +2.7V to +5.25V (MAX147); COM = 0; f = 2.0MHz; external clock (50ꢀ duty cycle); 15  
DD  
DD  
SCLK  
clocks/conversion cycle (133ksps); MAX146—4.7µF capacitor at VREF pin; MAX147—external reference, VREF = 2.500V applied to  
VREF pin; T = T  
to T ; unless otherwise noted.)  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
)
DC ACCURACY (Note 1  
Resolution  
12  
Bits  
0.5  
MAX14_A  
MAX14_B  
MAX147C  
1.0  
2.0  
Relative Accuracy (Note 2)  
INL  
LSB  
No Missing Codes  
NMC  
DNL  
12  
Bits  
MAX14_A/MAX14_B  
MAX147C  
1.0  
Differential Nonlinearity  
LSB  
0.8  
0.5  
MAX14_A  
3
4
4
Offset Error  
LSB  
MAX14_B/MAX147C  
0.5  
Gain Error (Note 3)  
0.5  
LSB  
Gain Temperature Coefficient  
0.25  
ppm/°C  
Channel-to-Channel Offset  
Matching  
0.25  
LSB  
DYNAMIC SPECIFICATIONS (10kHz sine-wave input, 0V to 2.500Vp-p, 133ksps, 2.0MHz external clock, bipolar input mode)  
MAX14_A/MAX14_B  
MAX147C  
70  
73  
73  
Signal-to-Noise + Distortion Ratio  
Total Harmonic Distortion  
SINAD  
THD  
dB  
dB  
dB  
MAX14_A/MAX14_B  
MAX147C  
-88  
-88  
90  
-80  
Up to the 5th  
harmonic  
MAX14_A/MAX14_B  
MAX147C  
80  
Spurious-Free Dynamic Range  
SFDR  
90  
Channel-to-Channel Crosstalk  
Small-Signal Bandwidth  
Full-Power Bandwidth  
65kHz, 2.500V  
-3dB rolloff  
(Note 4)  
-85  
2.25  
1.0  
dB  
p-p  
MHz  
MHz  
CONVERSION RATE  
5.5  
35  
6
7.5  
65  
Internal clock, SHDN = FLOAT  
Conversion Time (Note 5)  
t
µs  
Internal clock, SHDN = V  
CONV  
DD  
External clock = 2MHz, 12 clocks/conversion  
2
_______________________________________________________________________________________  
+2.7V, Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +2.7V to +3.6V (MAX146); V = +2.7V to +5.25V (MAX147); COM = 0; f = 2.0MHz; external clock (50ꢀ duty cycle); 15  
DD  
DD  
SCLK  
clocks/conversion cycle (133ksps); MAX146—4.7µF capacitor at VREF pin; MAX147—external reference, VREF = 2.500V applied to  
VREF pin; T = T  
to T ; unless otherwise noted.)  
A
MIN  
MAX  
PARAMETER  
Track/Hold Acquisition Time  
Aperture Delay  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
t
1.5  
µs  
ns  
ps  
ACQ  
30  
<50  
1.8  
Aperture Jitter  
SHDN = FLOAT  
SHDN = V  
Internal Clock Frequency  
MHz  
MHz  
0.225  
DD  
0.1  
0
2.0  
2.0  
External Clock Frequency  
Data transfer only  
ANALOG/COM INPUTS  
Unipolar, COM = 0V  
0 to VREF  
Input Voltage Range, Single-  
Ended and Differential (Note 6)  
V
Bipolar, COM = VREF / 2  
VREF / 2  
1
Multiplexer Leakage Current  
Input Capacitance  
On/off leakage current, V  
= 0V or V  
0.01  
16  
µA  
pF  
CH_  
DD  
INTERNAL REFERENCE (MAX146 only, reference buffer enabled)  
VREF Output Voltage  
T
A
= +25°C  
2.480  
2.500  
2.520  
30  
V
VREF Short-Circuit Current  
mA  
MAX146_C  
30  
30  
50  
VREF Temperature Coefficient  
MAX146_E  
60 ppm/°C  
MAX146_M  
30  
80  
Load Regulation (Note 7)  
Capacitive Bypass at VREF  
0 to 0.2mA output load  
0.35  
mV  
Internal compensation mode  
External compensation mode  
0
µF  
4.7  
Capacitive Bypass at REFADJ  
REFADJ Adjustment Range  
0.047  
µF  
1.5  
EXTERNAL REFERENCE AT VREF (Buffer disabled)  
VREF Input Voltage Range  
(Note 8)  
V
+
DD  
V
1.0  
18  
50mV  
VREF Input Current  
VREF = 2.5V  
100  
25  
150  
µA  
kΩ  
µA  
VREF Input Resistance  
Shutdown VREF Input Current  
0.01  
10  
V
0.5  
-
DD  
REFADJ Buffer Disable Threshold  
V
EXTERNAL REFERENCE AT REFADJ  
Internal compensation mode  
External compensation mode  
MAX146  
0
Capacitive Bypass at VREF  
µF  
V/V  
µA  
4.7  
2.06  
2.00  
Reference Buffer Gain  
REFADJ Input Current  
MAX147  
MAX146  
50  
10  
MAX147  
_______________________________________________________________________________________  
3
+2.7V, Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +2.7V to +3.6V (MAX146); V = +2.7V to +5.25V (MAX147); COM = 0; f = 2.0MHz; external clock (50ꢀ duty cycle); 15  
DD  
DD  
SCLK  
clocks/conversion cycle (133ksps); MAX146—4.7µF capacitor at VREF pin; MAX147—external reference, VREF = 2.500V applied to  
VREF pin; T = T  
to T ; unless otherwise noted.)  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
DIGITAL INPUTS (DIN, SCLK, CS, SHDN)  
V
V
3.6V  
2.0  
3.0  
DD  
V
IH  
V
DIN, SCLK, CS Input High Voltage  
> 3.6V, MAX147 only  
DD  
V
0.8  
V
V
DIN, SCLK, CS Input Low Voltage  
DIN, SCLK, CS Input Hysteresis  
DIN, SCLK, CS Input Leakage  
DIN, SCLK, CS Input Capacitance  
SHDN Input High Voltage  
SHDN Input Mid Voltage  
IL  
V
0.2  
HYST  
I
IN  
V
= 0V or V  
DD  
0.01  
1
µA  
pF  
V
IN  
C
IN  
(Note 9)  
15  
V
SH  
V
- 0.4  
DD  
V
SM  
1.1  
V
DD  
- 1.1  
0.4  
V
V
SL  
V
SHDN Input Low Voltage  
I
SHDN = 0V or V  
SHDN = FLOAT  
4.0  
µA  
V
SHDN Input Current  
S
DD  
V
V
DD  
/ 2  
SHDN Voltage, Floating  
FLT  
SHDN Maximum Allowed  
Leakage, Mid Input  
SHDN = FLOAT  
100  
nA  
DIGITAL OUTPUTS (DOUT, SSTRB)  
I
I
I
= 5mA  
0.4  
0.8  
SINK  
Output Voltage Low  
V
OL  
V
= 16mA  
SINK  
Output Voltage High  
V
OH  
= 0.5mA  
V - 0.5  
DD  
V
SOURCE  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER REQUIREMENTS  
I
0.01  
10  
15  
µA  
pF  
CS = V  
CS = V  
L
DD  
DD  
C
(Note 9)  
OUT  
MAX146  
MAX147  
2.70  
2.70  
3.60  
5.25  
2.0  
70  
Positive Supply Voltage  
V
V
DD  
DD  
Operating mode, full-scale input  
1.2  
30  
mA  
µA  
Positive Supply Current, MAX146  
I
V
DD  
= 3.6V Fast power-down  
Full power-down  
1.2  
1.8  
0.9  
2.1  
1.2  
10  
V
DD  
V
DD  
V
DD  
V
DD  
= 5.25V  
= 3.6V  
= 5.25V  
= 3.6V  
2.5  
1.5  
15  
Operating mode,  
full-scale input  
Positive Supply Current, MAX147  
Positive Supply Current, MAX147  
Supply Rejection (Note 10)  
I
I
mA  
DD  
µA  
Full power-down  
DD  
10  
Full-scale input, external reference = 2.5V,  
= 2.7V to V  
PSR  
0.3  
mV  
V
DD  
DD(MAX)  
4
_______________________________________________________________________________________  
+2.7V, Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
TIMING CHARACTERISTICS  
(V = +2.7V to +3.6V (MAX146); V = +2.7V to +5.25V (MAX147); T = T  
to T  
; unless otherwise noted.)  
MAX  
DD  
DD  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
1.5  
100  
0
TYP  
MAX UNITS  
Acquisition Time  
DIN to SCLK Setup  
DIN to SCLK Hold  
t
µs  
ns  
ns  
ACQ  
t
DS  
t
DH  
MAX14_ _C/E  
MAX14_ _M  
20  
200  
ns  
SCLK Fall to Output Data Valid  
t
Figure 1  
DO  
20  
240  
t
Figure 1  
Figure 2  
240  
240  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS Fall to Output Enable  
CS Rise to Output Disable  
CS to SCLK Rise Setup  
CS to SCLK Rise Hold  
DV  
t
TR  
t
100  
0
CSS  
CSH  
t
SCLK Pulse Width High  
SCLK Pulse Width Low  
t
200  
200  
CH  
t
CL  
SCLK Fall to SSTRB  
t
Figure 1  
240  
240  
240  
SSTRB  
t
External clock mode only, Figure 1  
External clock mode only, Figure 2  
Internal clock mode only (Note 9)  
CS Fall to SSTRB Output Enable  
CS Rise to SSTRB Output Disable  
SSTRB Rise to SCLK Rise  
SDV  
t
STR  
t
0
SCK  
Note 1: Tested at V = 2.7V; COM = 0; unipolar single-ended input mode.  
DD  
Note 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the full-scale range has  
been calibrated.  
Note 3: MAX146—internal reference, offset nulled; MAX147—external reference (VREF = +2.5V), offset nulled.  
Note 4: Ground “on” channel; sine wave applied to all “off” channels.  
Note 5: Conversion time defined as the number of clock cycles multiplied by the clock period; clock has 50ꢀ duty cycle.  
Note 6: The common-mode range for the analog inputs is from AGND to V  
.
DD  
Note 7: External load should not change during conversion for specified accuracy.  
Note 8: ADC performance is limited by the converter’s noise floor, typically 300µVp-p.  
Note 9: Guaranteed by design. Not subject to production testing.  
Note 10: Measured as V (2.7V) - V (V  
) .  
|
FS  
FS  
|
DD, MAX  
Typical Operating Characteristics  
(V  
= 3.0V, VREF = 2.5V, f  
= 2.0MHz, C  
= 20pF, T = +25°C, unless otherwise noted.)  
DD  
SCLK  
LOAD  
A
INTEGRAL NONLINEARITY  
vs. CODE  
INTEGRAL NONLINEARITY  
vs. TEMPERATURE  
INTEGRAL NONLINEARITY  
vs. SUPPLY VOLTAGE  
0.5  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
V
= 2.7V  
DD  
0.4  
0.3  
MAX146  
MAX147  
0.2  
0.1  
MAX146  
0
-0.1  
MAX147  
-0.2  
-0.3  
0.15  
0.10  
0.10  
0.05  
0
-0.4  
-0.5  
0.05  
0
0
1024  
2048  
3072  
4096  
-60  
-20  
20  
60  
100  
140  
2.25  
2.75 3.25  
3.75  
(V)  
4.25 4.75 5.25  
CODE  
V
TEMPERATURE (°C)  
DD  
_______________________________________________________________________________________  
5
+2.7V, Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
Typical Operating Characteristics (continued)  
(V  
= 3.0V, VREF = 2.5V, f  
= 2.0MHz, C  
= 20pF, T = +25°C, unless otherwise noted.)  
DD  
SCLK  
LOAD A  
INTERNAL REFERENCE VOLTAGE  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
2.5020  
2.00  
3.5  
R = ∞  
L
FULL POWER-DOWN  
2.5015  
CODE = 101010100000  
C
= 50pF  
LOAD  
3.0  
2.5  
2.0  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
2.5010  
2.5005  
2.5000  
2.4995  
MAX146  
1.5  
1.0  
0.5  
0
C
= 20pF  
LOAD  
MAX147  
2.4990  
2.25 2.75 3.25 3.75 4.25 4.75 5.25  
2.25 2.75 3.25 3.75 4.25 4.75 5.25  
2.25 2.75 3.25 3.75 4.25 4.75 5.25  
V
(V)  
DD  
SUPPLY VOLTAGE (V)  
V
(V)  
DD  
SHUTDOWN CURRENT  
vs. TEMPERATURE  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
SUPPLY CURRENT vs. TEMPERATURE  
2.0  
2.501  
1.3  
1.2  
1.1  
1.0  
2.500  
2.499  
MAX146  
V
= 3.6V  
DD  
1.6  
1.2  
0.8  
0.4  
V
= 2.7V  
DD  
2.498  
2.497  
2.496  
MAX147  
0.9  
0.8  
2.495  
2.494  
R
LOAD  
= ∞  
CODE = 101010100000  
-60 -20 20  
TEMPERATURE (°C)  
0
60  
100  
140  
-60  
-20  
20  
60  
100  
140  
-60  
-20  
20  
60  
100  
140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
EFFECTIVE NUMBER OF BITS  
vs. FREQUENCY  
FFT PLOT  
12.0  
20  
V
= 2.7V  
V
= 2.7V  
DD  
= 10kHz  
DD  
f
IN  
f
0
= 133kHz  
11.8  
11.6  
11.4  
11.2  
11.0  
SAMPLE  
-20  
-40  
-60  
-80  
-100  
-120  
1
10  
100  
0
10  
20  
30  
40  
50  
60  
70  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
6
_______________________________________________________________________________________  
+2.7V, Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
Typical Operating Characteristics (continued)  
(V  
= 3.0V, VREF = 2.5V, f  
= 2.0MHz, C  
= 20pF, T = +25°C, unless otherwise noted.)  
DD  
SCLK  
LOAD  
A
GAIN ERROR  
vs. SUPPLY VOLTAGE  
CHANNEL-TO-CHANNEL GAIN MATCHING  
vs. SUPPLY VOLTAGE  
OFFSET vs. SUPPLY VOLTAGE  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
2.75 3.25 3.75  
(V)  
4.25 4.75 5.25  
2.25  
2.25 2.75  
3.25 3.75 4.25 4.75 5.25  
(V)  
2.25  
2.75 3.25  
3.75 4.25 4.75 5.25  
(V)  
V
V
DD  
V
DD  
DD  
GAIN ERROR  
vs. TEMPERATURE  
CHANNEL-TO-CHANNEL GAIN MATCHING  
vs. TEMPERATURE  
OFFSET vs. TEMPERATURE  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
-55  
-5 20 45 70 95 120 145  
-30  
-55 -30  
-5 20 45 70 95 120 145  
TEMPERATURE (˚C)  
-5  
20 45  
TEMPERATURE (˚C)  
-55 -30  
70 95 120 145  
TEMPERATURE (˚C)  
CHANNEL-TO-CHANNEL OFFSET MATCHING  
vs. SUPPLY VOLTAGE  
0.50  
CHANNEL-TO-CHANNEL OFFSET MATCHING  
vs. TEMPERATURE  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
2.25 2.75 3.25  
3.75 4.25 4.75 5.25  
-30 -5  
-55  
20 45 70 95 120 145  
V
(V)  
DD  
TEMPERATURE (˚C)  
_______________________________________________________________________________________  
7
+2.7V, Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
______________________________________________________________Pin Description  
PIN  
NAME  
FUNCTION  
1–8  
CH0–CH7  
Sampling Analog Inputs  
Ground reference for analog inputs. COM sets zero-code voltage in single-ended mode. Must be  
stable to 0.5LSB.  
9
COM  
Three-Level Shutdown Input. Pulling SHDN low shuts the MAX146/MAX147 down; otherwise, they are  
fully operational. Pulling SHDN high puts the reference-buffer amplifier in internal compensation mode.  
Letting SHDN float puts the reference-buffer amplifier in external compensation mode.  
10  
SHDN  
Reference-Buffer Output/ADC Reference Input. Reference voltage for analog-to-digital conversion.  
In internal reference mode (MAX146 only), the reference buffer provides a 2.500V nominal output,  
externally adjustable at REFADJ. In external reference mode, disable the internal buffer by pulling  
11  
VREF  
REFADJ to V  
.
DD  
12  
13  
14  
15  
REFADJ  
AGND  
DGND  
DOUT  
Input to the Reference-Buffer Amplifier. To disable the reference-buffer amplifier, tie REFADJ to V  
.
DD  
Analog Ground  
Digital Ground  
Serial Data Output. Data is clocked out at SCLK’s falling edge. High impedance when CS is high.  
Serial Strobe Output. In internal clock mode, SSTRB goes low when the MAX146/MAX147 begin the  
A/D conversion, and goes high when the conversion is finished. In external clock mode, SSTRB pulses  
high for one clock period before the MSB decision. High impedance when CS is high (external clock  
mode).  
16  
SSTRB  
17  
18  
DIN  
Serial Data Input. Data is clocked in at SCLK’s rising edge.  
Active-Low Chip Select. Data will not be clocked into DIN unless CS is low. When CS is high, DOUT is  
high impedance.  
CS  
Serial Clock Input. Clocks data in and out of serial interface. In external clock mode, SCLK also sets  
the conversion speed. (Duty cycle must be 40ꢀ to 60ꢀ.)  
19  
20  
SCLK  
V
DD  
Positive Supply Voltage  
V
DD  
V
DD  
6kΩ  
6kΩ  
DOUT  
DOUT  
DOUT  
DOUT  
C
C
C
C
LOAD  
50pF  
LOAD  
50pF  
LOAD  
50pF  
LOAD  
50pF  
6kΩ  
6kΩ  
DGND  
DGND  
DGND  
a) High-Z to V and V to V  
OH  
DGND  
b) High-Z to V and V to V  
OL  
OH  
OL  
OL  
OH  
a) V to High-Z  
OH  
b) V to High-Z  
OL  
Figure 1. Load Circuits for Enable Time  
Figure 2. Load Circuits for Disable Time  
8
_______________________________________________________________________________________  
+2.7V, Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
on the falling SCLK edge after the last bit of the input  
_______________Detailed Description  
control word has been entered. At the end of the acqui-  
sition interval, the T/H switch opens, retaining charge  
The MAX146/MAX147 analog-to-digital converters  
(ADCs) use a successive-approximation conversion  
technique and input track/hold (T/H) circuitry to convert  
an analog signal to a 12-bit digital output. A flexible ser-  
ial interface provides easy interface to microprocessors  
(µPs). Figure 3 is a block diagram of the MAX146/  
MAX147.  
on C  
as a sample of the signal at IN+.  
HOLD  
The conversion interval begins with the input multiplex-  
er switching C from the positive input (IN+) to the  
HOLD  
negative input (IN-). In single-ended mode, IN- is sim-  
ply COM. This unbalances node ZERO at the compara-  
tor’s input. The capacitive DAC adjusts during the  
remainder of the conversion cycle to restore node  
ZERO to 0V within the limits of 12-bit resolution. This  
action is equivalent to transferring a 16pF x [(VIN+) -  
Pseudo-Differential Input  
The sampling architecture of the ADC’s analog com-  
parator is illustrated in the equivalent input circuit  
(Figure 4). In single-ended mode, IN+ is internally  
switched to CH0–CH7, and IN- is switched to COM. In  
differential mode, IN+ and IN- are selected from the fol-  
lowing pairs: CH0/CH1, CH2/CH3, CH4/CH5, and  
CH6/CH7. Configure the channels with Tables 2 and 3.  
(V -)] charge from C  
IN  
to the binary-weighted  
HOLD  
capacitive DAC, which in turn forms a digital represen-  
tation of the analog input signal.  
Track/Hold  
The T/H enters its tracking mode on the falling clock  
edge after the fifth bit of the 8-bit control word has been  
shifted in. It enters its hold mode on the falling clock  
edge after the eighth bit of the control word has been  
shifted in. If the converter is set up for single-ended  
inputs, IN- is connected to COM, and the converter  
samples the “+” input. If the converter is set up for dif-  
ferential inputs, IN- connects to the “-” input, and the  
difference of |IN+ - IN-| is sampled. At the end of the  
conversion, the positive input connects back to IN+,  
In differential mode, IN- and IN+ are internally switched  
to either of the analog inputs. This configuration is  
pseudo-differential to the effect that only the signal at  
IN+ is sampled. The return side (IN-) must remain sta-  
ble within 0.5LSB ( 0.1LSB for best results) with  
respect to AGND during a conversion. To accomplish  
this, connect a 0.1µF capacitor from IN- (the selected  
analog input) to AGND.  
During the acquisition interval, the channel selected as  
the positive input (IN+) charges capacitor C  
. The  
HOLD  
and C  
charges to the input signal.  
HOLD  
acquisition interval spans three SCLK cycles and ends  
18  
19  
CS  
SCLK  
12-BIT CAPACITIVE DAC  
INPUT  
SHIFT  
INT  
17  
10  
VREF  
DIN  
CLOCK  
REGISTER  
CONTROL  
LOGIC  
COMPARATOR  
INPUT  
MUX  
C
HOLD  
SHDN  
ZERO  
+
CH0  
1
2
3
4
5
6
7
8
15  
16  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
OUTPUT  
SHIFT  
DOUT  
16pF  
R
IN  
REGISTER  
SSTRB  
9kΩ  
ANALOG  
INPUT  
MUX  
C
SWITCH  
T/H  
HOLD  
CLOCK  
TRACK  
IN  
12-BIT  
SAR  
ADC  
AT THE SAMPLING INSTANT,  
THE MUX INPUT SWITCHES  
FROM THE SELECTED IN+  
CHANNEL TO THE SELECTED  
IN- CHANNEL.  
CH6  
CH7  
T/H  
SWITCH  
OUT  
20  
14  
REF  
V
DD  
9
COM  
A 2.06*  
COM  
+1.21V  
DGND  
AGND  
20kΩ  
REFERENCE  
(MAX146)  
SINGLE-ENDED MODE: IN+ = CH0CH7, IN- = COM.  
DIFFERENTIAL MODE: IN+ AND IN- SELECTED FROM PAIRS OF  
CH0/CH1, CH2/CH3, CH4/CH5, AND CH6/CH7.  
13  
12  
11  
REFADJ  
VREF  
MAX146  
MAX147  
+2.500V  
*A 2.00 (MAX147)  
Figure 3. Block Diagram  
Figure 4. Equivalent Input Circuit  
_______________________________________________________________________________________  
9
+2.7V, Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
The time required for the T/H to acquire an input signal  
Analog Input Protection  
is a function of how quickly its input capacitance is  
charged. If the input signal’s source impedance is high,  
the acquisition time lengthens, and more time must be  
allowed between conversions. The acquisition time,  
Internal protection diodes, which clamp the analog input  
to V  
and AGND, allow the channel input pins to swing  
DD  
from AGND - 0.3V to V  
+ 0.3V without damage.  
DD  
However, for accurate conversions near full scale, the  
inputs must not exceed V by more than 50mV or be  
t
, is the maximum time the device takes to acquire  
ACQ  
DD  
the signal, and is also the minimum time needed for the  
signal to be acquired. It is calculated by the following  
equation:  
lower than AGND by 50mV.  
If the analog input exceeds 50mV beyond the sup-  
plies, do not forward bias the protection diodes of  
off channels over 2mA.  
t
= 9 x (R + R ) x 16pF  
S IN  
ACQ  
where R = 9k, R = the source impedance of the  
IN  
S
ACQ  
Quick Look  
To quickly evaluate the MAX146/MAX147’s analog per-  
formance, use the circuit of Figure 5. The MAX146/  
MAX147 require a control byte to be written to DIN  
before each conversion. Tying DIN to +3V feeds in con-  
trol bytes of $FF (HEX), which trigger single-ended  
unipolar conversions on CH7 in external clock mode  
without powering down between conversions. In exter-  
nal clock mode, the SSTRB output pulses high for one  
clock period before the most significant bit of the 12-bit  
conversion result is shifted out of DOUT. Varying the  
analog input to CH7 will alter the sequence of bits from  
DOUT. A total of 15 clock cycles is required per con-  
version. All transitions of the SSTRB and DOUT outputs  
occur on the falling edge of SCLK.  
input signal, and t  
is never less than 1.5µs. Note  
that source impedances below 1kdo not significantly  
affect the ADC’s AC performance.  
Higher source impedances can be used if a 0.01µF  
capacitor is connected to the individual analog inputs.  
Note that the input capacitor forms an RC filter with the  
input source impedance, limiting the ADC’s signal  
bandwidth.  
Input Bandwidth  
The ADC’s input tracking circuitry has a 2.25MHz  
small-signal bandwidth, so it is possible to digitize  
high-speed transient events and measure periodic sig-  
nals with bandwidths exceeding the ADC’s sampling  
rate by using undersampling techniques. To avoid  
high-frequency signals being aliased into the frequency  
band of interest, anti-alias filtering is recommended.  
OSCILLOSCOPE  
V
+3V  
DD  
MAX146  
MAX147  
SCLK  
0.1µF  
DGND  
AGND  
COM  
0V TO  
2.500V  
ANALOG  
INPUT  
CH7  
0.01µF  
SSTRB  
DOUT*  
CS  
SCLK  
DIN  
+3V  
REFADJ  
VREF  
+3V  
+3V  
2MHz  
OSCILLATOR  
DOUT  
SSTRB  
2.5V  
V
OUT  
1000pF  
CH1  
CH2  
CH3  
CH4  
C1  
0.1µF  
SHDN  
N.C.  
MAX872  
COMP  
*FULL-SCALE ANALOG INPUT, CONVERSION RESULT = $FFF (HEX)  
OPTIONAL FOR MAX146,  
REQUIRED FOR MAX147  
Figure 5. Quick-Look Circuit  
10 ______________________________________________________________________________________  
+2.7V, Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
Table 1. Control-Byte Format  
BIT 7  
(MSB)  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
(LSB)  
START  
SEL2  
SEL1  
SEL0  
UNI/BIP  
SGL/DIF  
PD1  
PD0  
BIT  
NAME  
DESCRIPTION  
7(MSB)  
START  
The first logic “1” bit after CS goes low defines the beginning of the control byte.  
6
5
4
SEL2  
SEL1  
SEL0  
These three bits select which of the eight channels are used for the conversion (Tables 2 and 3).  
3
UNI/BIP  
1 = unipolar, 0 = bipolar. Selects unipolar or bipolar conversion mode. In unipolar mode, an  
analog input signal from 0V to VREF can be converted; in bipolar mode, the signal can range  
from -VREF/2 to +VREF/2.  
2
SGL/DIF  
1 = single ended, 0 = differential. Selects single-ended or differential conversions. In single-  
ended mode, input signal voltages are referred to COM. In differential mode, the voltage  
difference between two channels is measured (Tables 2 and 3).  
1
PD1  
PD0  
Selects clock and power-down modes.  
0(LSB)  
PD1  
0
PD0  
0
Mode  
Full power-down  
0
1
1
1
0
1
Fast power-down (MAX146 only)  
Internal clock mode  
External clock mode  
Table 2. Channel Selection in Single-Ended Mode (SGL/DIF = 1)  
SEL2  
0
SEL1  
0
SEL0  
0
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
+
1
0
1
0
1
0
1
0
0
0
1
1
1
1
0
1
1
0
0
1
1
+
+
+
+
+
+
+
Table 3. Channel Selection in Differential Mode (SGL/DIF = 0)  
SEL2  
SEL1  
SEL0  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
+
+
+
+
+
+
+
+
______________________________________________________________________________________ 11  
+2.7V, Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
4) Transmit a byte of all zeros ($00 hex) and, simulta-  
How to Start a Conversion  
Start a conversion by clocking a control byte into DIN.  
With CS low, each rising edge on SCLK clocks a bit from  
DIN into the MAX146/MAX147’s internal shift register.  
After CS falls, the first arriving logic “1” bit defines the  
control byte’s MSB. Until this first “start” bit arrives, any  
number of logic “0” bits can be clocked into DIN with no  
effect. Table 1 shows the control-byte format.  
neously, receive byte RB2.  
5) Transmit a byte of all zeros ($00 hex) and, simulta-  
neously, receive byte RB3.  
6) Pull CS high.  
Figure 6 shows the timing for this sequence. Bytes RB2  
and RB3 contain the result of the conversion, padded  
with one leading zero and three trailing zeros. The total  
conversion time is a function of the serial-clock fre-  
quency and the amount of idle time between 8-bit  
transfers. To avoid excessive T/H droop, make sure the  
total conversion time does not exceed 120µs.  
The MAX146/MAX147 are compatible with SPI™/  
QSPI™ and Microwire™ devices. For SPI, select the  
correct clock polarity and sampling edge in the SPI  
control registers: set CPOL = 0 and CPHA = 0. Micro-  
wire, SPI, and QSPI all transmit a byte and receive a  
byte at the same time. Using the Typical Operating  
Circuit, the simplest software interface requires only  
three 8-bit transfers to perform a conversion (one 8-bit  
transfer to configure the ADC, and two more 8-bit trans-  
fers to clock out the 12-bit conversion result). See Figure  
20 for MAX146/MAX147 QSPI connections.  
Digital Output  
In unipolar input mode, the output is straight binary  
(Figure 17). For bipolar input mode, the output is two’s  
complement (Figure 18). Data is clocked out at the  
falling edge of SCLK in MSB-first format.  
Clock Modes  
The MAX146/MAX147 may use either an external  
serial clock or the internal clock to perform the succes-  
sive-approximation conversion. In both clock modes,  
the external clock shifts data in and out of the  
MAX146/MAX147. The T/H acquires the input signal as  
the last three bits of the control byte are clocked into  
DIN. Bits PD1 and PD0 of the control byte program the  
clock mode. Figures 7–10 show the timing characteris-  
tics common to both modes.  
Simple Software Interface  
Make sure the CPU’s serial interface runs in master  
mode so the CPU generates the serial clock. Choose a  
clock frequency from 100kHz to 2MHz.  
1) Set up the control byte for external clock mode and  
call it TB1. TB1 should be of the format: 1XXXXX11  
binary, where the Xs denote the particular channel  
and conversion mode selected.  
2) Use a general-purpose I/O line on the CPU to pull  
CS low.  
3) Transmit TB1 and, simultaneously, receive a byte  
and call it RB1. Ignore RB1.  
CS  
t
ACQ  
SCLK  
1
4
8
12  
16  
20  
24  
UNI/  
BIP  
SGL/  
DIF  
SEL2 SEL1 SEL0  
PD1 PD0  
DIN  
SSTRB  
DOUT  
START  
RB2  
B8  
RB3  
RB1  
FILLED WITH  
ZEROS  
B11  
B0  
B10 B9  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
MSB  
LSB  
ACQUISITION  
1.5µs  
CONVERSION  
A/D STATE  
IDLE  
IDLE  
(f  
= 2MHz)  
SCLK  
Figure 6. 24-Clock External Clock Mode Conversion Timing (Microwire and SPI Compatible, QSPI Compatible with f  
2MHz)  
SCLK  
12 ______________________________________________________________________________________  
+2.7V, Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
• • •  
CS  
t
t
t
CSH  
CSS  
CH  
t
t
CL  
CSH  
SCLK  
• • •  
t
DS  
t
DH  
DIN  
• • •  
• • •  
t
t
t
TR  
DV  
DO  
DOUT  
Figure 7. Detailed Serial-Interface Timing  
CS  
• • •  
• • •  
t
t
STR  
SDV  
SSTRB  
• • •  
• • •  
t
t
SSTRB  
SSTRB  
SCLK  
• • • •  
• • • •  
PD0 CLOCKED IN  
Figure 8. External Clock Mode SSTRB Detailed Timing  
External Clock  
The conversion must complete in some minimum time,  
or droop on the sample-and-hold capacitors may  
degrade conversion results. Use internal clock mode if  
the serial clock frequency is less than 100kHz, or if  
serial clock interruptions could cause the conversion  
interval to exceed 120µs.  
In external clock mode, the external clock not only shifts  
data in and out, but it also drives the analog-to-digital  
conversion steps. SSTRB pulses high for one clock  
period after the last bit of the control byte. Succes-  
sive-approximation bit decisions are made and appear  
at DOUT on each of the next 12 SCLK falling edges  
(Figure 6). SSTRB and DOUT go into a high-impedance  
state when CS goes high; after the next CS falling edge,  
SSTRB outputs a logic low. Figure 8 shows the SSTRB  
timing in external clock mode.  
Internal Clock  
In internal clock mode, the MAX146/MAX147 generate  
their own conversion clocks internally. This frees the µP  
from the burden of running the SAR conversion clock  
and allows the conversion results to be read back at the  
______________________________________________________________________________________ 13  
+2.7V, Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
processor’s convenience, at any clock rate from 0MHz  
to 2MHz. SSTRB goes low at the start of the conversion  
and then goes high when the conversion is complete.  
SSTRB is low for a maximum of 7.5µs (SHDN = FLOAT),  
during which time SCLK should remain low for best  
noise performance.  
not need to be held low once a conversion is started.  
Pulling CS high prevents data from being clocked into  
the MAX146/MAX147 and three-states DOUT, but it  
does not adversely affect an internal clock mode  
conversion already in progress. When internal clock  
mode is selected, SSTRB does not go into a high-  
impedance state when CS goes high.  
An internal register stores data when the conversion is  
in progress. SCLK clocks the data out of this register at  
any time after the conversion is complete. After SSTRB  
goes high, the next falling clock edge produces the  
MSB of the conversion at DOUT, followed by the  
remaining bits in MSB-first format (Figure 9). CS does  
Figure 10 shows the SSTRB timing in internal clock  
mode. In this mode, data can be shifted in and out of  
the MAX146/MAX147 at clock rates exceeding 2.0MHz  
if the minimum acquisition time (t  
1.5µs.  
) is kept above  
ACQ  
CS  
SCLK  
DIN  
1
4
8
18  
24  
2
3
5
6
7
9
10  
11  
12  
19  
20  
21  
22  
23  
UNI/ SGL/  
BIP  
SEL2 SEL1 SEL0  
PD1 PD0  
DIF  
START  
SSTRB  
t
CONV  
FILLED WITH  
ZEROS  
B11  
MSB  
B0  
LSB  
DOUT  
B10  
B9  
B2  
B1  
ACQUISITION  
CONVERSION  
A/D STATE  
1.5µs  
IDLE  
IDLE  
7.5µs MAX  
(f  
= 2MHz) (SHDN = FLOAT)  
SCLK  
Figure 9. Internal Clock Mode Timing  
CS  
t
CONV  
t
CSS  
t
t
SCK  
CSH  
SSTRB  
SCLK  
t
SSTRB  
t
DO  
PD0 CLOCK IN  
DOUT  
NOTE: FOR BEST NOISE PERFORMANCE, KEEP SCLK LOW DURING CONVERSION.  
Figure 10. Internal Clock Mode SSTRB Detailed Timing  
14 ______________________________________________________________________________________  
+2.7V, Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
Data Framing  
clock mode. If CS is tied low and SCLK is continuous,  
The falling edge of CS does not start a conversion.  
The first logic high clocked into DIN is interpreted as a  
start bit and defines the first bit of the control byte. A  
conversion starts on SCLK’s falling edge, after the eighth  
bit of the control byte (the PD0 bit) is clocked into DIN.  
The start bit is defined as follows:  
guarantee a start bit by first clocking in 16 zeros.  
Most microcontrollers (µCs) require that conversions  
occur in multiples of 8 SCLK clocks; 16 clocks per con-  
version is typically the fastest that a µC can drive the  
MAX146/MAX147. Figure 11b shows the serial-  
interface timing necessary to perform a conversion every  
16 SCLK cycles in external clock mode.  
The first high bit clocked into DIN with CS low any  
time the converter is idle; e.g., after V  
is applied.  
DD  
Applications Information  
OR  
Power-On Reset  
When power is first applied, and if SHDN is not pulled  
low, internal power-on reset circuitry activates the  
MAX146/MAX147 in internal clock mode, ready to con-  
vert with SSTRB = high. After the power supplies stabi-  
lize, the internal reset time is 10µs, and no conversions  
should be performed during this phase. SSTRB is high  
on power-up and, if CS is low, the first logical 1 on DIN  
is interpreted as a start bit. Until a conversion takes  
place, DOUT shifts out zeros. (Also see Table 4.)  
The first high bit clocked into DIN after bit 5 of a con-  
version in progress is clocked onto the DOUT pin.  
If CS is toggled before the current conversion is com-  
plete, the next high bit clocked into DIN is recognized as  
a start bit; the current conversion is terminated, and a  
new one is started.  
The fastest the MAX146/MAX147 can run with CS held  
low between conversions is 15 clocks per conversion.  
Figure 11a shows the serial-interface timing necessary to  
perform a conversion every 15 SCLK cycles in external  
CS  
1
8
15  
1
8
15  
1
SCLK  
DIN  
S
CONTROL BYTE 2  
S
CONTROL BYTE 0  
S
CONTROL BYTE 1  
B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
CONVERSION RESULT 0  
B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
CONVERSION RESULT 1  
DOUT  
SSTRB  
Figure 11a. External Clock Mode, 15 Clocks/Conversion Timing  
• • •  
• • •  
• • •  
• • •  
CS  
1
8
16  
1
8
16  
SCLK  
DIN  
S
CONTROL BYTE 0  
S
CONTROL BYTE 1  
DOUT  
B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
CONVERSION RESULT 0  
B11 B10 B9 B8  
CONVERSION RESULT 1  
Figure 11b. External Clock Mode, 16 Clocks/Conversion Timing  
______________________________________________________________________________________ 15  
+2.7V, Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
except the bandgap reference. With fast power-down  
mode, the supply current is 30µA. Power-up time can be  
shortened to 5µs in internal compensation mode.  
Reference-Buffer Compensation  
In addition to its shutdown function, SHDN selects inter-  
nal or external compensation. The compensation  
affects both power-up time and maximum conversion  
speed. The100kHz minimum clock rate is limited by  
droop on the sample-and-hold and is independent of  
the compensation used.  
Table 4 shows how the choice of reference-buffer com-  
pensation and power-down mode affects both power-up  
delay and maximum sample rate. In external compensa-  
tion mode, power-up time is 20ms with a 4.7µF compen-  
sation capacitor when the capacitor is initially fully  
discharged. From fast power-down, start-up time can be  
eliminated by using low-leakage capacitors that do not  
discharge more than 1/2LSB while shut down. In power-  
down, leakage currents at VREF cause droop on the ref-  
erence bypass capacitor. Figures 12a and 12b show  
the various power-down sequences in both external and  
internal clock modes.  
Float SHDN to select external compensation. The  
Typical Operating Circuit uses a 4.7µF capacitor at  
VREF. A 4.7µF value ensures reference-buffer stability  
and allows converter operation at the 2MHz full clock  
speed. External compensation increases power-up  
time (see the Choosing Power-Down Mode section and  
Table 4).  
Pull SHDN high to select internal compensation.  
Internal compensation requires no external capacitor at  
VREF and allows for the shortest power-up times. The  
maximum clock rate is 2MHz in internal clock mode  
and 400kHz in external clock mode.  
Software Power-Down  
Software power-down is activated using bits PD1 and PD0  
of the control byte. As shown in Table 5, PD1 and PD0  
also specify the clock mode. When software shutdown is  
asserted, the ADC operates in the last specified clock  
mode until the conversion is complete. Then the ADC  
powers down into a low quiescent-current state. In internal  
clock mode, the interface remains active and conversion  
results may be clocked out after the MAX146/MAX147  
enter a software power-down.  
Choosing Power-Down Mode  
You can save power by placing the converter in a low-  
current shutdown state between conversions. Select full  
power-down mode or fast power-down mode via bits 1  
and 0 of the DIN control byte with SHDN high or floating  
(Tables 1 and 5). In both software power-down modes,  
the serial interface remains operational, but the ADC  
does not convert. Pull SHDN low at any time to shut  
down the converter completely. SHDN overrides bits 1  
and 0 of the control byte.  
The first logical 1 on DIN is interpreted as a start bit  
and powers up the MAX146/MAX147. Following  
the start bit, the data input word or control byte also  
determines clock mode and power-down states. For  
example, if the DIN word contains PD1 = 1, then the  
chip remains powered up. If PD0 = PD1 = 0, a  
power-down resumes after one conversion.  
Full power-down mode turns off all chip functions that  
draw quiescent current, reducing supply current to 2µA  
(typ). Fast power-down mode turns off all circuitry  
Table 4. Typical Power-Up Delay Times  
REFERENCE-  
VREF  
POWER-UP  
DELAY  
(µs)  
MAXIMUM  
SAMPLING RATE  
(ksps)  
REFERENCE  
BUFFER  
BUFFER  
COMPENSATION  
MODE  
POWER-DOWN  
MODE  
CAPACITOR  
(µF)  
Enabled  
Enabled  
Enabled  
Enabled  
Disabled  
Disabled  
Internal  
Internal  
External  
External  
Fast  
Full  
5
26  
300  
26  
4.7  
4.7  
Fast  
Full  
See Figure 14c  
133  
133  
133  
133  
See Figure 14c  
Fast  
Full  
2
2
16 ______________________________________________________________________________________  
+2.7V, Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
CLOCK  
MODE  
EXTERNAL  
EXTERNAL  
SHDN  
SETS SOFTWARE  
POWER-DOWN  
SETS EXTERNAL  
CLOCK MODE  
SETS EXTERNAL  
CLOCK MODE  
DIN  
S
X
X X X X  
1
1
S X  
X
X X X  
0
0
S
X X X X X  
1 1  
DOUT  
VALID  
DATA  
INVALID  
DATA  
12 DATA BITS  
POWERED UP  
12 DATA BITS  
HARDWARE  
POWER-  
DOWN  
POWERED UP  
MODE  
SOFTWARE  
POWER-DOWN  
POWERED UP  
Figure 12a. Timing Diagram Power-Down Modes, External Clock  
CLOCK  
MODE  
INTERNAL  
SETS  
POWER-DOWN  
SETS INTERNAL  
CLOCK MODE  
DIN  
S
X
X X X X  
1
0
S X  
X
X X X  
0
0
S
DOUT  
DATA VALID  
DATA VALID  
SSTRB  
MODE  
CONVERSION  
CONVERSION  
POWER-DOWN  
POWERED UP  
POWERED UP  
Figure 12b. Timing Diagram Power-Down Modes, Internal Clock  
Hardware Power-Down  
Pulling SHDN low places the converter in hardware  
power-down (Table 6). Unlike software power-down  
mode, the conversion is not completed; it stops coin-  
cidentally with SHDN being brought low. SHDN also  
controls the clock frequency in internal clock mode.  
Letting SHDN float sets the internal clock frequency to  
1.8MHz. When returning to normal operation with SHDN  
floating, there is a t delay of approximately 2Mx C ,  
RC L  
where C is the capacitive loading on the SHDN pin.  
L
Pulling SHDN high sets internal clock frequency to  
225kHz. This feature eases the settling-time requirement  
for the reference voltage. With an external reference, the  
MAX146/MAX147 can be considered fully powered up  
within 2µs of actively pulling SHDN high.  
______________________________________________________________________________________ 17  
+2.7V, Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
Figure 14a depicts the MAX146 power consumption for  
Power-Down Sequencing  
The MAX146/MAX147 auto power-down modes can  
save considerable power when operating at less than  
maximum sample rates. Figures 13, 14a, and 14b show  
the average supply current as a function of the sam-  
pling rate. The following discussion illustrates the vari-  
ous power-down sequences.  
one or eight channel conversions utilizing full power-  
down mode and internal-reference compensation. A  
0.047µF bypass capacitor at REFADJ forms an RC filter  
with the internal 20kreference resistor with a 0.9ms  
time constant. To achieve full 12-bit accuracy, 10 time  
constants or 9ms are required after power-up. Waiting  
this 9ms in FASTPD mode instead of in full power-up  
can reduce power consumption by a factor of 10 or  
more. This is achieved by using the sequence shown in  
Figure 15.  
Lowest Power at up to 500  
Conversions/Channel/Second  
The following examples show two different power-down  
sequences. Other combinations of clock rates, compen-  
sation modes, and power-down modes may give lowest  
power consumption in other applications.  
AVERAGE SUPPLY CURRENT  
vs. CONVERSION RATE  
WITH EXTERNAL REFERENCE  
10,000  
AVERAGE SUPPLY CURRENT  
vs. CONVERSION RATE  
(USING FULLPD)  
100  
VREF = V = 3.0V  
DD  
= ∞  
R
= ∞  
LOAD  
R
LOAD  
CODE = 101010100000  
CODE = 101010100000  
1000  
100  
10  
8 CHANNELS  
8 CHANNELS  
10  
1 CHANNEL  
1 CHANNEL  
1
0.1  
1
0.01  
0.1  
1
10 100 1k 10k 100k 1M  
CONVERSION RATE (Hz)  
0.1  
1
10  
100  
1k  
CONVERSION RATE (Hz)  
Figure 13. Average Supply Current vs. Conversion Rate with  
External Reference  
Figure 14a. MAX146 Supply Current vs. Conversion Rate,  
FULLPD  
AVERAGE SUPPLY CURRENT  
vs. CONVERSION RATE  
(USING FASTPD)  
TYPICAL REFERENCE-BUFFER POWER-UP  
DELAY vs. TIME IN SHUTDOWN  
2.0  
10,000  
R
= ∞  
LOAD  
CODE = 101010100000  
1.5  
1.0  
1000  
100  
8 CHANNELS  
1 CHANNEL  
0.5  
0
10  
1
0.001  
0.01  
0.1  
1
10  
0.1  
1
10 100 1k 10k 100k 1M  
CONVERSION RATE (Hz)  
TIME IN SHUTDOWN (s)  
Figure 14b. MAX146 Supply Current vs. Conversion Rate,  
FASTPD  
Figure 14c. Typical Reference-Buffer Power-Up Delay vs. Time  
in Shutdown  
18 ______________________________________________________________________________________  
+2.7V, Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
COMPLETE CONVERSION SEQUENCE  
9ms WAIT  
0 1  
(ZEROS)  
CH1  
CH7  
(ZEROS)  
DIN  
1
0 0  
1
1
1 1  
1
0 0  
1
0 1  
FULLPD  
1.21V  
FASTPD  
NOPD  
FULLPD  
FASTPD  
REFADJ  
VREF  
0V  
2.50V  
0V  
τ = RC = 20kx C  
REFADJ  
t
200µs  
BUFFER  
Figure 15. MAX146 FULLPD/FASTPD Power-Up Sequence  
Lowest Power at Higher Throughputs  
Figure 14b shows the power consumption with  
external-reference compensation in fast power-down,  
with one and eight channels converted. The external  
4.7µF compensation requires a 200µs wait after  
power-up with one dummy conversion. This graph  
shows fast multi-channel conversion with the lowest  
power consumption possible. Full power-down mode  
may provide increased power savings in applications  
where the MAX146/MAX147 are inactive for long peri-  
ods of time, but where intermittent bursts of high-speed  
conversions are required.  
+3.3V  
24kΩ  
MAX146  
510kΩ  
100kΩ  
REFADJ  
12  
0.047µF  
Figure 16. MAX146 Reference-Adjust Circuit  
Internal and External References  
The MAX146 can be used with an internal or external  
reference voltage, whereas an external reference is  
required for the MAX147. An external reference can be  
connected directly at VREF or at the REFADJ pin.  
Table 5. Software Power-Down and  
Clock Mode  
An internal buffer is designed to provide 2.5V at  
VREF for both the MAX146 and the MAX147. The  
MAX146’s internally trimmed 1.21V reference is buf-  
fered with a 2.06 gain. The MAX147’s REFADJ pin is  
also buffered with a 2.00 gain to scale an external 1.25V  
reference at REFADJ to 2.5V at VREF.  
PD1  
0
PD0  
0
DEVICE MODE  
Full Power-Down  
Fast Power-Down  
0
1
1
1
0
1
Internal Clock  
External Clock  
Internal Reference (MAX146)  
The MAX146’s full-scale range with the internal refer-  
ence is 2.5V with unipolar inputs and 1.25V with bipo-  
lar inputs. The internal reference voltage is adjustable  
to 1.5ꢀ with the circuit in Figure 16.  
Table 6. Hard-Wired Power-Down and  
Internal Clock Frequency  
REFERENCE  
BUFFER  
COMPENSATION FREQUENCY  
INTERNAL  
CLOCK  
DEVICE  
MODE  
SHDN  
STATE  
External Reference  
With both the MAX146 and MAX147, an external refer-  
ence can be placed at either the input (REFADJ) or the  
output (VREF) of the internal reference-buffer amplifier.  
The REFADJ input impedance is typically 20kfor the  
MAX146, and higher than 100kfor the MAX147. At  
1
Floating  
0
Enabled  
Enabled  
Internal  
External  
N/A  
225kHz  
1.8MHz  
N/A  
Power-Down  
______________________________________________________________________________________ 19  
+2.7V, Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
VREF, the DC input resistance is a minimum of 18k.  
During conversion, an external reference at VREF must  
deliver up to 350µA DC load current and have 10or  
less output impedance. If the reference has a higher  
output impedance or is noisy, bypass it close to the  
VREF pin with a 4.7µF capacitor.  
OUTPUT CODE  
FULL-SCALE  
TRANSITION  
11 . . . 111  
11 . . . 110  
11 . . . 101  
Using the REFADJ input makes buffering the external  
reference unnecessary. To use the direct VREF input,  
disable the internal buffer by tying REFADJ to V . In  
DD  
FS = VREF + COM  
ZS = COM  
power-down, the input bias current to REFADJ is typi-  
cally 25µA (MAX146) with REFADJ tied to V . Pull  
DD  
REFADJ to AGND to minimize the input bias current in  
power-down.  
VREF  
4096  
1LSB =  
00 . . . 011  
00 . . . 010  
Transfer Function  
Table 7 shows the full-scale voltage ranges for unipolar  
and bipolar modes.  
00 . . . 001  
00 . . . 000  
The external reference must have a temperature coeffi-  
cient of 4ppm/°C or less to achieve accuracy to within  
1LSB over the 0°C to +70°C commercial temperature  
range.  
0
1
2
3
FS  
(COM)  
FS - 3/2LSB  
INPUT VOLTAGE (LSB)  
Figure 17. Unipolar Transfer Function, Full Scale (FS) = VREF  
+ COM, Zero Scale (ZS) = COM  
Figure 17 depicts the nominal, unipolar input/output  
(I/O) transfer function, and Figure 18 shows the bipolar  
input/output transfer function. Code transitions occur  
halfway between successive-integer LSB values.  
Output coding is binary, with 1LSB = 610µV (2.500V /  
4096) for unipolar operation, and 1LSB = 610µV  
[(2.500V / 2 - -2.500V / 2) / 4096] for bipolar operation.  
supply should be low impedance and as short as  
possible.  
High-frequency noise in the V  
power supply may  
DD  
affect the high-speed comparator in the ADC. Bypass  
the supply to the star ground with 0.1µF and 1µF  
capacitors close to pin 20 of the MAX146/MAX147.  
Minimize capacitor lead lengths for best supply-noise  
rejection. If the power supply is very noisy, a 10resis-  
tor can be connected as a lowpass filter (Figure 19).  
Layout, Grounding, and Bypassing  
For best performance, use printed circuit boards.  
Wire-wrap boards are not recommended. Board layout  
should ensure that digital and analog signal lines are  
separated from each other. Do not run analog and digi-  
tal (especially clock) lines parallel to one another, or  
digital lines underneath the ADC package.  
High-Speed Digital Interfacing with QSPI  
The MAX146/MAX147 can interface with QSPI using  
the circuit in Figure 20 (f  
= 2.0MHz, CPOL = 0,  
SCLK  
Figure 19 shows the recommended system ground  
connections. Establish a single-point analog ground  
(star ground point) at AGND, separate from the logic  
ground. Connect all other analog grounds and DGND  
to the star ground. No other digital system ground  
should be connected to this ground. For lowest-noise  
operation, the ground return to the star ground’s power  
CPHA = 0). This QSPI circuit can be programmed to do a  
conversion on each of the eight channels. The result is  
stored in memory without taxing the CPU, since QSPI  
incorporates its own microsequencer.  
The MAX146/MAX147 are QSPI compatible up to the  
maximum external clock frequency of 2MHz.  
Table 7. Full Scale and Zero Scale  
UNIPOLAR MODE  
BIPOLAR MODE  
Positive  
Full Scale  
Zero  
Scale  
Negative  
Full Scale  
Full Scale  
Zero Scale  
COM  
VREF / 2  
+ COM  
-VREF / 2  
+ COM  
VREF + COM  
COM  
20 ______________________________________________________________________________________  
+2.7V, Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
OUTPUT CODE  
VREF  
2
FS  
=
+ COM  
+ COM  
011 . . . 111  
011 . . . 110  
SUPPLIES  
ZS = COM  
+3V  
+3V  
GND  
-VREF  
2
-FS =  
000 . . . 010  
000 . . . 001  
000 . . . 000  
VREF  
4096  
1LSB =  
R* = 10Ω  
111 . . . 111  
111 . . . 110  
111 . . . 101  
V
AGND  
COM DGND  
+3V  
DGND  
DD  
100 . . . 001  
100 . . . 000  
DIGITAL  
CIRCUITRY  
MAX146  
MAX147  
COM*  
- FS  
+FS - 1LSB  
*OPTIONAL  
INPUT VOLTAGE (LSB)  
*COM VREF / 2  
Figure 19. Power-Supply Grounding Connection  
Figure 18. Bipolar Transfer Function, Full Scale (FS) =  
VREF / 2 + COM, Zero Scale (ZS) = COM  
4) The MAX146/MAX147’s SSTRB output is monitored  
via the TMS320’s FSR input. A falling edge on the  
SSTRB output indicates that the conversion is in  
progress and data is ready to be received from the  
MAX146/MAX147.  
TMS320LC3x Interface  
Figure 21 shows an application circuit to interface the  
MAX146/MAX147 to the TMS320 in external clock mode.  
The timing diagram for this interface circuit is shown in  
Figure 22.  
5) The TMS320 reads in one data bit on each of the  
next 16 rising edges of SCLK. These data bits rep-  
resent the 12-bit conversion result followed by four  
trailing bits, which should be ignored.  
Use the following steps to initiate a conversion in the  
MAX146/MAX147 and to read the results:  
1) The TMS320 should be configured with CLKX  
(transmit clock) as an active-high output clock and  
CLKR (TMS320 receive clock) as an active-high  
input clock. CLKX and CLKR on the TMS320 are  
tied together with the MAX146/MAX147’s SCLK  
input.  
6) Pull CS high to disable the MAX146/MAX147 until  
the next conversion is initiated.  
2) The MAX146/MAX147’s CS pin is driven low by the  
TMS320’s XF_ I/O port to enable data to be clocked  
into the MAX146/MAX147’s DIN.  
3) An 8-bit word (1XXXXX11) should be written to the  
MAX146/MAX147 to initiate a conversion and place  
the device into external clock mode. Refer to Table  
1 to select the proper XXXXX bit values for your  
specific application.  
______________________________________________________________________________________ 21  
+2.7V, Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
+3V  
+3V  
0.1µF  
1µF  
(POWER SUPPLIES)  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
SHDN  
V
DD  
SCK  
SCLK  
CS  
PCS0  
3
4
MOSI  
MISO  
MC683XX  
ANALOG  
INPUTS  
DIN  
MAX146  
MAX147  
5
6
SSTRB  
DOUT  
DGND  
AGND  
7
8
9
REFADJ 12  
11  
(GND)  
10  
VREF  
0.1µF  
+2.5V  
Figure 20. MAX146/MAX147 QSPI Connections, External Reference  
XF  
CLKX  
CLKR  
DX  
CS  
SCLK  
TMS320LC3x  
MAX146  
MAX147  
DIN  
DR  
DOUT  
SSTRB  
FSR  
Figure 21. MAX146/MAX147-to-TMS320 Serial Interface  
22 ______________________________________________________________________________________  
+2.7V, Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
CS  
SCLK  
DIN  
START  
SEL2  
SEL1  
SEL0  
UNI/BIP SGL/DIF  
PD1  
PD0  
HIGH  
IMPEDANCE  
SSTRB  
HIGH  
IMPEDANCE  
DOUT  
MSB  
B10  
B1  
LSB  
Figure 22. TMS320 Serial-Interface Timing Diagram  
Ordering Information (continued)  
Pin Configuration  
INL  
(LSB)  
PART  
TEMP RANGE PIN-PACKAGE  
TOP VIEW  
MAX146AEPP -40°C to +85°C  
MAX146BEPP -40°C to +85°C  
MAX146AEAP -40°C to +85°C  
MAX146BEAP -40°C to +85°C  
20 Plastic DIP  
20 Plastic DIP  
20 SSOP  
1/2  
1
CH0  
1
V
20  
DD  
2
3
CH1  
CH2  
19 SCLK  
1/2  
1
CS  
18  
20 SSOP  
MAX146  
MAX147  
CH3  
4
17  
DIN  
MAX146AMJP -55°C to +125°C 20 CERDIP**  
MAX146BMJP -55°C to +125°C 20 CERDIP**  
1/2  
1
5
CH4  
16 SSTRB  
15 DOUT  
CH5  
6
MAX147ACPP  
MAX147BCPP  
MAX147ACAP  
MAX147BCAP  
MAX147CCAP  
MAX147BC/D  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
20 Plastic DIP  
20 Plastic DIP  
20 SSOP  
1/2  
1
CH6  
14  
13  
12  
11  
DGND  
7
1/2  
1
8
CH7  
AGND  
20 SSOP  
REFADJ  
9
COM  
SHDN  
20 SSOP  
2.0  
1
VREF  
10  
Dice*  
MAX147AEPP -40°C to +85°C  
MAX147BEPP -40°C to +85°C  
MAX147AEAP -40°C to +85°C  
MAX147BEAP -40°C to +85°C  
MAX147CEAP -40°C to +85°C  
20 Plastic DIP  
20 Plastic DIP  
20 SSOP  
1/2  
1
DIP/SSOP  
1/2  
1
20 SSOP  
20 SSOP  
2.0  
1/2  
1
MAX147AMJP -55°C to +125°C 20 CERDIP**  
MAX147BMJP -55°C to +125°C 20 CERDIP**  
___________________Chip Information  
*Dice are specified at T = +25°C, DC parameters only.  
**Contact factory for availability of CERDIP package, and for  
A
TRANSISTOR COUNT: 2554  
processing to MIL-STD-883B.  
______________________________________________________________________________________ 23  
+2.7V, Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
2
1
INCHES  
MILLIMETERS  
MAX  
MAX  
1.99  
0.21  
0.38  
0.20  
DIM  
A
MIN  
0.068  
MIN  
1.73  
0.05  
0.25  
0.09  
INCHES  
MAX  
MILLIMETERS  
MAX  
6.33  
6.33  
7.33  
MIN  
MIN  
6.07  
6.07  
7.07  
8.07  
N
0.078  
14L  
16L  
20L  
A1  
B
D
D
D
D
D
0.239 0.249  
0.239 0.249  
0.278 0.289  
0.317 0.328  
0.002 0.008  
0.010 0.015  
0.004 0.008  
C
8.33 24L  
E
H
SEE VARIATIONS  
0.205 0.212 5.20  
0.0256 BSC  
D
0.397 0.407 10.07 10.33  
28L  
E
5.38  
e
0.65 BSC  
H
0.301 0.311 7.65  
0.025 0.037 0.63  
7.90  
0.95  
8  
L
0∞  
8∞  
0∞  
N
A
C
B
L
e
A1  
D
NOTES:  
1. D&E DO NOT INCLUDE MOLD FLASH.  
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED .15 MM (.006").  
3. CONTROLLING DIMENSION: MILLIMETERS.  
4. MEETS JEDEC MO150.  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, SSOP, 5.3 MM  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
5. LEADS TO BE COPLANAR WITHIN 0.10 MM.  
1
21-0056  
C
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
24 __________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600  
© 2001 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX146BEAP/GH9

ADC, Successive Approximation, 12-Bit, 1 Func, 8 Channel, Serial Access, PDSO20, 5.3 MM, MO150, SSOP-20
MAXIM

MAX146BEAP/GH9-T

ADC, Successive Approximation, 12-Bit, 1 Func, 8 Channel, Serial Access, PDSO20, 5.3 MM, MO150, SSOP-20
MAXIM

MAX146BEPP

+2.7Low-Power, 8-Channel, Serial 12-Bit ADCs
MAXIM

MAX146BEWP

Converter IC
MAXIM

MAX146BMJP

+2.7Low-Power, 8-Channel, Serial 12-Bit ADCs
MAXIM

MAX147

+2.7V.Low-Power.8-Channel.Serial 12-Bit ADCs
MAXIM

MAX1470

315MHz Low-Power, +3V Superheterodyne Receiver
MAXIM

MAX1470EUI

315MHz Low-Power, +3V Superheterodyne Receiver
MAXIM

MAX1470EUI+

Telecom Circuit, 1-Func, CMOS, PDSO28, 4.40 MM, TSSOP-28
MAXIM

MAX1470EUI+T

Telecom Circuit, 1-Func, CMOS, PDSO28, 4.40 MM, TSSOP-28
MAXIM

MAX1470EUI-T

Telecom Circuit, 1-Func, CMOS, PDSO28, 4.40 MM, TSSOP-28
MAXIM

MAX1470EVKIT

Evaluation Kit for the MAX1470
MAXIM