MAX1470EVKIT [MAXIM]

Evaluation Kit for the MAX1470 ; 评估板MAX1470\n
MAX1470EVKIT
型号: MAX1470EVKIT
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Evaluation Kit for the MAX1470
评估板MAX1470\n

文件: 总6页 (文件大小:284K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2609; Rev 1; 12/02  
MAX1470 Evaluation Kit  
General Description  
Features  
The MAX1470 evaluation kit (EV kit) allows for a  
detailed evaluation of the MAX1470 superheterodyne  
receiver. It enables testing of the device’s RF perfor-  
mance and requires no additional support circuitry. The  
RF input uses a 50 matching network and an SMA  
connector for convenient connection to test equipment.  
The EV kit can also directly interface to the user’s  
embedded design for easy data decoding.  
o Proven PC Board Layout (Compact 3cm 3cm)  
o Proven Components Parts List  
o Multiple Test Points Provided On-Board  
o Available in 315MHz or 433.92MHz Optimized  
Versions  
o 250MHz to 500MHz* Adjustable Frequency Range  
o Fully Assembled and Tested  
The MAX1470 EV kit comes in two versions: a 315MHz  
version and a 433.92MHz version. The passive compo-  
nents are optimized for these frequencies. These com-  
ponents can easily be changed to work at RF frequen-  
cies from 250MHz to 500MHz. In addition, the 5kbps  
data rate can be adjusted from 0kbps to 100kbps by  
changing two more components.  
o Can Operate as a Stand-Alone Receiver with  
Addition of an Antenna  
*Requires component changes.  
Ordering Information  
For easy implementation into the customer’s design, the  
MAX1470 EV kit also features a proven PC board layout,  
which can be easily duplicated for quicker time to market.  
The EV kit Gerber files are available for download at  
www.maxim-ic.com.  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
IC PACKAGE  
MAX1470EVKIT-315  
MAX1470EVKIT-433  
28 TSSOP  
28 TSSOP  
Component List  
DESIGNATION QTY  
DESCRIPTION  
DESIGNATION QTY  
DESCRIPTION  
3.0pF 0.1pF ceramic capacitor  
(0603)  
Murata GRM1885C1H3R0BD01  
0.01µF 10% ceramic capacitors  
(0603)  
Murata GRM188R71H103KA01  
C9 (433MHz)  
1
0
2
C1, C2, C12  
C3  
3
1
1
1
2
3
1
C13, C16, C18,  
C19  
1500pF 10%, 50V X7R ceramic  
capacitor (0603)  
Murata GRM188R71H152KA01  
Not installed  
15pF 5%, 50V ceramic capacitors  
(0603)  
Murata GRM1885C1H150JZ01  
C14, C15  
C17  
0.47µF +80% - 20% ceramic  
capacitor (0603)  
Murata GRM188F51C474ZA01  
C4  
0.1µF +80% - 20% ceramic  
capacitor (0603)  
Murata GRM188R71H103KA01,  
not installed  
0
470pF 5% ceramic capacitor  
(0603)  
Murata GRM1885C1H471JA01  
C5  
SMA connector edge mount,  
not installed  
EFJohnson 142-0701-801  
220pF 5% ceramic capacitors  
(0603)  
Murata GRM1885C1H221JA01  
F_IN  
JU1  
1
1
C6, C10  
C7, C8, C11  
C9 (315MHz)  
3-pin header  
Digi-Key S1012-36-ND or  
equivalent  
100pF 5% ceramic capacitors  
(0603)  
Murata GRM1885C1H101JA01  
Shunt (JU1)  
Digi-Key S9000-ND or equivalent  
1
0
4.7pF 0.1pF ceramic capacitor  
(0603)  
Murata GRM1885C1H4R7BZ01  
JU3, JU4  
Not installed  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
MAX1470 Evaluation Kit  
Component List (continued)  
DESIGNATION QTY  
DESCRIPTION  
DESIGNATION QTY  
DESCRIPTION  
27nH 5% inductor (0603)  
Murata LQG18HN27NJ00  
SMA connector top mount,  
not installed  
EFJohnson 142-0701-201  
L1 (315MHz)  
L1 (433MHz)  
1
1
MIX_OUT  
0
15nH 5% inductor (0603)  
Murata LQG18HN15NJ00  
TP1, TP2,  
TP4TP8  
0
5
Not installed  
120nH 5% inductor (0603)  
Toko LL1608FSR12J or  
Murata LQW18ANR12J00  
3.3V, GND,  
SHDN,  
DATA_OUT, TP3  
L2 (315MHz)  
1
Test points  
Mouser 151-203 or equivalent  
68nH 5% inductor (0603)  
Toko LL1608FH68J or  
Murata LQG18HN68NJ00  
Crystal 4.754687MHz  
Hong Kong Crystals  
SSL4754687E03FAFZ8A0 or  
Crystek 016867  
L2 (433MHz)  
L3  
1
1
Y1 (315MHz)  
1
15nH 5% inductor (0603)  
Murata LQG18HN15NJ00  
Crystal 6.6128 MHz  
Hong Kong Crystals  
SSL6612813E03FAFZ8A0 or  
Crystek 016868  
5k resistor (0603)  
Any supplier  
Y1 (433MHz)  
Y2  
1
1
R1  
R2, R4  
R3  
1
0
0
Resistor (0603), not installed  
10.7MHz ceramic filter  
Murata SFTLA10M7FA00-B0  
270 resistor (0603), not installed  
Any supplier  
U1  
1
1
MAX1470EUI  
10k resistor (0603)  
Any supplier  
R5  
1
1
MAX1470 EV kit PC board  
SMA connector top mount  
EFJohnson 142-0701-201  
RF_IN  
Optional ammeter for measuring supply current  
Oscilloscope  
Component Suppliers  
SUPPLIER  
Crystek  
PHONE  
FAX  
Connections and Setup  
800-237-3061  
852-2412-0121  
800-831-9172  
408-432-8281  
941-561-1025  
852-2498-5908  
814-238-0490  
408-943-9790  
This section provides a step-by-step guide to operating  
the EV kit and testing the devices functionality. Do not  
turn on the DC power or RF signal generator until all  
connections are made:  
1) Connect a DC supply set to 3.3V (through an  
ammeter, if desired) to the 3.3V and GND terminals  
on the EV kit. Do not turn on the supply.  
Hong Kong Crystals  
Murata  
Toko  
Note: Please indicate that you are using the MAX1470 when  
contacting these component suppliers.  
Quick Start  
2) Connect the RF signal generator to the RF_IN SMA  
connector. Do not turn on the generator output. Set  
the generator for an output frequency of 315MHz  
(or 433.92MHz) at a power level of -100dBm. Set  
the modulation of the generator to provide a 2kHz,  
100% AM-modulated square wave (or a 2kHz  
pulse-modulated signal).  
The following procedure allows for proper device evaluation.  
Required Test Equipment  
Regulated power supply capable of providing 3.3V  
RF signal generator capable of delivering from  
-120dBm to 0dBm of output power at the operating  
frequency, in addition to AM or pulse-modulation  
capabilities (Agilent E4420B or equivalent)  
3) Connect the oscilloscope to test point TP3.  
2
_______________________________________________________________________________________  
MAX1470 Evaluation Kit  
4) Turn on the DC supply. The supply current should  
read approximately 6mA.  
3) Use capacitors C5 and C6 to set the corner fre-  
quency of the 2nd-order lowpass Sallen-Key data  
filter. The current values were selected for a corner  
frequency of 5kHz. Adjusting these values accom-  
modates higher data rates (refer to the MAX1470  
data sheet for more details).  
5) Activate the RF generators output without modula-  
tion. The scope should display a DC voltage that  
varies from approximately 1.2V to 2.0V as the RF  
generator amplitude is changed from -115dBm to  
-50dBm.  
Layout Issues  
6) Set the RF generator to -100dBm. Activate the RF  
generators modulation and set the scopes cou-  
pling to AC. The scope now displays a lowpass-fil-  
tered square wave at TP3 (filtered analog base-  
band data). Use the RF generators LF OUTPUT  
(modulation output) to trigger the oscilloscope.  
A properly designed PC board is an essential part of  
any RF/microwave circuit. On high-frequency inputs  
and outputs, use controlled-impedance lines and keep  
them as short as possible to minimize losses and radia-  
tion. At high frequencies, trace lengths that are approx-  
imately 1/20 the wavelength or longer become anten-  
nas. For example, a 2in trace at 315MHz can act as an  
antenna.  
7) Monitor the DATA_OUT terminal and verify the pres-  
ence of a 2kHz square wave.  
Keeping the traces short also reduces parasitic induc-  
tance. Generally, 1in of a PC board trace adds about  
20nH of parasitic inductance. The parasitic inductance  
can have a dramatic effect on the effective inductance.  
For example, a 0.5in trace connecting a 100nH induc-  
tor adds an extra 10nH of inductance, or 10%.  
To reduce the parasitic inductance, use wider traces  
and a solid ground or power plane below the signal  
traces. Using a solid ground plane can reduce the par-  
asitic inductance from approximately 20nH/in to 7nH/in.  
Also, use low-inductance connections to ground on all  
GND pins, and place decoupling capacitors close to all  
VDD connections.  
Additional Evaluation  
1) With the modulation still set to AM, observe the  
effect of reducing the RF generators amplitude on  
the DATA_OUT terminal output. The error in this  
sliced digital signal increases with reduced RF sig-  
nal level. The sensitivity is usually defined as the  
point at which the error in interpreting the data (by  
the following embedded circuitry) increases  
beyond a set limit (BER test).  
2) With the above settings, a 315MHz-tuned EV kit  
should display a sensitivity of about -118dBm (1%  
BER), while a 433.92MHz kit displays a sensitivity of  
about -114dBm (1% BER). Note: The above sensi-  
tivity values are given in terms of average carrier  
power. If true pulse modulation is used instead of  
AM, then the sensitivity measurement is in terms of  
peak power, and as a result is reduced by 6dB.  
The EV kit PC board can serve as a reference design for  
laying out a board using the MAX1470. All required com-  
ponents have been enclosed in a 1.25in x 1.25in square,  
which can be directly insertedin the application circuit.  
Table 1. Jumper Function Table  
Table 2. Test Points  
JUMPER  
JU1  
STATE  
1-2  
FUNCTION  
Normal operation  
Power-down mode  
TP  
DESCRIPTION  
PLL control voltage (Note: Connecting anything to  
this test point degrades RF performance.)  
1
JU1  
2-3  
2
3
4
5
6
7
8
9
Data slicer negative input  
Data slicer positive input  
Peak detector out  
VDD  
External power-down  
control  
JU1  
JU3  
N.C.  
1-2  
Mixer output to  
MIX_OUT  
JU3  
JU3  
2-3  
External IF input  
Normal operation  
GND  
N.C.  
Data filter feedback node  
Data out  
Uses PDOUT for faster  
receiver startup  
JU4  
JU4  
1-2  
2-3  
Power-down select input  
GND connection for  
peak detector filter  
_______________________________________________________________________________________  
3
MAX1470 Evaluation Kit  
Detailed Description  
Power-Down Control  
The MAX1470 can be controlled externally using the  
SHDN connector. The IC draws approximately 1.25µA  
in shutdown mode. Jumper JU1 is used to control this  
mode. The shunt can be placed between pins 2 and 3  
for continuous shutdown, or pins 1 and 2 for continuous  
operation. Remove the JU1 shunt for external control.  
See Table 1 for the jumper function descriptions.  
IF Input/Output  
The 10.7MHz IF can be monitored with the help of a  
spectrum analyzer using the MIX_OUT SMA (not provid-  
ed). Remove the ceramic filter for such a measurement  
and include R3 (270 ) and C17 (0.01µF) to match the  
330 mixer output with the 50 spectrum analyzer.  
Jumper JU3 needs to connect pins 1 and 2. It is also  
possible to use the MIX_OUT SMA to inject an external  
IF as a means of evaluating the baseband data slicing  
section. Jumper JU3 needs to connect pins 2 and 3.  
F_IN External Frequency Input  
For applications where the correct frequency crystal is  
not available, it is possible to directly inject an external  
frequency through the F_IN SMA (not provided).  
Connect the SMA to a function generator. The addition  
of C18 and C19 is necessary (use 0.01µF capacitors).  
Figure 1. MAX1470 EV Kit  
Table 3. I/O Connectors  
SIGNAL  
DESCRIPTION  
Test Points and I/O Connections  
RF_IN  
F_IN  
RF input  
Additional test points and I/O connectors are provided  
to monitor the various baseband signals and for external  
connections. See Tables 2 and 3.  
External reference frequency input  
IF input/output  
MIX_OUT  
GND  
Ground  
3.3V  
3.3V power input  
DATA_OUT  
SHDN  
Sliced data output  
External power-down control  
4
_______________________________________________________________________________________  
MAX1470 Evaluation Kit  
C14  
15pF  
C15  
15pF  
C19  
OPEN  
Y1  
*
F_IN  
C16  
OPEN  
3.3V  
C18  
OPEN  
28  
XTAL2  
1
2
1
3
SHDN  
JU1  
XTAL1  
AV  
3.3V  
27  
26  
PWRDN  
3.3V  
2
PDOUT  
TP4  
DD  
TP9  
TP5  
C12  
0.01  
DSN  
C13  
OPEN  
R2  
F
1
C7  
100pF  
OPEN  
L2  
*
JU4  
RF_IN  
2
3
LNAIN  
3
25  
L3  
15nH  
DATAOUT  
24  
23  
4
5
N.C.  
N.C.  
LNASRC  
AGND  
DATA_OUT  
R5  
10k  
TP8  
22  
21  
DF  
TP7  
6
7
U1  
LNAOUT  
OPP  
3.3V  
C6  
220pF  
MAX1470  
AV  
DD  
DSN  
TP2  
C2  
20  
DSN  
C11  
100pF  
0.01  
F
C4  
C5  
470pF  
R1  
5k  
8
9
0.47  
F
MIXIN1  
C9  
*
L1  
*
C8  
100pF  
19  
18  
DSP  
3.3V  
GND  
MIXIN2  
AGND  
N.C.  
TP3  
C10  
220pF  
IFIN2  
10  
11  
C3  
1500pF  
TP6  
17  
16  
12  
13  
14  
IFIN1  
N.C.  
MIXOUT  
DGND  
C17  
OPEN  
R3  
OPEN  
3
MIX_OUT  
JU3  
315MHz 433.92MHz  
15  
*
DV  
DD  
N.C.  
TP1  
3.3V  
2
C9  
4.7pF  
3.0pF  
1
C1  
0.01  
L1  
27nH  
120nH  
15nH  
68nH  
Y2  
10.7MHz  
R4  
OPEN  
F
IN  
OUT  
3
GND  
2
L2  
Y1 4.754687MHz 6.6128MHz  
1
Figure 2. MAX1470 EV Kit Circuit Diagram  
_______________________________________________________________________________________  
5
MAX1470 Evaluation Kit  
Figure 4. MAX1470 EV Kit PC Board Layout—Top Copper  
Figure 3. MAX1470 EV Kit Component Placement Guide—Top  
Silkscreen  
Figure 5. MAX1470 EV Kit PC Board Layout —Bottom Copper  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
6 _____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1470EVKIT-315

MAX1470 Evaluation Kit
MAXIM

MAX1470EVKIT-433

MAX1470 Evaluation Kit
MAXIM

MAX1470_02

MAX1470 Evaluation Kit
MAXIM

MAX1471

315MHz/434MHz Low-Power, 3V/5V ASK/FSK Superheterodyne Receiver
MAXIM

MAX14713

3V DC power supply
MAXIM

MAX14713EVKIT

3V DC power supply
MAXIM

MAX14714

3V DC power supply
MAXIM

MAX1471AGJ/VY+

Telecom Circuit, 1-Func, CMOS, ROHS COMPLIANT, TQFN-32
MAXIM

MAX1471ATJ

315MHz/434MHz Low-Power, 3V/5V ASK/FSK Superheterodyne Receiver
MAXIM

MAX1471ATJ+

Telecom Circuit, 1-Func, CMOS, ROHS COMPLIANT, TQFN-32
MAXIM

MAX1471ATJ+T

Telecom Circuit, 1-Func, CMOS, ROHS COMPLIANT, TQFN-32
MAXIM

MAX1471ATJ-T

暂无描述
MAXIM