ICE65L01F-LCB81C [LATTICE]

Field Programmable Gate Array, 1280-Cell, CMOS, PBGA81;
ICE65L01F-LCB81C
型号: ICE65L01F-LCB81C
厂家: LATTICE SEMICONDUCTOR    LATTICE SEMICONDUCTOR
描述:

Field Programmable Gate Array, 1280-Cell, CMOS, PBGA81

栅 可编程逻辑
文件: 总110页 (文件大小:2299K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
iCE65Ultra Low-Power  
mobileFPGAFamily  
March 30, 2012 (2.42)  
Data Sheet  
First high-density, ultra low-power  
single-chip, SRAM mobileFPGA family  
specifically designed for hand-held  
applications and long battery life  
Figure 1: iCE65 Family Architectural Features  
Programmable  
Logic Block (PLB)  
12 µA at f =0 kHz (Typical)  
12 µA in static mode  
I/O Bank 0  
Two power/speed options  
L: Low Power  
Programmable Interconnect  
T: High speed  
Up to 256 MHz internal performance  
Reprogrammable from a variety of  
sources and methods  
Processor-like mode self-configures from  
external, commodity SPI serial Flash PROM  
Downloaded by processor using SPI-like serial  
interface in as little as 20 µs  
In-system programmable, ASIC-like mode loads  
from secure, internal Nonvolatile Configuration  
Memory (NVCM)  
NVCM  
Programmable Interconnect  
Ideal for volume production  
SPI  
I/O Bank 2  
Config  
Superior design and intellectual property  
protection; no exposed data  
Carry logic  
Four-input  
Look-Up Table  
(LUT4)  
Nonvolatile Configuration  
Memory (NVCM)  
Proven, high-volume 65 nm, low-power  
CMOS technology  
Flip-flop with enable  
and reset controls  
Low leakage, µW static power  
Lower core voltage, lowest dynamic power  
Plentiful, fast, on-chip 4Kbit RAM blocks  
Flexible programmable logic and programmable  
Low-cost, space-efficient packaging options  
Known-good die (KGD) options available  
interconnect fabric  
Over 7,600 look-up tables (LUT4) and flip-flops  
Low-power logic and interconnect  
Complete iCEcubedevelopment system  
Windows® and Linux® support  
Flexible I/O pins to simplify system interfaces  
Up to 222 programmable I/O pins  
VHDL and Verilog logic synthesis  
Place and route software  
Four independently-powered I/O banks; support for 3.3V,  
Design and IP core libraries  
2.5V, 1.8V, and 1.5V voltage standards  
Low-cost iCEman65 development board  
LVCMOS, MDDR, LVDS, and SubLVDS I/O standards  
Table 1: iCE65 Ultra Low-Power Programmable Logic Family Summary  
iCE65L01  
1,280  
16  
iCE65L04  
3,520  
20  
iCE65L08  
7,680  
32  
Logic Cells (LUT + Flip-Flop)  
RAM4K Memory Blocks  
RAM4K RAM bits  
64K  
80K  
128K  
Configuration bits (maximum)  
Typical Current at 0 kHz, 1.0 V  
Maximum Programmable I/O Pins  
Maximum Differential Input Pairs  
245 Kb  
12 µA  
95  
533 Kb  
26 µA  
176  
1,057 Kb  
54 µA  
222  
0
20  
25  
© 2007-2012 by Lattice Semiconductor Corporation. All rights reserved.  
www.latticesemi.com  
(2.42, 30-MAR-2012)  
1
 
 
iCE65 Ultra Low-Power mobileFPGAFamily  
Overview  
The Lattice Semiconductor iCE65 programmable logic family is specifically designed to deliver the lowest static and  
dynamic power consumption of any comparable CPLD or FPGA device. iCE65 devices are designed for cost-  
sensitive, high-volume applications and provide on-chip, nonvolatile configuration memory (NVCM) to customize  
for a specific application. iCE65 devices can self-configure from a configuration image stored in an external  
commodity SPI serial Flash PROM or be downloaded from an external processor over an SPI-like serial port.  
The three iCE65 components, highlighted in Table 1, deliver from approximately 1K to nearly 8K logic cells and flip-  
flops while consuming a fraction of the power of comparable programmable logic devices. Each iCE65 device  
includes between 16 to 32 RAM blocks, each with 4Kbits of storage, for on-chip data storage and data buffering.  
As pictured in Figure 1, each iCE65 device consists of four primary architectural elements.  
An array of Programmable Logic Blocks (PLBs)  
Each PLB contains eight Logic Cells (LCs); each Logic Cell consists of …  
A fast, four-input look-up table (LUT4) capable of implementing any combinational logic function of  
up to four inputs, regardless of complexity  
A ‘D’-type flip-flop with an optional clock-enable and set/reset control  
Fast carry logic to accelerate arithmetic functions such as adders, subtracters, comparators, and  
counters.  
Common clock input with polarity control, clock-enable input, and optional set/reset control input to  
the PLB is shared among all eight Logic Cells  
Two-port, 4Kbit RAM blocks (RAM4K)  
256x16 default configuration; selectable data width using programmable logic resources  
Simultaneous read and write access; ideal for FIFO memory and data buffering applications  
RAM contents pre-loadable during configuration  
Four I/O banks with independent supply voltage, each with multiple Programmable Input/Output (PIO)  
blocks  
LVCMOS I/O standards and LVDS outputs supported in all banks  
I/O Bank 3 supports additional SSTL, MDDR, LVDS, and SubLVDS I/O standards  
Programmable interconnections between the blocks  
Flexible connections between all programmable logic functions  
Eight dedicated low-skew, high-fanout clock distribution networks  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
2
www.latticesemi.com  
Packaging Options  
iCE65 components are available in a variety of package options to support specific application requirements. The  
available options, including the number of available user-programmable I/O pins (PIOs), are listed in Table 2. Fully-  
tested Known-Good Die (KGD) DiePlus are available for die stacking and highly space-conscious applications. All  
iCE65 devices are provided exclusively in Pb-free, RoHS-compliant packages.  
Table 2: iCE65 Family Packaging Options, Maximum I/O per Package  
Package  
Body  
(mm)  
5 x 5  
7 x 7  
14 x 14  
6 x 6  
8 x 8  
Ball/Lead  
Pitch  
(mm)  
0.5  
Package  
Code  
CB81  
Package  
81-ball chip-scale BGA  
84-pin quad flat no-lead package  
100-pin very thin quad flat package  
121-ball chip-scale BGA  
132-ball chip-scale BGA  
196-ball chip-scale BGA  
284-ball chip-scale BGA  
65L01  
63 (0)  
67 (0)  
72 (0)  
92 (0)  
93 (0)  
65L04  
72 (9)  
95 (11)  
150 (18)  
176 (20)  
65L08  
QN84  
0.5  
0.5  
VQ100  
CB121  
CB132  
CB196  
CB284  
95 (12)  
150 (18)  
222 (25)  
0.5  
8 x 8  
12 x 12  
See DiePlus  
data sheet  
Known Good Die  
DI  
95 (0)  
176 (20)  
222 (25)  
= Common footprint allows each density migration on the same printed circuit board. (Differential input count).  
The iCE65L04 and the iCE65L08 are both available in the CB196 package and have similar footprints but are not completely pin  
compatible. See “Pinout Differences between iCE65L04 and iCE65L08 in CB196 Package” on page 73 for more information.  
When iCE65 components are supplied in the same package style, devices of different gate densities share a common  
footprint. The common footprint improves manufacturing flexibility. Different models of the same product can  
share a common circuit board. Feature-rich versions of the end application mount a larger iCE65 device on the  
circuit board. Low-end versions mount a smaller iCE65 device.  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
3
iCE65 Ultra Low-Power mobileFPGAFamily  
Ordering Information  
Figure 2 describes the iCE65 ordering codes for all packaged, non-NVCM Programed components. See the separate  
DiePlus data sheets when ordering die-based products.  
Figure 2: iCE65 Ordering Codes Standard Device  
iCE65L 04 F -L CB 132 C  
Logic Cells (x1,000)  
Temperature Range  
C= Commercial  
01, 04, 08  
(TA= 0° to 70° Celsius)  
I= Industrial  
Configuration Memory  
(TAJ = 40° to 85° Celsius)  
F= NVCM + reprogrammable  
Package Leads  
Package Style  
Power Consumption/  
Speed  
-L= Low power  
-T= High speed  
CB= chip-scale ball grid  
CS= wafer level chip-scale package (0.4 mm pitch)  
VQ= very-thin quad flat pack package  
QN = quad flat no-lead package  
iCE65 devices offer two power consumption, speed options. Standard products (“-L” ordering code) have low  
standby and dynamic power consumption. The “-T” provides higher-speed logic.  
Similarly, iCE65 devices are available in two operating temperature ranges, one for typical commercial applications,  
the other with an extended temperature range for industrial and telecommunications applications. The ordering  
code also specifies the device package option, as described further in Table 2.  
Figure 3 describes the iCE65 ordering codes for all packaged, NVCM Programmed components.  
Figure 3: iCE65 Ordering Codes NVCM Programmed Device  
iCE65L 01 F ZZZ ZZZZ  
Logic Cells (x1000)  
NVCM Program Code Revision  
01, 04, 08  
Customer Program Code  
Configuration Memory  
F = NVCM + reprogrammable  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
4
www.latticesemi.com  
 
 
Programmable Logic Block (PLB)  
Generally, a logic design for an iCE65 component is created using a high-level hardware description language such  
as Verilog or VHDL. The Lattice Semiconductor development software then synthesizes the high-level description  
into equivalent functions built using the programmable logic resources within each iCE65 device. Both sequential  
and combinational functions are constructed from an array of Programmable Logic Blocks (PLBs). Each PLB  
contains eight Logic Cells (LCs), as pictured in Figure 4, and share common control inputs, such as clocks, reset, and  
enable controls.  
PLBs are connected to one another and other logic functions using the rich Programmable Interconnect resources.  
Logic Cell (LC)  
Each iCE65 device contains thousands of Logic Cells (LCs), as listed in Table 1. Each Logic Cell includes three  
primary logic elements, shown in Figure 4.  
A four-input Look-Up Table (LUT4) builds any combinational logic function, of any complexity, of up to  
four inputs. Similarly, the LUT4 element behaves as a 16x1 Read-Only Memory (ROM). Combine and  
cascade multiple LUT4s to create wider logic functions.  
Figure 4: Programmable Logic Block and Logic Cell  
A ‘D’-style Flip-Flop (DFF), with an optional clock-enable and reset control input, builds sequential logic  
functions. Each DFF also connects to a global reset signal that is automatically asserted immediately  
following device configuration.  
Carry Logic boosts the logic efficiency and performance of arithmetic functions, including adders,  
subtracters, comparators, binary counters and some wide, cascaded logic functions.  
The output from a Logic Cell is available to all inputs to all eight Logic Cells within the Programmable Logic Block.  
Similarly, the Logic Cell output feeds into fabric to connect to other features on the iCE65 device.  
Shared Block-Level Controls  
Clock  
Programmable Logic  
Block (PLB)  
Enable  
1
Set/Reset0  
Logic Cell  
Carry Logic  
DFF  
O
I0  
I1  
I2  
I3  
D
EN  
Q
LUT4  
SR  
Four-input  
Flip-flop with  
Look-Up Table  
(LUT4)  
optional enable and  
set or reset controls  
= Statically defined by configuration program  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
5
 
iCE65 Ultra Low-Power mobileFPGAFamily  
Look-Up Table (LUT4)  
The four-input Look-Up Table (LUT4) function implements any and all combinational logic functions, regardless of  
complexity, of between zero and four inputs. Zero-input functions include “High” (1) and “Low” (0). The LUT4  
function has four inputs, labeled I0, I1, I2, and I3. Three of the four inputs are shared with the Carry Logic function,  
as shown in Figure 4. The bottom-most LUT4 input connects either to the I3 input or to the Carry Logic output  
from the previous Logic Cell.  
The output from the LUT4 function connects to the flip-flop within the same Logic Cell. The LUT4 output or the  
flip-flop output then connects to the programmable interconnect.  
For detailed LUT4 internal timing, see Table 54.  
‘D’-style Flip-Flop (DFF)  
The ‘D’-style flip-flop (DFF) optionally stores state information for the application.  
The flip-flop has a data input, ‘D’, and a data output, ‘Q’. Additionally, each flip-flop has up to three control signals  
that are shared among all flip-flops in all Logic Cells within the PLB, as shown in Figure 4. Table 3 describes the  
behavior of the flip-flop based on inputs and upon the specific DFF design primitive used or synthesized.  
Table 3: ‘D’-Style Flip-Flop Behavior  
Inputs  
Output  
DFF  
Primitive  
Flip-Flop  
Mode  
X
Operation  
Cleared Immediately after  
Configuration  
Hold Present Value  
(Disabled)  
D
X
EN  
SR  
CLK  
X
Q
0
All  
X
0
X
X
X
X
X
X
X
Q
Q
Hold Present Value (Static  
Clock)  
1 or 0  
Load with Input Data  
Asynchronous Reset  
D
X
1*  
X
0*  
1
D
0
SB_DFFR  
SB_DFFS  
SB_DFFSR  
SB_DFFSS  
Asynchronous  
Reset  
X
Asynchronous Set  
Synchronous Reset  
Synchronous Set  
Asynchronous  
Set  
Synchronous  
Reset  
Synchronous  
Set  
X
X
X
X
1
1
1
X
1
0
1
1*  
1*  
X = don’t care,  = rising clock edge (default polarity), 1* = High or unused, 0* = Low or unused  
The CLK clock signal is not optional and is shared among all flip-flops in a Programmable Logic Block. By default,  
flip-flops are clocked by the rising edge of the PLB clock input, although the clock polarity can be inverted for all the  
flip-flops in the PLB.  
The CLK input optionally connects to one of the following clock sources.  
The output from any one of the eight Global Buffers, or  
A connection from the general-purpose interconnect fabric  
The EN clock-enable signal is common to all Logic Cells in a Programmable Logic Block. If the enable signal is not  
used, then the flip-flop is always enabled. This condition is indicated as “1*” in Table 3. The asterisk indicates that  
this is the default state if the control signal is not connected in the application.  
Similarly, the SR set/reset signal is common to all Logic Cells in a Programmable Logic Block. If not used, then the  
flip-flop is never set/reset, except when cleared immediately after configuration or by the Global Reset signal. This  
condition is indicated as “0*” in Table 3. The asterisk indicates that this is the default state if the control signal is  
not connected in the application.  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
6
www.latticesemi.com  
 
Each flip-flop has an additional control that defines its set or reset behavior. As defined in the configuration image,  
the control defines whether the set or reset operation is synchronized to the active CLK clock edge or whether it is  
completely asynchronous.  
The SB_DFFR and SB_DFFS primitives are asynchronously controlled, solely by the SR input. If the SR  
input is High, then an SB_DFFR primitive is asynchronously reset and an SB_DFFS primitive is  
asynchronously set.  
The SB_DFFSR and SB_DFFRSS primitives are synchronously controlled by both the SR input and the clock  
input. If the SR input is High at a rising edge of the clock input, then an SB_DFFSR primitive is  
synchronously reset and an SB_DFFSS primitive is synchronously set.  
The LUT4 output or the flip-flop output then connects to the programmable interconnect.  
Because of the shared control signals, the design software can pack flip-flops with common control inputs into a  
single PLB block, as described by Table 4. There are eight total packing options.  
Table 4: Flip-flop Packing/Sharing within a PLB  
Set or Reset Control  
Group  
Active Clock Edge  
Clock Enable  
(Sync. or Async)  
1
2
3
4
5
6
7
8
None  
None (always enabled)  
PLB set/reset control  
None  
Selective (controlled by  
PLB clock enable)  
PLB set/reset control  
For detailed flip-flop internal timing, see Table 54.  
Carry Logic  
The dedicated Carry Logic within each Logic Cell primarily accelerates and improves the efficiency of arithmetic  
logic such as adders, accumulators, subtracters, incrementers, decrementers, counters, ALUs, and comparators. The  
Carry Logic also supports wide combinational logic functions.  
COUT = I1 ● I2 + CIN ●I1 + CIN ● I2  
[Equation 1]  
Equation 1 and Figure 5 describe the Carry Logic structure within a Logic Cell. The Carry Logic shares inputs with  
the associated Look-Up Table (LUT4). The LUT4’s I1 and I2 inputs directly feed the Carry Logic; inputs I0 and I3  
do not. A signal cascades between Logic Cells within the Programmable Logic Block. The carry input from the  
previous adjacent Logic Cell optionally provides an alternate input to the LUT4 function, supplanting the I3 input.  
Low-Power Disable  
To save power and prevent unnecessary signal switching, the Carry Logic function within a Logic Cell is disabled if  
not used. The output of a Logic Cell’s Carry Logic is forced High.  
PLB Carry Input and Carry Output Connections  
As shown in Figure 5, each Programmable Logic Block has a carry input signal that can be initialized High, Low, or  
come from the carry output signal from PLB immediately below.  
Similarly, the Carry Logic output from the Programmable Logic Block connects to the PLB immediately above,  
which allows the Carry Logic to span across multiple PLBs in a column. As shown in Figure 6, the Carry Logic chain  
can be tapped mid-way through a chain or a PLB by feeding the value through a LUT4 function.  
Adder Example  
Figure 6 shows an example design that uses the Carry Logic. The example is a 2-bit adder, which can be expanded  
into an adder of arbitrary size. The LUT4 function within a Logic Cell is programmed to calculate the sum of the  
two input values and the carry input, A[i] + B[i] + CARRY_IN[i-1] = SUM[i].  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
7
 
iCE65 Ultra Low-Power mobileFPGAFamily  
The Carry Logic generates the carry value to feed the next bit in the adder. The calculated carry value replaces the I3  
input to the next LUT4 in the upper Logic Cell.  
If required by the application, the carry output from the final stage of the adder is available by passing it through the  
final LUT4.  
Figure 5: Carry Logic Structure within a Logic Cell and between PLBs  
Adjacent PLB  
To upper adjacent Logic Cell  
Carry  
Logic  
I0  
I1  
LUT4  
I2  
I3  
From lower adjacent Logic Cell  
Carry Logic  
initialization into  
Programmable Logic  
Block (PLB)  
1
0
Adjacent PLB  
= Statically defined by  
configuration program  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
8
www.latticesemi.com  
Implementing Subtracters, Decrementers  
As mentioned earlier, the Carry Logic generates a High output whenever the sum of I1 + I2 + CARRY_IN  
generates a carry. The Carry Logic does not specifically have a subtract mode. To implement a subtract function or  
decrement function, logically invert either the I1 or I2 input and invert the initial carry input. This performs a 2s  
complement subtract operation.  
Figure 6: Two-bit Adder Example  
LUT4  
I0  
GND I1  
GND I2  
I3  
CARRY_OUT  
Carry  
Logic  
LUT4  
I0  
A[1]  
B[1]  
I1  
I2  
I3  
SUM[1]  
Carry  
Logic  
LUT4  
I0  
I1  
I2  
I3  
A[0]  
B[0]  
SUM[0]  
CARRY_IN  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
9
iCE65 Ultra Low-Power mobileFPGAFamily  
Programmable Input/Output Block (PIO)  
Programmable Input/Output (PIO) blocks surround the periphery of the device and connect external components to  
the Programmable Logic Blocks (PLBs) and RAM4K blocks via programmable interconnect. Individual PIO pins are  
grouped into one of four I/O banks, as shown in Figure 7. I/O Bank 3 has additional capabilities, including LVDS  
differential I/O and the ability to interface to Mobile DDR memories.  
Figure 7 also shows the logic within a PIO pin. When used in an application, a PIO pin becomes a signal input, an  
output, or a bidirectional I/O pin with a separate direction control input.  
Figure 7: Programmable Input/Output (PIO) Pin  
VCCIO  
I/O Bank 0, 1, or 2  
1.5V to 3.3V  
Voltage Supply  
0 = Hi-Z  
Enabled  
Disabled  
1’  
0’  
1 = Output  
Enabled  
Pull-up  
not in I/O  
Bank 3  
OE  
VCCIO_0  
VCC  
Internal Core  
Pull-up  
Enable  
I/O Bank 0  
General-Purpose I/O  
OUT  
PIO  
PAD  
Latch inhibits  
switching for  
lowest power  
iCEGATE  
HOLD  
HD  
IN  
GBIN pins optionally  
connect directly to an  
associated GBUF global  
buffer  
I/O Bank 2  
SPI  
Config  
General-Purpose I/O  
Programmable Input/Output  
= Statically defined by configuration program  
SPI_VCC  
VCCIO_2  
I/O Banks  
PIO blocks are organized into four separate I/O banks, each with its own voltage supply input, as shown in Table 5.  
The voltage applied to the VCCIO pin on a bank defines the I/O standard used within the bank. Table 50 and Table  
51 describe the I/O drive capabilities and switching thresholds by I/O standard. On iCE65L04 and iCE65L08  
devices, I/O Bank 3, along the left edge of the die, is different than the others and supports specialized I/O standards.  
I/O Bank Voltage Supply Inputs Support Different I/O Standards  
Because each I/O bank has its own voltage supply, iCE65 components become the ideal bridging device between  
different interface standards. For example, the iCE65 device allows a 1.8V-only processor to interface cleanly with a  
3.3V bus interface. The iCE65 device replaces external voltage translators.  
Table 5: Supported Voltages by I/O Bank  
Bank  
Device Edge  
Top  
Supply Input  
VCCIO_0  
VCCIO_1  
VCCIO_2  
VCCIO_3  
3.3V  
Yes  
Yes  
Yes  
Yes  
2.5V  
Yes  
Yes  
Yes  
Yes  
1.8V  
Yes  
Yes  
Yes  
Yes  
1.5V  
Outputs only  
Outputs only  
Outputs only  
iCE65L01: Outputs only  
iCE65L04/08: Yes  
No  
0
1
2
3
Right  
Bottom  
Left  
SPI  
Bottom Right  
SPI_VCC  
Yes  
Yes  
Yes  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
10  
www.latticesemi.com  
 
 
If not connected to an external SPI PROM, the four pins associated with the SPI Master Configuration Interface can  
be used as PIO pins, supplied by the SPI_VCC input, essentially forming a fifth “mini” I/O bank. If using an SPI  
Flash PROM, then connect SPI_VCC to 3.3V.  
I/O Banks 0, 1, 2, SPI and Bank 3 of iCE65L01  
Table 6 highlights the available I/O standards when using an iCE65 device, indicating the drive current options, and  
in which bank(s) the standard is supported. I/O Banks 0, 1, 2 and SPI interface support the same standards. I/O  
Bank 3 has additional capabilities in iCE65L04 and iCE65L08, including support for MDDR memory standards and  
LVDS differential I/O.  
Table 6: I/O Standards for I/O Banks 0, 1, 2, SPI Interface Bank, and Bank 3 of iCE65L01  
I/O Standard  
5V Input Tolerance  
LVCMOS33  
LVCMOS25  
LVCMOS18  
LVCMOS15 outputs  
Supply Voltage  
Drive Current (mA)  
Attribute Name  
N/A  
3.3V  
3.3V  
2.5V  
1.8V  
1.5V  
N/A  
±11  
±8  
±5  
±4  
SB_LVCMOS  
IBIS Models for I/O Banks 0, 1, 2 and the SPI Bank  
The IBIS (I/O Buffer Information Specification) file that describes the output buffers used in I/O Banks 0, 1, 2, SPI  
Bank and Bank 3 of iCE65L01 is available from the following link.  
IBIS Models for I/O Banks 0, 1, 2, SPI Bank and Bank 3 of iCE65L01  
I/O Bank 3 of iCE65L04 and iCE65L08  
I/O Bank 3, located along the left edge of the die, has additional special I/O capabilities to support memory  
components and differential I/O signaling (LVDS). Table 7 lists the various I/O standards supported by I/O Bank 3.  
The SSTL2 and SSTL18 I/O standards require the VREF voltage reference input pin which is only available on the  
CB284 package. Also see Table 51 for electrical characteristics.  
Table 7: I/O Standards for I/O Bank 3 Only of iCE65L04 and iCE65L08  
Supply  
Voltage  
3.3V  
VREF Pin (CB284 or  
DiePlus) Required?  
No  
Target  
Drive Current (mA)  
±8  
I/O Standard  
LVCMOS33  
Attribute Name  
SB_LVCMOS33_8  
No  
±16  
±12  
±8  
SB_LVCMOS25_16  
SB_LVCMOS25_12  
SB_LVCMOS25_8  
SB_LVCMOS25_4  
LVCMOS25  
2.5V  
1.8V  
±4  
No  
±10  
±8  
±4  
SB_LVCMOS18_10  
SB_LVCMOS18_8  
SB_LVCMOS18_4  
SB_LVCMOS18_2  
LVCMOS18  
LVCMOS15  
±2  
No  
Yes  
Yes  
No  
±4  
±2  
SB_LVCMOS15_4  
SB_LVCMOS15_2  
1.5V  
2.5V  
1.8V  
SSTL2_II  
SSTL2_I  
±16.2  
±8.1  
SB_SSTL2_CLASS_2  
SB_SSTL2_CLASS_1  
SSTL18_II  
SSTL18_I  
±13.4  
±6.7  
SB_SSTL18_FULL  
SB_SSTL18_HALF  
±10  
±8  
±4  
SB_MDDR10  
SB_MDDR8  
SB_MDDR4  
SB_MDDR2  
MDDR  
LVDS  
1.8V  
2.5V  
±2  
No  
N/A  
SB_LVDS_INPUT  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
11  
 
 
 
iCE65 Ultra Low-Power mobileFPGAFamily  
Table 8 lists the I/O standards that can co-exist in I/O Bank 3, depending on the VCCIO_3 voltage.  
Table 8: Compatible I/O Standards in I/O Bank 3 of iCE65L04 and iCE65L08  
VCCIO_3 Voltage  
Compatible I/O  
Standards  
3.3V  
SB_LVCMOS33_8  
2.5V  
1.8V  
1.5V  
Any SB_LVCMOS15  
Any SB_LVCMOS25  
SB_SSTL2_Class_2  
SB_SSTL2_Class_1  
SB_LVDS_INPUT  
Any SB_LVCMOS18  
SB_SSTL18_FULL  
SB_SSTL18_HALF  
SB_MDDR10  
SB_MDDR8  
SB_MDDR4  
SB_MDDR2  
SB_LVDS_INPUT  
Programmable Output Drive Strength  
Each PIO in I/O Bank 3 offers programmable output drive strength, as listed in Table 8. For the LVCMOS and  
MDDR I/O standards, the output driver has settings for static drive currents ranging from 2 mA to 16 mA output  
drive current, depending on the I/O standard and supply voltage.  
The SSTL18 and SSTL2 I/O standards offer full- and half-strength drive current options  
Differential Inputs and Outputs  
All PIO pins support “single-ended” I/O standards, such as LVCMOS. However, iCE65 FPGAs also support  
differential I/O standards where a single data value is represented by two complementary signals transmitted or  
received using a pair of PIO pins. The PIO pins in I/O Bank 3 of iCE65L04 and iCE65L08L08 support Low-Voltage  
Differential Swing (LVDS) and SubLVDS inputs as shown in Figure 8. Differential outputs are available in all four  
I/O banks.  
Differential Inputs Only on I/O Bank 3 of iCE65L04 and iCE65L08  
Differential receivers are required for popular applications such as LVDS and LVPECL clock inputs, camera  
interfaces, and for various telecommunications standards.  
Specific pairs of PIO pins in I/O Bank 3 form a differential input. Each pair consists of a DPxxA and DPxxB pin,  
where “xx” represents the pair number. The DPxxB receives the true version of the signal while the DPxxA receives  
the complement of the signal. Typically, the resulting signal pair is routed on the printed circuit board (PCB) with  
matched 50Ω signal impedance. The differential signaling, the low voltage swing, and the matched signal routing  
are ideal for communicating very-high frequency signals. Differential signals are generally also more tolerant of  
system noise and generate little EMI themselves.  
The LVDS input circuitry requires 2.5V on the VCCIO_3 voltage supply. Similarly, the SubLVDS input circuitry  
requires 1.8V on the VCCIO_3 voltage supply. For electrical specifications, see Differential Inputs” on page 100.  
Each differential input pair requires an external 100 Ω termination resistor, as shown in Figure 8.  
The PIO pins that make up a differential input pair are indicated with a blue bounding box in the footprint diagrams  
and in the pinout tables.  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
12  
www.latticesemi.com  
 
 
Figure 8: Differential Inputs in iCE65L04 and iC65L08 I/O Bank 3  
Impedance-matched  
signal traces  
VCCIO_3 = 1.8V or 2.5V  
DPxxB  
50Ω  
50Ω  
DPxxA  
iC65 Differential  
Input  
External 100Ω  
termination resistor  
1
0
1
0
Noise pulse affects both traces  
similarly. Difference between  
signals remains nearly constant.  
Differential Outputs in Any Bank  
Differential outputs are built using a pair of single-ended PIO pins as shown in Figure 9. Each differential I/O pair  
requires a three-resistor termination network to adjust output characteristic to match those for the specific  
differential I/O standard. The output characteristics depend on the values of the parallel resistors (RP) and series  
resistor (RS). Differential outputs must be located in the same I/O tile.  
Figure 9: Differential Output Pair  
External output  
compensation  
Impedance-matched  
signal traces  
resistor network  
VCCIO_x  
RS  
RS  
50Ω  
50Ω  
RP  
iC65 Differential Output Pair  
1
0
1
0
Noise pulse affects both traces  
similarly. Difference is signals  
remains nearly constant.  
For electrical characteristics, see “Differential Outputs” on page 100.  
The PIO pins that make up a differential output pair are indicated with a blue bounding box in the in the tables in  
Die Cross Reference” starting on page 84.  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
13  
 
iCE65 Ultra Low-Power mobileFPGAFamily  
Input Signal Path  
As shown in Figure 7, a signal from a package pin optionally feeds directly into the device, or is held in an input  
register. The input signal connects to the programmable interconnect resources through the IN signal. Table 9  
describes the input behavior, assuming that the output path is not used or if a bidirectional I/O, that the output  
driver is in its high-impedance state (Hi-Z). Table 9 also indicates the effect of the Power-Saving I/O Bank iCEgate  
Latch and the Input Pull-Up Resistors on I/O Banks 0, 1, and 2.  
See Input and Output Register Control per PIO Pair for information about the registered input path.  
Power-Saving I/O Bank iCEgate Latch  
To save power, the optional iCEgate latch can selectively freeze the state of individual, non-registered inputs within  
an I/O bank. Registered inputs are effectively frozen by their associated clock or clock-enable control. As shown in  
Figure 10, the iCEgate HOLD control signal captures the external value from the associated asynchronous input.  
The HOLD signal prevents switching activity on the PIO pad from affecting internal logic or programmable  
interconnect. Minimum power consumption occurs when there is no switching. However, individual pins within  
the I/O bank can bypass the iCEgate latch and directly feed into the programmable interconnect, remaining active  
during low-power operation. This behavior is described in Table 9. The decision on which asynchronous inputs use  
the iCEgate feature and which inputs bypass it is determined during system design. In other words, the iCEgate  
function is part of the source design used to create the iCE65 configuration image.  
Figure 10: Power-Saving iCEgate Latch  
Controlled by configuration  
image; allows pin-by-pin  
PIO  
PAD  
option to freeze input with  
iCEgate  
D
Q
LE  
HOLD  
PAD  
Optional iCEgate Latch  
HOLD  
Input  
Follow value  
on PAD  
Follow value  
on PAD  
Freeze last  
value  
Table 9: PIO Non-Registered Input Operations  
HOLD Bitstream Setting  
Controlled Input Pull-  
iCEgate Latch by iCEgate? Up Enabled? Pin Value  
PAD  
IN  
Input Value to  
Interconnect  
PAD Value  
(Undefined)  
1
Operation  
Data Input  
Pad Floating, No Pull-up  
Pad Floating, Pull-up  
Data Input, Latch  
Bypassed  
0
0
0
X
X
X
X
X
No  
Yes  
X
PAD  
Z
Z
No  
PAD  
PAD Value  
Pad Floating, No Pull-up,  
Latch Bypassed  
Pad Floating, Pull-up,  
Latch Bypassed  
Low Power Mode, Hold  
Last Value  
X
X
1
No  
No  
No  
Yes  
X
Z
Z
X
(Undefined)  
1
Yes  
Last Captured  
PAD Value  
There are four iCEgate HOLD controls, one per each I/O bank. The iCEgate HOLD control input originates within  
the interconnect fabric, near the middle of the I/O edge. Consequently, the HOLD signal is optionally controlled  
externally through a PIO pin or from other logic within the iCE65 device.  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
14  
www.latticesemi.com  
 
 
 
For best possible performance, the global buffer inputs (GBIN[7:-0]) connect directly to the their associated  
global buffers (GBUF[7:0]), bypassing the PIO logic and iCEgate circuitry as shown in Figure 7.  
Consequently, the direct GBIN-to-GBUF connection cannot be blocked by the iCEgate circuitry. However,  
it is possible to use iCEgate to block PIO-to-GBUF clock connections.  
i
For additional information on using the iCEgate feature, please refer to the following application note.  
AN002: Using iCEgate Blocking for Ultra-Low Power  
Input Pull-Up Resistors on I/O Banks 0, 1, and 2  
The PIO pins in I/O Banks 0, 1, and 2 have an optional input pull-up resistor. Pull-up resistors are not provided in  
iCE65L04 and iCE65L08 I/O Bank 3. During the iCE65 configuration process, the input pull-up resistor is  
unconditionally enabled and pulls the input to within a diode drop of the associated I/O bank supply voltage  
(VCCIO_#). This prevents any signals from floating on the circuit board during configuration.  
After iCE65 configuration is complete, the input pull-up resistor is optional, defined by a configuration bit. The  
pull-up resistor is also useful to tie off unused PIO pins. The Lattice iCEcube development software defines all  
unused PIO pins in I/O Banks 0, 1 and 2 as inputs with the pull-up resistor turned on. The pull-up resistor value  
depends on the VCCIO voltage applied to the bank, as shown in Table 49.  
Note: JTAG inputs TCK, TDI and TMS do not have the input pull-up resistor and must be tied off to GND  
when unused, else VCCIO_1 draws current.  
!
No Input Pull-up Resistors on I/O Bank 3 of iCE65L04 and iCE65L08  
The PIO pins in I/O Bank 3 do not have an internal pull-up resistor. To minimize power consumption, tie unused  
PIO pins in Bank 3 to a known logic level or drive them as a disabled high-impedance output.  
Input Hysteresis  
Inputs typically have about 50 mV of hysteresis, as indicated in Table 49.  
Output and Output Enable Signal Path  
As shown in Figure 7, a signal from programmable interconnect feeds the OUT signal on a Programmable I/O pad.  
This output connects either directly to the associated package pin or is held in an optional output flip-flop. Because  
all flip-flops are automatically reset after configuration, the output from the output flip-flop can be optionally  
inverted so that an active-Low output signal is held in the disabled (High) state immediately after configuration.  
Similarly, each Programmable I/O pin has an output enable or three-state control called OE. When OE = High, the  
OUT output signal drives the associated pad, as described in Table 10. When OE = Low, the output driver is in the  
high-impedance (Hi-Z) state. The OE output enable control signal itself connects either directly to the output  
buffer or is held in an optional register. The output buffer is optionally permanently enabled or permanently  
disabled, either to unconditionally drive output signals, or to allow input-only signals.  
Table 10: PIO Output Operations (non-registered operation, no inversions)  
OUT  
Data Output  
OE  
Enable  
0
Operation  
PAD  
Hi-Z  
OUT  
Three-State  
Drive Output Data  
X
OUT  
1*  
X = don’t care, 1* = High or unused, Hi-Z = high-impedance, three-stated, floating.  
See Input and Output Register Control per PIO Pair for information about the registered input path.  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
15  
 
 
iCE65 Ultra Low-Power mobileFPGAFamily  
Input and Output Register Control per PIO Pair  
PIO pins are grouped into pairs for synchronous control. Registers within pairs of PIO pins share common input  
clock, output clock, and I/O clock enable control signals, as illustrated in Figure 11. The combinational logic paths  
are removed from the drawing for clarity.  
The INCLK clock signal only controls the input flip-flops within the PIO pair.  
The OUTCLK clock signal controls the output flip-flops and the output-enable flip-flops within the PIO pair.  
If desired in the iCE65 application, the INCLK and OUTCLK signals can be connected together.  
The IOENA clock-enable input, if used, enables all registers in the PIO pair, as shown in Figure 11. By default, the  
registers are always enabled.  
Before laying out your printed-circuit board, run the design through the iCEcube development software to  
verify that your selected pinout complies with these I/O register pairing requirements. See tables in Die  
Cross Reference” starting on page 84.  
!
Figure 11: PIO Pairs Share Clock and Clock Enable Controls (only registered paths shown for clarity)  
PIO Pair  
OUTCLK  
IOENA  
1
INCLK  
0 = Hi-Z  
OE  
1 = Output Enabled  
EN  
EN  
PAD  
OUT  
IN  
EN  
0 = Hi-Z  
OE  
1 = Output Enabled  
EN  
EN  
PAD  
OUT  
IN  
EN  
= Statically defined by configuration program  
The pairing of PIO pairs is most evident in the tables in “Die Cross Referencestarting on page 84.  
(2.42, 30-MAR-2012)  
16  
Lattice Semiconductor Corporation  
www.latticesemi.com  
 
 
Double Data Rate (DDR) Flip-Flops  
Each individual PIO pin optionally has two sets of double data rate (DDR) flip-flops; one input pair and one output  
pair. Figure 12 demonstrates the functionality of the output DDR flip-flop. Two signals from within the iCE65  
device drive the DDR output flip-flop. The D_OUT_0 signal is clocked by the rising edge of the OUTCLK signal  
while the D_OUT_1 signal is clocked by the falling edge of the OUTCLK signal, assuming no optional clock polarity  
inversion. Internally, the two individual flip-flops are multiplexed together before the data appears at the pad,  
effectively doubling the output data rate.  
Figure 12: DDR Output Flip-Flop  
OE  
IOENA  
D
Q
Q
D_OUT_1  
D_OUT_0  
OUTCLK  
0
1
PAD  
PIO  
D0  
EN  
S
D
EN  
OUTCLK  
PAD  
D0  
D1  
D0  
D1  
D1  
Similarly, Figure 13 demonstrates the DDR input flip-flop functionality. A double data rate (DDR) signal arrives at  
the pad. Internally, one value is clocked by the rising edge of the INCLK signal and another value is clocked by the  
falling edge of the INCLK signal. The DDR data stream is effectively de-multiplexed within the PIO pin and  
presented to the programmable interconnect on D_IN_0 and D_IN_1.  
Figure 13: DDR Input Flip-Flop  
IOENA  
PIO  
D
Q
Q
D_IN_1  
D_IN_0  
EN  
PAD  
D
EN  
INCLK  
INCLK  
PAD  
D0  
D1  
D0  
D0  
D1  
D1  
D0  
D0  
D1  
D1  
D0  
D1  
D_IN_0  
D_IN_1  
The DDR flip-flops provide several design advantages. Internally within the iCE65 device, the clock frequency is  
half the effective external data rate. The lower clock frequency eases internal timing, doubling the clock period, and  
slashes the clock-related power in half.  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
17  
 
 
iCE65 Ultra Low-Power mobileFPGAFamily  
Global Routing Resources  
Global Buffers  
Each iCE65 component has eight global buffer routing connections, illustrated in Figure 14. There are eight high-  
drive buffers, connected to the eight low-skew, global lines. These lines are designed primarily for clock distribution  
but are also useful for other high-fanout signals such as set/reset and enable signals. The global buffers originate  
either from the Global Buffer Inputs (GBINx) or from programmable interconnect. The associated GBINx pin  
represents the best pin to drive a global buffer from an external source. However, the application with an iCE65  
FPGA can also drive a global buffer via any other PIO pin or from internal logic using the programmable  
interconnect.  
If not used in an application, individual global buffers are turned off to save power.  
Figure 14: High-drive, Low-skew, High-fanout Global Buffer Routing Resources  
I/O Bank 0  
GBIN7  
GBIN2  
Global  
Buffer  
GBUF7  
Global  
Buffer  
GBUF2  
GBUF7 and its associated  
PIO are best for direct  
differential clock inputs  
GBUF6  
Global  
Buffer  
GBUF3  
Global  
Buffer  
GBIN6  
GBIN3  
I/O Bank 2  
Table 11 lists the connections between a specific global buffer and the inputs on a Programmable Logic Block (PLB).  
All global buffers optionally connect to all clock inputs. Any four of the eight global buffers can drive logic inputs to  
a PLB. Even-numbered global buffers optionally drive the Reset input to a PLB. Similarly, odd-numbered buffers  
optionally drive the PLB clock-enable input.  
Table 11: Global Buffer (GBUF) Connections to Programmable Logic Block (PLB)  
Global Buffer  
GBUF0  
GBUF1  
GBUF2  
GBUF3  
GBUF4  
GBUF5  
GBUF6  
GBUF7  
LUT Inputs  
Yes, any 4 of 8  
GBUF buffers  
Clock  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Clock Enable  
Reset  
No  
Yes  
No  
Yes  
No  
Yes  
No  
Yes  
No  
Yes  
No  
Yes  
No  
Yes  
No  
Yes  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
18  
www.latticesemi.com  
 
 
 
Table 12 and Table 13 list the connections between a specific global buffer and the inputs on a Programmable I/O  
(PIO) pair. Although there is no direct connection between a global buffer and a PIO output, such a connection is  
possible by first connecting through a PLB LUT4 function. Again, all global buffers optionally drive all clock inputs.  
However, even-numbered global buffers optionally drive the clock-enable input on a PIO pair.  
The PIO clock enable connect is different between the iCE65L01/iCE65L04 and iCE65L08.  
!
Table 12: iCE65L01 & iCE65L04: Global Buffer (GBUF) Connections to Programmable I/O (PIO) Pair  
Output  
Global Buffer  
GBUF0  
GBUF1  
GBUF2  
GBUF3  
GBUF4  
GBUF5  
GBUF6  
GBUF7  
Connections  
No (connect through  
PLB LUT)  
Input Clock  
Yes  
Output Clock  
Clock Enable  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
No  
Yes  
No  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Table 13: iCE64L08: Global Buffer (GBUF) Connections to Programmable I/O (PIO) Pair  
Output  
Global Buffer  
GBUF0  
GBUF1  
GBUF2  
GBUF3  
GBUF4  
GBUF5  
GBUF6  
GBUF7  
Connections  
No (connect through  
PLB LUT)  
Input Clock  
Yes  
Output Clock  
Clock Enable  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
No  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Global Buffer Inputs  
The iCE65 component has eight specialized GBIN/PIO pins that are optionally direct inputs to the global buffers,  
offering the best overall clock characteristics. As shown in Figure 15, each GBIN/PIO pin is a full-featured I/O pin  
but also provides a direct connection to its associated global buffer. The direct connection to the global buffer  
bypasses the iCEgate input-blocking latch and other PIO input logic. These special PIO pins are allocated two to an  
I/O Bank, a total of eight. These pins are labeled GBIN0 through GBIN7, as shown in Figure 14 and the pin locations  
for each GBIN input appear in Table 14.  
Table 14: Global Buffer Input Ball/Pin Number by Package  
Global Buffer  
Input (GBIN)  
GBIN0  
‘L04  
CB196  
A7  
‘L08  
CB196  
A7  
I/O  
VQ100  
90  
CB132  
A6  
CB284  
E10  
E11  
Bank  
0
1
2
3
GBIN1  
E7  
89  
A7  
E7  
GBIN2  
GBIN3  
F10  
G12  
63  
62  
G14  
F14  
F10  
G12  
L18  
K18  
GBIN4  
GBIN5  
34  
33  
P8  
P7  
L7  
P5  
N8  
M7  
V12  
V11  
GBIN6  
GBIN7  
H1  
H3  
15  
13  
H1  
G1  
H1  
G1  
M5  
L5  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
19  
 
 
 
 
iCE65 Ultra Low-Power mobileFPGAFamily  
Note the clock differences between the iCE65L04 and iCE65L08 in the CB196 package.  
!
Figure 15: GBIN/PIO Pin  
GBIN/PIO Pin  
VCCIO  
0 = Hi-Z  
1 = Output  
Enabled  
Enabled  
Disabled  
1’  
0’  
Pull-up  
not in I/O  
Bank 3  
OE  
Pull-up  
Enable  
OUT  
PAD  
Latch inhibits  
switching for  
lowest power  
iCEGATE  
HOLD  
HD  
IN  
GBIN pins optionally  
connect directly to an  
associated GBUF global  
buffer  
Optional connection from internal  
programmable interconnect.  
GBUF  
Differential Global Buffer Input  
All eight global buffer inputs support single-ended I/O standards such as LVCMOS. Global buffer GBUF7 in I/O  
Bank 3 also provides an optional direct SubLVDS, LVDS, or LVPECL differential clock input, as shown in Figure 16.  
The GBIN7 and its associated differential I/O pad accept a differential clock signal. A 100 Ω termination resistor is  
required across the two pads. Optionally, swap the outputs from the LVDS or LVPECL clock driver to invert the  
clock as it enters the iCE65 device.  
Figure 16: LVDS or LVPECL Clock Input  
GBIN7/DP##B  
LVDS/  
LVPECL  
Clock  
Driver  
GBUF7  
DP##A  
Table 15 lists the pin or ball numbers for the differential global buffer input by package style. Although this  
differential input is the only one that connects directly to a global buffer, other differential inputs can connect to a  
global buffer using general-purpose interconnect, with slightly more signal delay.  
Table 15: Differential Global Buffer Input Ball/Pin Number by Package  
Differential Global  
Buffer Input  
‘L04  
CB196  
G1  
‘L08  
CB196  
H3  
I/O  
(GBIN)  
GBIN7/DPxxB  
DPxxA  
VQ100  
13  
CB132  
N/A  
N/A  
CB284  
L5  
Bank  
3
H4  
12  
G2  
L3  
The differential global buffer input is not available for iCE65 devices in the CB132 package. This  
restriction is an artifact of the pin compatibility between the CB132 and CB284 package.  
!
Note the clock differences between the iCE65L04 and iCE65L08 in the CB196 package.  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
20  
www.latticesemi.com  
 
 
 
Automatic Global Buffer Insertion, Manual Insertion  
The iCEcube development software automatically assigns high-fanout signals to a global buffer. However, to  
manual insert a global buffer input/global buffer (GBIN/GBUF) combination, use the SB_IO_GB primitive. To  
insert just a global buffer (GBUF), use the SB_GBprimitive.  
Global Hi-Z Control  
The global high-impedance control signal, GHIZ, connects to all I/O pins on the iCE65 device. This GHIZ signal is  
automatically asserted throughout the configuration process, forcing all user-I/O pins into their high-impedance  
state. Similarly, the PIO pins can be forced into their high-impedance state via the JTAG controller.  
Global Reset Control  
The global reset control signal connects to all PLB and PIO flip-flops on the iCE65 device. The global reset signal is  
automatically asserted throughout the configuration process, forcing all flip-flops to their defined wake-up state.  
For PLB flip-flops, the wake-up state is always reset, regardless of the PLB flip-flop primitive used in the application.  
See Table 3 for more information.  
The PIO flip-flops are always reset during configuration, although the output flip-flop can be inverted before leaving  
the iCE65 device, as shown in Figure 11.  
RAM  
Each iCE65 device includes multiple high-speed synchronous RAM blocks (RAM4K), each 4Kbit in size. As shown  
in Table 16 a single iCE65 integrates between 16 to 96 such blocks. Each RAM4K block is generically a 256-word  
deep by 16-bit wide, two-port register file, as illustrated in Figure 17. The input and output connections, to and  
from a RAM4K block, feed into the programmable interconnect resources.  
Figure 17: RAM4K Memory Block  
Write Port  
Read Port  
WDATA[15:0]  
MASK[15:0]  
WADDR[7:0]  
RDATA[15:0]  
RADDR[7:0]  
RAM4K  
RAM Block  
(256x16)  
WE  
RE  
WCLKE  
WCLK  
RCLKE  
RCLK  
Table 16: RAM4K Blocks per Device  
Default  
Configuration  
Device  
RAM4K Blocks  
16  
RAM Bits per Block  
Block RAM Bits  
64K  
iCE65L01  
4K  
(4,096)  
iCE65L04  
iCE65L08  
20  
32  
256 x 16  
80K  
128K  
Using programmable logic resources, a RAM4K block implements a variety of logic functions, each with  
configurable input and output data width.  
Random-access memory (RAM)  
Single-port RAM with a common address, enable, and clock control lines  
Two-port RAM with separate read and write control lines, address inputs, and enable  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
21  
 
 
 
iCE65 Ultra Low-Power mobileFPGAFamily  
Register file and scratchpad RAM  
First-In, First-Out (FIFO) memory for data buffering applications  
Circuit buffer  
A 256-deep by 16-wide ROM with registered outputs, contents loaded during configuration  
Sixteen different 8-input look-up tables  
Function or waveform tables such as sine, cosine, etc.  
Correlators or pattern matching operations  
Counters, sequencers  
As pictured in Figure 17, a RAM4K block has separate write and read ports, each with independent control signals.  
Table 17 lists the signals for both ports. Additionally, the write port has an active-Low bit-line write-enable control;  
optionally mask write operations on individual bits. By default, input and output data is 16 bits wide, although the  
data width is configurable using programmable logic and, if needed, multiple RAM4K blocks.  
The WCLK and RCLK inputs optionally connect to one of the following clock sources.  
The output from any one of the eight Global Buffers, or  
A connection from the general-purpose interconnect fabric  
The data contents of the RAM4K block are optionally pre-loaded during iCE65 device configuration. If the RAM4K  
blocks are not pre-loaded during configuration, then the resulting configuration bitstream image is smaller.  
However, if an uninitialized RAM4K block is used in the application, then the application must initialize the RAM  
contents to guarantee the data value.  
See Table 56 for detailed timing information.  
Signals  
Table 17 lists the signal names, direction, and function of each connection to the RAM4K block. See also Figure 17.  
Table 17: RAM4K Block RAM Signals  
Signal Name  
WDATA[15:0]  
MASK[15:0]  
Direction  
Input  
Input  
Description  
Write Data input.  
Masks write operations for individual data bit-lines.  
0 = Write bit; 1 = Don’t write bit  
WADDR[7:0]  
WE  
WCLKE  
WCLK  
RDATA[15:0]  
RADDR[7:0]  
RE  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Input  
Input  
Write Address input. Selects one of 256 possible RAM locations.  
Write Enable input.  
Write Clock Enable input.  
Write Clock input. Default rising-edge, but with falling-edge option.  
Read Data output.  
Read Address input. Selects one of 256 possible RAM locations.  
Read Enable input.  
RCLKE  
RCLK  
Read Clock Enable input.  
Read Clock input. Default rising-edge, but with falling-edge option.  
Write Operations  
Figure 18 shows the logic involved in writing a data bit to a RAM location. Table 18 describes various write  
operations for a RAM4K block. By default, all RAM4K write operations are synchronized to the rising edge of  
WCLK although the clock is invertible as shown in Figure 18.  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
22  
www.latticesemi.com  
 
Figure 18: RAM4K Bit Write Logic  
RAM[LOCATION][BIT]  
WDATA[BIT]  
MASK[BIT]  
WE  
D
EN  
WADDR[7:0]  
WCLKE  
WCLK  
When the WCLKE signal is Low, the clock to the RAM4K block is disabled, keeping the RAM in its lowest power  
mode.  
Table 18: RAM4K Write Operations  
WDATA[15:0] MASK[15:0] WADDR[7:0]  
WE  
Write  
WCLKE WCLK  
Clock  
Operation  
Disabled  
Disabled  
Disabled  
Write  
Data  
Masked  
Write  
Data  
X
Mask Bit  
Address  
Enable Enable Clock  
RAM Location  
No change  
X
X
X
X
0
X
1
0
X
X
No change  
No change  
RAM[WADDR][i]  
= WDATA[i]  
RAM[WADDR][i]  
= No change  
X
X
X
0
1
WDATA[i]  
MASK[i] = 0  
WADDR  
1
X
MASK[i] = 1  
WADDR  
1
To write data into the RAM4K block, perform the following operations.  
Supply a valid address on the WADDR[7:0] address input port  
Supply valid data on the WDATA[15:0] data input port  
To write or mask selected data bits, set the associated MASK input port accordingly. For example, write  
operations on data bit D[i] are controlled by the associated MASK[i] input.  
MASK[i] = 0: Write operations are enabled for data line WDATA[i]  
MASK[i] = 1: Mask write operations are disabled for data line WDATA[i]  
Enable the RAM4K write port (WE = 1)  
Enable the RAM4K write clock (WCLKE = 1)  
Apply a rising clock edge on WCLK (assuming that the clock is not inverted)  
Read Operations  
Figure 19 shows the logic involved in reading a location from RAM. Table 19 describes various read operations for a  
RAM4K block. By default, all RAM4K read operations are synchronized to the rising edge of RCLK although the  
clock is invertible as shown in Figure 19.  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
23  
iCE65 Ultra Low-Power mobileFPGAFamily  
Figure 19: RAM4K Read Logic  
Select  
Location  
RAM[LOCATION]  
Output Register  
RDATA[15:0]  
Q
D
Q
EN  
RADDR[7:0]  
RE  
RCLKE  
RCLK  
Table 19: RAM4K Read Operations  
RADDR[7:0]  
RE  
RCLKE  
RCLK  
Read  
Enable  
Clock  
Enabe  
Operation  
After configuration, before first  
valid Read Data operation  
Disabled  
Disabled  
Disabled  
Read Data  
Address  
Clock  
RDATA[15:0]  
X
X
X
X
X
Undefined  
X
X
0
1
X
0
X
1
0
X
X
No Change  
No Change  
No change  
X
RADDR  
RAM[RADDR]  
To read data from the RAM4K block, perform the following operations.  
Supply a valid address on the RADDR[7:0] address input port  
Enable the RAM4K read port (RE = 1)  
Enable the RAM4K read clock (RCLKE = 1)  
Apply a rising clock edge on RCLK  
After the clock edge, the RAM contents located at the specified address (RADDR) appear on the RDATA  
output port  
Read Data Register Undefined Immediately after Configuration  
Unlike the flip-flops in the Programmable Logic Blocks and Programmable I/O pins, the RDATA[15:0] read data  
output register is not automatically reset after configuration. Consequently, immediately following configuration  
and before the first valid Read Data operation, the initial RDATA[15:0] read value is undefined.  
Pre-loading RAM Data  
The data contents for a RAM4K block can be optionally pre-loaded during iCE65 configuration. If not pre-loaded  
during configuration, then the RAM contents must be initialized by the iCE65 application before the RAM contents  
are valid.  
Pre-loading the RAM data in the configuration bitstream increases the size of the configuration image accordingly.  
RAM Contents Preserved during Configuration  
RAM contents are preserved (write protected) during configuration, assuming that voltage supplies are maintained  
throughout. Consequently, data can be passed between multiple iCE65 configurations by leaving it in a RAM4K  
block and then skipping pre-loading during the subsequent reconfiguration. See Cold Boot Configuration Option”  
and “Warm Boot Configuration Option” for more information.  
Low-Power Setting  
To place a RAM4K block in its lowest power mode, keep WCLKE = 0 and RCLKE = 0. In other words, when not  
actively using a RAM4K block, disable the clock inputs.  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
24  
www.latticesemi.com  
Device Configuration  
As described in Table 20, iCE65 components are configured for a specific application by loading a binary  
configuration bitstream image, generated by the Lattice development system. For high-volume applications, the  
bitstream image is usually permanently programmed in the on-chip NVCM, However, the bitstream image can also  
be stored external in a standard, low-cost commodity SPI serial Flash PROM. The iCE65 component can  
automatically load the image using the SPI Master Configuration Interface. Similarly, the iCE65 configuration data  
can be downloaded from an external processor, microcontroller, or DSP processor using an SPI-like serial interface  
or an IEEE 1149 JTAG interface.  
Table 20: iCE65 Device Configuration Modes  
Mode  
NVCM  
Analogy  
ASIC  
Configuration Data Source  
Internal, lowest-cost, secure, one-time programmable Nonvolatile Configuration  
Memory (NVCM)  
SPI Flash  
Microprocessor External, low-cost, commodity, SPI serial Flash PROM  
SPI  
Peripheral  
Processor  
Peripheral  
Configured by external device, such as a processor, microcontroller, or DSP using  
practically any data source, such as system Flash, a disk image, or over a network  
connection.  
JTAG  
JTAG  
JTAG configuration requires sending a special command sequence on the SPI  
interface to enable JTAG configuration. Configuration is controlled by and external  
device.  
Configuration Mode Selection  
The iCE65 configuration mode is selected according to the following priority described below and illustrated in  
Figure 20.  
After exiting the Power-On Reset (POR) state or when CRESET_B returns High after being held Low for  
250 ns or more, the iCE65 FPGA samples the logical value on its SPI_SS_B pin. Like other programmable I/O  
pins, the SPI_SS_B pin has an internal pull-up resistor (see Input Pull-Up Resistors on I/O Banks 0, 1, and 2).  
If the SPI_SS_B pin is sampled as a logic ‘1’ (High), then …  
Check if the iCE65 is enabled to configure from the Nonvolatile Configuration Memory (NVCM). If the  
iCE65 device has NVCM memory (‘F’ ordering code) but the NVCM is yet unprogrammed, then the  
iCE65 device is not enabled to configure from NVCM. Conversely, if the NVCM is programmed, the  
iCE65 device will configure from NVCM.  
If enabled to configure from NVCM, the iCE65 device configures itself using NVCM.  
If not enabled to configure from NVCM, then the iCE65 FPGA configures using the SPI Master  
Configuration Interface.  
If the SPI_SS_B pin is sampled as a logic ‘0’ (Low), then the iCE65 device waits to be configured from an  
external controller or from another iCE65 device in SPI Master Configuration Mode using an SPI-like  
interface.  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
25  
 
iCE65 Ultra Low-Power mobileFPGAFamily  
Figure 20: Device Configuration Control Flow  
Power-Up  
CDONE = 0  
iCE65 checks that all  
required supply voltages  
are within acceptable  
range  
Is Power-On  
Reset (POR)  
Released?  
No  
No  
Yes  
Holding CRESET_B Low  
delays the start of  
configuration  
CRESET_B = High?  
State of SPI_SS_B  
Yes  
SPI_SS_B = High?  
Yes  
pin sampled  
No  
ConfigureasSPI  
Periphal  
A device with an  
unprogrammed NVCM is not  
enabled for configuration.  
Yes  
NVCM Enabled for  
Configuration?  
Configure from  
NVCM  
No  
Configure from  
SPI Flash PROM  
CDONE = 1  
After configuration ends,  
pulse the CRESET_B pin  
Low for 250 ns or longer to  
restart configuration process  
or cycle the power  
No  
CRESET_B = Low?  
Yes  
Configuration Image Size  
Table 23 shows the number of memory bits required to configure an iCE65 device. Two values are provided for each  
device. The “Logic Only” value indicates the minimum configuration size, the number of bits required to configure  
only the logic fabric, leaving the RAM4K blocks uninitialized. The “Logic + RAM4K” column indicates the  
maximum configuration size, the number of bits to configure the logic fabric and to pre-initialize all the RAM4K  
blocks.  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
26  
www.latticesemi.com  
 
Table 21: iCE65 Configuration Image Size (Kbits)  
MINIMUM  
Logic Only  
MAXIUM  
Logic + RAM4K  
Device  
(RAM4K not initialized)  
(RAM4K pre-initialized)  
iCE65L01  
181 Kbits  
245 Kbits*  
iCE65L04  
iCE65L08  
453 Kbits  
929 Kbits  
533 Kbits  
1,057 Kbits  
* Note: only 14 of the 16 RAM4K Memory Blocks may be pre-initialized in the iCE65L01.  
Nonvolatile Configuration Memory (NVCM)  
All standard iCE65 devices have an internal, nonvolatile configuration memory (NVCM). The NVCM is large  
enough to program a complete iCE65 device, including initializing all RAM4K block locations (MAXIMUM column  
in Table 23. The NVCM memory also has very high programming yield due to extensive error checking and  
correction (ECC) circuitry.  
The NVCM is ideal for cost-sensitive, high-volume production applications, saving the cost and board space  
associated with an external configuration PROM. Furthermore, the NVCM provides exceptional design security,  
protecting critical intellectual property (IP). The NVCM contents are entirely contained within the iCE65 device  
and are not readable once protected by the one-time programmable Security bits. Furthermore, there is no  
observable difference between a programmed or un-programmed memory cell using optical or electron microscopy.  
The NVCM memory has a programming interface similar to a 25-series SPI serial Flash PROM. Consequently, it can  
be programmed using standard device programmers before or after circuit board assembly or programmed in-system  
from a microprocessor or other intelligent controller. NVCM programming requires VCCIO_1, Bank 1 voltage to be  
applied on power-up, at the same time as other voltage supplies.  
Configuration Control Signals  
The iCE65 configuration process is self-timed and controlled by a few internal signals and device I/O pins, as  
described in Table 22.  
Table 22: iCE65 Configuration Control Signals  
Signal  
Name  
POR  
OSC  
CRESET_B  
CDONE  
Direction  
Internal control  
Internal control  
Input  
Description  
Internal Power-On Reset (POR) circuit.  
Internal configuration oscillator.  
Configuration Reset input. Active-Low. No internal pull-up resistor.  
Open-drain Output Configuration Done output. Permanent, weak pull-up resistor to VCCIO_2.  
The Power-On Reset circuit, POR, automatically resets the iCE65 component to a known state during power-up  
(cold boot). The POR circuit monitors the relevant voltage supply inputs, as shown in Figure 22. Once all supplies  
exceed their minimum thresholds, the configuration controller can start the configuration process.  
The configuration controller begins configuring the iCE65 device, clocked by the Internal Oscillator, OSC. The OSC  
oscillator continues controlling configuration unless the iCE65 device is configured using the SPI Peripheral  
Configuration Interface.  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
27  
 
 
 
 
 
iCE65 Ultra Low-Power mobileFPGAFamily  
Figure 21: iCE65 Configuration Control Pins  
Optional Pull-up  
Optional Pull-up  
Required if driven by  
Recommended if  
SiliconBlue  
iCE65  
open-drain output  
driving another device  
VCCIO_2  
VCCIO_2  
I/O Bank 2  
10 kΩ  
10 kΩ  
CRESET_B  
CDONE  
Rising edge starts  
Pulse  
Configured  
configuration process.  
CRESET_B  
Low for 200  
ns to restart  
configuration  
PIOs activate 49  
configuration clock  
cycles after CDONE  
goes High  
Low resets iCE65  
Unconfigured  
Figure 21 shows the two iCE65 configuration control pins, CRESET_B and CDONE. Table 23 lists the ball/pin  
numbers for the configuration control pins by package. When driven Low for at least 200 ns, the dedicated  
Configuration Reset input, CRESET_B, resets the iCE65 device. When CRESET_B returns High, the iCE65 FPGA  
restarts the configuration process from its power-on conditions (Cold Boot). The CRESET_B pin is a pure input  
with no internal pull-up resistor. If driven by open-drain driver or un-driven, then connect the CRESET_B pin to a  
10 kΩ pull-up resistor connected to the VCCIO_2 supply.  
Table 23: Configuration Control Ball/Pin Numbers by Package  
Configuration  
Control Pins  
CRESET_B  
CDONE  
CB81  
J6  
H6  
QN84  
A21  
B16  
VQ100  
44  
CB132  
L10  
M10  
CB196  
L10  
M10  
CB284  
R14  
T14  
43  
The iCE65 device signals the end of the configuration process by actively turning off the internal pull-down  
transistor on the Configuration Done output pin, CDONE. The pin has a permanent, weak internal pull-up resistor  
to the VCCIO_2 rail. If the iCE65 device drives other devices, then optionally connect the CDONE pin to a 10 kΩ  
pull-up resistor connected to the VCCIO_2 supply.  
The PIO pins activate according to their configured function after 49 configuration clock cycles. The internal  
oscillator is the configuration clock source for the SPI Master Configuration Interface and when configuring from  
* Note: only 14 of the 16 RAM4K Memory Blocks may be pre-initialized in the iCE65L01.  
Nonvolatile Configuration Memory (NVCM). When using the SPI Peripheral Configuration Interface, the  
configuration clock source is the SPI_SCK clock input pin.  
Internal Oscillator  
During SPI Master or NVCM configuration mode, the controlling clock signal is generated from an internal  
oscillator. The oscillator starts operating at the Default frequency. During the configuration process, however, bit  
settings within the configuration bitstream can specify a higher-frequency mode in order to maximize SPI  
bandwidth and reduce overall configuration time. See Table 57: Internal Oscillator Frequency on page 105 for the  
specified oscillator frequency range.  
Using the SPI Master Configuration Interface, internal oscillator controls all the interface timing and clocks the SPI  
serial Flash PROM via the SPI_SCK clock output pin.  
The oscillator output, which also supplies the SPI SCK clock output during the SPI Flash configuration process, has  
a 50% duty cycle.  
Internal Device Reset  
Figure 22 presents the various signals that internally reset the iCE65 internal logic.  
Power-On Reset (POR)  
CRESET_B Pin  
JTAG Interface  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
28  
www.latticesemi.com  
 
 
 
Figure 22: iCE65 Internal Reset Circuitry  
Internal  
Voltage  
Thresholds  
Power-on  
Device Pins  
Reset (POR)  
SPI_VCC  
Time-out  
Delay  
SPI_VCCT  
VCCT  
VCC  
VCCIO_2  
VPP_2V5  
VCCIO_2T  
VPP_2V5T  
Internal Reset  
Glitch Filter  
CRESET_B  
TDI  
TMS  
TCK  
JTAG  
TDO  
TRST_B  
Power-On Reset (POR)  
The Power-on Reset (POR) circuit monitors specific voltage supply inputs and holds the device in reset until all the  
relevant supplies exceed the internal voltage thresholds. The SPI_VCC supply also has an additional time-out delay  
to allow an attached SPI serial PROM to power up properly. Table 24 shows the POR supply inputs. The  
Nonvolatile Configuration Memory (NVCM) requires that the VPP_2V5 supply be connected, even if the  
application does not use the NVCM.  
Table 24: Power-on Reset (POR) Voltage Resources  
Supply Rail  
VCC  
SPI_VCC  
VCCIO_1  
VCCIO_2  
VPP_2V5  
iCE65 Production Devices  
Yes  
Yes  
No  
Yes  
Yes  
CRESET_B Pin  
The CRESET_B pin resets the iCE65 internal logic when Low.  
JTAG Interface  
Specific command sequences also reset the iCE65 internal logic.  
SPI Master Configuration Interface  
All iCE65 devices, including those with NVCM, can be configured from an external, commodity SPI serial Flash  
PROM, as shown in Figure 23. The SPI configuration interface is essentially its own independent I/O bank, powered  
by the VCC_SPI supply input. Presently, most commercially-available SPI serial Flash PROMs require a 3.3V  
supply.  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
29  
 
 
iCE65 Ultra Low-Power mobileFPGAFamily  
Figure 23: iCE65 SPI Master Configuration Interface  
+3.3V  
SPI_VCC  
10 kΩ  
SPI_SO  
SiliconBlue  
iCE65  
(SPI bank)  
SPI_SI  
Commodity SPI  
Serial Flash  
PROM  
SPI_SS_B  
SPI_SCK  
The SPI configuration interface is used primarily during development before mass production, where the  
configuration is then permanently programmed in the NVCM configuration memory. However, the SPI interface  
can also be the primary configuration interface allowing easy in-system upgrades and support for multiple  
configuration images.  
The SPI control signals are defined in Table 25. Table 26 lists the SPI interface ball or pins numbers by package.  
Table 25: SPI Master Configuration Interface Pins (SPI_SS_B High before Configuration)  
Signal Name  
SPI_VCC  
SPI_SO  
SPI_SI  
SPI_SS_B  
SPI_SCK  
Direction  
Supply  
Output  
Input  
Output  
Output  
Description  
SPI Flash PROM voltage supply input.  
SPI Serial Output from the iCE65 device.  
SPI Serial Input to the iCE65 device, driven by the select SPI serial Flash PROM.  
SPI Slave Select output from the iCE65 device. Active Low.  
SPI Slave Clock output from the iCE65 device.  
After configuration, the SPI port pins are available to the user-application as additional PIO pins, supplied by the  
SPI_VCC input voltage, essentially providing a fifth “mini” I/O bank.  
Table 26: SPI Interface Ball/Pin Numbers by Package  
SPI Interface  
SPI_VCC  
VQ100  
50  
CB132  
L11  
CB196  
L11  
CB284  
R15  
PIOS/SPI_SO  
PIOS/SPI_SI  
PIOS/SPI_SS_B  
PIOS/SPI_SCK  
45  
46  
49  
48  
M11  
P11  
P13  
M11  
P11  
P13  
T15  
V15  
V17  
V16  
P12  
P12  
SPI PROM Requirements  
The iCE65 mobileFPGA SPI Flash configuration interface supports a variety of SPI Flash memory vendors and  
product families. However, Lattice Semiconductor does not specifically test, qualify, or otherwise endorse any  
specific SPI Flash vendor or product family. The iCE65 SPI interface supports SPI PROMs that they meet the  
following requirements.  
The PROM must operate at 3.3V or 2.5V in order to trigger the iCE65 FPGA’s power-on reset circuit.  
The PROM must support the 0x0BFast Read command, using a 24-bit start address and has 8 dummy bits  
before the PROM provides first data (see Figure 25: SPI Fast Read Command).  
The PROM must have enough bits to program the iCE65 device (see Table 27: Smallest SPI PROM Size  
(bits), by Device, by Number of Images).  
The PROM must support data operations at the upper frequency range for the selected iCE65 internal  
oscillator frequency (see Table 57). The oscillator frequency is selectable when creating the FPGA bitstream  
image.  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
30  
www.latticesemi.com  
 
 
 
 
 
 
 
 
For lowest possible power consumption after configuration, the PROM should also support the 0xB9Deep  
Power Down command and the 0xABRelease from Deep Power-down Command (see Figure 24 and Figure  
26). The low-power mode is optional.  
The PROM must be ready to accept commands 10 µs after meeting its power-on conditions. In the PROM  
data sheet, this may be specified as tVSL or tVCSL. It is possible to use slower PROMs by holding the  
CRESET_B input Low until the PROM is ready, then releasing CRESET_B, either under program control or  
using an external power-on reset circuit.  
The Lattice iCEman65 development board and associated programming software uses an ST Micro/Numonyx  
M25Pxx SPI serial Flash PROM.  
SPI PROM Size Requirements  
Table 27 lists the minimum SPI PROM size required to configure an iCE65 device. Larger PROM sizes are allowed,  
but not required unless the end application uses the additional space. SPI serial PROM sizes are specified in bits.  
For each device size, the table shows the required minimum PROM size for “Logic Only” (no BRAM initialization)  
and “Logic + RAM4K” (RAM4K blocks pre-initialized). Furthermore, the table shows the PROM size for varying  
numbers of configuration images. Most applications will use a single image. Applications that use the Cold Boot or  
Warm Boot features may use more than one image.  
Table 27: Smallest SPI PROM Size (bits), by Device, by Number of Images  
1 Image  
2 Images  
3 Images  
4 Images  
Logic  
Only  
Logic +  
RAM4K  
Logic  
Only  
Logic +  
RAM4K  
Logic  
Only  
Logic +  
RAM4K  
Logic  
Only  
Logic +  
RAM4K  
Device  
iCE65L01  
256K  
256K  
512K  
512K  
1M  
1M  
2M  
4M  
1M  
1M  
4M  
8M  
iCE65L04  
iCE65L08  
512K  
1M  
1M  
1M  
2M  
2M  
2M  
4M  
2M  
4M  
2M  
4M  
Enabling SPI Configuration Interface  
To enable the SPI configuration mode, the SPI_SS_B pin must be allowed to float High. The SPI_SS_B pin has an  
internal pull-up resistor. If SPI_SS_B is Low, then the iCE65 component defaults to the SPI Slave configuration  
mode.  
SPI Master Configuration Process  
The iCE65 SPI Master Configuration Interface supports a variety of modern, high-density, low-cost SPI serial Flash  
PROMs. Most modern SPI PROMs include a power-saving Deep Power-down mode. The iCE65 component  
exploits this mode for additional system power savings.  
The iCE65 SPI interface starts by driving SPI_SS_B Low, and then sends a Release from Power-down command to  
the SPI PROM, hexadecimal command code 0xAB. Figure 24 provides an example waveform. This initial command  
wakes up the SPI PROM if it is already in Deep Power-down mode. If the PROM is not in Deep Power-down mode,  
the extra command has no adverse affect other than that it requires a few additional microseconds during the  
configuration process. The iCE65 device transmits data on the SPI_SO output, on the falling edge of the SPI_SCK  
output. The SPI PROM does not provide any data to the iCE65 device’s SPI_SI input. After sending the last  
command bit, the iCE65 device de-asserts SPI_SS_B High, completing the command. The iCE65 device then waits a  
minimum of 10 µS before sending the next SPI PROM command.  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
31  
 
iCE65 Ultra Low-Power mobileFPGAFamily  
Figure 24: SPI Release from Deep Power-down Command  
SPI_SCK  
SPI_SS_B  
SPI_SO  
1
0 1 0 1 0 1 1  
0xAB  
Release from Deep Power-down  
Figure 25 illustrates the next command issued by the iCE65 device. The iCE65 SPI interface again drives SPI_SS_B  
Low, followed by a Fast Read command, hexadecimal command code 0x0B, followed by a 24-bit start address,  
transmitted on the SPI_SO output. The iCE65 device provides data on the falling edge of SPI_SS_B. Upon initial  
power-up, the start address is always 0x00_0000. After waiting eight additional clock cycles, the iCE65 device  
begins reading serial data from the SPI PROM. Before presenting data, the SPI PROM’s serial data output is high-  
impedance. The SPI_SI input pin has an internal pull-up resistor and sees high-impedance as logic ‘1’.  
Figure 25: SPI Fast Read Command  
SPI_SCK  
SPI_SS_B  
SPI_SO  
SPI_SI  
0
0
0
0
1
0
1
1
X X X X X X X X  
0x0B  
Fast Read  
24-bit Start Address  
Don’t Care  
Dummy Byte  
PROM output is Hi-Z. Pulled High in SPI_SI pin via internal pull-up resistor.  
Data Byte 0  
The external SPI PROM supplies data on the falling edge of the iCE65 device’s SPI_SCK clock output. The iCE65  
device captures each PROM data value on the SPI_SI input, using the rising edge of the SPI_SCK clock signal. The  
SPI PROM data starts at the 24-bit address presented by the iCE65 device. PROM data is serially output, byte by  
byte, with most-significant bit, D7, presented first. The PROM automatically increments an internal byte counter as  
long as the PROM is selected and clocked.  
After transferring the required number configuration data bits, the iCE65 device ends the Fast Read command by  
de-asserting its SPI_SS_B PROM select output, as shown in Figure 26. To conserve power, the iCE65 device then  
optionally issues a final Deep Power-down command, hexadecimal command code 0xB9. After de-asserting the  
SPI_SS_B output, the SPI PROM enters its Deep Power-down mode. The final power-down step is optional; the  
application may use the SPI PROM and can skip this step, controlled by a configuration option.  
Figure 26: Final Configuration Data, SPI Deep Power-down Command  
SPI_SCK  
SPI_SS_B  
SPI_SO  
SPI_SI  
1 0 1 1 1 0 0 1  
0xB9  
Deep Power-down  
Last Data Byte  
Fast Read data  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
32  
www.latticesemi.com  
 
 
Cold Boot Configuration Option  
By default, the iCE65 FPGA is programmed with a single configuration image, either from internal NVCM memory,  
from an external SPI Flash PROM, or externally from a processor or microcontroller.  
Figure 27: ColdBoot and WarmBoot Configuration  
At power-up or  
after reset  
CBSEL1  
0
Jump based  
on settings  
Enable/Disable Cold Boot  
Enable/Disable Warm Boot  
Jump vector addresses (4)  
Cold/Warm Boot  
Applet  
CBSEL0  
CRESET_B  
Cold Boot  
Control  
Vector Address 0  
Vector Address 1  
Vector Address 2  
Vector Address 3  
Configuration  
Image 0  
Power-On  
Reset  
(0,0)  
(0,1)  
(1,0)  
(1,1)  
SB_WARMBOOT  
S1  
S0  
Configuration  
Image 1  
Warm  
Boot  
Control  
BOOT  
Configuration  
Image 2  
Controlled by  
currently loaded  
iCE65 application  
Configuration  
Image 3  
SPI PROM  
When self loading from NVCM or from an SPI Flash PROM, there is an additional configuration option called Cold  
Boot mode. When this option is enabled in the configuration bitstream, the iCE65 FPGA boots normally from  
power-on or a master reset (CRESET_B = Low pulse), but monitors the value on two PIO pins that are borrowed  
during configuration, as shown in Figure 27. These pins, labeled PIO2/CBSEL0 and PIO2/CBSEL1, tell the FPGA  
which of the four possible SPI configurations to load into the device. Table 30 provides the pin or ball locations for  
these pins.  
Load from initial location, either from NVCM or from address 0 in SPI Flash PROM. For Cold Boot or  
Warm Boot applications, the initial configuration image contains the cold boot/warm boot applet.  
Check if Cold Boot configuration feature is enabled in the bitstream.  
If not enabled, FPGA configures normally.  
If Cold Boot is enabled, then the FPGA reads the logic values on pins CBSEL[1:0]. The FPGA uses the  
value as a vector and then reads from the indicated vector address.  
At the selected CBSEL[1:0] vector address, there is a starting address for the selected configuration  
image.  
For SPI Flash PROMs, the new address is a 24-bit start address in Flash.  
If the selected bitstream is in NVCM, then the address points to the internal NVCM.  
Using the new start address, the FPGA restarts reading configuration memory from the new location.  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
33  
 
iCE65 Ultra Low-Power mobileFPGAFamily  
Table 28: ColdBoot Select Ball/Pin Numbers by Package  
ColdBoot Select  
PIO2/CBSEL0  
PIO2/CBSEL1  
CB81  
G5  
H5  
QN84  
B15  
A20  
VQ100  
41  
CB132  
L9  
P10  
CB196  
L9  
P10  
CB284  
R13  
V14  
42  
When creating the initial configuration image, the Lattice development software loads the start address for up to  
four configuration images in the bitstream. The value on the CBSEL[1:0] pins tell the configuration controller to  
read a specific start address, then to load the configuration image stored at the selected address. The multiple  
bitstreams are stored either in the SPI Flash or in the internal NVCM.  
After configuration, the CBSEL[1:0] pins become normal PIO pins available to the application.  
The Cold Boot feature allows the iCE65 to be reprogrammed for special application requirements such as the  
following.  
A normal operating mode and a self-test or diagnostics mode.  
Different applications based on switch settings.  
Different applications based on a card-slot ID number.  
Warm Boot Configuration Option  
The Warm Boot configuration is similar to the Cold Boot feature, but is completely under the control of the FPGA  
application.  
A special design primitive, SB_WARMBOOT, allows an FPGA application to choose between four configuration  
images using two internal signal ports, S1 and S0, as shown in Figure 27. These internal signal ports connect to  
programmable interconnect, which in turn can connect to PLB logic and/or PIO pins.  
After selecting the desired configuration image, the application then asserts the internal signal BOOT port High to  
force the FPGA to restart the configuration process from the specified vector address stored in PROM.  
A Warm Boot application can only jump to another configuration image that DOES NOT have Warm  
Boot enabled. There is no such restriction for Cold Boot applications.  
!
Time-Out and Retry  
When configuring from external SPI Flash, the iCE65 device looks for a synchronization word. If the device does  
not find a synchronization word within its timeout period, the device automatically attempts to restart the  
configuration process from the very beginning. This feature is designed to address any potential power-sequencing  
issues that may occur between the iCE65 device and the external PROM.  
The iCE65 device attempts to reconfigure six times. If not successful after six attempts, the iCE65 FPGA  
automatically goes into low-power mode.  
SPI Peripheral Configuration Interface  
Using the SPI peripheral configuration interface, an application processor (AP) serially writes a configuration image  
to an iCE65 FPGA using the iCE65’s SPI interface, as shown in Figure 23. The iCE65’s SPI configuration interface is  
a separate, independent I/O bank, powered by the VCC_SPI supply input. Typically, VCC_SPI is the same voltage as  
the application processor’s I/O. The configuration control signals, CDONE and CRESET_B, are supplied by the  
separate I/O Bank 2 voltage input, VCCIO_2.  
This same SPI peripheral interface supports programming for the iCE65’s Nonvolatile Configuration Memory  
(NVCM).  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
34  
www.latticesemi.com  
 
Figure 28: iCE65 SPI Peripheral Configuration Interface  
AP_VCCIO VCCIO_2  
VCCIO_2  
SPI_VCC  
10 kΩ  
10 kΩ  
CDONE  
AP_VCCIO  
iCE65  
CRESET_B (I/O Bank 2)  
Application  
Processor  
SPI_SI  
SPI_SO  
iCE65  
(SPI Bank)  
SPI_SS_B  
SPI_SCK  
10 kΩ  
The SPI control signals are defined in Table 25.  
Table 29: SPI Peripheral Configuration Interface Pins (SPI_SS_B Low when CRESET_B Released)  
Signal  
Name  
iCE65 I/O  
Supply  
Direction  
Description  
CDONE  
AP iCE65  
VCCIO_2  
Configuration Done output from iCE65. Connect to a 10kΩ pull-up  
resistor to the application processor I/O voltage, AP_VCC.  
Configuration Reset input on iCE65. Typically driven by AP using an  
open-drain driver, which also requires a 10kΩ pull-up resistor to  
VCCIO_2.  
CRESET_B  
AP iCE65  
SPI_VCC  
SPI_SI  
SPI_SO  
Supply  
AP iCE65  
AP iCE65  
SPI_VCC  
SPI Flash PROM voltage supply input.  
SPI Serial Input to the iCE65 FPGA, driven by the application processor.  
SPI Serial Output from CE65 device to the application processor. Not  
actually used during SPI peripheral mode configuration but required if  
the SPI interface is also used to program the NVCM.  
SPI Slave Select output from the application processor. Active Low.  
Optionally hold Low prior to configuration using a 10kΩ pull-down  
resistor to ground.  
SPI_SS_B  
SPI_SCK  
AP iCE65  
AP iCE65  
SPI Slave Clock output from the application processor.  
After configuration, the SPI port pins are available to the user-application as additional PIO pins, supplied by the  
SPI_VCC input voltage, essentially providing a fifth “mini” I/O bank.  
Enabling SPI Configuration Interface  
The optional 10 kΩ pull-down resistor on the SPI_SS_B signal ensures that the iCE65 FPGA powers up in the SPI  
peripheral mode. Optionally, the application processor drives the SPI_SS_B pin Low when CRESET_B is released,  
forcing the iCE65 FPGA into SPI peripheral mode.  
SPI Peripheral Configuration Process  
Figure 29 illustrates the interface timing for the SPI peripheral mode and Figure 30 outlines the resulting  
configuration process. The actual timing specifications appear in Table 60. The application processor (AP) begins  
by driving the iCE65 CRESET_B pin Low, resetting the iCE65 FPGA. Similarly, the AP holds the iCE65’s SPI_SS_B  
pin Low. The AP must hold the CRESET_B pin Low for at least 200 ns. Ultimately, the AP either releases the  
CRESET_B pin and allows it to float High via the 10 kΩ pull-up resistor to VCCIO_2 or drives CRESET_B High. The  
iCE65 FPGA enters SPI peripheral mode when the CRESET_B pin returns High while the SPI_SS_B pin is Low.  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
35  
iCE65 Ultra Low-Power mobileFPGAFamily  
After driving CRESET_B High or allowing it to float High, the AP must wait a minimum of tCR_SCK µs, (see Table 60)  
allowing the iCE65 FPGA to clear its internal configuration memory.  
After waiting for the configuration memory to clear, the AP sends the configuration image generated by the iCEcube  
development system. An SPI peripheral mode configuration image must not use the ColdBoot or WarmBoot  
options. Send the entire configuration image, without interruption, serially to the iCE65’s SPI_SI input on the falling  
edge of the SPI_SCK clock input. Once the AP sends the 0x7EAA997Esynchronization pattern, the generated  
SPI_SCK clock frequency must be within the specified 1 MHz to 25 MHz range (40 ns to 1 µs clock period) while  
sending the configuration image. Send each byte of the configuration image with most-significant bit (msb) first.  
The AP sends data to the iCE65 FPGA on the falling edge of the SPI_SCK clock. The iCE65 FPGA internally  
captures each incoming SPI_SI data bit on the rising edge of the SPI_SCK clock. The iCE65’s SPI_SO output pin is  
not used during SPI peripheral mode but must connect to the AP if the AP also programs the iCE65’s Nonvolatile  
Configuration Memory (NVCM).  
Prior to sending the iCE65 configuration image , an SPI NVCM shut-off sequence must be sent.  
See AN014 for details.  
The iCE65 configuration image must be sent as one contiguous stream without interruption.  
!
The SPI_SCK clock period must be between 40 ns to 1 µs (1 MHz to 25 MHz).  
After sending the entire image, the iCE65 FPGA releases the CDONE output allowing it to float High via the 10 kΩ  
pull-up resistor to AP_VCC. If the CDONE pin remains Low, then an error occurred during configuration and the  
AP should handle the error accordingly for the application.  
After the CDONE output pin goes High, send at least 49 additional dummy bits, effectively 49 additional SPI_SCK  
clock cycles measured from rising-edge to rising-edge.  
After the additional SPI_CLK cycles, the SPI interface pins then become available to the user application loaded in  
FPGA.  
To reconfigure the iCE65 FPGA or to load a different configuration image, merely restart the configuration process  
by pulsing CRESET_B Low or power-cycling the FPGA.  
Figure 29: Application Processor Waveforms for SPI Peripheral Mode Configuration Process  
CDONE  
49 SPI_SCK Cycles  
Rising edge to rising edge  
200 ns  
CRESET_B  
iCE65L01: 800 µs  
iCE65L04: 800 µs  
iCE65L08: 1200 µs  
iCE65 clears internal  
configuration memory  
iCE65 enters SPI Peripheral  
mode with SPI_SS_B = Low on  
SPI_SCK  
rising edge of CRESET_B  
iCE65 captures SPI_SI data on SPI_SCK rising edge.  
SPI_SS_B  
Configuration image always starts with 0x7EAA997Esynchronization word.  
SPI_SI  
SPI_SO  
X
X
X
X
X
X
Entire Configuration Images  
Don’t Care  
Send most-significant bit of each byte first  
49 dummy bits  
Pulled High in SPI_SO pin via internal pull-up resistor. Not used for SPI Peripheral mode configuration. Used when programming NVCM via SPI itnterface.  
The iCE65 configuration image must be sent as one contiguous stream without interruption.  
The SPI_SCK clock period must be between 40 ns to 1 µs (1 MHz to 25 MHz).  
!
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
36  
www.latticesemi.com  
 
Figure 30: SPI Peripheral Configuration Process  
SPI Peripheral Configuration  
Drive CRESET_B = 0  
Drive SPI_SS_B = 0, SPI_SCK = 1  
Wait a minimum of 200 ns  
Release CRESET_B or drive  
CRESET_B = 1  
Wait a minimum of  
iC65L01: 800 µs  
iC65L04: 800 µs  
iC65L08: 1200 µs  
to clear internal config. memory  
Send NVCM shut-off sequence  
Send configuration image serially  
on SPI_SI to iCE65, most-  
significant bit first, on falling edge  
of SPI_SCK. Send the entire  
image, without interruption.  
Ensure that SPI_SCK frequency is  
between 1 MHz and 25 MHz.  
NO  
CDONE = 1?  
YES  
ERROR!  
Send a minimum of 49 additional  
dummy bits and 49 additional  
SPI_SCK clock cycles (rising-edge  
to rising-edge) to active the  
user-I/O pins.  
SPI interface pins available as user-  
defined I/O pins in application  
NO  
Reconfigure?  
YES  
Voltage Compatibility  
As shown in Figure 23, there are potentially three different supply voltages involved in the SPI Peripheral interface,  
described in Table 30.  
Table 30: SPI Peripheral Mode Supply Voltages  
Supply Voltage  
AP_VCCIO  
Description  
I/O supply to the Application Processor (AP)  
VCC_SPI  
VCCIO_2  
Voltage supply for the iCE65 SPI interface.  
Supply voltage for the iCE65 I/O Bank 2.  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
37  
 
iCE65 Ultra Low-Power mobileFPGAFamily  
Table 31 describes how to maintain voltage compatibility for two interface scenarios. The easiest interface is when  
the Application Processor’s (AP) I/O supply rail and the iCE65’s SPI and VCCIO_2 bank supply rails all connect to  
the same voltage. The second scenario is when the AP’s I/O supply voltage is greater than the iCE65’s VCCIO_2  
supply voltage.  
Table 31: CRESET_B and CDONE Voltage Compatibility  
CRESET_B  
Open-  
Drain  
OK with  
pull-up  
CDONE Pull-  
up  
Condition  
VCCIO_AP  
= VCC_SPI  
Direct  
Pull-up  
Requirement  
OK  
Required if Recommended AP can directly drive CRESET_B High and  
using  
open-drain  
output  
Low although an open-drain output  
recommended is if multiple devices control  
CRESET_B. If using an open-drain driver,  
the CRESET_B input must include a 10 kΩ  
pull-up resistor to VCCIO_2. The 10 kΩ  
pull-up resistor to AP_VCCIO is also  
recommended.  
VCCIO_AP  
= VCCIO_2  
AP_VCCIO  
> VCCIO_2  
N/A  
Required,  
requires  
pull-up  
Required  
Required  
The AP must control CRESET_B with an  
open-drain output, which requires a 10 kΩ  
pull-up resistor to VCCIO_2. The 10 kΩ  
pull-up resistor to AP_VCCIO is required.  
JTAG Boundary Scan Port  
Overview  
Each iCE65 device includes an IEEE 1149.1-compatible JTAG boundary-scan port. The port supports printed-circuit  
board (PCB) testing and debugging. It also provides an alternate means to configure the iCE65 device.  
Signal Connections  
The JTAG port connections are listed in Table 32.  
Table 32: iCE65 JTAG Boundary Scan Signals  
Signal  
Name  
TDI  
TMS  
TCK  
TDO  
TRST_B  
Direction  
Input  
Input  
Input  
Output  
Input  
Description  
Test Data Input. Must be tied off to GND when unused. (no pull-up resistor)*  
Test Mode Select. Must be tied off to GND when unused. (no pull-up resistor)*  
Test Clock. Must be tied off to GND when unused. (no pull-up resistor)*  
Test Data Output.  
Test Reset, active Low. Must be Low during normal device operation. Must be High  
to enable JTAG operations.*  
* Must be tied off to GND or VCCIO_1, else VCCIO_1 draws current.  
Table 33 lists the ball/pin numbers for the JTAG interface by package code. The JTAG interface is available in select  
package types. The JTAG port is located in I/O Bank 1 along the right edge of the iCE65 device and powered by the  
VCCIO_1 supply inputs. Consequently, the JTAG interface uses the associated I/O standards for I/O Bank 1.  
Table 33: JTAG Interface Ball/Pin Numbers by Package  
JTAG Interface  
TDI  
VQ100  
CB132  
M12  
P14  
CB196  
M12  
P14  
CB284  
T16  
V18  
TMS  
N/A  
TCK  
L12  
L12  
R16  
TDO  
N14  
N14  
U18  
TRST_B  
M14  
M14  
T18  
(2.42, 30-MAR-2012)  
38  
Lattice Semiconductor Corporation  
www.latticesemi.com  
 
 
 
Supported JTAG Commands  
The JTAG interface supports the IEEE 1149.1 mandatory instructions, including EXTEST, SAMPLE/PRELOAD, and  
BYPASS.  
Package and Pinout Information  
Maximum User I/O Pins by Package and by I/O Bank  
Table 34 lists the maximum number of user-programmable I/O pins by package, with additional detail showing user  
I/O pins by I/O bank. In some cases, a smaller iCE65 device is packaged in a larger package with unconnected (N.C.)  
pins or balls, resulting in fewer overall I/O pins. See Table 35 for device-specific I/O counts by package.  
Table 34: User I/O by Package, by I/O Bank  
CB81  
81  
QN84  
84  
VQ100  
100  
CB132  
132  
CB196  
196  
CB284  
284  
Package Leads  
Package Body (mm)  
5 x 5  
9 x 9  
0.5  
7 x 7  
N/A  
0.5  
14 x 14  
N/A  
0.5  
8 x 8  
14 x 14  
0.5  
8 x 8  
14 x 14  
0.5  
12 x 12  
22 x 22  
0.5  
Ball Array (balls)  
Ball/Lead Pitch (mm)  
Maximum user I/O,  
all I/O banks  
63  
67  
72  
95  
150  
222  
PIO Pins in Bank 0  
PIO Pins in Bank 1  
PIO Pins in Bank 2  
PIO Pins in Bank 3  
PIO Pins in SPI  
Interface  
17  
16  
12  
18  
17  
17  
11  
18  
19  
19  
12  
18  
26  
21  
20  
24  
37  
38  
35  
36  
60  
55  
53  
50  
4
4
4
4
4
4
Printed Circuit Board Layout Information  
For information on how to use the iCE65 packages on a printed circuit board (PCB) design, consult the following  
application note.  
AN010: iCE65 Printed Circuit Board (PCB Layout) Guidelines  
Maximum User I/O by Device and Package  
Table 35 lists the maximum available user I/O by device and by and package type. Not all devices are available in all  
packages. Similarly, smaller iCE65 devices may have unconnected balls in some packages. Devices sharing a  
common package have similar footprints.  
Table 35: Maximum User I/O by Device and Package  
Device  
Package  
CB81  
QN84  
VQ100  
CB132  
CB196  
CB284  
iCE65L01  
iCE65L04  
iCE65L08  
63  
67  
72  
93  
72  
95  
150  
176  
150  
222  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
39  
 
 
 
 
iCE65 Ultra Low-Power mobileFPGAFamily  
iCE65 Pin Descriptions  
Table 36 lists the various iCE65 pins, alphabetically by name. The table indicates the directionality of the signal and  
the associated I/O bank. The table also indicates if the signal has an internal pull-up resistor enabled during  
configuration. Finally, the table describes the function of the pin.  
Table 36: iCE65 Pin Description  
Pull-up  
I/O  
during  
Config  
Signal Name  
CDONE  
Bank  
Description  
Direction  
Configuration Done. Dedicated output. Includes a permanent  
weak pull-up resistor to VCCIO_2.. If driving external devices  
with CDONE output, connect a 10 kΩ pull-up resistor to  
VCCIO_2.  
Configuration Reset, active Low. Dedicated input. No internal  
pull-up resistor. Either actively drive externally or connect a  
10 kΩ pull-up resistor to VCCIO_2.  
Global buffer input from I/O Bank 0. Optionally, a full-featured  
PIO pin.  
Global buffer input from I/O Bank 1. Optionally, a full-featured  
PIO pin.  
Output  
2
Yes  
No  
CRESET_B  
Input  
2
0
1
2
GBIN0/PIO0  
GBIN1/PIO0  
GBIN2/PIO1  
GBIN3/PIO1  
GBIN4/PIO2  
GBIN5/PIO2  
Input/IO  
Input/IO  
Input/IO  
Input/IO  
Yes  
Yes  
Yes  
No  
Global buffer input from I/O Bank 2. Optionally, a full-featured  
PIO pin.  
Global buffer input from I/O Bank 3. Optionally, a full-featured  
PIO pin.  
GBIN6/PIO3  
3
Global buffer input from I/O Bank 3. Optionally, a full-featured  
PIO pin. Optionally, a differential clock input using the  
associated differential input pin.  
GBIN7/PIO3  
GND  
Input/IO  
Supply  
3
No  
All  
N/A  
Ground. All must be connected.  
Programmable I/O pin defined by the iCE65 configuration  
bitstream. The ‘x’ number specifies the I/O bank number in  
which the I/O pin resides. The “yy’ number specifies the I/O  
number in that bank.  
PIOx_yy  
I/O  
0,1,2  
Yes  
Optional ColdBoot configuration SELect input, if ColdBoot mode  
is enabled. A full-featured PIO pin after configuration.  
Optional ColdBoot configuration SELect input, if ColdBoot mode  
is enabled. A full-featured PIO pin after configuration.  
Programmable I/O pin that is also half of a differential I/O pair.  
Only available in I/O Bank 3. The “yy” number specifies the I/O  
number in that bank. The “ww” number indicates the  
differential I/O pair. The ‘z’ indicates the polarity of the pin in  
the differential pair. ‘A’=negative input. ‘B’=positive input.  
SPI Serial Output. A full-featured PIO pin after configuration.  
SPI Serial Input. A full-featured PIO pin after configuration.  
SPI Slave Select. Active Low. Includes an internal weak pull-up  
resistor to SPI_VCC during configuration. During configuration,  
the logic level sampled on this pin determines the configuration  
mode used by the iCE65 device, as shown in Figure 20. An  
input when sampled at the start of configuration. An input when  
in SPI Peripheral configuration mode (SPI_SS_B = Low). An  
output when in SPI Flash configuration mode. A full-featured  
PIO pin after configuration.  
PIO2/CBSEL0 Input/IO  
PIO2/CBSEL1 Input/IO  
2
2
Yes  
Yes  
PIO3_yy/  
I/O  
3
No  
DPwwz  
PIOS/SPI_SO  
PIOS /SPI_SI  
I/O  
I/O  
SPI  
SPI  
Yes  
Yes  
PIOS /  
SPI_SS_B  
I/O  
SPI  
Yes  
SPI Slave Clock. An input when in SPI Peripheral configuration  
mode (SPI_SS_B = Low). An output when in SPI Flash  
configuration mode. A full-featured PIO pin after configuration.  
JTAG Test Data Input. If using the JTAG interface, use a 10kΩ  
pull-up resistor to VCCIO_1. Tie off to GND when unused.  
PIOS/  
SPI_SCK  
I/O  
SPI  
1
Yes  
No  
TDI  
Input  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
40  
www.latticesemi.com  
 
Pull-up  
during  
Config  
I/O  
Bank  
Signal Name  
TMS  
Description  
Direction  
JTAG Test Mode Select. If using the JTAG interface, use a 10kΩ  
pull-up resistor to VCCIO_1. Tie off to GND when unused.  
JTAG Test Clock. If using the JTAG interface, use a 10kΩ pull-  
up resistor to VCCIO_1. Tie off to GND when unused.  
JTAG Test Data Output.  
Input  
1
No  
TCK  
Input  
Output  
Input  
1
1
No  
No  
TDO  
JTAG Test Reset, active Low. Keep Low during normal  
operation; High for JTAG operation.  
TRST_B  
VCC  
1
No  
Supply  
All  
N/A  
Internal core voltage supply. All must be connected.  
Voltage supply to I/O Bank 0. All such pins or balls on the  
package must be connected. Can be disconnected or turned off  
without affecting the Power-On Reset (POR) circuit.  
Voltage supply to I/O Bank 1. All such pins or balls on the  
package must be connected. Required to guarantee a valid  
input voltage on TRST_B JTAG pin.  
Voltage supply to I/O Bank 2. All such pins or balls on the  
package must be connected. Required input to the Power-On  
Reset (POR) circuit.  
Voltage supply to I/O Bank 3. All such pins or balls on the  
package must be connected. Can be disconnected or turned off  
without affecting the Power-On Reset (POR) circuit.  
SPI interface voltage supply input. Must have a valid voltage  
even if configuring from NVCM. Required input to the Power-On  
Reset (POR) circuit.  
VCCIO_0  
VCCIO_1  
VCCIO_2  
VCCIO_3  
Supply  
Supply  
Supply  
Supply  
0
1
2
3
N/A  
N/A  
N/A  
N/A  
SPI_VCC  
Supply  
Supply  
SPI  
All  
N/A  
N/A  
Direct programming voltage supply. If unused, leave floating or  
unconnected during normal operation.  
VPP_FAST  
Programming supply voltage. When the iCE65 device is active,  
VPP_2V5 must be in the valid range between 2.3 V to 3.47 V to  
release the Power-On Reset circuit, even if the application is not  
using the NVCM.  
VPP_2V5  
Supply  
All  
N/A  
Input reference voltage in I/O Bank 3 for the SSTL I/O standard.  
This pin only appears on the CB284 package and for die-based  
products.  
Voltage  
Reference  
VREF  
3
N/A  
N/A = Not Applicable  
iCE65 Package Footprint Diagram Conventions  
Figure 31 illustrates the naming conventions used in the following footprint diagrams. Each PIO pin is associated  
with an I/O Bank. PIO pins in I/O Bank 3 that support differential inputs are also numbered by differential input  
pair.  
Figure 31: CB Package Footprint Diagram Conventions  
Ball column number  
1
Ball row number  
Single-ended PIO Numbering  
PIO0  
A PIO0  
Ball number A1  
I/O bank number  
PIO3/  
DP07A  
Differential Input Pair Numbering  
DifferentialB  
PIO0/  
DP07A  
Input Pair  
Indicators  
Pair pin polarity  
Pair number  
PIO3/  
DP07B  
C
Differential Pair  
Dot indicates unconnected pin  
for iCE65L04 in CB284 package  
Lattice Semiconductor Corporation  
www.latticesemi.com  
(2.42, 30-MAR-2011)  
41  
 
 
 
iCE65 Ultra Low-Power mobileFPGAFamily  
CB81 Chip-Scale Ball-Grid Array  
The CB81 package is a full ball grid array with 0.5 mm ball pitch. The iCE65L01 device is available in this package.  
Footprint Diagram  
Figure 32 shows the iCE65 footprint diagram for the CB81 package.  
Figure 31 shows the conventions used in the diagram.  
Also see Table 37 for a complete, detailed pinout for the 81-ball BGA package.  
The signal pins are also grouped into the four I/O Banks and the SPI interface.  
Figure 32: iCE65L01 CB81 Chip-Scale BGA Footprint (Top View)  
I/O Bank 0  
1
2
3
4
5
6
7
8
9
GBIN0  
/PIO0  
VCCIO_0  
GND  
PIO0 PIO0  
VCC  
PIO0 PIO0 GND  
A
B
C
D
VPP_  
2V5  
PIO3  
PIO3 PIO3 PIO0 PIO0 PIO0 PIO0 PIO0  
B
C
PIO3 PIO3 PIO3 PIO0 PIO0 PIO0 PIO1 PIO1 PIO1  
GBIN1  
D GBIN7  
PIO3  
VCCIO_1  
PIO3  
PIO3  
PIO0  
PIO1 PIO1  
/PIO3  
/PIO0  
E GBIN6  
PIO0 PIO1 PIO1 PIO1 E  
GND  
GND  
PIO3 PIO3  
/PIO3  
GBIN2GBIN3  
/PIO1 /PIO1  
GND GND  
PIO3  
PIO3  
VCCIO_3  
F
F
G
H
J
PIO1  
PIO1  
PIO2/  
SEL0  
PIO2 PIO2  
PIO1 PIO1  
PIO1 PIO1  
G
H
J
PIO3 PIO3  
GBIN5 PIO2/  
/PIO2 SEL1  
SPI_  
VCC  
PIOS/ PIOS/  
CDONE  
PIO3 PIO3 PIO2  
SPI_SO SPI_SS_B  
GBIN4  
CRESET_B PIOS/ PIOS/  
/PIO2 VCCIO_2  
GND PIO2  
VCC  
GND  
SPI_SI SPI_SCK  
1
2
3
4
5
6
7
8
9
I/O Bank 2  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
42  
www.latticesemi.com  
 
Pinout Table  
Table 37 provides a detailed pinout table for the CB81 package. Pins are generally arranged by I/O bank, then by ball  
function.  
Table 37: iCE65 CB81 Chip-scale BGA Pinout Table  
Ball Function  
PIO0  
PIO0  
GBIN0/PIO0  
PIO0  
Ball Number  
Pin Type  
PIO  
PIO  
GBIN  
PIO  
Bank  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A2  
A3  
A4  
A7  
A8  
B4  
B5  
B6  
B7  
B8  
C4  
C5  
C6  
D4  
D5  
D6  
E6  
A6  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
GBIN  
PIO  
PIO0  
PIO0  
PIO0  
GBIN1/PIO0  
PIO0  
VCCIO_0  
0
0
VCCIO  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
C7  
C8  
C9  
D7  
D8  
E7  
E8  
E9  
F6  
F7  
F8  
F9  
G6  
G7  
G8  
G9  
D9  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
GBIN  
GBIN  
PIO  
PIO  
PIO  
PIO  
PIO  
VCCIO  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
GBIN2/PIO1  
GBIN3/PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
VCCIO_1  
CDONE  
CRESET_B  
PIO2  
PIO2  
PIO2/CBSEL0  
PIO2  
GBIN5/PIO2  
PIO2/CBSEL1  
PIO2  
GBIN4/PIO2  
VCCIO_2  
H6  
J6  
CONFIG  
CONFIG  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
2
2
2
2
2
2
2
2
2
2
2
G3  
G4  
G5  
H3  
H4  
H5  
J2  
J3  
J4  
PIO  
PIO  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
43  
 
iCE65 Ultra Low-Power mobileFPGAFamily  
Ball Function  
Ball Number  
Pin Type  
Bank  
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
B1  
B2  
B3  
C1  
C2  
C3  
D1  
D2  
D3  
E1  
E2  
E3  
F2  
F3  
G1  
G2  
H1  
H2  
F1  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
GBIN  
PIO  
PIO  
GBIN  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
VCCIO  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
PIO3  
GBIN7/PIO3  
PIO3  
PIO3  
GBIN6/PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
VCCIO_3  
PIOS/SPI_SO  
PIOS/SPI_SI  
PIOS/SPI_SCK  
PIOS/SPI_SS_B  
SPI_VCC  
H7  
J7  
J8  
H8  
H9  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
A1  
A9  
J9  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VCC  
J1  
E4  
E5  
F4  
F5  
A5  
J5  
VCC  
VPP_2V5  
B9  
VPP  
VPP  
(2.42, 30-MAR-2012)  
44  
Lattice Semiconductor Corporation  
www.latticesemi.com  
Package Mechanical Drawing  
Figure 33: CB81 Package Mechanical Drawing  
CB81: 5 x 5 mm, 81-ball, 0.5 mm ball-pitch, chip-scale ball grid array  
Top View  
Bottom View  
Mark pin 1 dot  
A
B
C
D
E
F
A
B
C
D
E
F
SiliconBlue  
iCE65L01F-T  
CB81C  
NXXXX YYWW  
© CCCCC  
G
H
J
G
H
J
b
e
E1  
E
Side View  
Description  
Symbol  
Min.  
Nominal  
Max.  
Units  
Number of Ball Columns  
Number of Ball Rows  
Number of Signal Balls  
X
Y
9
Columns  
Rows  
9
n
E
81  
Balls  
X
Y
4.90  
4.90  
5.00  
5.00  
0.50  
5.10  
5.10  
Body Size  
D
Ball Pitch  
e
Ball Diameter  
b
0.2  
0.3  
mm  
X
Y
E1  
D1  
A
4.00  
4.00  
Edge Ball Center to  
Center  
Package Height  
Stand Off  
1.00  
0.25  
A1  
0.15  
Top Marking Format  
Thermal Resistance  
Line Content  
Description  
Logo  
Junction-to-Ambient  
θ
0 LFM  
67  
(⁰C/W)  
200 LFM  
57  
1
Logo  
iCE65P01F Part number  
2
-T  
CB81C  
ENG  
NXXXX  
YYWW  
Power/Speed  
Package type  
Engineering  
Lot Number  
Date Code  
3
4
5
6
© CCCCCC Country  
Lattice Semiconductor Corporation  
www.latticesemi.com  
(2.42, 30-MAR-2011)  
45  
 
iCE65 Ultra Low-Power mobileFPGAFamily  
QN84 Quad Flat Pack No-Lead  
The QN84 is a Quad Flat Pack No-Lead package with a 0.5 mm pad pitch.  
Footprint Diagram  
Figure 34 shows the iCE65 footprint diagram for the QN84 package.  
Also see Table 38 for a complete, detailed pinout for the QN84 package.  
The signal pins are also grouped into the four I/O Banks and the SPI interface.  
Figure 34: iCE65 QN84 Quad Flat Pack No-Lead Footprint (Top View)  
I/O Bank 0  
PIO3 A1  
A36 VPP_2V5  
A35 PIO1  
A34 PIO1  
A33 PIO1  
A32 PIO1  
A31 PIO1  
A30 GND  
A29 GBIN3/PIO1  
A28 VCC  
PIO3 A2  
B1 PIO3  
B2 PIO3  
B3 PIO3  
B4 PIO3  
B5 PIO3  
B6 VCCIO_3  
B7 PIO3  
B8 PIO3  
B9 PIO3  
PIO1 B27  
PIO1 B26  
PIO3 A3  
PIO3 A4  
VCCIO_1 B25  
PIO1 B24  
SILICONBLUE  
iCE65L01F-T  
QN84  
0948  
PIO3 A5  
GND A6  
PIO1 B23  
VCC A7  
GBIN2/PIO1 B22  
PIO1 B21  
GBIN7/PIO3 A8  
GBIN6/PIO3 A9  
PIO3 A10  
PIO1 B20  
A27 PIO1  
A26 PIO1  
A25 PIO1  
PIO1 B19  
PIO3 A11  
PIO3 A12  
I/O Bank 2  
SPI Bank  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
46  
www.latticesemi.com  
 
Pinout Table  
Table 38 provides a detailed pinout table for the QN84 package. Pins are generally arranged by I/O bank, then by  
ball function. The QN84 package has no JTAG pins.  
Table 38: iCE65 QN84 Chip-scale BGA Pinout Table  
Ball Function  
GBIN0/PIO0  
GBIN1/PIO0  
PIO0  
Ball Number  
B32  
Pin Type  
GBIN  
GBIN  
PIO  
Bank  
0
0
A43  
A38  
0
PIO0  
A39  
PIO  
0
PIO0  
A40  
PIO  
0
PIO0  
A41  
PIO  
0
PIO0  
A44  
PIO  
0
PIO0  
A45  
PIO  
0
PIO0  
A46  
PIO  
0
PIO0  
A47  
PIO  
0
PIO0  
A48  
PIO  
0
PIO0  
B29  
PIO  
0
PIO0  
B30  
PIO  
0
PIO0  
B31  
PIO  
0
PIO0  
B34  
PIO  
0
PIO0  
B35  
PIO  
0
PIO0  
B36  
PIO  
0
VCCIO_0  
A42  
VCCIO  
0
GBIN2/PIO1  
GBIN3/PIO1  
PIO1  
B22  
A29  
A25  
A26  
A27  
A31  
A32  
A33  
A34  
A35  
B19  
B20  
B21  
B23  
B24  
B26  
B27  
B25  
GBIN  
GBIN  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
VCCIO  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
VCCIO_1  
CDONE  
CRESET_B  
GBIN4/PIO2  
GBIN5/PIO2  
PIO2  
B16  
A21  
A14  
A16  
A13  
B12  
A19  
B10  
B11  
B13  
CONFIG  
CONFIG  
GBIN  
GBIN  
PIO  
PIO  
PIO  
PIO  
PIO  
2
2
2
2
2
2
2
2
2
2
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
47  
 
iCE65 Ultra Low-Power mobileFPGAFamily  
Ball Function  
PIO2  
PIO2/CBSEL0  
PIO2/CBSEL1  
VCCIO_2  
Ball Number  
B14  
Pin Type  
PIO  
Bank  
2
2
2
2
B15  
A20  
A17  
PIO  
PIO  
PIO  
GBIN6/PIO3  
GBIN7/PIO3  
PIO3  
A9  
A8  
A1  
A2  
A3  
A4  
A5  
A10  
A11  
A12  
B1  
B2  
B3  
B4  
B5  
B7  
B8  
B9  
B6  
GBIN  
GBIN  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
VCCIO  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
VCCIO_3  
PIOS/SPI_SO  
PIOS/SPI_SI  
PIOS/SPI_SCK  
PIOS/SPI_SS_B  
SPI_VCC  
B17  
A22  
A23  
B18  
A24  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
GND  
GND  
GND  
GND  
VCC  
VCC  
VCC  
VCC  
A6  
GND  
GND  
GND  
GND  
VCC  
VCC  
VCC  
VCC  
GND  
GND  
GND  
GND  
VCC  
VCC  
VCC  
VCC  
A18  
A30  
B33  
A7  
A15  
A28  
B28  
VPP_2V5  
VPP_FAST  
A36  
A37  
VPP  
VPP  
VPP  
VPP  
(2.42, 30-MAR-2012)  
48  
Lattice Semiconductor Corporation  
www.latticesemi.com  
Package Mechanical Drawing  
Figure 35: QN84 Package Mechanical Drawing  
Top View  
BottomView  
7.00  
Underside metal is at  
ground potential  
Mark pin 1 dot  
A36  
A35  
A34  
A33  
A32  
A31  
A30  
A29  
A28  
A27  
A26  
A25  
A1  
A2  
B27  
B26  
B25  
B24  
B23  
B22  
B21  
B20  
B19  
B1  
A3  
B2  
A4  
4.40 0.10  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
A5  
A6  
iCE65L01F-T  
QN84C  
A7  
A8  
A9  
NXXXXXXX  
YYWW  
A10  
A11  
A12  
0.40 0.10  
0.65  
© CCCCCC  
0.50  
0.50  
0.22 0.05  
Side View  
Notes:  
1. All dimensions are in millimeters  
Top Marking Format  
Thermal Resistance  
Line Content  
Description  
Logo  
Junction-to-Ambient *  
θ
0 LFM  
45  
(⁰C/W)  
200 LFM  
44  
1
Logo  
iCE65L01F Part number  
2
-T  
Power/Speed  
Package type  
Engineering  
QN84C  
ENG  
3
* With PCB thermal vias  
4
5
6
NXXXXXXX Lot Number  
YYWW Date Code  
© CCCCCC Country  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
49  
 
iCE65 Ultra Low-Power mobileFPGAFamily  
VQ100 Very-thin Quad Flat Package  
The VQ100 package is a very-thin quad-flat package with 0.5 mm lead pitch. The iCE65L01 and iCE65L04 devices  
are available in this package.  
Footprint Diagram  
Figure 36 shows the footprint diagram for the 100-lead very-thin quad-flat package (VQ100). See Table 40 for a  
complete, detailed pinout for the 100-lead very-thin quad-flat package. The signal pins are also grouped into the  
four I/O Banks and the SPI interface.  
Figure 36: iCE65 VQ100 Footprint (Top View)  
1
2
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
PIO3/DP00A  
PIO3/DP00B  
PIO3/DP01A  
PIO3/DP01B  
GND  
VPP_2V5  
PIO1  
I/O Bank 0  
3
PIO1  
Pin 1 indicator  
4
PIO1  
5
PIO1  
R
6
VCCIO_3  
GND  
7
PIO3/DP02A  
PIO3/DP02B  
PIO3/DP03A  
PIO3/DP03B  
PIO1  
8
PIO1  
SiliconBlue  
9
VCCIO_1  
PIO1  
10  
VCC 11  
PIO1  
12  
PIO3/DP04A  
PIO1  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
GBIN7/PIO3/DP04B  
VCCIO_3  
GBIN2/PIO1  
GBIN3/PIO1  
VCC  
GBIN6/PIO3/DP05A  
PIO3/DP05B  
GND  
PIO1  
PIO1  
PIO3/DP06A  
PIO3/DP06B  
PIO3/DP07A  
PIO3/DP07B  
VCCIO_3  
VCCIO_1  
PIO1  
PIO1  
GND  
PIO1  
GND  
PIO1  
PIO3/DP08A  
PIO3/DP08B  
PIO1  
I/O Bank 2  
SPI Bank  
PIO1  
(L01 only, see Table 40)  
Pinout Table  
Table 39 provides a detailed pinout table for the VQ100 package. Pins are generally arranged by I/O bank, then by  
pin function. The table also highlights the differential I/O pairs in I/O Bank 3. The VQ100 package has no JTAG  
pins.  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
50  
www.latticesemi.com  
 
Table 39: iCE65 VQ100 Pinout Table  
Pin Function  
GBIN0/PIO0  
GBIN1/PIO0  
PIO0  
Pin Number  
Type  
GBIN  
GBIN  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
Bank  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
90  
89  
78  
79  
80  
81  
82  
83  
85  
86  
87  
91  
93  
94  
95  
96  
97  
99  
100  
88  
92  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
0
0
0
0
PIO  
PIO  
VCCIO  
VCCIO  
VCCIO_0  
VCCIO_0  
0
GBIN2/PIO1  
GBIN3/PIO1  
PIO1  
63  
62  
51  
52  
53  
54  
56  
57  
59  
60  
64  
65  
66  
68  
69  
71  
72  
73  
74  
58  
67  
GBIN  
GBIN  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO  
PIO  
VCCIO  
VCCIO  
VCCIO_1  
VCCIO_1  
CDONE  
CRESET_B  
GBIN4/PIO2  
43  
44  
CONFIG  
CONFIG  
GBIN  
2
2
2
iCE65L01: 33  
iCE65L04: 34  
iCE65L01: 36  
iCE65L04: 33  
26  
GBIN5/PIO2  
GBIN  
2
PIO2  
PIO2  
PIO  
PIO  
2
2
27  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
51  
iCE65 Ultra Low-Power mobileFPGAFamily  
Pin Function  
PIO2  
Pin Number  
Type  
PIO  
PIO  
PIO  
PIO  
Bank  
28  
29  
30  
2
2
2
2
PIO2  
PIO2  
PIO2  
iCE65L01: 34  
iCE65L04: 36  
PIO2  
PIO2  
PIO2/CBSEL0  
PIO2/CBSEL1  
VCCIO_2  
37  
40  
41  
42  
31  
38  
PIO  
PIO  
PIO  
PIO  
VCCIO  
VCCIO  
2
2
2
2
2
2
VCCIO_2  
PIO3/DP00A  
PIO3/DP00B  
1
2
PIO/DPIO  
PIO/DPIO  
3
3
PIO3/DP01A  
PIO3/DP01B  
3
4
PIO/DPIO  
PIO/DPIO  
3
3
PIO3/DP02A  
PIO3/DP02B  
7
8
PIO/DPIO  
PIO/DPIO  
3
3
PIO3/DP03A  
PIO3/DP03B  
9
10  
PIO/DPIO  
PIO/DPIO  
3
3
PIO3/DP04A  
GBIN7/PIO3/DP04B  
12  
13  
PIO/DPIO  
GBIN/DPIO  
3
3
GBIN6/PIO3/DP05A  
PIO3/DP05B  
15  
16  
GBIN/DPIO  
PIO/DPIO  
3
3
PIO3/DP06A  
PIO3/DP06B  
18  
19  
PIO/DPIO  
PIO/DPIO  
3
3
PIO3/DP07A  
PIO3/DP07B  
20  
21  
PIO/DPIO  
PIO/DPIO  
3
3
PIO3/DP08A  
PIO3/DP08B  
24  
25  
PIO/DPIO  
PIO/DPIO  
3
3
VCCIO_3  
VCCIO_3  
VCCIO_3  
6
14  
22  
VCCIO  
VCCIO  
VCCIO  
3
3
3
PIOS/SPI_SO  
PIOS/SPI_SI  
PIOS/SPI_SCK  
PIOS/SPI_SS_B  
SPI_VCC  
45  
46  
48  
49  
50  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
5
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
17  
23  
32  
39  
47  
55  
70  
84  
98  
VCC  
VCC  
11  
35  
VCC  
VCC  
VCC  
VCC  
(2.42, 30-MAR-2012)  
52  
Lattice Semiconductor Corporation  
www.latticesemi.com  
Pin Function  
VCC  
Pin Number  
Type  
VCC  
Bank  
VCC  
61  
VCC  
77  
VCC  
VCC  
VPP_2V5  
VPP_FAST  
75  
76  
VPP  
VPP  
VPP  
VPP  
Package Mechanical Drawing  
Figure 37: VQ100 Package Mechanical Drawing: Standard Device Marking  
Top View  
Mark pin 1 dot  
100  
76  
1
75  
iCE65L01F-T ENG  
VQ100C NXXXXXXX  
YYWW  
© CCCCCC  
25  
26  
51  
50  
E2  
E1  
E
Side View  
c
L1  
Description  
Symbol  
Min.  
Nominal  
Max.  
Units  
X
Y
25  
Leads per Edge  
Top Marking Format  
25  
Leads  
Line Content  
Description  
Logo  
Number of Signal Leads  
n
E
100  
16.0  
16.0  
14.0  
14.0  
12.0  
12.0  
0.50  
0.20  
1.20  
1
2
3
Logo  
X
Y
X
Y
X
Y
Maximum Size  
(lead tip to lead tip)  
iCE65L01F Part number  
D
-T  
ENG  
Power/Speed  
Engineering  
E1  
D1  
E2  
D2  
e
Body Size  
VQ100C  
Package type and  
Edge Pin Center to  
Center  
NXXXXXXX Lot number  
4
5
6
YYWW  
N/A  
Date Code  
Blank  
Lead Pitch  
Lead Width  
mm  
b
0.17  
0.27  
© CCCCCC Country  
Total Package Height  
Stand Off  
A
A1  
A2  
L1  
c
0.05  
0.95  
0.15  
1.05  
Thermal Resistance  
Body Thickness  
Lead Length  
1.00  
1.00  
Junction-to-Ambient  
θ (⁰C/W)  
Lead Thickness  
Coplanarity  
0.09  
0.20  
0 LFM  
38  
200 LFM  
32  
0.08  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
53  
 
iCE65 Ultra Low-Power mobileFPGAFamily  
Figure 38: VQ100 Package Mechanical Drawing: NVCM Programmed Device Marking  
Top View  
Mark pin 1 dot  
100  
76  
1
75  
iCE65L01F-T ENG  
VQ100C NXXXXXXX  
ZZZZZZZZ  
YYWW  
© CCCCCC  
25  
26  
51  
50  
E2  
E1  
E
Side View  
c
L1  
Description  
Symbol  
Min.  
Nominal  
Max.  
Units  
X
Y
25  
Top Marking Format  
Leads per Edge  
25  
Leads  
Line Content  
Description  
Logo  
Number of Signal Leads  
n
E
100  
16.0  
16.0  
14.0  
14.0  
12.0  
12.0  
0.50  
0.20  
1.20  
1
2
3
Logo  
X
Y
X
Y
X
Y
Maximum Size  
(lead tip to lead tip)  
iCE65L01F Part number  
D
-T  
ENG  
Power/Speed  
Engineering  
E1  
D1  
E2  
D2  
e
Body Size  
VQ100C  
Package type and  
NXXXXXXX Lot number  
ZZZZZZZZ NVCM Program. code  
Edge Pin Center to  
Center  
4
5
6
YYWW  
Date Code  
Lead Pitch  
Lead Width  
mm  
© CCCCCC Country  
b
0.17  
0.27  
Total Package Height  
Stand Off  
A
Thermal Resistance  
A1  
A2  
L1  
c
0.05  
0.95  
0.15  
1.05  
Junction-to-Ambient  
Body Thickness  
Lead Length  
1.00  
1.00  
θ (⁰C/W)  
0 LFM  
38  
200 LFM  
32  
Lead Thickness  
Coplanarity  
0.09  
0.20  
0.08  
(2.42, 30-MAR-2012)  
54  
Lattice Semiconductor Corporation  
www.latticesemi.com  
CB121 Chip-Scale Ball-Grid Array  
The CB121 package is a chip-scale, fully-populated, ball-grid array with 0.5 mm ball pitch.  
Footprint Diagram  
Figure 39 shows the iCE65L01 chip-scale BGA footprint for the 6 x 6 mm CB121 package.  
Also see Table 40 for a complete, detailed pinout for the 121-ball chip-scale BGA packages.  
The signal pins are also grouped into the four I/O Banks and the SPI interface.  
Figure 39: iCE65L01 CB121 Chip-Scale BGA Footprint (Top View)  
I/O Bank 0  
1
2
3
4
5
6
7
8
9 10 11  
VPP_  
VCCIO_3  
PIO0 PIO0  
PIO1 PIO1  
PIO0 PIO0  
NC PIO0  
PIO0  
A
B
C
D
E
F
A
B
C
D
E
F
FAST  
VCCIO_0  
PIO3  
PIO3  
PIO3  
GND PIO0 PIO0 PIO0 VCC  
PIO0 PIO0 GND PIO1  
GBIN1/  
PIO0  
VPP_  
2V5  
PIO3 PIO3  
PIO3  
PIO3  
PIO3  
PIO0  
PIO0  
PIO0  
PIO0 PIO0  
PIO1  
GBIN0/  
PIO0  
GBIN7/  
PIO3  
PIO3  
PIO1  
PIO0 PIO1  
PIO1 PIO1  
VCCIO_1  
PIO3 PIO3  
PIO0 PIO0  
GND GND  
GND GND  
PIO0 PIO1 PIO1  
PIO1  
GND  
VCC  
GBIN3/ GBIN2/  
PIO1 PIO1  
GBIN6/  
PIO3  
VCC  
GND  
PIO0  
PIO1  
PIO3  
PIO3  
VCCIO_3  
PIO1 PIO1 PIO1  
PIO3  
PIO3  
PIO3 PIO3  
PIO1  
G
H
J
G
H
J
PIO2/  
PIO2  
PIO1 PIO1 PIO1  
PIO1 PIO2  
PIO3 PIO3  
PIO2  
CBSEL0  
SPI_  
PIO2  
VCC  
PIO2/  
CBSEL1  
PIOS/ PIOS/  
SPI_SO SPI_SS_B  
CDONE  
PIO3 PIO3 PIO3  
PIO2 PIO2  
CRESET_B PIOS/ PIOS/  
VCCIO_2  
NC GND PIO2 PIO2  
VCC  
GND PIO2  
K
L
K
L
SPI_SI SPI_SCK  
GBIN4/ GBIN5/  
NC PIO2 PIO2 PIO2 PIO2 NC NC  
PIO2 PIO2  
PIO2 PIO2  
1
2
3
4
5
6
7
8
9 10 11  
I/O Bank 2  
SPI Bank  
Pinout Table  
Table 40 provides a detailed pinout table for the iCE65L01 in the CB121 chip-scale BGA package. Pins are generally  
arranged by I/O bank, then by ball function.  
Table 40: iCE65L01 CB121 Chip-scale BGA Pinout Table  
Ball Function  
GBIN0/PIO0  
GBIN1/PIO0  
PIO0  
Ball Number  
Pin Type  
GBIN  
GBIN  
PIO  
Bank  
D6  
C6  
A2  
A3  
A4  
0
0
0
0
0
PIO0  
PIO0  
PIO  
PIO  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
55  
 
 
iCE65 Ultra Low-Power mobileFPGAFamily  
Ball Function  
PIO0  
Ball Number  
Pin Type  
PIO  
Bank  
A5  
A6  
A8  
A10  
B3  
B4  
B5  
B8  
B9  
C5  
C7  
C8  
C9  
D5  
D7  
E5  
E6  
E7  
F7  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO0  
PIO0  
VCCIO_0  
PIO  
PIO  
VCCIO  
B7  
GBIN2/PIO1  
GBIN3/PIO1  
PIO1  
F9  
F8  
A11  
B11  
C11  
D8  
GBIN  
GBIN  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
VCCIO  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
D9  
D10  
D11  
E8  
E9  
E11  
F10  
G7  
G8  
G9  
G10  
H7  
H8  
H9  
H10  
E10  
PIO1  
PIO1  
VCCIO_1  
CDONE  
CRESET_B  
GBIN4/PIO2  
GBIN5/PIO2  
PIO2  
J7  
K7  
L8  
CONFIG  
CONFIG  
GBIN  
GBIN  
PIO  
PIO  
PIO  
PIO  
PIO  
2
2
2
2
2
2
2
2
2
L9  
H4  
H5  
H11  
J4  
PIO2  
PIO2  
PIO2  
PIO2  
J5  
(2.42, 30-MAR-2012)  
56  
Lattice Semiconductor Corporation  
www.latticesemi.com  
Ball Function  
PIO2  
Ball Number  
Pin Type  
PIO  
Bank  
J11  
K3  
K4  
K11  
L2  
L3  
L4  
L5  
L10  
L11  
H6  
J6  
2
2
2
2
2
2
2
2
2
2
2
2
2
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
VCCIO  
PIO2  
PIO2/CBSEL0  
PIO2/CBSEL1  
VCCIO_2  
K5  
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
C1  
B1  
D1  
E2  
C2  
D2  
C3  
C4  
E4  
D4  
F3  
G3  
G4  
F4  
D3  
E3  
F2  
G1  
H1  
J1  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
GBIN  
GBIN  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
VCCIO  
VCCIO  
GBIN6/PIO3  
GBIN7/PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
PIO3  
H2  
H3  
J3  
J2  
A1  
G2  
VCCIO_3  
VCCIO_3  
PIOS/SPI_SO  
PIOS/SPI_SI  
PIOS/SPI_SCK  
PIOS/SPI_SS_B  
SPI_VCC  
J8  
K8  
K9  
J9  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
J10  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
B2  
B10  
E1  
F5  
F6  
G5  
G6  
G11  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
57  
iCE65 Ultra Low-Power mobileFPGAFamily  
Ball Function  
GND  
Ball Number  
Pin Type  
GND  
Bank  
GND  
GND  
K2  
K10  
GND  
GND  
VCC  
VCC  
VCC  
VCC  
B6  
F1  
F11  
K6  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VPP_2V5  
VPP_FAST  
C10  
A9  
VPP  
VPP  
VPP  
VPP  
(2.42, 30-MAR-2012)  
58  
Lattice Semiconductor Corporation  
www.latticesemi.com  
Package Mechanical Drawing  
Figure 40: CB121 Package Mechanical Drawing  
CB121: 6 x 6 mm, 121-ball, 0.5 mm ball-pitch, fully-populated,  
chip-scale ball grid array  
Top View  
Bottom View  
Mark pin 1 dot  
A
B
C
D
E
F
G
H
J
A
B
C
D
E
F
G
H
J
SiliconBlue  
iCE65L01F-T  
CB121I  
NXXXX YYWW  
© CCCCC  
K
L
K
L
b
e
E1  
E
Side View  
Description  
Symbol  
Min.  
Nominal  
Max.  
Units  
Number of Ball Columns  
Number of Ball Rows  
Number of Signal Balls  
X
Y
11  
11  
Columns  
Rows  
n
E
121  
6.00  
6.00  
0.50  
Balls  
X
Y
5.90  
5.90  
6.10  
6.10  
Body Size  
D
Ball Pitch  
e
Ball Diameter  
b
0.2  
0.3  
mm  
X
Y
E1  
D1  
A
5.00  
5.00  
Edge Ball Center to  
Center  
Package Height  
Stand Off  
1.00  
0.20  
A1  
0.12  
Top Marking Format  
Thermal Resistance  
Line Content  
Description  
Logo  
Junction-to-Ambient  
θJA  
(C/W)  
200 LFM  
55  
1
Logo  
0 LFM  
64  
iCE65L01F Part number  
2
-T  
CB121I  
ENG  
NXXXX  
YYWW  
Power/Speed  
Package type  
Engineering  
LotNumber  
Date Code  
3
4
5
6
© CCCCCC Country  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
59  
iCE65 Ultra Low-Power mobileFPGAFamily  
CB132 Chip-Scale Ball-Grid Array  
The CB132 package is a partially-populated ball grid array with 0.5 mm ball pitch. The empty ball rings simplify  
PCB layout. The iCE65L01, iCE65L04 and iCE65L08 devices are available in this package.  
Footprint Diagram  
Figure 41, Figure 42 and  
Figure 43 show the iCE65 footprint diagrams for the CB132 package in iCE65L01, iCE65L04 and iCE65L08 devices.  
See Figure 48 for the “universal” chip-scale BGA footprint for the CB132 and CB284 packages. The 8 x 8 mm CB132  
package fits within the same ball pattern as the 12 x 12 mm CB284 package.  
Figure 31 shows the conventions used in the diagram.  
Also see Table 41 for a complete, detailed pinout for the 132-ball BGA package.  
The signal pins are also grouped into the four I/O Banks and the SPI interface.  
Figure 41: iCE65L01 CB132 Chip-Scale BGA Footprint (Top View)  
I/O Bank 0  
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
VPP_ VPP_  
GND PIO0 NC PIO0  
FAST 2V5  
GBIN1/ GBIN0/  
VCCIO_0  
PIO0 PIO0 NC PIO0 PIO0  
A
B
C
D
E
PIO0 PIO0  
PIO3  
PIO1  
B
C
D
E
F
PIO3  
PIO3  
PIO3  
GND  
PIO3  
PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO0  
PIO1  
PIO1  
PIO1  
PIO3 PIO3  
PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO1  
PIO1 PIO1  
VCCIO_3  
PIO3  
GBIN3/ F  
VCCIO_0  
VCCIO_1  
PIO3 PIO3  
PIO3 PIO3  
PIO3 PIO3  
GND VCC  
PIO1 PIO1  
PIO1 PIO1  
PIO1 PIO1  
PIO1 PIO1  
PIO1 PIO1  
PIO1  
GBIN2/ G  
GBIN7/  
PIO3  
VCC GND GND GND  
GND GND GND VCC  
G
H
J
PIO1  
GBIN6/  
PIO3  
VCCIO_1  
H
VCCIO_3  
VCCIO_2  
PIO3  
VCCIO_3  
PIO3  
PIO3  
VCC  
VCC GND  
GND  
J
PIO3 PIO3  
PIO1  
K
L
K
SPI_  
TCK  
VCC  
PIO2/ CRESET_B  
CBSEL0  
GND PIO2 PIO2 PIO2 PIO2 PIO2  
PIO1  
L
PIOS/  
TDI  
VCCIO_2  
CDONE  
TRST_B  
PIO3  
PIO2 PIO2  
PIO2 PIO2 PIO2 PIO2  
M
N
P
M
SPI_SO  
PIO3  
TDO  
N
SPI Bank  
GBIN5/ GBIN4/  
PIO2 PIO2  
PIO2/  
PIO2  
PIOS/ PIOS/ PIOS/  
PIO3  
PIO2 PIO2 PIO2 PIO2 GND  
TMS  
P
SPI_SI SPI_SCK SPI_SS_B  
CBSEL1  
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
I/O Bank 2  
(2.42, 30-MAR-2012)  
60  
Lattice Semiconductor Corporation  
www.latticesemi.com  
 
Figure 42: iCE65L04 CB132 Chip-Scale BGA Footprint (Top View)  
I/O Bank 0  
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
VPP_ VPP_  
GND PIO0 PIO0 PIO0  
FAST 2V5  
GBIN0/ GBIN1/  
VCCIO_0  
PIO0 PIO0 PIO0 PIO0 PIO0  
A
B
C
D
E
PIO0 PIO0  
PIO3/  
PIO1  
B DP00A  
PIO3/  
PIO3/  
DP01A  
PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO0  
PIO1  
PIO1  
PIO1  
C DP00B  
PIO3/  
PIO3/ PIO3/  
DP01B DP02A  
PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO1  
PIO1 PIO1  
D DP03A  
PIO3/  
PIO3/  
VCCIO_3  
E DP03B  
DP02B  
PIO3/ PIO3/  
DP04B DP04A  
VCCIO_0  
VCCIO_1  
GND  
GND VCC  
PIO1 PIO1  
PIO1 PIO1  
PIO1 PIO1  
PIO1 PIO1  
PIO1 PIO1  
F
GBIN3/ F  
PIO1  
GBIN7/  
PIO3  
PIO3/ PIO3/  
DP05A DP05B  
VCC GND GND GND  
GND GND GND VCC  
G
GBIN2/ G  
PIO1  
GBIN6/  
PIO3  
PIO3/ PIO3/  
DP06A DP06B  
VCCIO_1  
H
H
PIO3/  
DP07B  
PIO3/  
VCC  
VCCIO_3  
VCCIO_2  
VCC GND  
GND  
J
J
DP07A  
PIO3/ PIO3/  
DP08A DP08B  
VCCIO_3  
PIO1  
K
K
PIO3/  
SPI_  
TCK  
VCC  
PIO2/ CRESET_B  
CBSEL0  
GND PIO2 PIO2 PIO2 PIO2 PIO2  
PIO1  
L DP09A  
L
PIO3/  
DP09B  
PIOS/  
TDI  
VCCIO_2  
CDONE  
TRST_B  
PIO2 PIO2  
PIO2 PIO2 PIO2 PIO2  
M
M
SPI_SO  
PIO3/  
TDO  
N DP10A  
N
SPI Bank  
GBIN5/ GBIN4/  
PIO2 PIO2  
PIO3/  
PIO2/  
PIO2  
PIOS/ PIOS/ PIOS/  
PIO2 PIO2 PIO2 PIO2 GND  
TMS  
P DP10B  
P
SPI_SI SPI_SCK SPI_SS_B  
CBSEL1  
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
I/O Bank 2  
Lattice Semiconductor Corporation  
www.latticesemi.com  
(2.42, 30-MAR-2011)  
61  
iCE65 Ultra Low-Power mobileFPGAFamily  
Figure 43: iCE65L08 CB132 Chip-Scale BGA Footprint (Top View)  
I/O Bank 0  
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
VPP_ VPP_  
GND PIO0 PIO0 PIO0  
FAST 2V5  
GBIN0/ GBIN1/  
VCCIO_0  
PIO0 PIO0 PIO0 PIO0 PIO0  
A
B
C
D
E
PIO0 PIO0  
PIO3/  
PIO1  
B DP00A  
PIO3/  
PIO3/  
DP01A  
PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO0  
PIO1  
PIO1  
PIO1  
C DP00B  
PIO3/  
PIO3/ PIO3/  
DP01B DP02A  
PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO1  
PIO1 PIO1  
D DP03A  
PIO3/  
PIO3/  
VCCIO_3  
E DP03B  
DP02B  
PIO3/ PIO3/  
DP04B DP04A  
VCCIO_0  
VCCIO_1  
GND  
GND VCC  
PIO1 PIO1  
PIO1 PIO1  
PIO1 PIO1  
PIO1 PIO1  
PIO1 PIO1  
F
GBIN3/ F  
PIO1  
GBIN7/  
DP05B  
PIO3/ PIO3/  
DP05A DP11B  
VCC GND GND GND  
GND GND GND VCC  
G
GBIN2/ G  
PIO1  
GBIN6/  
DP06A  
PIO3/ PIO3/  
DP06B DP11A  
VCCIO_1  
H
H
PIO3/  
DP07B  
PIO3/  
VCC  
VCCIO_3  
VCCIO_2  
VCC GND  
GND  
J
J
DP07A  
PIO3/ PIO3/  
DP08A DP08B  
VCCIO_3  
PIO1  
K
K
PIO3/  
SPI_  
TCK  
VCC  
PIO2/ CRESET_B  
CBSEL0  
GND PIO2 PIO2 PIO2 PIO2 PIO2  
PIO1  
L DP09A  
L
PIO3/  
DP09B  
PIOS/  
TDI  
VCCIO_2  
CDONE  
TRST_B  
PIO2 PIO2  
PIO2 PIO2 PIO2 PIO2  
M
M
SPI_SO  
PIO3/  
TDO  
N DP10A  
N
SPI Bank  
GBIN5/ GBIN4/  
PIO2 PIO2  
PIO3/  
PIO2/  
PIO2  
PIOS/ PIOS/ PIOS/  
PIO2 PIO2 PIO2 PIO2 GND  
TMS  
P DP10B  
P
SPI_SI SPI_SCK SPI_SS_B  
CBSEL1  
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
I/O Bank 2  
(2.42, 30-MAR-2012)  
62  
Lattice Semiconductor Corporation  
www.latticesemi.com  
Pinout Table  
Table 41 provides a detailed pinout table for the CB132 package. Pins are generally arranged by I/O bank, then by  
ball function. The table also highlights the differential I/O pairs in I/O Bank 3.  
Table 41: iCE65 CB132 Chip-scale BGA Pinout Table  
Ball Function  
Ball Number  
iCE65L01: A7  
iCE65L04/L08: A6  
iCE65L01: A6  
iCE65L04/08: A7  
A1  
Pin Type  
GBIN  
Bank  
0
GBIN0/PIO0  
GBIN  
0
GBIN1/PIO0  
PIO0  
PIO0  
PIO  
PIO  
0
0
0
A2  
A3  
iCE65L01: (NC)  
iCE65L04/L08: PIO0  
PIO0  
iCE65L01: (NC)  
iCE65L04: PIO0  
A4  
A5  
A10  
A11  
PIO  
PIO  
PIO  
0
0
0
0
PIO0  
PIO0  
iCE65L01: (NC)  
iCE65L04/L08: PIO0  
PIO0  
iCE65L01: (NC)  
iCE65L04: PIO0  
A12  
C10  
C11  
C12  
C4  
C5  
C6  
C7  
C8  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
C9  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
A8  
PIO  
VCCIO  
VCCIO  
VCCIO_0  
VCCIO_0  
F6  
GBIN2/PIO1  
GBIN3/PIO1  
PIO1  
G14  
F14  
B14  
C14  
D12  
D14  
E11  
E12  
E14  
F11  
F12  
G11  
G12  
H11  
GBIN  
GBIN  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
63  
 
iCE65 Ultra Low-Power mobileFPGAFamily  
Ball Function  
PIO1  
Ball Number  
H12  
J11  
Pin Type  
PIO  
Bank  
1
1
PIO1  
PIO  
PIO1  
J12  
PIO  
1
PIO1  
K11  
PIO  
1
PIO1  
K12  
PIO  
1
PIO1  
K14  
PIO  
1
PIO1  
L14  
PIO  
1
TCK  
TDI  
TDO  
TMS  
L12  
JTAG  
JTAG  
JTAG  
JTAG  
JTAG  
VCCIO  
VCCIO  
1
1
1
1
1
1
1
M12  
N14  
P14  
M14  
F9  
TRST_B  
VCCIO_1  
VCCIO_1  
H14  
CDONE  
CRESET_B  
GBIN4/PIO2  
GBIN5/PIO2  
PIO2  
M10  
L10  
P8  
P7  
L4  
L5  
L6  
L7  
L8  
M3  
M4  
M6  
M7  
M8  
M9  
P2  
P3  
P4  
P5  
P9  
CONFIG  
CONFIG  
GBIN  
GBIN  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2/CBSEL0  
PIO2/CBSEL1  
VCCIO_2  
VCCIO_2  
L9  
P10  
J9  
M5  
PIO3/DP00A  
PIO3/DP00B  
B1  
C1  
DPIO  
DPIO  
3
3
PIO3/DP01A  
PIO3/DP01B  
C3  
D3  
DPIO  
DPIO  
3
3
PIO3/DP02A  
PIO3/DP02B  
D4  
E4  
DPIO  
DPIO  
3
3
PIO3/DP03A  
PIO3/DP03B  
D1  
E1  
DPIO  
DPIO  
3
3
PIO3/DP04A  
PIO3/DP04B  
F4  
F3  
DPIO  
DPIO  
3
3
L01/L04: GBIN6/PIO3  
L08: GBIN6/DP06A  
H1  
GBIN  
3
(2.42, 30-MAR-2012)  
64  
Lattice Semiconductor Corporation  
www.latticesemi.com  
Ball Function  
L01/L04: GBIN7/PIO3  
L08: GBIN7/DP05B  
Ball Number  
G1  
Pin Type  
GBIN  
Bank  
3
L01/L04: PIO3/DP05A  
L08: PIO3/DP05A  
L01/L04: PIO3/DP05B  
L08: PIO3/DP11B  
G3  
G4  
DPIO  
DPIO  
3
3
L01/L04: PIO3/DP06A  
L08: PIO3/DP06B  
L01/L04: PIO3/DP06B  
L08: PIO3/DP11A  
H3  
H4  
DPIO  
DPIO  
3
3
PIO3/DP07A  
PIO3/DP07B  
J3  
J1  
DPIO  
DPIO  
3
3
PIO3/DP08A  
PIO3/DP08B  
K3  
K4  
DPIO  
DPIO  
3
3
PIO3/DP09A  
PIO3/DP09B  
L1  
M1  
DPIO  
DPIO  
3
3
PIO3/DP10A  
PIO3/DP10B  
N1  
P1  
DPIO  
DPIO  
3
3
VCCIO_3  
VCCIO_3  
VCCIO_3  
E3  
J6  
K1  
VCCIO  
VCCIO  
VCCIO  
3
3
3
PIOS/SPI_SO  
PIOS/SPI_SI  
PIOS/SPI_SCK  
PIOS/SPI_SS_B  
SPI_VCC  
M11  
P11  
P12  
P13  
L11  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VCC  
VCC  
VCC  
VCC  
A9  
F1  
F7  
G7  
G8  
G9  
H6  
H7  
H8  
J8  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VCC  
VCC  
VCC  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VCC  
VCC  
VCC  
VCC  
J14  
L3  
P6  
F8  
G6  
H9  
J4  
J7  
VPP_2V5  
VPP_FAST  
A14  
A13  
VPP  
VPP  
VPP  
VPP  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
65  
iCE65 Ultra Low-Power mobileFPGAFamily  
Package Mechanical Drawing  
Figure 44: CB132 Package Mechanical Drawing  
CB132: 8 x 8 mm, 132-ball, 0.5 mm ball-pitch, chip-scale ball grid array  
Top View  
Bottom View  
Mark pin 1 dot  
A
B
C
D
E
F
A
B
C
D
E
F
iCE65L04F-T  
CB132C ENG  
NXXXXXXX  
YYWW  
G
H
J
G
H
J
K
L
K
L
M
N
P
M
N
P
© CCCCCC  
b
e
E1  
Side View  
E
Top Marking Format  
Description  
Symbol  
Min.  
Nominal  
Max.  
Units  
Line Content  
Description  
Logo  
Number of Ball Columns  
Number of Ball Rows  
Number of Signal Balls  
X
Y
14  
14  
Columns  
Rows  
1
Logo  
iCE65L04F Part number  
n
E
132  
8.00  
8.00  
0.50  
Balls  
2
-T  
Power/Speed  
Package type  
Engineering  
X
Y
7.90  
7.90  
8.10  
8.10  
CB132C  
ENG  
Body Size  
3
D
Ball Pitch  
e
4
5
6
NXXXXXXX Lot Number  
YYWW Date Code  
© CCCCCC Country  
Ball Diameter  
b
0.27  
0.37  
mm  
X
Y
E1  
D1  
A
6.50  
6.50  
Edge Ball Center to  
Center  
Package Height  
Stand Off  
1.00  
0.26  
Thermal Resistance  
A1  
0.16  
Junction-to-Ambient  
θ
0 LFM  
42  
(⁰C/W)  
200 LFM  
34  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
66  
www.latticesemi.com  
CB196 Chip-Scale Ball-Grid Array  
The CB196 package is a chip-scale, fully-populated, ball-grid array with 0.5 mm ball pitch.  
Footprint Diagram  
Figure 45 shows the iCE65L04 chip-scale BGA footprint for the 8 x 8 mm CB196 package. The footprint for the  
iCE65L08 is different than the iCE64L04 footprint, as shown in Figure 46. The pinout differences are highlighted by  
warning diamonds () in the footprint diagrams and summarized in Table 43.  
Although both the iCE65L04 and iCE65L08 are both available in the CB196 package and almost  
completely pin compatible, there are differences as shown in Table 43.  
!
Figure 31 shows the conventions used in the diagram. Also see Table 42 for a complete, detailed pinout for the 196-  
ball chip-scale BGA packages. The signal pins are also grouped into the four I/O Banks and the SPI interface.  
Figure 45: iCE65L04 CB196 Chip-Scale BGA Footprint (Top View)  
I/O Bank 0  
1
2
3
4
5
6
7
GBIN0/  
PIO0  
8
9 10 11 12 13 14  
VPP_ VPP_  
GND PIO0 PIO0 PIO0  
FAST 2V5  
VCCIO_0  
PIO0 PIO0 PIO0 PIO0 PIO0 PIO0  
A
B
C
D
E
F
A
B
C
D
E
F
PIO3/  
DP00B  
PIO0 PIO0 PIO0 PIO0 PIO0 VCC PIO0 PIO0 PIO0 PIO0 GND PIO1 PIO1  
PIO3/  
DP00A  
PIO1/  
DP01B  
GND  
PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO1 PIO1 PIO1  
PIO3/ PIO3/ PIO1/ PIO3/  
DP02A DP02B DP01A DP04A  
PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO1 PIO1 PIO1 PIO1  
GBIN1/  
PIO0  
PIO3/ PIO3/  
DP03A DP03B  
PIO3/ PIO3/  
DP04B DP06B  
VCCIO_3  
PIO0  
PIO0 PIO0 PIO1 PIO1 PIO1 PIO1 PIO1  
GBIN2/  
PIO1  
PIO3/ PIO3/ PIO3/  
DP05A DP05B DP06A  
VCCIO_0  
VCCIO_1  
GND VCC  
GND VCC  
PIO1 PIO1 PIO1 PIO1  
GBIN7/  
PIO3/  
GBIN3/  
PIO1  
PIO3/ PIO3/ PIO3/ PIO3/  
VCC GND GND GND PIO1 PIO1  
PIO1 PIO1  
G
H
J
G
H
J
DP07A DP09A DP09B DP13B  
DP07B  
GBIN6/  
PIO3/  
DP08A  
PIO3/ PIO3/ PIO3/ PIO3/  
DP08B DP11B DP11A DP13A  
VCCIO_1  
GND GND GND VCC PIO1 PIO1 PIO1 PIO1  
PIO3/ PIO3/ PIO3/  
DP10A DP10B DP12B  
VCCIO_3  
VCCIO_2  
VCC GND  
VCC GND  
PIO1 PIO1 PIO1 PIO1 GND  
PIO3/ PIO3/ PIO3/  
VCCIO_3  
PIO2 PIO2 PIO2 PIO2 PIO2 GND PIO1 PIO1 VCC PIO1  
K
L
K
L
DP12A DP16A DP16B  
GBIN4/  
PIO3/ PIO3/  
DP14A DP14B  
SPI_  
VCC  
PIO2/ CRESET_B  
GND PIO2 PIO2 PIO2  
PIO2  
TCK PIO1 PIO1  
PIO2  
CBSEL0  
PIO3/ PIO3/  
PIOS/  
VCCIO_2  
CDONE  
TRST_B  
PIO2 PIO2  
PIO2 PIO2 PIO2 PIO2  
TDI PIO1  
M DP15A DP15B  
M
N
P
SPI_SO  
PIO3/ PIO3/  
DP17A DP17B  
VCCIO_2  
PIO2 PIO2 PIO2 PIO2 VCC PIO2 PIO2  
PIO2 PIO2 PIO2 TDO  
N
GBIN5/  
PIO2/ PIOS/ PIOS/ PIOS/  
PIO2 PIO2 PIO2 PIO2  
GND PIO2 PIO2 PIO2  
TMS  
CBSEL1 SPI_SI SPI_SCKSPI_SS_B  
P
PIO2  
1
2
3
4
5  
6
7
8
9 10 11 12 13 14  
SPI Bank  
I/O Bank 2  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
67  
 
iCE65 Ultra Low-Power mobileFPGAFamily  
Figure 46: iCE65L08 CB196 Chip-Scale BGA Footprint (Top View)  
I/O Bank 0  
1
2
3
4
5
6
7
GBIN0/  
PIO0  
8
9 10 11 12 13 14  
VPP_ VPP_  
GND PIO0 PIO0 PIO0  
FAST 2V5  
VCCIO_0  
PIO0 PIO0 PIO0 PIO0 PIO0 PIO0  
A
B
C
D
E
F
A
B
C
D
E
F
PIO3/  
DP00B  
PIO0 PIO0 PIO0 PIO0 PIO0 VCC PIO0 PIO0 PIO0 PIO0 GND PIO1 PIO1  
PIO3/  
DP00A  
PIO1/  
DP01B  
GND  
PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO1 PIO1 PIO1  
PIO3/ PIO3/ PIO1/ PIO3/  
DP02A DP02B DP01A DP04A  
PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO1 PIO1 PIO1 PIO1  
GBIN1/  
PIO0  
PIO3/ PIO3/  
DP03B DP03A  
PIO3/ PIO3/  
DP04B DP06B  
VCCIO_3  
PIO0  
PIO0 PIO0 PIO1 PIO1 PIO1 PIO1 PIO1  
GBIN2/  
PIO1  
PIO3/ PIO3/ PIO3/  
DP05B DP05A DP06A  
VCCIO_0  
VCCIO_1  
GND VCC  
GND VCC  
PIO1 PIO1 PIO1 PIO1  
GBIN3/  
PIO1  
PIO3/ PIO3/ PIO3/ PIO3/ PIO3/  
DP11A DP11B DP09A DP09B DP13B  
VCC GND GND GND PIO1 PIO1  
PIO1 PIO1  
G
H
J
G
H
J
GBIN6/  
PIO3/  
DP08A  
GBIN7/  
PIO3/  
DP07B  
PIO3/  
DP08B  
PIO3/ PIO3/  
VCCIO_1  
GND GND GND VCC PIO1 PIO1 PIO1 PIO1  
DP07A DP13A  
PIO3/ PIO3/ PIO3/  
DP10A DP10B DP12B  
VCCIO_3  
VCCIO_2  
VCC GND  
VCC GND  
PIO1 PIO1 PIO1 PIO1 GND  
PIO3/ PIO3/ PIO3/  
VCCIO_3  
PIO2 PIO2 PIO2 PIO2 PIO2 GND PIO1 PIO1 VCC PIO1  
K
L
K
L
DP12A DP16B DP16A  
PIO3/ PIO3/  
DP14A DP14B  
SPI_  
VCC  
PIO2/ CRESET_B  
CBSEL0  
GND PIO2 PIO2 PIO2 PIO2 PIO2  
TCK PIO1 PIO1  
GBIN5/  
PIO3/ PIO3/  
PIOS/  
VCCIO_2  
CDONE  
TRST_B  
PIO2 PIO2  
PIO2  
PIO2 PIO2  
TDI PIO1  
M DP15A DP15B  
M
N
P
PIO2  
SPI_SO  
GBIN4/  
PIO3/ PIO3/  
DP17A DP17B  
VCCIO_2  
PIO2 PIO2 PIO2 PIO2 VCC  
PIO2  
PIO2 PIO2 PIO2 TDO  
N
PIO2  
PIO2/ PIOS/ PIOS/ PIOS/  
CBSEL1 SPI_SI SPI_SCKSPI_SS_B  
PIO2 PIO2 PIO2 PIO2 PIO2 GND PIO2 PIO2 PIO2  
TMS  
P
1
2
3
4
5   
6
7
8
9 10 11 12 13 14  
SPI Bank  
I/O Bank 2  
Pinout Table  
Table 42 provides a detailed pinout table for the iCE65L04 in the CB196 chip-scale BGA package. Pins are generally  
arranged by I/O bank, then by ball function. The pinout for the iCE65L08 is different than the iCE64L04 pinout.  
Although both the iCE65L04 and iCE65L08 are both available in the CB196 package and almost  
completely pin compatible, there are differences as shown in Table 43.  
!
Table 42: iCE65L04 CB196 Chip-scale BGA Pinout Table  
Ball Function  
GBIN0/PIO0  
GBIN1/PIO0  
PIO0  
Ball Number  
Pin Type  
GBIN  
GBIN  
PIO  
Bank  
A7  
E7  
A1  
A2  
A3  
A4  
0
0
0
0
0
0
PIO0  
PIO0  
PIO0  
PIO  
PIO  
PIO  
(2.42, 30-MAR-2012)  
68  
Lattice Semiconductor Corporation  
www.latticesemi.com  
 
 
Ball Function  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
VCCIO_0  
VCCIO_0  
Ball Number  
A5  
Pin Type  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
VCCIO  
VCCIO  
Bank  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A6  
A10  
A11  
A12  
B2  
B3  
B4  
B5  
B6  
B8  
B9  
B10  
B11  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
D5  
D6  
D7  
D8  
D9  
D10  
E6  
E8  
E9  
A8  
F6  
GBIN2/PIO1  
GBIN3/PIO1  
PIO1  
F10  
G12  
B13  
B14  
C12  
C13  
C14  
D11  
D12  
D13  
D14  
E10  
E11  
E12  
E13  
E14  
F11  
F12  
F13  
GBIN  
GBIN  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
69  
iCE65 Ultra Low-Power mobileFPGAFamily  
Ball Function  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
TCK  
Ball Number  
F14  
Pin Type  
PIO  
Bank  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
G10  
G11  
G13  
G14  
H10  
H11  
H12  
H13  
J10  
J11  
J12  
J13  
K11  
K12  
K14  
L13  
L14  
M13  
L12  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
JTAG  
JTAG  
JTAG  
JTAG  
JTAG  
VCCIO  
VCCIO  
TDI  
TDO  
TMS  
M12  
N14  
P14  
M14  
F9  
TRST_B  
VCCIO_1  
VCCIO_1  
1
1
H14  
CDONE  
CRESET_B  
GBIN4/PIO2 ()  
M10  
L10  
iCE65L04: L7  
CONFIG  
CONFIG  
GBIN  
2
2
2
iCE65L08: N8  
GBIN5/PIO2 ()  
iCE65L04: P5  
GBIN  
2
iCE65L08: M7  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2 ()  
K5  
K6  
K7  
K8  
K9  
L4  
L5  
L6  
L8  
M3  
M4  
M6  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
2
2
2
2
2
2
2
2
2
2
2
2
2
iCE65L04: M7  
iCE65L08: P5  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
M8  
M9  
N3  
N4  
N5  
N6  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
2
2
2
2
2
2
(2.42, 30-MAR-2012)  
70  
Lattice Semiconductor Corporation  
www.latticesemi.com  
Ball Function  
PIO2 ()  
Ball Number  
iCE65L04: N8  
Pin Type  
PIO  
Bank  
2
iCE65L08: L7  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
N9  
N11  
N12  
N13  
P1  
P2  
P3  
P4  
P7  
P8  
P9  
L9  
P10  
J9  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
VCCIO  
VCCIO  
VCCIO  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
PIO2  
PIO2  
PIO2/CBSEL0  
PIO2/CBSEL1  
VCCIO_2  
VCCIO_2  
VCCIO_2  
M5  
N10  
PIO3/DP00A  
PIO3/DP00B  
C1  
B1  
DPIO  
DPIO  
3
3
PIO3/DP01A  
PIO3/DP01B  
D3  
C3  
DPIO  
DPIO  
3
3
PIO3/DP02A  
PIO3/DP02B  
D1  
D2  
DPIO  
DPIO  
3
3
PIO3/DP03A ()  
iCE65L04: E1  
iCE65L08: E2  
iCE65L04: E2  
iCE65L04: E1  
DPIO  
3
PIO3/DP03B ()  
DPIO  
3
PIO3/DP04A  
PIO3/DP04B  
D4  
E4  
DPIO  
DPIO  
3
3
PIO3/DP05A ()  
iCE65L04: F3  
iCE65L08: F4  
iCE65L04: F4  
iCE65L08: F3  
DPIO  
3
PIO3/DP05B ()  
DPIO  
3
PIO3/DP06A  
PIO3/DP06B  
F5  
E5  
DPIO  
DPIO  
3
3
PIO3/DP07A ()  
iCE65L04: G2  
iCE65L08: H4  
iCE65L04: G1  
iCE65L08: H3  
DPIO  
3
GBIN7/PIO3/DP07B ()  
GBIN  
3
GBIN6/PIO3/DP08A  
PIO3/DP08B  
H1  
H2  
GBIN  
DPIO  
3
3
PIO3/DP09A  
PIO3/DP09B  
G3  
G4  
DPIO  
DPIO  
3
3
PIO3/DP10A  
PIO3/DP10B  
J1  
J2  
DPIO  
DPIO  
3
3
iCE65L04: H4  
iCE65L08: G1  
iCE65L04: H3  
iCE65L08: G2  
PIO3/DP11A ()  
DPIO  
3
PIO3/DP11B ()  
DPIO  
3
PIO3/DP12A  
PIO3/DP12B  
K2  
J3  
DPIO  
DPIO  
3
3
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
71  
iCE65 Ultra Low-Power mobileFPGAFamily  
Ball Function  
Ball Number  
Pin Type  
Bank  
PIO3/DP13A  
PIO3/DP13B  
H5  
G5  
DPIO  
DPIO  
3
3
PIO3/DP14A  
PIO3/DP14B  
L1  
L2  
DPIO  
DPIO  
3
3
PIO3/DP15A  
PIO3/DP15B  
M1  
M2  
DPIO  
DPIO  
3
3
PIO3/DP16A ()  
iCE65L04: K3  
iCE65L08: K4  
iCE65L08: K4  
iCE65L08: K3  
DPIO  
3
PIO3/DP16B ()  
DPIO  
3
PIO3/DP17A  
PIO3/DP17B  
N1  
N2  
DPIO  
DPIO  
3
3
VCCIO_3  
VCCIO_3  
VCCIO_3  
E3  
J6  
K1  
VCCIO  
VCCIO  
VCCIO  
3
3
3
PIOS/SPI_SO  
PIOS/SPI_SI  
PIOS/SPI_SCK  
PIOS/SPI_SS_B  
SPI_VCC  
M11  
P11  
P12  
P13  
L11  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
A9  
B12  
C2  
F1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
F7  
G7  
G8  
G9  
H6  
H7  
H8  
J5  
J8  
J14  
K10  
L3  
P6  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
B7  
F2  
F8  
G6  
H9  
J4  
J7  
K13  
N7  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VPP_2V5  
VPP_FAST  
A14  
A13  
VPP  
VPP  
VPP  
VPP  
(2.42, 30-MAR-2012)  
72  
Lattice Semiconductor Corporation  
www.latticesemi.com  
Pinout Differences between iCE65L04 and iCE65L08 in CB196 Package  
Table 43 lists the package balls that are different between the pinouts for iCE65L04 and the iCE65L08 in the CB196  
package. The table also describes the functional differences between these pins, which is critical when designing a  
CB196 footprint that supports both the iCE65L04 and the iCE65L08 devices. In some cases, only the differential  
inputs are swapped; single-ended I/Os are not affected. A swapped differential pair can be inverted internally for  
functional equivalence. In other cases, a global buffer input is swapped with another PIO pin in the same bank.  
Table 43: Pinout Differences between iCE65L04 and iCE65L08 in CB196 Package  
Ball Number  
iCE65L04  
PIO3/DP03A  
PIO3/DP03B  
PIO3/DP05A  
PIO3/DP05B  
GBIN7/PIO3/DP07B  
PIO3/DP07A  
PIO3/DP11B  
PIO3/DP11A  
PIO3/DP16A  
PIO3/DP16B  
GBIN4/PIO2  
PIO2  
iCE65L08  
PIO3/DP03B  
PIO3/DP03A  
PIO3/DP05B  
PIO3/DP05A  
PIO3/DP11A  
PIO3/DP11B  
GBIN7/PIO3/DP07B  
PIO3/DP07A  
PIO3/DP16B  
PIO3/DP16A  
PIO2  
Functional Difference  
Differential inputs swapped, single-ended  
I/Os not affected  
Differential inputs swapped, single-ended  
I/Os not affected  
Global buffer input GBIN7 and its  
associated differential input is swapped  
with another differential pair in I/O  
Bank 3  
E1  
E2  
F3  
F4  
G1  
G2  
H3  
H4  
K3  
K4  
L7  
N8  
M7  
P5  
Differential inputs swapped, single-ended  
I/Os not affected  
Global buffer input GBIN4 swapped with  
another PIO pin in I/O Bank 2  
Global buffer input GBIN5 swapped with  
another PIO pin in I/O Bank 2  
GBIN4/PIO2  
GBIN5/PIO2  
PIO2  
PIO2  
GBIN5/PIO2  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
73  
 
iCE65 Ultra Low-Power mobileFPGAFamily  
Package Mechanical Drawing  
Figure 47:  
(a) iCE65L04 CB196 Package Mechanical Drawing  
CB196: 8 x8 mm, 196-ball, 0.5 mm ball-pitch, fully-populated, chip-scale  
ball grid array  
Top View  
Bottom View  
Mark pin 1 dot  
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
iCE65L04F-T  
CB196I  
G
H
J
K
L
K
L
NXXXXXXX  
YYWW  
M
N
P
M
N
P
© CCCCCC  
b
e
E1  
Side View  
E
Top Marking Format  
Line Content  
Description  
Logo  
Description  
Symbol  
Min.  
Nominal  
Max.  
Units  
1
Logo  
Number of Ball Columns  
Number of Ball Rows  
Number of Signal Balls  
X
Y
14  
14  
Columns  
Rows  
iCE65L04F Part number  
2
-T  
Power/Speed  
Package type  
Engineering  
n
E
196  
8.00  
8.00  
0.50  
Balls  
CB196I  
ENG  
X
Y
7.90  
7.90  
8.10  
8.10  
3
Body Size  
D
4
5
6
NXXXXXXX Lot Number  
YYWW Date Code  
© CCCCCC Country  
Ball Pitch  
e
Ball Diameter  
b
0.27  
0.37  
mm  
X
Y
E1  
D1  
A
6.50  
6.50  
Edge Ball Center to  
Center  
Thermal Resistance  
Package Height  
Stand Off  
1.00  
0.26  
Junction-to-Ambient  
A1  
0.16  
θ
0 LFM  
42  
(⁰C/W)  
200 LFM  
34  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
74  
www.latticesemi.com  
 
(b) iCE65L08 CB196 Package Mechanical Drawing  
CB196: 8 x8 mm, 196-ball, 0.5 mm ball-pitch, fully-populated, chip-scale  
ball grid array  
Top View  
Bottom View  
Mark pin 1 dot  
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
iCE65L08F-T  
CB196C ENG  
NXXXXXXX  
YYWW  
G
H
J
K
L
K
L
M
N
P
M
N
P
© CCCCCC  
b
e
E1  
Side View  
E
Top Marking Format  
Line Content  
Description  
Logo  
Description  
Symbol  
Min.  
Nominal  
Max.  
Units  
1
Logo  
Number of Ball Columns  
Number of Ball Rows  
Number of Signal Balls  
X
Y
14  
14  
Columns  
Rows  
iCE65L08F Part number  
2
-T  
Power/Speed  
Package type  
Engineering  
n
E
196  
8.00  
8.00  
0.50  
Balls  
CB196C  
ENG  
X
Y
7.90  
7.90  
8.10  
8.10  
3
Body Size  
D
4
5
6
NXXXXXXX Lot Number  
YYWW Date Code  
© CCCCCC Country  
Ball Pitch  
e
Ball Diameter  
b
0.27  
0.37  
mm  
X
Y
E1  
D1  
A
6.50  
6.50  
Edge Ball Center to  
Center  
Thermal Resistance  
Package Height  
Stand Off  
1.00  
0.26  
Junction-to-Ambient  
A1  
0.16  
θ
0 LFM  
42  
(⁰C/W)  
200 LFM  
34  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
75  
iCE65 Ultra Low-Power mobileFPGAFamily  
CB284 Chip-Scale Ball-Grid Array  
The CB284 package, partially-populated 0.5 mm pitch, ball grid array simplifies PCB layout with empty ball rings.  
Footprint Diagram  
Figure 48 shows the CB284 chip-scale BGA footprint. The 8 x 8 mm CB132 package fits within the same ball  
pattern as the 12 x 12 mm CB284 package. In other words, the central 8 x 8 section of the CB284 footprint matches  
the CB132 footprint.  
Figure 31 shows the conventions used in the diagram.  
Also see Table 44 for a complete, detailed pinout for the 132-ball and 284-ball chip-scale BGA packages.  
The signal pins are also grouped into the four I/O Banks and the SPI interface.  
Figure 48: iCE65 CB284 Chip-Scale BGA Footprint (Top View)  
I/O Bank 0  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22  
VCCIO_0  
VCCIO_0  
PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO0  
PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO0  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
VCCIO_1  
A
A
B
C
D
E
PIO3/  
B DP07A  
PIO3/  
PIO0 PIO0 PIO0 PIO0 PIO0 VCC PIO0 PIO0 PIO0 GND PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO1  
C DP07B  
PIO3/  
VCC  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
VCCIO_1  
D DP08A  
GBIN0/ GBIN1/  
PIO0 PIO0  
PIO3/  
PIO3/  
DP05A  
VPP_ VPP_  
GND PIO0 PIO0 PIO0  
FAST 2V5  
VCCIO_0  
PIO0 PIO0 PIO0 PIO0 PIO0  
E DP08B  
PIO3/  
DP05B  
PIO3/  
DP00A  
VCCIO_3  
PIO1  
PIO1  
PIO1  
PIO1  
F
F
PIO3/  
DP06A  
PIO3/  
DP00B  
PIO3/  
DP01A  
GND  
PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO0  
G
G
H
J
PIO3/  
PIO3/  
DP06B  
PIO3/  
DP03A  
PIO3/ PIO3/  
DP01B DP02A  
PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO0 PIO1  
PIO1 PIO1  
H DP09A  
PIO3/  
DP09B  
PIO3/  
DP03B  
PIO3/  
VCCIO_3  
GND  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
J
DP02B  
GBIN3/  
PIO1  
PIO3/  
PIO3/ PIO3/  
DP04B DP04A  
VCCIO_3  
VCCIO_0  
VCCIO_1  
GND  
GND VCC  
PIO1 PIO1  
PIO1 PIO1  
PIO1 PIO1  
PIO1 PIO1  
PIO1 PIO1  
PIO1  
VCC  
PIO1  
GND  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
K DP10A  
K
L
GBIN7/  
PIO3/  
DP11B  
GBIN6/  
PIO3/  
GBIN2/  
PIO1  
PIO3/  
PIO3/  
DP11A  
PIO3/ PIO3/  
DP19A DP19B  
VCC GND GND GND  
GND GND GND VCC  
L DP10B  
PIO3/  
DP15A  
PIO3/ PIO3/  
DP20A DP20B  
VCCIO_1  
VREF  
M
M
N
P
DP15A  
PIO3/  
DP16A  
PIO3/  
DP21B  
PIO3/  
VCC  
VCCIO_3  
VCCIO_2  
GND  
VCC GND  
GND  
PIO1  
PIO1  
TRST_B  
N
DP21A  
PIO3/  
DP16B  
PIO3/ PIO3/  
DP22A DP22B  
VCCIO_3  
VCCIO_3  
P
PIO3/  
DP23A  
SPI_  
TCK  
VCC  
PIO2/ CRESET_B  
CBSEL0  
VCCIO_3  
GND  
GND PIO2 PIO2 PIO2 PIO2 PIO2  
R
R
T
PIO3/  
PIO3/  
DP23B  
PIOS/  
TDI  
VCCIO_2  
CDONE  
GND  
PIO2 PIO2  
PIO2 PIO2 PIO2 PIO2  
T DP12A  
SPI_SO  
PIO3/  
PIO3/  
DP17A  
PIO3/  
DP24A  
TDO  
U DP12B  
U
V
SPI Bank  
PIO2/ PIOS/ PIOS/ PIOS/  
GBIN5/ GBIN4/  
PIO2 PIO2  
PIO3/  
DP17B  
PIO3/  
DP24B  
GND  
PIO2 PIO2 PIO2 PIO2 GND  
PIO2  
TMS  
CBSEL1 SPI_SI SPI_SCKSPI_SS_B  
V
PIO3/  
DP13A  
PIO3/  
DP18A  
W
W
Y
PIO3/  
PIO3/  
DP18B  
VCCIO_2  
PIO2 PIO2 PIO2 PIO2 VCC PIO2 PIO2  
GND PIO2 PIO2 PIO2 GND PIO2 PIO2 PIO2 PIO2  
Y DP13B  
PIO3/  
DP14A  
AA  
AA  
AB  
PIO3/  
DP14B  
PIO2 PIO2 PIO2 GND PIO2 PIO2 PIO2 PIO2 PIO2 PIO2 PIO2 PIO2 PIO2 PIO2 PIO2 PIO2 PIO2 PIO2 PIO2 PIO2 PIO2  
AB  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22  
I/O Bank 2  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
76  
www.latticesemi.com  
 
Pinout Table  
Table 44 provides a detailed pinout table for the two chip-scale BGA packages. Pins are generally arranged by I/O  
bank, then by ball function. The balls with a black circle () are unconnected balls (N.C.) for the iCE65L04 in the  
CB284 package. The CB132 package fits within the CB284 package footprint as shown in Figure 48. The right-most  
column shows which CB132 ball corresponds to the CB284.  
The table also highlights the differential I/O pairs in I/O Bank 3.  
Table 44: iCE65 CB284 Chip-scale BGA Pinout Table (with CB132 cross reference)  
Ball Number  
iCE65L04  
iCE65L08  
E10  
E11  
A1  
Pin Type by Device  
CB132 Ball  
Ball Function  
GBIN0/PIO0  
GBIN1/PIO0  
PIO0 ()  
PIO0 ()  
PIO0 ()  
PIO0 ()  
PIO0  
iCE65L04 iCE65L08  
Bank  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Equivalent  
A6  
A7  
GBIN  
GBIN  
N.C.  
N.C.  
N.C.  
N.C.  
PIO  
PIO  
PIO  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
PIO  
PIO  
PIO  
PIO  
N.C.  
N.C.  
N.C.  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
GBIN  
GBIN  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
A2  
A3  
A4  
A5  
A6  
A7  
A9  
A10  
A11  
A12  
A13  
A15  
A16  
A17  
A18  
A14  
A19  
A20  
C3  
PIO0  
PIO0  
PIO0 ()  
PIO0 ()  
PIO0 ()  
PIO0 ()  
PIO0 ()  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0 ()  
PIO0 ()  
PIO0 ()  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
PIO0  
C4  
C5  
C6  
C7  
C9  
C10  
C11  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
E5  
A1  
A2  
A3  
A4  
A5  
A10  
E6  
E7  
E8  
E9  
E14  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
77  
 
iCE65 Ultra Low-Power mobileFPGAFamily  
Ball Number  
iCE65L04  
iCE65L08  
E15  
Pin Type by Device  
CB132 Ball  
Equivalent  
A11  
A12  
C4  
Ball Function  
PIO0  
iCE65L04  
PIO  
iCE65L08  
PIO  
Bank  
0
0
PIO0  
PIO0  
E16  
G8  
PIO  
PIO  
PIO  
PIO  
0
PIO0  
G9  
PIO  
PIO  
0
C5  
PIO0  
G10  
PIO  
PIO  
0
C6  
PIO0  
G11  
PIO  
PIO  
0
C7  
PIO0  
G12  
PIO  
PIO  
0
C8  
PIO0  
G13  
PIO  
PIO  
0
C9  
PIO0  
PIO0  
PIO0  
PIO0  
G14  
G15  
G16  
H9  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
0
0
0
0
C10  
C11  
C12  
D5  
PIO0  
H10  
PIO  
PIO  
0
D6  
PIO0  
H11  
PIO  
PIO  
0
D7  
PIO0  
H12  
PIO  
PIO  
0
D8  
PIO0  
H13  
PIO  
PIO  
0
D9  
PIO0  
PIO0  
VCCIO_0  
VCCIO_0  
VCCIO_0  
VCCIO_0  
H14  
H15  
A8  
A21  
E12  
K10  
PIO  
PIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
PIO  
PIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
0
0
0
0
0
0
D10  
D11  
A8  
F6  
GBIN2/PIO1  
GBIN3/PIO1  
PIO1 ()  
PIO1 ()  
PIO1 ()  
PIO1  
PIO1 ()  
PIO1  
PIO1 ()  
PIO1  
PIO1 ()  
PIO1  
PIO1  
PIO1 ()  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1 ()  
PIO1  
L18  
K18  
A22  
AA22  
B22  
C20  
C22  
D20  
D22  
E20  
E22  
F18  
F20  
F22  
G18  
G20  
G22  
H16  
H18  
H20  
J15  
GBIN  
GBIN  
N.C.  
N.C.  
N.C.  
PIO  
N.C.  
PIO  
N.C.  
PIO  
N.C.  
PIO  
PIO  
N.C.  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
N.C.  
PIO  
PIO  
PIO  
N.C.  
GBIN  
GBIN  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
G14  
F14  
B14  
C14  
D12  
D14  
E11  
E12  
E14  
J16  
J18  
J22  
K15  
K16  
K20  
K22  
F11  
F12  
PIO1  
PIO1  
PIO1 ()  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
78  
www.latticesemi.com  
Ball Number  
iCE65L04  
iCE65L08  
L15  
Pin Type by Device  
iCE65L04 iCE65L08  
CB132 Ball  
Equivalent  
G11  
G12  
Ball Function  
PIO1  
PIO1  
PIO1 ()  
PIO1  
PIO1  
PIO1  
PIO1 ()  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1  
PIO1 ()  
PIO1  
PIO1 ()  
PIO1  
PIO1 ()  
PIO1 ()  
TCK  
Bank  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
PIO  
PIO  
PIO  
PIO  
L16  
L22  
N.C.  
PIO  
PIO  
PIO  
M15  
M16  
M20  
M22  
N15  
N16  
N22  
P15  
P16  
P18  
P20  
P22  
R18  
R20  
R22  
T20  
T22  
U20  
U22  
V20  
V22  
W20  
W22  
Y22  
R16  
T16  
U18  
V18  
T18  
H22  
J20  
H11  
H12  
PIO  
PIO  
PIO  
PIO  
N.C.  
PIO  
PIO  
PIO  
J11  
J12  
K11  
K12  
K14  
L14  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
N.C.  
PIO  
PIO  
PIO  
N.C.  
PIO  
PIO  
PIO  
N.C.  
N.C.  
JTAG  
JTAG  
JTAG  
JTAG  
JTAG  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
PIO  
PIO  
JTAG  
JTAG  
JTAG  
JTAG  
JTAG  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
L12  
M12  
N14  
P14  
M14  
F9  
H14  
TDI  
TDO  
TMS  
TRST_B  
VCCIO_1  
VCCIO_1  
VCCIO_1  
VCCIO_1  
K13  
M18  
CDONE  
CRESET_B  
GBIN4/PIO2  
GBIN5/PIO2  
PIO2  
T14  
R14  
V12  
V11  
R8  
CONFIG  
CONFIG  
GBIN  
GBIN  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
CONFIG  
CONFIG  
GBIN  
GBIN  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
M10  
L10  
P7  
P8  
L4  
L5  
L6  
L7  
L8  
M3  
M4  
M6  
M7  
M8  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
R9  
R10  
R11  
R12  
T7  
T8  
T10  
T11  
T12  
PIO2  
PIO  
PIO  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
79  
iCE65 Ultra Low-Power mobileFPGAFamily  
Ball Number  
iCE65L04  
iCE65L08  
T13  
Pin Type by Device  
CB132 Ball  
Ball Function  
PIO2  
iCE65L04  
PIO  
iCE65L08  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
VCCIO  
VCCIO  
VCCIO  
Bank  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Equivalent  
M9  
P2  
P3  
P4  
P5  
P9  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2 ()  
PIO2 ()  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
PIO2  
V6  
V7  
V8  
V9  
V13  
Y4  
Y5  
Y6  
Y7  
Y9  
Y10  
Y13  
Y14  
Y15  
Y17  
Y18  
Y19  
Y20  
AB2  
AB3  
AB4  
AB6  
AB7  
AB8  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
N.C.  
N.C.  
PIO  
PIO  
PIO  
AB9  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
PIO  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
R13  
PIO2 ()  
PIO2 ()  
PIO2 ()  
PIO2 ()  
PIO2 ()  
PIO2 ()  
PIO2 ()  
PIO2/CBSEL0  
PIO2/CBSEL1  
VCCIO_2  
VCCIO_2  
VCCIO_2  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
PIO  
L9  
P10  
J9  
M5  
V14  
N13  
T9  
PIO  
VCCIO  
VCCIO  
VCCIO  
Y11  
PIO3/DP00A  
PIO3/DP00B  
F5  
G5  
DPIO  
DPIO  
DPIO  
DPIO  
3
3
B1  
C1  
PIO3/DP01A  
PIO3/DP01B  
G7  
H7  
DPIO  
DPIO  
DPIO  
DPIO  
3
3
C3  
D3  
PIO3/DP02A  
PIO3/DP02B  
H8  
J8  
DPIO  
DPIO  
DPIO  
DPIO  
3
3
D4  
E4  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
80  
www.latticesemi.com  
Ball Number  
iCE65L04  
iCE65L08  
Pin Type by Device  
iCE65L04 iCE65L08  
CB132 Ball  
Equivalent  
Ball Function  
Bank  
PIO3/DP03A  
PIO3/DP03B  
H5  
J5  
DPIO  
DPIO  
DPIO  
DPIO  
3
3
D1  
E1  
PIO3/DP04A  
PIO3/DP04B  
K8  
K7  
DPIO  
DPIO  
DPIO  
DPIO  
3
3
F4  
F3  
PIO3/DP05A  
PIO3/DP05B  
E3  
F3  
DPIO  
DPIO  
DPIO  
DPIO  
3
3
PIO3/DP06A  
PIO3/DP06B  
G3  
H3  
DPIO  
DPIO  
DPIO  
DPIO  
3
3
PIO3/DP07A ()  
PIO3/DP07B ()  
B1  
C1  
N.C.  
N.C.  
DPIO  
DPIO  
3
3
PIO3/DP08A ()  
PIO3/DP08B ()  
D1  
E1  
N.C.  
N.C.  
DPIO  
DPIO  
3
3
PIO3/DP09A  
PIO3/DP09B  
H1  
J1  
DPIO  
DPIO  
DPIO  
DPIO  
3
3
PIO3/DP10A  
PIO3/DP10B  
K1  
L1  
DPIO  
DPIO  
DPIO  
DPIO  
3
3
PIO3/DP11A  
GBIN7/PIO3/DP11B  
L3  
L5  
DPIO  
GBIN  
DPIO  
GBIN  
3
3
G1  
PIO3/DP12A ()  
PIO3/DP12B ()  
T1  
U1  
N.C.  
N.C.  
DPIO  
DPIO  
3
3
PIO3/DP13A ()  
PIO3/DP13B ()  
W1  
Y1  
N.C.  
N.C.  
DPIO  
DPIO  
3
3
PIO3/DP14A ()  
PIO3/DP14B ()  
AA1  
AB1  
N.C.  
N.C.  
DPIO  
DPIO  
3
3
GBIN6/PIO3/DP15A  
PIO3/DP15B  
M5  
M3  
GBIN  
DPIO  
GBIN  
DPIO  
3
3
H1  
PIO3/DP16A  
PIO3/DP16B  
N3  
P3  
DPIO  
DPIO  
DPIO  
DPIO  
3
3
PIO3/DP17A  
PIO3/DP17B  
U3  
V3  
DPIO  
DPIO  
DPIO  
DPIO  
3
3
PIO3/DP18A  
PIO3/DP18B  
W3  
Y3  
DPIO  
DPIO  
DPIO  
DPIO  
3
3
PIO3/DP19A  
PIO3/DP19B  
L7  
L8  
DPIO  
DPIO  
DPIO  
DPIO  
3
3
G3  
G4  
PIO3/DP20A  
PIO3/DP20B  
M7  
M8  
DPIO  
DPIO  
DPIO  
DPIO  
3
3
H3  
H4  
PIO3/DP21A  
PIO3/DP21B  
N7  
N5  
DPIO  
DPIO  
DPIO  
DPIO  
3
3
J3  
J1  
PIO3/DP22A  
PIO3/DP22B  
P7  
P8  
DPIO  
DPIO  
DPIO  
DPIO  
3
3
K3  
K4  
PIO3/DP23A  
PIO3/DP23B  
R5  
T5  
DPIO  
DPIO  
DPIO  
DPIO  
3
3
L1  
M1  
PIO3/DP24A  
PIO3/DP24B  
U5  
V5  
DPIO  
DPIO  
DPIO  
DPIO  
3
3
N1  
P1  
VCCIO_3  
VCCIO_3  
F1  
P1  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
3
3
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
81  
iCE65 Ultra Low-Power mobileFPGAFamily  
Ball Number  
Pin Type by Device  
iCE65L04  
iCE65L08  
J7  
CB132 Ball  
Equivalent  
Ball Function  
VCCIO_3  
VCCIO_3  
VCCIO_3  
VCCIO_3  
VCCIO_3  
VREF  
iCE65L04  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VREF  
iCE65L08  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VREF  
Bank  
3
3
3
3
3
3
E3  
J6  
K1  
K3  
N10  
P5  
R3  
M1  
PIOS/SPI_SO  
PIOS/SPI_SI  
PIOS/SPI_SCK  
PIOS/SPI_SS_B  
SPI_VCC  
T15  
V15  
V16  
V17  
R15  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
M11  
P11  
P12  
P13  
L11  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
C12  
E13  
J3  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
A9  
K5  
F1  
F7  
G7  
G8  
G9  
H6  
H7  
H8  
J8  
J14  
L3  
K11  
L11  
L12  
L13  
M10  
M11  
M12  
N1  
N12  
N18  
N20  
R7  
T3  
V1  
V10  
Y12  
Y16  
AB5  
G1  
P6  
R1  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
C8  
D3  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
F8  
G6  
H9  
J4  
J7  
K12  
L10  
L20  
M13  
N8  
N11  
Y8  
VPP_2V5  
VPP_FAST  
E18  
E17  
VPP  
VPP  
VPP  
VPP  
VPP  
VPP  
A14  
A13  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
82  
www.latticesemi.com  
Package Mechanical Drawing  
Figure 49: CB284 Package Mechanical Drawing  
CB284: 12 x 12 mm, 284-ball, 0.5 mm ball-pitch, chip-scale ball grid array  
Mark pin 1 dot  
Top View  
Bottom View  
A
B
A
B
C
D
E
C
D
E
F
F
G
H
J
G
H
J
K
K
L
L
iCE65L08F-T ENG  
CB284C NXXXXXXX  
YYWW  
M
N
P
M
N
P
R
T
R
T
U
V
U
V
W
Y
W
Y
© CCCCCC  
AA  
AB  
AA  
AB  
b
e
E1  
E
Side View  
Top Marking Format  
Description  
Symbol  
Min.  
Nominal  
Max.  
Units  
Line Content  
Description  
Logo  
Number of Ball Columns  
Number of Ball Rows  
Number of Signal Balls  
X
Y
22  
22  
Columns  
Rows  
1
2
3
Logo  
iCE65L08F Part number  
n
E
284  
12.00  
12.00  
0.50  
Balls  
-T  
ENG  
Power/Speed  
Engineering  
X
Y
11.90  
11.90  
12.10  
12.10  
Body Size  
D
CB284C  
Package type and  
Ball Pitch  
e
NXXXXXXX Lot number  
Ball Diameter  
b
0.27  
0.37  
mm  
4
5
6
YYWW  
N/A  
Date Code  
Blank  
X
Y
E1  
D1  
A
10.50  
10.50  
Edge Ball Center to  
Center  
© CCCCCC Country  
Package Height  
Stand Off  
1.00  
0.26  
A1  
0.16  
Thermal Resistance  
Junction-to-Ambient  
θ (⁰C/W)  
0 LFM  
35  
200 LFM  
28  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
83  
iCE65 Ultra Low-Power mobileFPGAFamily  
Die Cross Reference  
The tables in this section list all the pads on a specific die type and provide a cross reference on how a specific pad  
connects to a ball or pin in each of the available package offerings. Similarly, the tables provide the pad coordinates  
for the die-based version of the product (DiePlus). These tables also provide a way to prototype with one package  
option and then later move to a different package or die.  
As described in Input and Output Register Control per PIO Pair” on page 16, PIO pairs share register control inputs.  
Similarly, as described in Differential Inputs and Outputson page 12, a PIO pair can form a differential input or  
output. PIO pairs in I/O Bank 3 are optionally differential inputs or differential outputs. PIO pairs in all other I/O  
Banks are optionally differential outputs. In the tables, differential pairs are surrounded by a heavy blue box.  
iCE65L04  
Table 45 lists all the pads on the iCE65L04 die and how these pads connect to the balls or pins in the supported  
package styles. Most VCC, VCCIO, and GND pads are double-bonded inside the package although the table shows  
only a single connection.  
For additional information on the iCE65L04 DiePlus product, please refer to the following data sheet.  
DiePlus Advantage FPGA Known Good Die  
Table 45: iCE65L04 Die Cross Reference  
iCE65L04  
Pad Name  
DiePlus  
CB132  
VQ100  
CB196  
CB284  
Pad  
X (µm)  
Y (µm)  
PIO3_00/DP00A  
PIO3_01/DP00B  
1
2
B1  
C1  
C1  
B1  
F5  
G5  
1
2
129.40  
231.40  
2,687.75  
2,642.74  
PIO3_02/DP01A  
PIO3_03/DP01B  
3
4
C3  
D3  
D3  
C3  
G7  
H7  
3
4
129.40  
231.40  
2,597.75  
2,552.74  
GND  
GND  
VCCIO_3  
VCCIO_3  
5
6
F1  
E3  
F1  
E3  
K5  
J7  
5
6
7
8
129.40  
231.40  
129.40  
231.40  
2,507.75  
2,462.74  
2,417.75  
2,372.74  
PIO3_04/DP02A  
PIO3_05/DP02B  
7
8
D4  
E4  
D1  
D2  
H8  
J8  
9
10  
129.40  
231.40  
2,327.75  
2,292.74  
PIO3_06/DP03A  
PIO3_07/DP03B  
D1  
E1  
E1  
E2  
H5  
J5  
11  
12  
129.40  
231.40  
2,257.75  
2,222.74  
VCC  
H9  
D3  
13  
129.40  
2,187.75  
PIO3_08/DP04A  
PIO3_09/DP04B  
9
10  
F4  
F3  
D4  
E4  
K8  
K7  
14  
15  
231.40  
129.40  
2,152.74  
2,117.75  
PIO3_10/DP05A  
PIO3_11/DP05B  
F3  
F4  
E3  
F3  
16  
17  
231.40  
129.40  
2,082.74  
2,047.75  
GND  
H6  
A9  
M10  
18  
231.40  
2,012.74  
PIO3_12/DP06A  
PIO3_13/DP06B  
F5  
E5  
G3  
H3  
19  
20  
129.40  
231.40  
1,977.75  
1,942.74  
GND  
GND  
A9  
J3  
21  
22  
129.40  
231.40  
1,907.75  
1,872.74  
PIO3_14/DP07A  
PIO3_15/DP07B  
H1  
J1  
23  
24  
129.40  
231.40  
1,837.75  
1,802.74  
VCCIO_3  
VCC  
11  
G6  
K1  
G6  
K3  
L10  
25  
26  
129.40  
231.40  
1,767.75  
1,732.74  
PIO3_16/DP08A  
PIO3_17/DP08B  
K1  
L1  
27  
28  
129.40  
231.40  
1,697.75  
1,662.74  
(2.42, 30-MAR-2012)  
84  
Lattice Semiconductor Corporation  
www.latticesemi.com  
 
 
iCE65L04  
Pad Name  
DiePlus  
CB132  
VQ100  
CB196  
CB284  
Pad  
X (µm)  
Y (µm)  
PIO3_18/DP09A  
GBIN7/PIO3_19/DP09B  
12  
13  
G1  
G2  
G1  
L3  
L5  
29  
30  
129.40  
231.40  
1,627.75  
1,592.74  
VCCIO_3  
VREF  
14  
N/A  
J6  
N/A  
J6  
N/A  
A9  
N10  
M1  
N1  
31  
32  
33  
129.40  
231.40  
129.40  
1,557.75  
1,522.74  
1,487.75  
GND  
GBIN6/PIO3_20/DP10A  
PIO3_21/DP10B  
15  
16  
H1  
H1  
H2  
M5  
M3  
34  
35  
231.40  
129.40  
1,452.74  
1,417.75  
GND  
17  
H7  
A9  
M11  
36  
231.40  
1,382.74  
PIO3_22/DP11A  
PIO3_23/DP11B  
G3  
G4  
N3  
P3  
37  
38  
129.40  
231.40  
1,347.75  
1,312.74  
VCCIO_3  
VCCIO_3  
GND  
K1  
A9  
R3  
T3  
39  
40  
41  
42  
129.40  
231.40  
129.40  
231.40  
1,277.75  
1,242.74  
1,207.75  
1,172.74  
GND  
PIO3_24/DP12A  
PIO3_25/DP12B  
J1  
J2  
U3  
V3  
43  
44  
129.40  
231.40  
1,137.75  
1,102.74  
GND  
A9  
V1  
45  
129.40  
1,067.75  
PIO3_26/DP13A  
PIO3_27/DP13B  
H4  
H3  
W3  
Y3  
46  
47  
231.40  
129.40  
1,032.74  
997.75  
PIO3_28/DP14A  
PIO3_29/DP14B  
18  
19  
G3  
G4  
K2  
J3  
L7  
L8  
48  
49  
231.40  
129.40  
962.74  
927.75  
PIO3_30/DP15A  
PIO3_31/DP15B  
H3  
H4  
H5  
G5  
M7  
M8  
50  
51  
231.40  
129.40  
892.74  
857.75  
VCC  
J4  
F2  
N8  
52  
231.40  
822.74  
PIO3_32/DP16A  
PIO3_33/DP16B  
20  
21  
J3  
J1  
L1  
L2  
N7  
N5  
53  
54  
129.40  
231.40  
787.75  
752.74  
VCCIO_3  
VCCIO_3  
GND  
22  
23  
K1  
L3  
K1  
L3  
P5  
R7  
55  
56  
57  
58  
129.40  
231.40  
129.40  
231.40  
717.75  
682.74  
637.75  
592.74  
GND  
PIO3_34/DP17A  
PIO3_35/DP17B  
K3  
K4  
M1  
M2  
P7  
P8  
59  
60  
129.40  
231.40  
547.75  
502.74  
PIO3_36/DP18A  
PIO3_37/DP18B  
24  
25  
L1  
M1  
K3  
K4  
R5  
T5  
61  
62  
129.40  
231.40  
457.75  
412.74  
PIO3_38/DP19A  
PIO3_39/DP19B  
N1  
P1  
N1  
N2  
U5  
V5  
63  
64  
129.40  
231.40  
367.75  
322.74  
PIO2_00  
PIO2_01  
P2  
L4  
AB2  
V6  
65  
66  
545.00  
595.00  
139.20  
37.20  
PIO2_02  
GND  
PIO2_03  
26  
M3  
L4  
M3  
C2  
P1  
T7  
AB5  
R8  
67  
68  
69  
645.00  
695.00  
745.00  
139.20  
37.20  
139.20  
PIO2_04  
PIO2_05  
27  
28  
P3  
M4  
N3  
P2  
V7  
T8  
70  
71  
795.00  
845.00  
37.20  
139.20  
PIO2_06  
PIO2_07  
29  
30  
L5  
P4  
L5  
M4  
R9  
V8  
72  
73  
895.00  
930.00  
37.20  
139.20  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
85  
iCE65 Ultra Low-Power mobileFPGAFamily  
iCE65L04  
Pad Name  
DiePlus  
CB132  
VQ100  
CB196  
CB284  
Pad  
X (µm)  
Y (µm)  
PIO2_08  
VCCIO_2  
PIO2_09  
31  
L6  
M5  
P5  
P3  
M5  
K5  
R10  
T9  
V9  
74  
75  
76  
965.00  
1,000.00  
1,035.00  
37.20  
139.20  
37.20  
PIO2_10  
GND  
PIO2_11  
32  
M6  
P6  
N4  
H7  
P4  
T10  
V10  
Y4  
77  
78  
79  
1,070.00  
1,105.00  
1,140.00  
139.20  
37.20  
139.20  
PIO2_12  
PIO2_13  
L6  
Y5  
AB6  
80  
81  
1,175.00  
1,210.00  
37.20  
139.20  
PIO2_14  
PIO2_15  
AB7  
AB8  
82  
83  
1,245.00  
1,280.00  
37.20  
139.20  
PIO2_16  
PIO2_17  
AB9  
AB10  
84  
85  
1,315.00  
1,350.00  
37.20  
139.20  
PIO2_18  
GND  
PIO2_19  
J8  
H8  
K6  
AB11  
N12  
Y6  
86  
87  
88  
1,385.00  
1,420.00  
1,455.00  
37.20  
139.20  
37.20  
PIO2_20  
VCC  
PIO2_21  
N5  
J4  
M6  
Y7  
Y8  
Y9  
89  
90  
91  
1,490.00  
1,525.00  
1,560.00  
139.20  
37.20  
139.20  
PIO2_22  
GBIN5/PIO2_23  
33  
P7  
N6  
P5  
Y10  
V11  
92  
93  
1,595.00  
1,630.00  
37.20  
139.20  
GBIN4/PIO2_24  
PIO2_25  
34  
P8  
L7  
V12  
AB12  
94  
95  
1,665.00  
1,700.00  
37.20  
139.20  
VCCIO_2  
J9  
Y11  
96  
1,735.00  
37.20  
PIO2_26  
PIO2_27  
K7  
AB13  
AB14  
97  
98  
1,770.00  
1,805.00  
139.20  
37.20  
GND  
J5  
Y12  
99  
1,840.00  
139.20  
PIO2_28  
PIO2_29  
K9  
M7  
AB15  
Y13  
100  
101  
1,875.00  
1,910.00  
37.20  
139.20  
PIO2_30  
PIO2_31  
K8  
P7  
Y14  
Y15  
102  
103  
1,945.00  
1,980.00  
37.20  
139.20  
PIO2_32  
PIO2_33  
L8  
P8  
Y17  
Y18  
104  
105  
2,015.00  
2,050.00  
37.20  
139.20  
PIO2_34  
PIO2_35  
N8  
M8  
Y19  
Y20  
106  
107  
2,085.00  
2,120.00  
37.20  
139.20  
VCC  
VCC  
35  
J7  
J7  
N11  
108  
109  
2,155.00  
2,190.00  
37.20  
139.20  
PIO2_36  
PIO2_37  
36  
37  
P9  
M7  
P9  
N9  
V13  
T11  
110  
111  
2,225.00  
2,260.00  
37.20  
139.20  
VCCIO_2  
38  
J9  
N10  
N13  
112  
2,295.00  
37.20  
PIO2_38  
GND  
PIO2_39  
39  
L7  
H8  
M8  
M9  
J8  
N12  
R11  
M12  
T12  
113  
114  
115  
2,330.00  
2,365.00  
2,400.00  
139.20  
37.20  
139.20  
PIO2_40  
PIO2_41  
40  
L8  
M9  
N11  
N13  
R12  
T13  
116  
117  
2,435.00  
2,470.00  
37.20  
139.20  
PIO2_42/CBSEL0  
PIO2_43/CBSEL1  
41  
42  
L9  
P10  
L9  
P10  
R13  
V14  
118  
119  
2,505.00  
2,540.00  
37.20  
139.20  
CDONE  
43  
M10  
M10  
T14  
120  
2,575.00  
37.20  
(2.42, 30-MAR-2012)  
86  
Lattice Semiconductor Corporation  
www.latticesemi.com  
iCE65L04  
Pad Name  
CRESET_B  
DiePlus  
CB132  
L10  
VQ100  
44  
CB196  
L10  
CB284  
R14  
Pad  
121  
X (µm)  
2,625.00  
Y (µm)  
139.20  
PIOS_00/SPI_SO  
PIOS_01/SPI_SI  
45  
46  
M11  
P11  
M11  
P11  
T15  
V15  
122  
123  
2,690.00  
2,740.00  
37.20  
139.20  
GND  
47  
P6  
Y16  
124  
2,790.00  
37.20  
PIOS_02/SPI_SCK  
PIOS_03/SPI_SS_B  
48  
49  
P12  
P13  
P12  
P13  
V16  
V17  
125  
126  
2,840.00  
2,890.00  
139.20  
37.20  
SPI_VCC  
50  
L11  
L11  
R15  
127  
2,990.00  
37.20  
TDI  
TMS  
TCK  
TDO  
TRST_B  
N/A  
N/A  
N/A  
N/A  
N/A  
M12  
P14  
L12  
N14  
M14  
M12  
P14  
L12  
N14  
M14  
T16  
V18  
R16  
U18  
T18  
128  
129  
130  
131  
132  
3,610.80  
3,712.80  
3,610.80  
3,712.80  
3,610.80  
342.00  
392.00  
442.00  
492.00  
542.00  
PIO1_00  
PIO1_01  
51  
52  
L14  
K12  
K11  
L13  
R18  
P16  
133  
134  
3,712.80  
3,610.80  
592.00  
642.00  
PIO1_02  
PIO1_03  
53  
54  
K11  
K14  
K12  
M13  
P15  
P18  
135  
136  
3,712.80  
3,610.80  
692.00  
727.00  
GND  
GND  
55  
55  
J14  
J14  
J14  
J14  
N18  
N18  
137  
138  
3,712.80  
3,610.80  
762.00  
797.00  
PIO1_04  
PIO1_05  
56  
57  
J12  
J11  
J10  
L14  
N16  
N15  
139  
140  
3,712.80  
3,610.80  
832.00  
867.00  
VCCIO_1  
VCCIO_1  
58  
H14  
H14  
M18  
141  
142  
3,712.80  
3,610.80  
902.00  
937.00  
PIO1_06  
PIO1_07  
59  
60  
H12  
H11  
J11  
K14  
M16  
M15  
143  
144  
3,712.80  
3,610.80  
972.00  
1,007.00  
PIO1_08  
PIO1_09  
H10  
J13  
W20  
V20  
145  
146  
3,712.80  
3,610.80  
1,042.00  
1,077.00  
PIO1_10  
VCC  
VCC  
PIO1_11  
61  
H9  
J12  
N7  
U20  
M13  
147  
148  
149  
150  
3,712.80  
3,610.80  
3,712.80  
3,610.80  
1,112.00  
1,147.00  
1,182.00  
1,217.00  
H13  
T22  
PIO1_12  
PIO1_13  
H12  
R22  
P22  
151  
152  
3,712.80  
3,610.80  
1,252.00  
1,287.00  
PIO1_14  
PIO1_15  
G13  
N22  
T20  
153  
154  
3,712.80  
3,610.80  
1,322.00  
1,357.00  
PIO1_16  
PIO1_17  
H11  
G14  
R20  
P20  
155  
156  
3,712.80  
3,610.80  
1,392.00  
1,427.00  
GND  
GND  
K10  
N20  
157  
158  
3,712.80  
3,610.80  
1,462.00  
1,497.00  
PIO1_18  
GBIN3/PIO1_19  
62  
F14  
G10  
G12  
M20  
K18  
159  
160  
3,712.80  
3,610.80  
1,532.00  
1,567.00  
GBIN2/PIO1_20  
PIO1_21  
63  
G14  
F10  
F14  
L18  
K20  
161  
162  
3,712.80  
3,610.80  
1,602.00  
1,637.00  
VCCIO_1  
VCCIO_1  
H14  
J20  
163  
164  
3,712.80  
3,610.80  
1,672.00  
1,707.00  
PIO1_22  
PIO1_23  
F13  
D13  
H20  
G20  
165  
166  
3,712.80  
3,610.80  
1,742.00  
1,777.00  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
87  
iCE65 Ultra Low-Power mobileFPGAFamily  
iCE65L04  
Pad Name  
DiePlus  
CB132  
VQ100  
CB196  
CB284  
Pad  
X (µm)  
Y (µm)  
PIO1_24  
PIO1_25  
G11  
F11  
F20  
E20  
167  
168  
3,712.80  
3,610.80  
1,812.00  
1,847.00  
PIO1_26  
PIO1_27  
E10  
E14  
D20  
C20  
169  
170  
3,712.80  
3,610.80  
1,882.00  
1,917.00  
GND  
GND  
G8  
G8  
L12  
171  
172  
3,712.80  
3,610.80  
1,952.00  
1,987.00  
PIO1_28  
PIO1_29  
G12  
F12  
D14  
G22  
L16  
173  
174  
3,712.80  
3,610.80  
2,022.00  
2,057.00  
PIO1_30  
PIO1_31  
64  
65  
G11  
F12  
E13  
C14  
L15  
K16  
175  
176  
3,712.80  
3,610.80  
2,092.00  
2,127.00  
VCC  
VCC  
K13  
L20  
177  
178  
3,712.80  
3,610.80  
2,162.00  
2,197.00  
PIO1_32  
PIO1_33  
66  
E14  
F11  
E11  
C13  
J18  
K15  
179  
180  
3,712.80  
3,610.80  
2,232.00  
2,267.00  
VCCIO_1  
VCCIO_1  
67  
F9  
F9  
K13  
181  
182  
3,712.80  
3,610.80  
2,302.00  
2,337.00  
PIO1_34  
PIO1_35  
68  
69  
E12  
D14  
E12  
B14  
J16  
H18  
183  
184  
3,712.80  
3,610.80  
2,377.00  
2,427.00  
GND  
70  
G9  
G9  
L13  
185  
3,712.80  
2,477.00  
PIO1_36  
PIO1_37  
71  
72  
E11  
D12  
B13  
D12  
J15  
H16  
186  
187  
3,610.80  
3,712.80  
2,527.00  
2,577.00  
PIO1_38  
PIO1_39  
73  
74  
C14  
B14  
C12  
D11  
G18  
F18  
188  
189  
3,610.80  
3,712.80  
2,627.00  
2,677.00  
VPP_2V5  
75  
A14  
A14  
E18  
190  
3,610.80  
2,739.68  
VPP_FAST  
VCC  
76  
77  
77  
A13  
F8  
F8  
A13  
F8  
F8  
E17  
K12  
K12  
191  
192  
193  
3,097.00  
2,997.00  
2,947.00  
2,962.80  
2,860.80  
2,962.80  
VCC  
PIO0_00  
PIO0_01  
78  
A12  
C12  
C11  
E16  
G16  
194  
195  
2,897.00  
2,847.00  
2,860.80  
2,962.80  
PIO0_02  
PIO0_03  
79  
80  
A11  
C11  
A12  
B11  
E15  
G15  
196  
197  
2,797.00  
2,747.00  
2,860.80  
2,962.80  
PIO0_04  
PIO0_05  
81  
D11  
A10  
D10  
H15  
E14  
198  
199  
2,697.00  
2,647.00  
2,860.80  
2,962.80  
PIO0_06  
PIO0_07  
82  
83  
C10  
D10  
A11  
D9  
G14  
H14  
200  
201  
2,612.00  
2,577.00  
2,860.80  
2,962.80  
GND  
GND  
84  
A9  
H6  
E13  
202  
203  
2,542.00  
2,507.00  
2,860.80  
2,962.80  
PIO0_08  
PIO0_09  
85  
86  
C9  
D9  
C10  
A10  
G13  
H13  
204  
205  
2,472.00  
2,437.00  
2,860.80  
2,962.80  
PIO0_10  
PIO0_11  
87  
C8  
D8  
B10  
E9  
G12  
H12  
206  
207  
2,402.00  
2,367.00  
2,860.80  
2,962.80  
PIO0_12  
PIO0_13  
A18  
A17  
208  
209  
2,332.00  
2,297.00  
2,860.80  
2,962.80  
PIO0_14  
PIO0_15  
A16  
A15  
210  
211  
2,262.00  
2,227.00  
2,860.80  
2,962.80  
VCCIO_0  
VCCIO_0  
88  
A8  
A8  
E12  
212  
213  
2,192.00  
2,157.00  
2,860.80  
2,962.80  
(2.42, 30-MAR-2012)  
88  
Lattice Semiconductor Corporation  
www.latticesemi.com  
iCE65L04  
Pad Name  
DiePlus  
CB132  
VQ100  
CB196  
CB284  
Pad  
X (µm)  
Y (µm)  
PIO0_16  
PIO0_17  
C9  
C19  
C18  
214  
215  
2,122.00  
2,087.00  
2,860.80  
2,962.80  
PIO0_18  
PIO0_19  
B9  
D8  
C17  
C16  
216  
217  
2,052.00  
2,017.00  
2,860.80  
2,962.80  
PIO0_20  
PIO0_21  
C8  
E8  
C15  
C14  
218  
219  
1,982.00  
1,947.00  
2,860.80  
2,962.80  
PIO0_22  
GBIN1/PIO0_23  
89  
A7  
B8  
E7  
C13  
E11  
220  
221  
1,912.00  
1,877.00  
2,860.80  
2,962.80  
GND  
GND  
B12  
C12  
222  
223  
1,842.00  
1,807.00  
2,860.80  
2,962.80  
GBIN0/PIO0_24  
PIO0_25  
90  
A6  
A7  
D7  
E10  
C11  
224  
225  
1,772.00  
1,737.00  
2,860.80  
2,962.80  
PIO0_26  
PIO0_27  
C7  
E6  
C10  
C9  
226  
227  
1,702.00  
1,667.00  
2,860.80  
2,962.80  
VCC  
VCC  
B7  
C8  
228  
229  
1,632.00  
1,597.00  
2,860.80  
2,962.80  
PIO0_28  
PIO0_29  
A6  
B6  
C7  
C6  
230  
231  
1,562.00  
1,527.00  
2,860.80  
2,962.80  
PIO0_30  
PIO0_31  
A5  
D6  
C5  
C4  
232  
233  
1,492.00  
1,457.00  
2,860.80  
2,962.80  
GND  
GND  
F7  
F7  
K11  
234  
235  
1,422.00  
1,387.00  
2,860.80  
2,962.80  
PIO0_32  
PIO0_33  
C3  
A7  
236  
237  
1,352.00  
1,317.00  
2,860.80  
2,962.80  
PIO0_34  
PIO0_35  
A6  
A5  
238  
239  
1,282.00  
1,247.00  
2,860.80  
2,962.80  
PIO0_36  
VCCIO_0  
VCCIO_0  
PIO0_37  
91  
92  
92  
93  
C7  
F6  
F6  
D7  
C6  
F6  
F6  
C5  
G11  
K10  
K10  
H11  
240  
241  
242  
243  
1,212.00  
1,177.00  
1,142.00  
1,107.00  
2,860.80  
2,962.80  
2,860.80  
2,962.80  
PIO0_38  
PIO0_39  
94  
95  
C6  
A5  
B5  
A4  
G10  
E9  
244  
245  
1,072.00  
1,037.00  
2,860.80  
2,962.80  
PIO0_40  
PIO0_41  
96  
97  
D6  
C5  
B4  
D5  
H10  
G9  
246  
247  
1,002.00  
967.00  
2,860.80  
2,962.80  
PIO0_42  
GND  
PIO0_43  
98  
99  
A4  
G7  
D5  
A3  
G7  
B3  
E8  
L11  
H9  
248  
249  
250  
917.00  
867.00  
817.00  
2,860.80  
2,962.80  
2,860.80  
PIO0_44  
PIO0_45  
100  
C4  
A3  
C4  
A2  
G8  
E7  
251  
252  
767.00  
717.00  
2,962.80  
2,860.80  
PIO0_46  
PIO0_47  
A2  
A1  
A1  
B2  
E6  
E5  
253  
254  
667.00  
617.00  
2,962.80  
2,860.80  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
89  
iCE65 Ultra Low-Power mobileFPGAFamily  
iCE65L08  
Table 46 lists all the pads on the iCE65L08 die and how these pads connect to the balls or pins in the supported  
package styles. Most VCC, VCCIO, and GND pads are double-bonded inside the package although the table shows  
only a single connection.  
For additional information on the iCE65L08 DiePlus product, please refer to the following data sheet.  
DiePlusAdvantage FPGA Known Good Die  
Table 46: iCE65L08 Die Cross Reference  
Available Packages  
CB196 CB284  
B1  
DiePlus  
X (µm)  
129.735  
231.735  
iCE65L08  
Pad Name  
PIO3_00/DP00A  
PIO3_01/DP00B  
Pad  
1
2
Y (µm)  
3,882.665  
3,837.665  
C1  
PIO3_02/DP01A  
PIO3_03/DP01B  
C1  
B1  
F5  
G5  
3
4
129.735  
231.735  
3,792.665  
3,747.665  
GND  
GND  
VCCIO_3  
VCCIO_3  
C2  
E3  
K5  
J7  
5
6
7
8
129.735  
231.735  
129.735  
231.735  
3,702.665  
3,657.665  
3,612.665  
3,567.665  
PIO3_04/DP02A  
PIO3_05/DP02B  
D3  
C3  
E3  
F3  
9
10  
129.735  
231.735  
3,512.665  
3,477.665  
PIO3_06/DP03A  
PIO3_07/DP03B  
D1  
D2  
G3  
H3  
11  
12  
129.735  
231.735  
3,442.665  
3,407.665  
VCC  
VCC  
F2  
D3  
13  
14  
129.735  
231.735  
3,372.665  
3,337.665  
PIO3_08/DP04A  
PIO3_09/DP04B  
D4  
E4  
D1  
E1  
15  
16  
129.735  
231.735  
3,302.665  
3,267.665  
PIO3_10/DP05A  
PIO3_11/DP05B  
H1  
J1  
17  
18  
129.735  
231.735  
3,232.665  
3,197.665  
GND  
GND  
F1  
M10  
19  
20  
129.735  
231.735  
3,162.665  
3,127.665  
PIO3_12/DP06A  
PIO3_13/DP06B  
E2  
E1  
H5  
J5  
21  
22  
129.735  
231.735  
3,092.665  
3,057.665  
GND  
GND  
L3  
J3  
23  
24  
129.735  
231.735  
3,022.665  
2,987.665  
PIO3_14/DP07A  
PIO3_15/DP07B  
F5  
E5  
K1  
L1  
25  
26  
129.735  
231.735  
2,952.665  
2,917.665  
VCCIO_3  
VCCIO_3  
VCC  
E3  
G6  
K3  
L10  
27  
28  
29  
30  
129.735  
231.735  
129.735  
231.735  
2,882.665  
2,847.665  
2,812.665  
2,777.665  
VCC  
PIO3_16/DP08A  
PIO3_17/DP08B  
F4  
F3  
G7  
H7  
31  
32  
129.735  
231.735  
2,742.665  
2,707.665  
VCCIO_3  
VCCIO_3  
GND  
K1  
F1  
G1  
33  
34  
35  
36  
129.735  
231.735  
129.735  
231.735  
2,672.665  
2,637.665  
2,602.665  
2,567.665  
GND  
PIO3_18/DP09A  
PIO3_19/DP09B  
G3  
G4  
K8  
K7  
37  
38  
129.735  
231.735  
2,532.665  
2,497.665  
(2.42, 30-MAR-2012)  
90  
Lattice Semiconductor Corporation  
www.latticesemi.com  
 
Available Packages  
CB196 CB284  
DiePlus  
X (µm)  
iCE65L08  
Pad Name  
Pad  
Y (µm)  
PIO3_20/DP10A  
PIO3_21/DP10B  
39  
40  
129.735  
231.735  
2,462.665  
2,427.665  
H8  
J8  
PIO3_22/DP11A  
PIO3_23/DP11B  
41  
42  
129.735  
231.735  
2,392.665  
2,357.665  
G1  
G2  
T1  
U1  
VCCIO_3  
VCCIO_3  
VREF  
VREF  
GND  
N10  
M1  
N1  
P1  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
129.735  
231.735  
129.735  
231.735  
129.735  
231.735  
129.735  
231.735  
129.735  
231.735  
2,322.665  
2,287.665  
2,252.665  
2,217.665  
2,182.665  
2,147.665  
2,112.665  
2,077.665  
2,042.665  
2,007.665  
K1  
N/A  
N/A  
J5  
J6  
H6  
GND  
VCCIO_3  
VCCIO_3  
GND  
R1  
GND  
PIO3_24/DP12A  
GBIN7/PIO3_25/DP12B  
53  
54  
129.735  
231.735  
1,972.665  
1,937.665  
H4  
H3  
L3  
L5  
GND  
55  
129.735  
1,902.665  
H7  
V1  
GBIN6/PIO3_26/DP13A  
PIO3_27/DP13B  
56  
57  
231.735  
129.735  
1,867.665  
1,832.665  
H1  
H2  
M5  
M3  
PIO3_28/DP14A  
PIO3_29/DP14B  
58  
59  
231.735  
129.735  
1,798.665  
1,762.665  
N7  
N5  
PIO3_30/DP15A  
PIO3_31/DP15B  
60  
61  
231.735  
129.735  
1,727.665  
1,692.665  
J1  
J2  
N3  
P3  
GND  
GND  
M11  
62  
63  
231.735  
129.735  
1,657.665  
1,622.665  
J5  
PIO3_32/DP16A  
PIO3_33/DP16B  
64  
65  
231.735  
129.735  
1,587.665  
1,552.665  
H5  
G5  
W1  
Y1  
VCCIO_3  
VCCIO_3  
GND  
R3  
T3  
66  
67  
68  
69  
231.735  
129.735  
231.735  
129.735  
1,517.665  
1,482.665  
1,447.665  
1,412.665  
J6  
J5  
GND  
PIO3_34/DP17A  
PIO3_35/DP17B  
70  
71  
231.735  
129.735  
1,377.665  
1,342.665  
K2  
J3  
AA1  
AB1  
PIO3_36/DP18A  
PIO3_37/DP18B  
72  
73  
231.735  
129.735  
1,307.665  
1,272.665  
L7  
L8  
PIO3_38/DP19A  
PIO3_39/DP19B  
74  
75  
231.735  
129.735  
1,237.665  
1,202.665  
M7  
M8  
PIO3_40/DP20A  
PIO3_41/DP20B  
76  
77  
231.735  
129.735  
1,167.665  
1,132.665  
L1  
L2  
P7  
P8  
VCC  
VCC  
N8  
78  
79  
231.735  
129.735  
1,097.665  
1,062.665  
J4  
PIO3_42/DP21A  
PIO3_43/DP21B  
80  
81  
231.735  
129.735  
1,027.665  
992.665  
K4  
K3  
R5  
T5  
VCCIO_3  
VCCIO_3  
GND  
P5  
R7  
82  
83  
84  
85  
231.735  
129.735  
231.735  
129.735  
957.665  
912.665  
867.665  
822.67  
K1  
L3  
GND  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
91  
iCE65 Ultra Low-Power mobileFPGAFamily  
Available Packages  
CB196 CB284  
M1 U3  
DiePlus  
X (µm)  
231.735  
129.735  
iCE65L08  
Pad Name  
PIO3_44/DP22A  
PIO3_45/DP22B  
Pad  
86  
87  
Y (µm)  
777.67  
732.67  
M2  
V3  
PIO3_46/DP23A  
PIO3_47/DP23B  
N1  
N2  
U5  
V5  
88  
89  
231.735  
129.735  
687.67  
642.67  
PIO3_48/DP24A  
PIO3_49/DP24B  
W3  
Y3  
90  
91  
231.735  
129.735  
597.67  
552.665  
PIO2_00  
PIO2_01  
P1  
M3  
AB2  
R8  
92  
93  
510.0  
560.0  
139.5  
37.5  
PIO2_02  
GND  
GND  
PIO2_03  
P2  
P6  
Y4  
AB5  
94  
95  
96  
97  
610.0  
660.0  
710.0  
760.0  
139.5  
37.5  
139.5  
37.5  
M4  
T7  
PIO2_04  
PIO2_05  
N3  
AB3  
R9  
98  
99  
810.0  
859.3  
139.5  
37.5  
PIO2_06  
PIO2_07  
L4  
Y5  
T8  
100  
101  
910.0  
960.0  
139.5  
37.5  
PIO2_08  
VCCIO_2  
VCCIO_2  
PIO2_09  
P3  
M5  
V6  
T9  
102  
103  
104  
105  
1,012.5  
139.5  
37.5  
139.5  
37.5  
1,047.5  
1,082.5  
1,117.5  
P4  
R10  
PIO2_10  
GND  
GND  
PIO2_11  
N4  
H8  
AB4  
V10  
106  
107  
108  
109  
1,152.5  
1,187.5  
1,222.5  
1,257.5  
139.5  
37.5  
139.5  
37.5  
K5  
V7  
PIO2_12  
PIO2_13  
P5  
Y7  
V9  
110  
111  
1,292.5  
1,327.5  
139.5  
37.5  
PIO2_14  
PIO2_15  
Y6  
AB7  
112  
113  
1,362.5  
1,397.5  
139.5  
37.5  
PIO2_16  
PIO2_17  
L5  
AB6  
Y9  
114  
115  
1,432.5  
1,467.5  
139.5  
37.5  
PIO2_18  
GND  
GND  
PIO2_19  
N5  
P6  
V8  
N12  
116  
117  
118  
119  
1,502.3  
1,537.3  
1,572.5  
1,607.5  
139.5  
37.5  
139.5  
37.5  
N6  
AB8  
PIO2_20  
VCC  
VCC  
PIO2_21  
K6  
J7  
AB9  
Y8  
120  
121  
122  
123  
1,642.5  
1,677.5  
1,712.5  
1,747.5  
139.5  
37.5  
139.5  
37.5  
L6  
T10  
PIO2_22  
PIO2_23  
M6  
AB10  
AB11  
124  
125  
1,782.5  
1,817.5  
139.5  
37.5  
PIO2_24  
PIO2_25  
L7  
AB12  
Y10  
126  
127  
1,852.5  
1,887.5  
139.5  
37.5  
PIO2_26  
PIO2_27  
P7  
K7  
AB13  
AB14  
128  
129  
1,922.5  
1,957.5  
139.5  
37.5  
VCCIO_2  
VCCIO_2  
N10  
Y11  
130  
131  
1,992.5  
2,027.5  
139.5  
37.5  
(2.42, 30-MAR-2012)  
92  
Lattice Semiconductor Corporation  
www.latticesemi.com  
Available Packages  
CB196 CB284  
Y13  
DiePlus  
X (µm)  
2,062.5  
2,097.5  
iCE65L08  
Pad Name  
PIO2_28  
Pad  
132  
133  
Y (µm)  
139.5  
37.5  
GBIN5/PIO2_29  
M7  
V11  
GBIN4/PIO2_30  
GND  
N8  
J8  
V12  
Y12  
134  
135  
136  
137  
2,132.5  
2,167.5  
2,202.5  
2,237.5  
139.5  
37.5  
139.5  
37.5  
GND  
PIO2_31  
P8  
Y14  
PIO2_32  
PIO2_33  
M8  
AB15  
V13  
138  
139  
2,272.5  
2,307.5  
139.5  
37.5  
PIO2_34  
PIO2_35  
L8  
AB16  
Y15  
140  
141  
2,342.5  
2,377.5  
139.5  
37.5  
PIO2_36  
PIO2_37  
N9  
AB17  
AB18  
142  
143  
2,412.5  
2,447.5  
139.5  
37.5  
PIO2_38  
PIO2_39  
AB19  
AB20  
144  
145  
2,482.5  
2,517.5  
139.5  
37.5  
PIO2_40  
PIO2_41  
AB21  
Y17  
146  
147  
2,552.5  
2,587.5  
139.5  
37.5  
PIO2_42  
PIO2_43  
AB22  
Y18  
148  
149  
2,622.5  
2,657.5  
139.5  
37.5  
PIO2_44  
VCC  
VCC  
PIO2_45  
P9  
N7  
Y19  
N11  
150  
151  
152  
153  
2,692.5  
2,727.5  
2,762.5  
2,797.5  
139.5  
37.5  
139.5  
37.5  
M9  
Y20  
PIO2_46  
VCCIO_2  
VCCIO_2  
PIO2_47  
K8  
J9  
T11  
N13  
154  
155  
156  
157  
2,832.5  
2,867.5  
2,902.5  
2,937.5  
139.5  
37.5  
139.5  
37.5  
N11  
R11  
GND  
GND  
J8  
M12  
158  
159  
2,972.5  
3,007.5  
139.5  
37.5  
PIO2_48  
PIO2_49  
N12  
K9  
T12  
R12  
160  
161  
3,042.5  
3,077.5  
139.5  
37.5  
PIO2_50  
N13  
T13  
162  
3,112.5  
139.5  
PIO2_51/CBSEL0  
PIO2_52/CBSEL1  
L9  
P10  
R13  
V14  
163  
164  
3,147.5  
3,182.5  
37.5  
139.5  
CDONE  
CRESET_B  
M10  
L10  
T14  
R14  
165  
166  
3,217.5  
3,260.0  
37.5  
139.5  
PIOS_00/SPI_SO  
PIOS_01/SPI_SI  
M11  
P11  
T15  
V15  
167  
168  
3,320.0  
3,370.0  
37.5  
139.5  
GND  
GND  
J8  
Y16  
169  
170  
3,420.0  
3,470.0  
37.5  
139.5  
PIOS_02/SPI_SCK  
PIOS_03/SPI_SS_B  
P12  
P13  
V16  
V17  
171  
172  
3,520.0  
3,570.0  
37.5  
139.5  
VCC  
VCC  
SPI_VCC  
SPI_VCC  
L11  
R15  
173  
174  
175  
176  
3,620.0  
3,670.0  
3,720.0  
3,770.0  
37.5  
139.5  
37.5  
139.5  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
93  
iCE65 Ultra Low-Power mobileFPGAFamily  
Available Packages  
CB196 CB284  
M12 T16  
DiePlus  
X (µm)  
iCE65L08  
Pad Name  
Pad  
Y (µm)  
TDI  
TMS  
TCK  
TDO  
TRST_B  
177  
178  
179  
180  
181  
4,470.5  
4,572.5  
4,470.5  
4,572.5  
4,470.5  
634.615  
684.615  
734.615  
784.615  
834.615  
P14  
L12  
N14  
M14  
V18  
R16  
U18  
T18  
PIO1_00  
PIO1_01  
M13  
K11  
R18  
P16  
182  
183  
4,572.5  
4,470.5  
884.615  
934.615  
PIO1_02  
PIO1_03  
L13  
L14  
P15  
P18  
184  
185  
4,572.5  
4,470.5  
984.615  
1,034.615  
GND  
GND  
G9  
N18  
186  
187  
4,572.5  
4,470.5  
1,084.615  
1,134.615  
PIO1_04  
PIO1_05  
J11  
K12  
N16  
N15  
188  
189  
4,572.5  
4,470.5  
1,184.615  
1,234.62  
VCCIO_1  
VCCIO_1  
F9  
M18  
190  
191  
4,572.5  
4,470.5  
1,287.115  
1,322.115  
PIO1_06  
PIO1_07  
J12  
K14  
M15  
M16  
192  
193  
4,572.5  
4,470.5  
1,357.115  
1,392.115  
PIO1_08  
PIO1_09  
T20  
W20  
194  
195  
4,572.5  
4,470.5  
1,427.115  
1,462.115  
PIO1_10  
VCC  
VCC  
PIO1_11  
H9  
V20  
M13  
196  
197  
198  
199  
4,572.5  
4,470.5  
4,572.5  
4,470.5  
1,497.115  
1,532.115  
1,567.115  
1,602.115  
R20  
PIO1_12  
PIO1_13  
Y22  
AA22  
200  
201  
4,572.5  
4,470.5  
1,637.115  
1,672.115  
PIO1_14  
PIO1_15  
J13  
U20  
W22  
202  
203  
4,572.5  
4,470.5  
1,707.115  
1,742.115  
PIO1_16  
PIO1_17  
H11  
J10  
P20  
V22  
204  
205  
4,572.5  
4,470.5  
1,777.115  
1,812.115  
PIO1_18  
GND  
GND  
PIO1_19  
H12  
K10  
U22  
N20  
206  
207  
208  
209  
4,572.5  
4,470.5  
4,572.5  
4,470.5  
1,847.115  
1,882.115  
1,917.110  
1,952.115  
H13  
T22  
PIO1_20  
PIO1_21  
H10  
M20  
R22  
210  
211  
4,572.5  
4,470.5  
1,987.115  
2,022.115  
PIO1_22  
VCCIO_1  
VCCIO_1  
PIO1_23  
F9  
P22  
J20  
212  
213  
214  
215  
4,572.5  
4,470.5  
4,572.5  
4,470.5  
2,057.115  
2,092.115  
2,127.115  
2,162.115  
G10  
M22  
PIO1_24  
PIO1_25  
G11  
N22  
K22  
216  
217  
4,572.5  
4,470.5  
2,197.115  
2,232.115  
PIO1_26  
GBIN3/PIO1_27  
G12  
L22  
K18  
218  
219  
4,572.5  
4,470.5  
2,267.115  
2,302.11  
GBIN2/PIO1_28  
PIO1_29  
F10  
L18  
J22  
220  
221  
4,572.5  
4,470.5  
2,337.115  
2,372.115  
(2.42, 30-MAR-2012)  
94  
Lattice Semiconductor Corporation  
www.latticesemi.com  
Available Packages  
CB196 CB284  
K20  
DiePlus  
X (µm)  
4,572.5  
4,470.5  
iCE65L08  
Pad Name  
PIO1_30  
PIO1_31  
Pad  
222  
223  
Y (µm)  
2,407.115  
2,442.115  
G14  
F22  
PIO1_32  
PIO1_33  
F11  
G22  
E22  
224  
225  
4,572.5  
4,470.5  
2,477.115  
2,512.115  
PIO1_34  
PIO1_35  
F12  
G13  
L16  
D22  
226  
227  
4,572.5  
4,470.5  
2,547.115  
2,582.115  
GND  
GND  
G8  
L12  
228  
229  
4,572.5  
4,470.5  
2,617.115  
2,652.115  
PIO1_36  
VCCIO_1  
VCCIO_1  
PIO1_37  
E10  
H14  
K16  
H22  
230  
231  
232  
233  
4,572.5  
4,470.5  
4,572.5  
4,470.5  
2,687.12  
2,722.12  
2,757.12  
2,792.12  
F14  
H20  
PIO1_38  
PIO1_39  
E11  
D12  
J18  
C22  
234  
235  
4,572.5  
4,470.5  
2,827.12  
2,862.12  
PIO1_40  
PIO1_41  
F13  
E13  
J16  
B22  
236  
237  
4,572.5  
4,470.5  
2,897.12  
2,932.12  
PIO1_42  
PIO1_43  
E12  
E14  
H18  
G20  
238  
239  
4,572.5  
4,470.5  
2,967.12  
3,002.12  
PIO1_44  
PIO1_45  
L15  
A22  
240  
241  
4,572.5  
4,470.5  
3,037.12  
3,072.12  
PIO1_46  
VCC  
VCC  
PIO1_47  
K13  
H16  
L20  
242  
243  
244  
245  
4,572.5  
4,470.5  
4,572.5  
4,470.5  
3,107.12  
3,142.12  
3,177.12  
3,229.615  
D14  
F20  
PIO1_48  
VCCIO_1  
VCCIO_1  
PIO1_49  
D11  
H14  
K15  
K13  
246  
247  
248  
249  
4,572.5  
4,470.5  
4,572.5  
4,470.5  
3,279.615  
3,329.615  
3,379.615  
3,429.62  
C14  
E20  
PIO1_50  
GND  
GND  
PIO1_51  
D13  
J14  
J15  
L13  
250  
251  
252  
253  
4,572.5  
4,470.5  
4,572.5  
4,470.5  
3,479.615  
3,529.615  
3,579.615  
3,629.615  
B14  
D20  
PIO1_52  
PIO1_53  
C13  
B13  
G18  
C20  
254  
255  
4,572.5  
4,470.5  
3,679.595  
3,729.595  
PIO1_54  
VPP_2V5  
C12  
A14  
F18  
E18  
256  
257  
4,572.5  
4,470.5  
3,779.595  
3,879.575  
VPP_FAST  
VCC  
A13  
F8  
E17  
K12  
258  
259  
260  
3,866.975  
3,766.98  
3,716.98  
4,054.5  
4,156.5  
4,054.5  
VCC  
PIO0_00  
PIO0_01  
G16  
C19  
261  
262  
3,666.98  
3,616.98  
4,156.5  
4,054.5  
PIO0_02  
PIO0_03  
C11  
H15  
C18  
263  
264  
3,566.98  
3,516.98  
4,156.5  
4,054.5  
PIO0_04  
VCCIO_0  
PIO0_05  
A12  
F6  
B11  
H14  
A21  
C17  
265  
266  
267  
3,466.98  
3,416.98  
3,366.98  
4,156.5  
4,054.5  
4,156.5  
PIO0_06  
PIO0_07  
D10  
A11  
E16  
G15  
268  
269  
3,316.98  
3,266.98  
4,054.5  
4,156.5  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
95  
iCE65 Ultra Low-Power mobileFPGAFamily  
Available Packages  
CB196 CB284  
F7 E13  
DiePlus  
X (µm)  
3,216.98  
iCE65L08  
Pad Name  
GND  
Pad  
270  
271  
Y (µm)  
4,054.5  
4,156.5  
GND  
3,166.98  
PIO0_08  
PIO0_09  
D9  
C10  
E15  
G14  
272  
273  
3,116.98  
3,064.48  
4,054.5  
4,156.5  
PIO0_10  
PIO0_11  
A10  
B10  
A20  
H13  
274  
275  
3,029.48  
2,994.48  
4,054.5  
4,156.5  
PIO0_12  
PIO0_13  
E9  
A19  
G13  
276  
277  
2,959.48  
2,924.48  
4,054.5  
4,156.5  
PIO0_14  
PIO0_15  
C16  
E14  
278  
279  
2,889.48  
2,854.48  
4,054.5  
4,156.5  
VCCIO_0  
VCCIO_0  
F6  
E12  
280  
281  
2,819.48  
2,784.48  
4,054.5  
4,156.5  
PIO0_16  
PIO0_17  
A18  
A17  
282  
283  
2,749.48  
2,714.48  
4,054.5  
4,156.5  
PIO0_18  
PIO0_19  
C9  
C15  
A16  
284  
285  
2,679.48  
2,644.48  
4,054.5  
4,156.5  
PIO0_20  
PIO0_21  
B9  
C14  
H12  
286  
287  
2,609.48  
2,574.48  
4,054.5  
4,156.5  
PIO0_22  
PIO0_23  
D8  
C8  
A15  
H11  
288  
289  
2,539.48  
2,504.48  
4,054.5  
4,156.5  
PIO0_24  
PIO0_25  
E8  
C13  
A14  
290  
291  
2,469.48  
2,434.48  
4,054.5  
4,156.5  
GND  
GND  
B12  
C12  
292  
293  
2,399.48  
2,364.48  
4,054.5  
4,156.5  
PIO0_26  
PIO0_27  
B8  
D7  
A13  
A12  
294  
295  
2,329.48  
2,294.48  
4,054.5  
4,156.5  
PIO0_28  
GBIN1/PIO0_29  
E7  
C11  
E11  
296  
297  
2,259.48  
2,224.48  
4,054.5  
4,156.5  
GBIN0/PIO0_30  
PIO0_31  
A7  
E10  
G12  
298  
299  
2,189.48  
2,154.48  
4,054.5  
4,156.5  
VCCIO_0  
VCCIO_0  
A8  
A8  
300  
301  
2,119.48  
2,084.48  
4,054.5  
4,156.5  
PIO0_32  
PIO0_33  
C7  
A11  
G11  
302  
303  
2,049.48  
2,014.48  
4,054.5  
4,156.5  
PIO0_34  
PIO0_35  
E6  
A10  
C10  
304  
305  
1,979.48  
1,944.48  
4,054.5  
4,156.5  
VCC  
VCC  
B7  
C8  
306  
307  
1,909.48  
1,874.48  
4,054.5  
4,156.5  
PIO0_36  
PIO0_37  
A6  
A9  
A7  
308  
309  
1,839.48  
1,804.48  
4,054.5  
4,156.5  
PIO0_38  
PIO0_39  
B6  
A5  
C9  
A6  
310  
311  
1,769.48  
1,734.48  
4,054.5  
4,156.5  
GND  
GND  
G7  
K11  
312  
313  
1,699.48  
1,664.48  
4,054.5  
4,156.5  
PIO0_40  
PIO0_41  
D6  
C6  
E9  
G10  
314  
315  
1,629.48  
1,594.48  
4,054.5  
4,156.5  
(2.42, 30-MAR-2012)  
96  
Lattice Semiconductor Corporation  
www.latticesemi.com  
Available Packages  
CB196 CB284  
C5 A5  
DiePlus  
X (µm)  
1,559.48  
1,524.48  
iCE65L08  
Pad Name  
PIO0_42  
PIO0_43  
Pad  
316  
317  
Y (µm)  
4,054.5  
4,156.5  
B5  
G9  
PIO0_44  
PIO0_45  
A4  
A3  
A4  
318  
319  
1,489.48  
1,454.48  
4,054.5  
4,156.5  
PIO0_46  
PIO0_47  
A2  
C7  
320  
321  
1,419.48  
1,384.48  
4,054.5  
4,156.5  
PIO0_48  
VCCIO_0  
VCCIO_0  
PIO0_49  
A8  
C6  
K10  
322  
323  
324  
325  
1,331.98  
1,281.98  
1,231.98  
1,181.98  
4,054.5  
4,156.5  
4,054.5  
4,156.5  
E8  
PIO0_50  
PIO0_51  
B4  
C4  
A1  
E7  
326  
327  
1,131.98  
1,081.98  
4,054.5  
4,156.5  
PIO0_52  
PIO0_53  
A3  
B3  
C5  
E6  
328  
329  
1,031.98  
981.98  
4,054.5  
4,156.5  
PIO0_54  
GND  
GND  
PIO0_55  
D5  
A9  
C3  
L11  
330  
331  
332  
333  
931.98  
881.98  
831.98  
781.98  
4,054.5  
4,156.5  
4,054.5  
4,156.5  
B2  
G8  
PIO0_56  
PIO0_57  
A2  
A1  
C4  
H10  
334  
335  
731.98  
681.98  
4,054.5  
4,156.5  
PIO0_58  
PIO0_59  
E5  
H9  
336  
337  
631.98  
581.98  
4,054.5  
4,156.5  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
97  
iCE65 Ultra Low-Power mobileFPGAFamily  
Electrical Characteristics  
All parameter limits are specified under worst-case supply voltage, temperature, and processing conditions.  
Absolute Maximum Ratings  
Stresses beyond those listed under Table 47 may cause permanent damage to the device. These are stress ratings  
only; functional operation of the device at these or any other conditions beyond those listed under the  
Recommended Operating Conditions is not implied. Exposure to absolute maximum conditions for extended  
periods of time adversely affects device reliability.  
Table 47: Absolute Maximum Ratings  
Symbol  
Description  
Min  
Max  
Units  
VCC  
Core supply Voltage  
0.5  
1.42  
V
V
V
V
VPP_2V5  
VPP_FAST  
VCCIO_0  
VCCIO_1  
VCCIO_2  
SPI_VCC  
VCCIO_3  
VPP_2V5 NVCM programming and operating supply  
Optional fast NVCM programming supply  
I/O bank supply voltage (I/O Banks 0, 1, and 2 plus SPI  
interface)  
0.5  
4.00  
I/O Bank 3 supply voltage  
0.5  
1.0  
iCE65L01: 4.00  
iCE65L04/08: 3.6  
V
V
VIN_0  
VIN_1  
VIN_2  
VIN_SPI  
VIN_3  
VIN_VREF  
IOUT  
Voltage applied to PIO pin within a specific I/O bank (I/O  
Banks 0, 1, and 2 plus SPI interface)  
5.5  
Voltage applied to PIO pin within I/O Bank 3  
0.5  
iCE65L01: 4.00  
iCE65L04/08: 3.6  
V
DC output current per pin  
Junction temperature  
Storage temperature, no bias  
55  
65  
20  
125  
150  
mA  
°C  
°C  
TJ  
TSTG  
Recommended Operating Conditions  
Table 48: Recommended Operating Conditions  
Minimum  
0.95  
Nominal  
1.00  
1.20  
Maximum Units  
Symbol  
VCC  
Description  
Core supply voltage  
L: Ultra-Low Power mode  
1.05  
1.26  
V
V
L: Low Power  
1.14  
T: High Performance  
Release from Power-on Reset  
Configure from NVCM  
NVCM programming  
VPP_2V5  
VPP_2V5 NVCM  
programming and operating  
supply  
1.30  
2.30  
2.30  
3.47  
3.47  
3.00  
V
V
V
VPP_FAST  
SPI_VCC  
VCCIO_0  
VCCIO_1  
VCCIO_2  
VCCIO_3  
SPI_VCC  
Optional fast NVCM programming supply  
SPI interface supply voltage  
Leave unconnected in application  
1.71  
3.14  
3.30  
3.47  
3.47  
V
V
I/O standards, all banks*  
LVCMOS33  
Non-standard voltage:  
in between 2.5V and 3.3V  
use LVCMOS25 in iCEcube2  
LVCMOS25, LVDS  
LVCMOS18, SubLVDS  
LVCMOS15  
Nominal  
-5%  
2.5< Nominal Nominal  
V
<3.3  
+5%  
2.38  
1.71  
1.43  
2.38  
1.71  
1.71  
0
2.50  
1.80  
1.50  
2.50  
1.80  
1.80  
2.63  
1.89  
1.58  
2.63  
1.89  
1.89  
70  
V
V
V
V
V
VCCIO_3  
TA  
I/O standards only available  
in iCE65L04/08 I/O Bank 3*  
SSTL2  
SSTL18  
MDDR  
V
Ambient temperature  
Commercial (C)  
Industrial (I)  
°C  
°C  
°C  
40  
10  
85  
TPROG  
NVCM programming temperature  
25  
30  
NOTE:  
VPP_FAST is only used for fast production programming. Leave floating or unconnected in application. When the iCE65  
device is active, VPP_2V5 must be connected to a valid voltage.  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
98  
www.latticesemi.com  
 
 
 
I/O Characteristics  
Table 49: PIO Pin Electrical Characteristics  
Symbol  
Description  
Conditions  
Minimum  
Nominal  
Maximum Units  
Il  
Input pin  
leakage current  
I/O Bank 0, 1, 2  
I/O Bank 3  
VIN = VCCIOmax to 0 V  
VIN = VCCIOmax  
±10  
µA  
IOZ  
Three-state I/O pin (Hi-Z) leakage  
current  
VO = VCCIOmax to 0 V  
±10  
µA  
CPIO  
CGBIN  
PIO pin input capacitance  
GBIN global buffer pin input  
capacitance  
6
6
pF  
pF  
RPULLU Internal PIO pull-up resistance  
VCCIO = 3.3V  
VCCIO = 2.5V  
VCCIO = 1.8V  
VCCIO = 1.5V  
VCCIO = 1.2V  
40  
50  
90  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
mV  
during configuration  
P
VHYST  
Input hysteresis  
VCCIO = 1.5V to 3.3V  
50  
NOTE: All characteristics are characterized and may or may not be tested on each pin on each device.  
Single-ended I/O Characteristics  
Table 50: I/O Characteristics (I/O Banks 0, 1, 2 and SPI only) (I/O Bank 3 iCE65L01 only)  
Nominal I/O  
Bank Supply  
Voltage  
3.3V  
Output Current at  
Voltage (mA)  
Input Voltage (V)  
Output Voltage (V)  
I/O Standard  
LVCMOS33  
LVCMOS25  
LVCMOS18  
IOH  
VIL  
VIH  
VOL  
0.4  
0.4  
0.4  
VOH  
2.40  
2.00  
1.40  
IOL  
0.80  
0.70  
2.00  
1.70  
8
6
4
8
6
4
2.5V  
1.8V  
35% VCCIO 65% VCCIO  
Not supported  
LVCMOS15  
1.5V  
0.4  
1.20  
2
2
Use I/O Bank 3  
Table 51: I/O Characteristics (I/O Bank 3 and iCE65L04/08 only)  
mA at  
Voltage  
IOL. IOH  
I/O Attribute  
Name  
Input Voltage (V)  
Output Voltage (V)  
Supply  
Voltage  
I/O Standard  
LVCMOS33  
Max. VIL  
Min. VIH  
Max. VOL  
Min. VOH  
SL_LVCMOS33_8  
SB_LVCMOS25_16  
SB_LVCMOS25_12  
SB_LVCMOS25_8 *  
SB_LVCMOS25_4  
SB_LVCMOS18_10  
SB_LVCMOS18_8  
SB_LVCMOS18_4 *  
SB_LVCMOS18_2  
SB_LVCMOS15_4  
SB_LVCMOS15_2 *  
SB_MDDR10  
SB_MDDR8  
SB_MDDR4 *  
SB_MDDR2  
SB_SSTL2_CLASS_2  
SB_SSTL2_CLASS_1  
SB_SSTL18_FULL  
SB_SSTL18_HALF  
3.3V  
0.80  
2.20  
0.4  
2.40  
±8  
±16  
±12  
±8  
±4  
±10  
±8  
±4  
±2  
±4  
±2  
LVCMOS25  
2.5V  
0.70  
1.70  
0.4  
2.00  
LVCMOS18  
LVCMOS15  
MDDR  
35% VCCIO  
35% VCCIO  
35% VCCIO  
65% VCCIO  
65% VCCIO  
65% VCCIO  
VCCIO0.45  
75% VCCIO  
VCCIO0.45  
VTT+0.430  
1.8V  
1.5V  
1.8V  
0.4  
25% VCCIO  
0.4  
±10  
±8  
±4  
±2  
SSTL2 (Class 2)  
SSTL2 (Class 1)  
SSTL18 (Full)  
SSTL18 (Half)  
NOTES:  
0.35  
0.54  
0.28  
±16.2  
±8.1  
±13.4  
±6.7  
VREF0.180  
VREF0.125  
VREF+0.180  
VREF+0.125  
2.5V  
1.8V  
VTT+0.280  
VTT+0.475  
VTT0.475  
SSTL2 and SSTL18 I/O standards require the VREF input pin, which is only available on the CB284 package and die-based products.  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
99  
 
 
iCE65 Ultra Low-Power mobileFPGAFamily  
Differential Inputs  
Figure 50: Differential Input Specifications  
VCCIO_3  
DPxxB  
Differential  
Input common mode voltage  
input voltage  
VIN_B  
50%  
VID  
VIN_A  
DPxxA  
VICM  
iC65 Differential  
Input  
GND  
Input common mode voltage:  
VCCIO_ꢁ  
2
VICꢀ  
=
  ꢀꢁ  
ꢂꢃꢄ  
Differential input voltage:  
VID=|VIN_BꢂVIN_A  
|
Table 52: Recommended Operating Conditions for Differential Inputs  
VCCIO_3 (V)  
VID (mV)  
VICM (V)  
I/O  
Standard  
Min  
Nom  
Max  
Min  
Nom  
Max  
Min  
Nom  
Max  
VCCIOꢅꢆ  
VCCIOꢅꢆ  
VCCIOꢅꢆ  
LVDS  
2.38  
2.50  
1.80  
2.63  
250  
350  
150  
450  
 ꢈꢉꢆꢈ  
 ꢈꢉꢆꢈ  
2
2
2
VCCIOꢅꢆ  
VCCIOꢅꢆ  
VCCIOꢅꢆ  
SubLVDS  
1.71  
1.89  
100  
200  
 ꢈꢉꢋꢌ  
 ꢈꢉꢋꢌ  
2
2
2
Differential Outputs  
Figure 51: Differential Output Specifications  
VCCIO_x  
Differential  
1%  
RP  
Output common mode voltage  
output voltage  
RS  
RS  
VOUT_B  
50%  
VOD  
VOUT_A  
VOCM  
iC65 Differential  
Output Pair  
GND  
Output common mode voltage:  
Differential output voltage:  
VCCIO_x  
2
VOCꢀ  
=
  ꢀꢁꢍꢃꢄ  
VOD=|VOUT_BꢂVOUT_A  
|
Table 53: Recommended Operating Conditions for Differential Outputs  
Ω
VCCIO_x (V)  
VOD (mV)  
VOCM (V)  
Nom  
I/O  
Standard  
Min  
Nom  
Max  
Min  
Nom  
Max  
Min  
Max  
RS  
RP  
VCCIO  
VCCIO  
2
VCCIO  
LVDS  
2.38  
1.71  
2.50  
2.63  
1.89  
150  
140  
300  
350  
150  
400  
 ꢈꢉꢎꢌ  
 ꢈꢉꢎꢈ  
 ꢈꢉꢎꢌ  
 ꢈꢉꢎꢈ  
2
2
VCCIO  
2
VCCIO  
2
VCCIO  
2
SubLVDS  
1.80  
270  
120  
100  
200  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
100  
www.latticesemi.com  
 
 
 
I/O Banks 0, 1, 2 and SPI Bank Characteristic Curves  
Figure 52: Typical LVCMOS Output Low Characteristics (I/O Banks 0, 1, 2, and SPI)  
50  
40  
30  
20  
10  
0
VCCIO= 3.3V  
VCCIO= 2.5V  
VCCIO= 1.8V  
VCCIO= 1.5V  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
VOL ( V )  
Figure 53: Typical LVCMOS Output High Characteristics (I/O Banks 0, 1, 2, and SPI)  
0
VCCIO= 1.5V  
-10  
-20  
1.8V  
VCCIO= 2
-30  
-40  
-50  
-60  
-70  
2.5V  
VCCIO= 1
VCCIO= 3.3V  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
VOH ( V )  
Figure 54: Input with Internal Pull-Up Resistor Enabled (I/O Banks 0, 1, 2, and SPI)  
0
-10  
VCCIO= 1.8V  
-20  
-30  
-40  
VCCIO= 2.5V  
-50  
-60  
-70  
-80  
-90  
VCCIO= 3.3V  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
VIN (Volts)  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
101  
 
 
 
iCE65 Ultra Low-Power mobileFPGAFamily  
AC Timing Guidelines  
The following examples provide some guidelines of device performance. The actual performance depends on the  
specific application and how it is physically implemented in the iCE65 FPGA using the Lattice iCEcube software.  
The following guidelines assume typical conditions (VCC = 1.0 V or 1.2 V as specified, temperature = 25 ˚C). Apply  
derating factors using the iCEcube timing analyzer to adjust to other operating regimes.  
Programmable Logic Block (PLB) Timing  
Table 54 provides timing information for the logic in a Programmable Logic Block (PLB), which includes the paths  
shown in Figure 55 and Figure 56.  
Figure 55 PLB Sequential Timing Circuit  
PAD  
PIO  
DFF  
PAD  
PIO  
D
Q
LUT4  
Logic Cell  
GBIN  
GBUF  
Figure 56 PLB Combinational Timing Circuit  
PAD  
PAD  
PIO  
PIO  
LUT4  
Logic Cell  
Table 54: Typical Programmable Logic Block (PLB) Timing  
Device: iCE65  
Power/Speed Grade  
L01  
T  
L04, L08  
L  
T  
Nominal VCC 1.2 V 1.0 V 1.2 V 1.2 V  
Typ.  
Typ.  
Typ.  
Typ.  
Description  
Symbol  
FTOGGLE  
tCKO  
From  
To  
Units  
MHz  
ns  
Sequential Logic Paths  
Flip-flop toggle frequency. DFF flip-flop output fed back to  
LUT4 input with 4-input XOR, clocked on same clock edge.  
GBIN  
input  
DFF  
clock  
input  
GBIN  
input  
GBIN  
input  
PIO  
256  
5.4  
224  
256  
8.7  
256  
7.1  
Logic cell flip-flop (DFF) clock-to-output time, measured  
from the DFF CLK input to PIO output, including  
interconnect delay.  
16.5  
output  
Global Buffer Input (GBIN) delay, though Global Buffer  
(GBUF) clock network to clock input on the logic cell DFF  
flip-flop.  
tGBCKLC  
DFF  
clock  
input  
GBIN  
input  
2.2  
7.3  
3.8  
2.7  
ns  
Minimum setup time on PIO input, through LUT4, to DFF  
flip-flop D-input before active clock edge on the GBIN  
input, including interconnect delay.  
Minimum hold time on PIO input, through LUT4, to DFF  
flip-flop D-input after active clock edge on the GBIN input,  
including interconnect delay.  
tSULI  
tHDLI  
PIO  
input  
1.0  
0
4.0  
0
2.1  
0
1.2  
0
ns  
ns  
GBIN  
input  
PIO  
input  
Combinational Logic Paths  
Asynchronous delay from PIO input pad to adjacent PLB  
interconnect.  
tLUT4IN  
tILO  
PIO  
input  
LUT4  
input output  
LUT4 PIO  
output output  
LUT4  
input  
LUT4  
2.6  
0.6  
4.9  
9.8  
1.9  
5.2  
1.0  
8.4  
3.3  
0.6  
6.6  
ns  
ns  
ns  
Logic cell LUT4 combinational logic propagation delay,  
regardless of logic complexity from input to output.  
Asynchronous delay from adjacent PLB interconnect  
to PIO output pad.  
tLUT4IN  
16.0  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
102  
www.latticesemi.com  
 
 
 
 
Programmable Input/Output (PIO) Block  
Table 55 provides timing information for the logic in a Programmable Logic Block (PLB), which includes the paths  
shown in Figure 57 and Figure 58. The timing shown is for the LVCMOS25 I/O standard in all I/O banks. The  
iCEcube development software reports timing adjustments for other I/O standards.  
Figure 57: Programmable I/O (PIO) Pad-to-Pad Timing Circuit  
PAD  
PAD  
PIO  
PIO  
Figure 58: Programmable I/O (PIO) Sequential Timing Circuit  
PAD  
PAD  
PIO  
PIO  
INFF  
OUTFF  
D
Q
D
Q
GBIN  
GBUF  
Table 55: Typical Programmable Input/Output (PIO) Timing (LVCMOS25)  
Device: iCE65  
Power/Speed Grad  
L01  
T  
L04, L08  
L  
T  
Nominal VCC 1.2 V  
1.0 V  
Typ.  
1.2 V  
Typ.  
1.2 V  
Typ.  
Description  
Synchronous Output Paths  
Units  
Symbol  
tOCKO  
From  
To  
Typ.  
OUTFF  
clock  
input  
Delay from clock input on OUTFF output flip-  
flop to PIO output pad.  
PIO  
output  
4.7  
2.1  
13.8  
7.3  
7.3  
3.8  
5.6  
2.6  
ns  
OUTFF  
clock  
input  
Global Buffer Input (GBIN) delay, though  
Global Buffer (GBUF) clock network to clock  
input on the PIO OUTFF output flip-flop.  
tGBCKIO  
GBIN  
input  
ns  
Synchronous Input Paths  
Setup time on PIO input pin to INFF input flip-  
flop before active clock edge on GBIN input,  
including interconnect delay.  
tSUPDIN  
PIO  
input  
GBIN  
input  
0
0
0
0
ns  
ns  
Hold time on PIO input to INFF input flip-flop  
after active clock edge on the GBIN input,  
including interconnect delay.  
tHDPDIN  
GBIN  
input  
PIO  
input  
2.7  
7.1  
3.6  
2.8  
Pad to Pad  
Inter-  
Asynchronous delay from PIO input pad to  
tPADIN  
tPADO  
PIO  
input  
Inter-  
connect  
2.5  
4.5  
9.5  
5.0  
7.7  
3.2  
6.2  
ns  
ns  
connect adjacent interconnect.  
Asynchronous delay from adjacent  
interconnect to PIO output pad including  
interconnect delay.  
PIO  
output  
14.6  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
103  
 
 
 
iCE65 Ultra Low-Power mobileFPGAFamily  
RAM4K Block  
Table 56 provides timing information for the logic in a RAM4K block, which includes the paths shown in Figure 59.  
Figure 59: RAM4K Timing Circuit  
PAD  
PAD  
PIO  
PIO  
WDATA  
RDATA  
RAM4K  
RAM Block  
(256x16)  
GBIN  
GBIN  
GBUF  
GBUF  
WCLK  
RCLK  
Table 56: Typical RAM4K Block Timing  
Device: iCE65  
Power/Speed Grade  
Nominal VCC  
L01  
T  
1.2 V  
Typ.  
L04, L08  
L  
1.2 V  
Typ.  
L  
1.0 V  
Typ.  
T  
1.2 V  
Typ.  
Symbol From  
To  
Description  
Units  
Write Setup/Hold Time  
Minimum write data setup time on PIO  
inputs before active clock edge on GBIN  
input, include interconnect delay.  
Minimum write data hold time on PIO  
inputs after active clock edge on GBIN  
input, including interconnect delay.  
tSUWD  
PIO  
input  
GBIN  
input  
0.6  
0
3.1  
1.7  
0
0.8  
0
ns  
tHDWD  
GBIN  
input  
PIO  
input  
0
ns  
Read Clock-Output-Time  
Clock-to-output delay from RCLK input  
pin, through RAM4K RDATA output flip-  
flop to PIO output pad, including  
interconnect delay.  
Global Buffer Input (GBIN) delay, though  
Global Buffer (GBUF) clock network to  
the RCLK clock input.  
tCKORD  
RCLK  
clock  
input  
PIO  
output  
5.6  
2.1  
17.1  
7.3  
9.1  
3.8  
7.3  
2.6  
ns  
ns  
tGBCKRM  
GBIN  
input  
RCLK  
clock  
input  
Write and Read Clock Characteristics  
WCLK  
RCLK  
WCLK  
RCLK  
Write clock High time  
tRMWCKH  
tRMWCKL  
tRMWCYC  
FWMAX  
0.54  
0.63  
1.27  
256  
1.14  
1.32  
2.64  
256  
0.54  
0.63  
1.27  
256  
0.54  
0.63  
1.27  
256  
ns  
ns  
ns  
Write clock Low time  
Write clock cycle time  
Sustained write clock frequency  
MHz  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
104  
www.latticesemi.com  
 
 
Internal Configuration Oscillator Frequency  
Table 57 shows the operating frequency for the iCE65’s internal configuration oscillator.  
Table 57: Internal Oscillator Frequency  
Frequency (MHz)  
Oscillator  
Mode  
Symbol  
fOSCD  
Min.  
Max.  
Description  
Default  
4.0  
6.8  
Default oscillator frequency. Slow enough to safely operate  
with any SPI serial PROM.  
fOSCL  
fOSCH  
Low  
Frequency  
High  
Frequency  
Off  
14  
21  
0
21  
31  
0
Supported by most SPI serial Flash PROMs  
Supported by some high-speed SPI serial Flash PROMs  
Oscillator turned off by default after configuration to save  
power.  
Configuration Timing  
Table 58 shows the maximum time to configure an iCE65 device, by oscillator mode. The calculations use the  
slowest frequency for a given oscillator mode from Table 57 and the maximum configuration bitstream size from  
Table 1 which includes full RAM4K block initialization. The configuration bitstream selects the desired oscillator  
mode based on the performance of the configuration data source.  
Table 58: Maximum SPI Master or NVCM Configuration Timing by Oscillator Mode  
Symbol  
Description  
Device  
Default  
Low Freq.  
High Freq.  
Units  
tCONFIGL  
Time from when  
iCE65L01  
iCE65L04  
iCE65L08  
53  
25  
55  
11  
25  
50  
ms  
ms  
ms  
minimum Power-on  
Reset (POR) threshold is  
reached until user  
application starts.  
115  
230  
110  
Table 59 provides timing for the CRESET_B and CDONE pins.  
Table 59: General Configuration Timing  
All Grades  
Symbol  
tCRESET_B  
From  
CREST_B  
To  
CREST_B  
Description  
Minimum CRESET_B Low pulse width required to restart  
configuration, from falling edge to rising edge  
Min.  
200  
Max.  
Units  
ns  
CDONE  
High  
PIO pins Number of configuration clock cycles after CDONE goes  
Clock  
cycles  
tDONE_IO  
49  
active  
High before the PIO pins are activated.  
SPI Peripheral Mode (Clock = SPI_SCK, cycles measured  
rising-edge to rising-edge)  
Depends on  
SPI_SCK frequency  
NVCM or SPI Master Mode by internal  
oscillator frequency setting (Clock =  
internal oscillator)  
Default  
Low  
High  
µs  
µs  
µs  
7.20  
2.34  
1.59  
12.25  
3.50  
2.33  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
105  
 
 
 
iCE65 Ultra Low-Power mobileFPGAFamily  
Table 60 provides various timing specifications for the SPI peripheral mode interface.  
Table 60: SPI Peripheral Mode Timing  
All Grades  
Min. Max.  
Symbol  
tCR_SCK  
From  
To  
Description  
Units  
µs  
CRESET_B  
SPI_SCK Minimum time from a rising edge on CRESET_B until  
the first SPI write operation, first SPI_SCK. During  
this time, the iCE65 FPGA is clearing its internal  
configuration memory  
SPI_SCK Setup time on SPI_SI before the rising SPI_SCK clock edge  
SPI_SI Hold time on SPI_SI after the rising SPI_SCK clock edge  
iC65L01  
iC65L04  
iC65L08  
800  
800  
1200  
12  
12  
20  
20  
40  
1
SPI_SI  
SPI_SCK  
tSUSPISI  
tHDSPISI  
tSPISCKH  
tSPISCKL  
tSPISCKCYC  
FSPI_SCK  
1,000  
25  
ns  
ns  
ns  
ns  
ns  
SPI_SCK SPI_SCK SPI_SCK clock High time  
SPI_SCK SPI_SCK SPI_SCK clock Low time  
SPI_SCK SPI_SCK SPI_SCK clock period*  
SPI_SCK SPI_SCK Sustained SPI_SCK clock frequency*  
MHz  
* = Applies after sending the synchronization pattern.  
Power Consumption Characteristics  
Core Power  
Table 61 shows the power consumed on the internal VCC supply rail when the device is filled with 16-bit binary  
counters, measured with a 32.768 kHz and at 32.0 MHz. Low power (-L) at 1.0 V operation and high-performance  
(-T) version at 1.2V operation is provided.  
Table 61: VCC Power Consumption for Device Filled with 16-Bit Binary Counters  
iCE65L01  
iCE65L04  
iCE65L08  
Units  
Symbol Description  
VCC  
1.0V  
1.2V  
1.0V  
1.2V  
1.0V  
1.2V  
Max.  
Max.  
Max.  
Grade  
L  
T  
L  
T  
Typical  
Typical  
Typical  
12  
19  
15  
23  
3
26  
43  
31  
50  
7
54  
90  
62  
100  
14  
17  
ICC0K  
ICC32K  
ICC32M  
f =0,  
µA  
µA  
f ≤ ꢁ2.768  
kHz  
f = 32.0  
MHz  
L  
T  
mA  
4
8
I/O Power  
Table 62 provides the static current by I/O bank. The typical current for I/O Banks 0, 1, 2 and the SPI bank is not  
measurable within the accuracy of the test environment. The PIOs in I/O Bank 3 use different circuitry and dissipate  
a small amount of static current.  
Table 62: I/O Bank Static Current (f = 0 MHz)  
Symbol  
ICCO_0  
ICCO_1  
ICCO_2  
ICCO_3  
Description  
Typical  
« 1  
« 1  
« 1  
Max  
Units  
µA  
µA  
µA  
µA  
I/O Bank 0  
I/O Bank 1  
I/O Bank 2  
I/O Bank 3  
Static current consumption per I/O bank.  
f = 0 MHz. No PIO pull-up resistors  
enabled. All inputs grounded. All  
outputs driving Low.  
iCE65L01: « 1  
iCE65L04/08: 1.2  
« 1  
ICCO_SPI  
SPI Bank  
µA  
NOTE: The typical static current for I/O Banks 0, 1, 2, and the SPI bank is less than the accuracy of the device tester.  
Power Estimator  
To estimate the power consumption for a specific application, please download and use the iCE65 Power Estimator  
Spreadsheet our use the power estimator built into the iCEcube software.  
iCE65 Power Estimator Spreadsheet  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
106  
www.latticesemi.com  
 
 
 
Notes  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
107  
iCE65 Ultra Low-Power mobileFPGAFamily  
Revision History  
Version  
2.42  
2.41  
2.4  
Date  
Description  
Changed company name. Updated Table 1  
Added VQ100 marking for NVCM programming.  
Added L01 CB121 package Figure 39. Added note “else VCCIO_1 draws current” to JTAG  
inputs TCK, TDI and TMS do not have the input pull-up resistor and must be tied off to  
GND when unused, Table 32. Input pin leakage current Table 49 split by bank. QN84  
package drawing, Figure 35, added note “underside metal is at ground potential”,  
increased thermal resistance. Added Marking Format and Thermal resistance to CB81  
Packag Mechanical Drawing Figure 33. Added coplanarity specification to VQ100 Package  
Mechanical Drawing Figure 37  
30-MAR-2012  
1-AUG-2011  
13-MAY-2011  
18-OCT-2010  
12-OCT-2010  
2.3  
2.2.3  
Added L01 CB81 and L08 CB132 packages.  
Changed Figure 29: Application Processor Waveforms for SPI Peripheral Mode  
Configuration Process and Table 60 from 300 µs CRESET_B to 800 µs for iCE65L01/04  
and 1200 µs for iCE65L08.  
8-OCT-2010  
5-OCT-2010  
2.2.2  
2.2.1  
Added iCE65L04 marking specification to Figure 47 CB196 Package Mechanical Drawing.  
Changed FSPI_SCK from 0.125 MHz to 1 MHz in SPI Peripheral Configuration Interface  
and in Table 60.  
6-AUG-2010  
26-MAY-2010  
15-MAR-2010  
2.2  
2.1.1  
2.1  
Programmable Interconnect section removed.  
Switched labels on Figure 53 LVCMOS Output High, VCCIO = 1.8V with VCCIO = 2.5V.  
Added JTAG unused input tie off guideline. Added marking specification and thermal  
characteristics to package drawings. Added production datasheet for iCE65L01 with  
timing update, including QN84, VQ100 and CB132. Added NVCM shut-off on SPI  
configuration. Added non-standard VCCIO operating conditions. Increased the minimum  
voltage supply specification for LVCMOS33 to 3.14V in Table 48.  
12-NOV-2009  
2.0.1  
2.0  
Recommended Operation Conditions, Table 47, replaced junction with ambient.  
14-SEPT-2009 Finalized production data sheet for iCE65L04 and iCE65L08. Improved SubLVDS input specification  
VICM in Table 52. CS63 and CC72 packages removed and placed in iCE DiCE KGD, Known Good Die  
datasheet. Added “IBIS Models for I/O Banks 0, 1, 2 and the SPI Bank”. Added “Printed Circuit  
Board Layout Information”.  
1.5.1  
1.5  
13-JUL-2009  
20-JUN-2009  
Updated the text in SPI PROM Requirements” section. ꢀinor label change in Figure 48.  
Updated timing information and added T high-speed device option (affected Figure 2, Table 48,  
Table 54, Table 55, Table 56, and Table 61). Added support for 3.3V LVCMOS I/Os in I/O Bank 3  
(affected Figure 7, Table 5, Table 7, Table 8, Table 47, Table 48, and Table 51). Added a section  
about the SPI Peripheral Configuration Interface and timing in Table 60. Added a warning that a  
Warm Boot operation can only jump to another configuration image that has Warm Boot disabled.  
Updated configuration image size and configuration time for the iCE65L02 in Table 27 and Table 58.  
Reduced the minimum voltage supply specification for LVCMOS33 to 2.7V in Table 48. Added  
information about which power rails can be disconnected without effecting the Power-On Reset  
(POR) circuit and clarified description of VPP_2V5 pin in Table 36. Added I/O characterization  
curves (Figure 52, Figure 53, and Figure 54). Minor changes to Figure 20 and Figure 21. Changed  
timing per Figures 54-58 and Tables 55-57.  
1.4.4  
1.4.3  
25-MAR-2009  
9-MAR-2009  
Clarified the voltage requirements for the VPP_2V5 pin in Table 36 and notes under Table 48.  
Removed volatile-only (-V) product offering from Figure 2. Corrected NC on ball V22, removed it  
for ball T22 on CB284 package (Figure 48).  
1.4.2  
1.4.1  
27-FEB-2009  
24-FEB-2009  
Updated Table 14, Table 23, Table 26, Table 30, Table 33, Table 35, and Table 46. Updated I/O  
Bank 3 information in Table 7 and Table 48.  
Based on characterization data, reduced 32KHz operating current by 40% in Table 1, Table 61, and  
Figure 1. Corrected that SSTL18 standards require VREF pin in Table 7. Correct ball numbers for  
GBIN4/GBIN5 for CS110 package.  
1.4  
9-FEB-2009  
Added footprint and pinout information for the VQ100 Very-thin Quad Flat Package. Added footprint for  
iCE65L08 in CB196 (Figure 46) and added Table 43 showing the differences between the ‘L04 and ‘L08 in the  
CB196 package. Unified the package footprint nomenclature in the Package and Pinout Information section.  
Added note to Global Buffer Inputs that the differential clock direct input is not available on the CB132 package.  
Added tables showing the ball/pin number for various control functions, by package (Table 14, Table 23, Table  
26, Table 30, and Table 33). Corrected the GBIN/GBUF designations. GBIN4 and GBIN5 were swapped as were  
GBIN6 and GBIN7. This change affected all pinout tables and footprint diagrams. Updated and corrected  
Differential Global Buffer Input.” Tested and corrected the clock-enable and reset connections between global  
buffers and various resources (Table 11, Table 12, and Table 13). Added Automatic Global Buffer Insertion,  
Manual Insertion.” Added Die Cross Referencesection. Improved industrial temperature range by lowering  
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
108  
www.latticesemi.com  
minimum temperature to 40°C in Figure 2 and Table 48. Added NVCM programming temperature to Table 48.  
Added footprint and pinout information for the CS110 Wafer-Level Chip-Scale Ball Grid Array. Clarified that the  
CB196 footprint shown is for the iCE65L04; the iCE65L08 footprint for the CB196 package is similar but  
different. Added updated information on Differential Inputs and Outputs, including support for SubLVDS.  
Updated Electrical Characteristics and AC Timing Guidelines sections. Added support for the LVCMOS15 I/O  
standard. Corrected the diagram showing the direct differential clock input, Figure 16. Updated the number of  
I/Os by package in Table 34. Updated company address. Other minor updates throughout.  
Updated I/O Bank 3 characteristics in Table 7 and Table 51. Corrected label in Figure 14. Added JTAG  
configuration to Table 20. Added pull-up resistor information in Table 22 and Figure 21. Added Internal Device  
Reset” section. Updated internal oscillator performance in and Table 57. Updated configuration timing in Table  
58 based on new oscillator timing. Completely reorganized the Package and Pinout Information” section.  
Added information on CS63 and CB196 packages. Updated information on VPP_2V5 signal in Table 36.  
Reduced package height for CB1ꢁ2 and CB284 packages to 1.0 mm. Added Differential Inputs” and  
Differential Outputs” sections.  
1.3  
1.2  
17-DEC-2008  
11-OCT-2008  
1.1  
1.0  
4-SEPT-2008  
31-MAY-2008  
Updated package roadmap (Table 2) and updated ordering codes (Figure 2). Updated Figure 7. Updated Figure  
24. Added CS63 package footprint (Figure 36), pinout (Table 39) and Package.  
Initial public release.  
Lattice Semiconductor Corporation  
(2.42, 30-MAR-2011)  
www.latticesemi.com  
109  
iCE65 Ultra Low-Power mobileFPGAFamily  
© 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at  
www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective  
holders. The specifications and information herein are subject to change without notice.  
Lattice Semiconductor Corporation  
5555 N.E. Moore Court  
Hillsboro, Oregon 97124-6421  
United States of America  
Tel: +1 503 268 8000  
Fax: +1 503 268 8347  
cumentation services by Prevailing Technology, Inc. (www.prevailing-technology.com)  
)
(2.42, 30-MAR-2012)  
Lattice Semiconductor Corporation  
110  
www.latticesemi.com  

相关型号:

ICE65L08F-LCC72C

Field Programmable Gate Array, 7680-Cell, CMOS, PBGA72,
LATTICE

ICE65L08F-LCC72I

Field Programmable Gate Array, 7680-Cell, CMOS, PBGA72,
LATTICE

ICE6N70

N-Channel Enhancement Mode MOSFET
ICEMOS

ICE6N70FP

N-Channel Enhancement Mode MOSFET
ICEMOS

ICE6N73

Enhancement Mode MOSFET
ICEMOS

ICE73N199

Enhancement Mode MOSFET
ICEMOS

ICE7N60

N-Channel Enhancement Mode MOSFET
ICEMOS

ICE7N60FP

N-Channel Enhancement Mode MOSFET
ICEMOS

ICE8N70FP

N-Channel Enhancement Mode MOSFET
ICEMOS

ICE8N73

Enhancement Mode MOSFET
ICEMOS

ICEBLADEWS

IceBlade
PULSE

ICEBLADEWT

IceBlade
PULSE