HGTG20N120E2 [INTERSIL]

34A, 1200V N-Channel IGBT; 34A , 1200V N沟道IGBT
HGTG20N120E2
型号: HGTG20N120E2
厂家: Intersil    Intersil
描述:

34A, 1200V N-Channel IGBT
34A , 1200V N沟道IGBT

晶体 晶体管 电动机控制 双极性晶体管 栅 局域网
文件: 总5页 (文件大小:171K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Semiconductor  
HGTG20N120E2  
34A, 1200V N-Channel IGBT  
April 1995  
Features  
• 34A, 1200V  
Package  
JEDEC STYLE TO-247  
• Latch Free Operation  
• Typical Fall Time - 780ns  
• High Input Impedance  
• Low Conduction Loss  
EMITTER  
COLLECTOR  
GATE  
COLLECTOR  
(BOTTOM SIDE  
METAL)  
Description  
The HGTG20N120E2 is a MOS gated, high voltage switch-  
ing device combining the best features of MOSFETs and  
bipolar transistors. The device has the high input impedance  
of a MOSFET and the low on-state conduction loss of a  
bipolar transistor. The much lower on-state voltage drop  
varies only moderately between +25oC and +150oC.  
Terminal Diagram  
C
IGBTs are ideal for many high voltage switching applications  
operating at frequencies where low conduction losses are  
essential, such as: AC and DC motor controls, power  
supplies and drivers for solenoids, relays and contactors.  
The development type number for this device is TA49009.  
G
PACKAGING AVAILABILITY  
E
PART NUMBER  
PACKAGE  
TO-247  
BRAND  
G20N120E2  
HGTG20N120E2  
o
Absolute Maximum Ratings T = +25 C, Unless Otherwise Specified  
C
HGTG20N120E2  
1200  
UNITS  
V
V
Collector-Emitter Breakdown Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BV  
CES  
CGR  
Collector-Gate Breakdown Voltage R = 1M. . . . . . . . . . . . . . . . . . . . . . . . . . . BV  
1200  
GE  
Collector Current Continuous  
o
At T = +25 C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
34  
20  
100  
±20  
±30  
A
A
A
V
V
-
C
C25  
o
At T = +90 C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
C90  
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
Gate-Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
Gate-Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
Switching SOA at T = +150 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SSOA  
Power Dissipation Total at T = +25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
Power Dissipation Derating T > +25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Operating and Storage Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . .T , T  
Maximum Lead Temperature for Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T  
(0.125" from case for 5 seconds)  
CM  
GES  
GEM  
o
100A at 0.8 BV  
150  
C
CES  
o
W
C
D
o
o
1.20  
-55 to +150  
260  
W/ C  
C
o
C
C
J
STG  
o
L
Short Circuit Withstand Time (Note 2)  
At V = 15V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t  
3
15  
µs  
µs  
GE  
SC  
SC  
At V = 10V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t  
GE  
NOTES:  
1. Repetitive Rating: Pulse width limited by maximum junction temperature.  
o
2. V  
= 720V, T = +125 C, R = 25Ω  
CE(PEAK)  
C
GE  
HARRIS SEMICONDUCTOR IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS:  
4,364,073  
4,417,385  
4,598,461  
4,644,637  
4,801,986  
4,883,767  
4,430,792  
4,605,948  
4,682,195  
4,803,533  
4,888,627  
4,443,931  
4,618,872  
4,684,413  
4,809,045  
4,890,143  
4,466,176  
4,620,211  
4,694,313  
4,809,047  
4,901,127  
4,516,143  
4,631,564  
4,717,679  
4,810,665  
4,904,609  
4,532,534  
4,639,754  
4,743,952  
4,823,176  
4,933,740  
4,567,641  
4,639,762  
4,783,690  
4,837,606  
4,963,951  
4,587,713  
4,641,162  
4,794,432  
4,860,080  
4,969,027  
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESD Handling Procedures.  
File Number 3370.2  
Copyright © Harris Corporation 1995  
3-98  
Specifications HGTG20N120E2  
o
Electrical Specifications T = +25 C, Unless Otherwise Specified  
C
LIMITS  
PARAMETERS  
SYMBOL  
BV  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Collector-Emitter Breakdown  
Voltage  
I
= 250µA, V = 0V  
1200  
-
-
V
CES  
C
GE  
o
Collector-Emitter Leakage Current  
I
V
V
= BV  
T
T
T
T
T
T
T
= +25 C  
-
-
250  
1.0  
3.5  
3.6  
3.8  
4.0  
6.0  
µA  
mA  
V
CES  
CE  
CE  
CES  
C
C
C
C
C
C
C
o
= 0.8 BV  
= +125 C  
-
-
CES  
o
Collector-Emitter Saturation  
Voltage  
V
I
I
I
= I , V = 15V  
= +25 C  
-
2.9  
3.0  
3.1  
3.3  
4.5  
CE(SAT)  
C
C
C
C90  
GE  
o
= +125 C  
-
-
V
o
= I , V = 10V  
= +25 C  
V
C90  
GE  
o
= +125 C  
-
V
o
Gate-Emitter Threshold Voltage  
V
= 500µA,  
= +25 C  
3.0  
V
GE(TH)  
V
= V  
GE  
CE  
Gate-Emitter Leakage Current  
Gate-Emitter Plateau Voltage  
On-State Gate Charge  
I
V
= ±20V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
±250  
nA  
V
GES  
GE  
V
I
I
= I , V = 0.5 BV  
7.0  
-
150  
200  
-
GEP  
C
C90  
CE  
CES  
Q
= I  
,
V
V
= 15V  
= 20V  
110  
150  
100  
150  
520  
780  
7.0  
nC  
nC  
ns  
ns  
ns  
ns  
mJ  
ns  
ns  
ns  
ns  
mJ  
G(ON)  
C
C90  
GE  
GE  
V
= 0.5 BV  
CES  
CE  
Current Turn-On Delay Time  
Current Rise Time  
t
R = 48Ω  
I = I , V = 15V,  
C C90 GE  
D(ON)  
L
V
= 0.8 BV  
,
CE  
CES  
t
-
R
= 25,  
R
G
o
T = +125 C  
J
Current Turn-Off Delay Time  
Current Fall Time  
t
L = 50µH  
620  
1000  
-
D(OFF)I  
t
FI  
Turn-Off Energy (Note 1)  
Current Turn-On Delay Time  
Current Rise Time  
W
OFF  
t
R = 48Ω  
I
= I , V = 10V,  
100  
150  
420  
780  
7.0  
-
D(ON)  
L
C
C90  
= 0.8 BV  
GE  
V
,
CE  
CES  
t
-
R
= 25,  
R
G
o
T = +125 C  
J
Current Turn-Off Delay Time  
Current Fall Time  
t
L = 50µH  
520  
1000  
-
D(OFF)I  
t
FI  
Turn-Off Energy (Note 1)  
Thermal Resistance  
NOTE:  
W
R
OFF  
o
0.70  
0.83  
C/W  
θJC  
1. Turn-Off Energy Loss (W  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and  
OFF  
ending at the point where the collector current equals zero (I = 0A). The HGTG20N120E2 was tested per JEDEC standard No. 24-1  
CE  
Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.  
3-99  
HGTG20N120E2  
Typical Performance Curves  
FIGURE 1. TRANSFER CHARACTERISTICS (TYPICAL)  
FIGURE 2. SATURATION CHARACTERISTICS (TYPICAL)  
FIGURE 3. MAXIMUM DC COLLECTOR CURRENT AS A  
FUNCTION OF CASE TEMPERATURE  
FIGURE 4. FALL TIME AS A FUNCTION OF COLLECTOR-  
EMITTER CURRENT  
FIGURE 5. CAPACITANCE AS A FUNCTION OF COLLECTOR-  
EMITTER VOLTAGE  
FIGURE 6. NORMALIZED SWITCHING WAVEFORMS AT  
CONSTANT GATE CURRENT. (REFER TO  
APPLICATION NOTES AN7254 AND AN7260)  
3-100  
HGTG20N120E2  
Typical Performance Curves (Continued)  
FIGURE 7. SATURATION VOLTAGE AS A FUNCTION OF  
COLLECTOR-EMITTER CURRENT  
FIGURE 8. TURN-OFF SWITCHING LOSS AS A FUNCTION OF  
COLLECTOR-EMITTER CURRENT  
FIGURE 9. TURN-OFF DELAY AS A FUNCTION OF COLLECTOR-  
EMITTER CURRENT  
FIGURE 10. OPERATING FREQUENCY AS A FUNCTION OF  
COLLECTOR-EMITTER CURRENT AND VOLTAGE  
FIGURE 11. COLLECTOR-EMITTER SATURATION VOLTAGE  
3-101  
HGTG20N120E2  
Test Circuit  
L = 50µH  
1/RG = 1/RGEN + 1/RGE  
RGEN = 50Ω  
+
-
VCC  
960V  
20V  
0V  
RGE = 50Ω  
FIGURE 12. INDUCTIVE SWITCHING TEST CIRCUIT  
Operating Frequency Information  
Handling Precautions for IGBTs  
Operating frequency information for a typical device (Figure Insulated Gate Bipolar Transistors are susceptible to gate-  
10) is presented as a guide for estimating device performance insulation damage by the electrostatic discharge of energy  
for a specific application. Other typical frequency vs collector through the devices. When handling these devices, care  
current (ICE) plots are possible using the information shown should be exercised to assure that the static charge built in  
for a typical unit in Figures 7, 8 and 9. The operating the handler’s body capacitance is not discharged through  
frequency plot (Figure 10) of a typical device shows fMAX1 or the device. With proper handling and application procedures,  
fMAX2 whichever is smaller at each point. The information is however, IGBTs are currently being extensively used in  
based on measurements of a typical device and is bounded production by numerous equipment manufacturers in  
by the maximum rated junction temperature.  
military, industrial and consumer applications, with virtually  
no damage problems due to electrostatic discharge. IGBTs  
can be handled safely if the following basic precautions are  
taken:  
fMAX1 is defined by fMAX1 = 0.05/tD(OFF)I. tD(OFF)I deadtime  
(the denominator) has been arbitrarily held to 10% of the on-  
state time for a 50% duty factor. Other definitions are  
possible. tD(OFF)I is defined as the time between the 90% 1. Prior to assembly into a circuit, all leads should be kept  
point of the trailing edge of the input pulse and the point  
where the collector current falls to 90% of its maximum  
value. Device turn-off delay can establish an additional fre-  
shorted together either by the use of metal shorting  
springs or by the insertion into conductive material such  
as “ECCOSORBD LD26” or equivalent.  
quency limiting condition for an application other than TJMAX  
tD(OFF)I is important when controlling output ripple under a  
lightly loaded condition. fMAX2 is defined by fMAX2 = (Pd - Pc)/  
.
2. When devices are removed by hand from their carriers,  
the hand being used should be grounded by any suitable  
means - for example, with a metallic wristband.  
W
OFF. The allowable dissipation (Pd) is defined by Pd =  
(TJMAX - TC)/RθJC. The sum of device switching and conduc-  
tion losses must not exceed Pd. A 50% duty factor was used  
(Figure 10) and the conduction losses (Pc) are approximated  
by Pc = (VCE ICE)/2. WOFF is defined as the integral of the  
instantaneous power loss starting at the trailing edge of the  
input pulse and ending at the point where the collector  
current equals zero (ICE = 0A).  
3. Tips of soldering irons should be grounded.  
4. Devices should never be inserted into or removed from  
circuits with power on.  
5. Gate Voltage Rating - Never exceed the gate-voltage  
rating of VGEM. Exceeding the rated VGE can result in  
permanent damage to the oxide layer in the gate region.  
The switching power loss (Figure 10) is defined as fMAX2  
6. Gate Termination - The gates of these devices are  
essentially capacitors. Circuits that leave the gate open-  
circuited or floating should be avoided. These conditions  
can result in turn-on of the device due to voltage buildup  
on the input capacitor due to leakage currents or pickup.  
W
OFF. Turn-on switching losses are not included because  
they can be greatly influenced by external circuit conditions  
and components.  
7. Gate Protection - These devices do not have an internal  
monolithic zener diode from gate to emitter. If gate  
protection is required an external zener is recommended.  
Trademark Emerson and Cumming, Inc.  
3-102  

相关型号:

HGTG20N50C1D

20A, 500V N-Channel IGBT with Anti-Parallel Ultrafast Diode
INTERSIL

HGTG20N60A4

600V, SMPS Series N-Channel IGBTs
FAIRCHILD

HGTG20N60A4

600V, SMPS Series N-Channel IGBTs
INTERSIL

HGTG20N60A4

IGBT,600V,SMPS
ONSEMI

HGTG20N60A4D

600V, SMPS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
FAIRCHILD

HGTG20N60A4D

600V, SMPS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
INTERSIL

HGTG20N60A4D

600V,SMPS IGBT
ONSEMI

HGTG20N60A4D_09

600V, SMPS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
FAIRCHILD

HGTG20N60A4D_NL

Insulated Gate Bipolar Transistor, 70A I(C), 600V V(BR)CES, N-Channel, TO-247, LEAD FREE PACKAGE-3
FAIRCHILD

HGTG20N60B3

40A, 600V, UFS Series N-Channel IGBTs
FAIRCHILD

HGTG20N60B3

40A, 600V, UFS Series N-Channel IGBTs
INTERSIL

HGTG20N60B3

600V,PT IGBT
ONSEMI