HGTG20N60A4D [INTERSIL]

600V, SMPS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode; 600V ,开关电源系列N沟道IGBT与反并联二极管超高速
HGTG20N60A4D
型号: HGTG20N60A4D
厂家: Intersil    Intersil
描述:

600V, SMPS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
600V ,开关电源系列N沟道IGBT与反并联二极管超高速

晶体 二极管 开关 晶体管 电动机控制 瞄准线 双极性晶体管 栅 局域网
文件: 总9页 (文件大小:354K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HGTG20N60A4D  
Data Sheet  
October 1999  
File Number 4790  
600V, SMPS Series N-Channel IGBT with  
Anti-Parallel Hyperfast Diode  
Features  
• >100kHz Operation At 390V, 20A  
• 200kHz Operation At 390V, 12A  
• 600V Switching SOA Capability  
The HGTG20N60A4D is a MOS gated high voltage  
switching device combining the best features of MOSFETs  
and bipolar transistors. This device has the high input  
impedance of a MOSFET and the low on-state conduction  
loss of a bipolar transistor. The much lower on-state voltage  
o
Typical Fall Time. . . . . . . . . . . . . . . . . 55ns at T = 125 C  
J
• Low Conduction Loss  
o
o
drop varies only moderately between 25 C and 150 C. The  
IGBT used is the development type TA49339. The diode  
used in anti-parallel is the development type TA49372.  
Temperature Compensating SABER™ Model  
www.intersil.com  
This IGBT is ideal for many high voltage switching  
applications operating at high frequencies where low  
conduction losses are essential. This device has been  
optimized for high frequency switch mode power  
supplies.  
Packaging  
JEDEC STYLE TO-247  
E
C
G
Formerly Developmental Type TA49341.  
Ordering Information  
COLLECTOR  
(FLANGE)  
PART NUMBER  
PACKAGE  
BRAND  
20N60A4D  
HGTG20N60A4D  
TO-247  
NOTE: When ordering, use the entire part number.  
Symbol  
C
G
E
INTERSIL CORPORATION IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS  
4,364,073  
4,598,461  
4,682,195  
4,803,533  
4,888,627  
4,417,385  
4,605,948  
4,684,413  
4,809,045  
4,890,143  
4,430,792  
4,620,211  
4,694,313  
4,809,047  
4,901,127  
4,443,931  
4,631,564  
4,717,679  
4,810,665  
4,904,609  
4,466,176  
4,639,754  
4,743,952  
4,823,176  
4,933,740  
4,516,143  
4,639,762  
4,783,690  
4,837,606  
4,963,951  
4,532,534  
4,641,162  
4,794,432  
4,860,080  
4,969,027  
4,587,713  
4,644,637  
4,801,986  
4,883,767  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.  
1-888-INTERSIL or 407-727-9207 | Copyright © Intersil Corporation 1999  
SABER™ is a trademark of Analogy, Inc.  
1
HGTG20N60A4D  
o
Absolute Maximum Ratings T = 25 C, Unless Otherwise Specified  
C
HGTG20N60A4D  
UNITS  
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BV  
600  
V
CES  
Collector Current Continuous  
o
At T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
70  
A
A
A
V
V
C25  
o
At T = 110 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
40  
280  
C
C110  
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
CM  
GES  
GEM  
Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V  
20  
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
o
30  
Switching Safe Operating Area at T = 150 C (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . SSOA  
J
100A at 600V  
290  
o
Power Dissipation Total at T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
C
W
D
o
o
Power Dissipation Derating T > 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.32  
W/ C  
C
o
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . T , T  
-55 to 150  
260  
C
J
STG  
o
Maximum Lead Temperature for Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
C
L
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. Pulse width limited by maximum junction temperature.  
o
Electrical Specifications T = 25 C, Unless Otherwise Specified  
J
PARAMETER  
SYMBOL  
BV  
TEST CONDITIONS  
= 250µA, V = 0V  
MIN  
TYP  
MAX  
-
UNITS  
V
Collector to Emitter Breakdown Voltage  
Collector to Emitter Leakage Current  
I
600  
-
-
CES  
C
GE  
o
I
V
= 600V  
CE  
T = 25 C  
J
-
250  
3.0  
2.7  
2.0  
7.0  
250  
-
µA  
mA  
V
CES  
o
T = 125 C  
J
-
-
-
o
Collector to Emitter Saturation Voltage  
V
I
V
= 20A,  
C
T = 25 C  
J
1.8  
1.6  
5.5  
-
CE(SAT)  
= 15V  
GE  
o
T = 125 C  
-
V
J
Gate to Emitter Threshold Voltage  
Gate to Emitter Leakage Current  
Switching SOA  
V
I
= 250µA, V  
C CE  
= 600V  
4.5  
-
V
GE(TH)  
I
V
=
20V  
o
nA  
A
GES  
GE  
SSOA  
T = 150 C, R = 3, V  
= 15V,  
100  
-
J
G
GE  
L = 100µH, V  
= 600V  
CE  
Gate to Emitter Plateau Voltage  
On-State Gate Charge  
V
I
= 20A, V  
= 300V  
CE  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
8.6  
142  
182  
15  
-
162  
210  
-
V
nC  
nC  
ns  
ns  
ns  
ns  
µJ  
µJ  
µJ  
ns  
ns  
ns  
ns  
µJ  
µJ  
µJ  
V
GEP  
C
Q
I
V
= 20A,  
V
= 15V  
g(ON)  
C
GE  
= 300V  
CE  
V
= 20V  
o
GE  
Current Turn-On Delay Time  
Current Rise Time  
t
IGBT and Diode at T = 25 C,  
J
I
V
V
d(ON)I  
= 20A,  
CE  
t
12  
-
rI  
d(OFF)I  
= 390V,  
= 15V,  
CE  
Current Turn-Off Delay Time  
Current Fall Time  
t
73  
-
GE  
R
= 3Ω,  
G
t
32  
-
fI  
L = 500µH,  
Test Circuit Figure 24  
Turn-On Energy (Note 3)  
Turn-On Energy (Note 3)  
Turn-Off Energy (Note 2)  
Current Turn-On Delay Time  
Current Rise Time  
E
E
E
105  
280  
150  
15  
-
ON1  
ON2  
OFF  
350  
200  
21  
18  
135  
73  
-
o
t
IGBT and Diode at T = 125 C,  
J
I
V
R
L = 500µH,  
Test Circuit Figure 24  
d(ON)I  
= 20A,  
CE  
t
13  
rI  
d(OFF)I  
= 390V, V  
= 15V,  
CE  
GE  
= 3Ω,  
Current Turn-Off Delay Time  
Current Fall Time  
t
105  
55  
G
t
fI  
Turn-On Energy (Note 3)  
Turn-On Energy (Note 3)  
Turn-Off Energy (Note 2)  
Diode Forward Voltage  
E
E
E
115  
510  
330  
2.3  
ON1  
ON2  
OFF  
600  
500  
-
V
I
= 20A  
EC  
EC  
2
HGTG20N60A4D  
o
Electrical Specifications T = 25 C, Unless Otherwise Specified (Continued)  
J
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
35  
26  
-
MAX  
-
UNITS  
ns  
Diode Reverse Recovery Time  
t
I
I
= 20A, dI /dt = 200A/µs  
-
-
-
-
rr  
EC  
EC  
EC  
= 1A, dI /dt = 200A/µs  
-
ns  
EC  
o
Thermal Resistance Junction To Case  
NOTE:  
R
IGBT  
0.43  
1.9  
C/W  
θJC  
o
Diode  
-
C/W  
2. Turn-Off Energy Loss (E  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending  
OFF  
at the point where the collector current equals zero (I = 0A). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement  
CE  
of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.  
3. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. E  
is the turn-on loss of the IGBT only. E  
ON2  
ON1  
is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same T as the IGBT. The diode type is specified in  
J
Figure 20.  
Typical Performance Curves Unless Otherwise Specified  
100  
120  
o
V
= 15V  
GE  
T
= 150 C, R = 3, V = 15V, L = 100µH  
GE  
DIE CAPABILITY  
J
G
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
PACKAGE LIMIT  
25  
50  
75  
100  
125  
150  
0
100  
V
200  
300  
400  
500  
600  
700  
o
T
C
, CASE TEMPERATURE ( C)  
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
FIGURE 1. DC COLLECTOR CURRENT vs CASE  
TEMPERATURE  
FIGURE 2. MINIMUM SWITCHING SAFE OPERATING AREA  
500  
14  
12  
10  
8
450  
400  
350  
300  
250  
200  
o
T
V
GE  
V
= 390V, R = 3, T = 125 C  
G J  
C
o
CE  
75 C  
15V  
300  
I
SC  
f
f
P
= 0.05 / (t  
d(OFF)I  
+ t  
)
MAX1  
d(ON)I  
+ E )  
OFF  
6
= (P - P ) / (E  
100  
40  
MAX2  
D
C
ON2  
= CONDUCTION DISSIPATION  
C
4
t
SC  
(DUTY FACTOR = 50%)  
R
o
= 0.43 C/W, SEE NOTES  
o
ØJC  
2
150  
100  
T
= 125 C, R = 3, L = 500µH, V  
= 390V  
J
G
CE  
20  
, COLLECTOR TO EMITTER CURRENT (A)  
0
5
10  
30  
40  
50  
10  
11  
12  
13  
14  
15  
I
V
, GATE TO EMITTER VOLTAGE (V)  
CE  
GE  
FIGURE 3. OPERATING FREQUENCY vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 4. SHORT CIRCUIT WITHSTAND TIME  
3
HGTG20N60A4D  
Typical Performance Curves Unless Otherwise Specified (Continued)  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
DUTY CYCLE < 0.5%, V  
GE  
PULSE DURATION = 250µs  
= 12V  
DUTY CYCLE < 0.5%, V  
= 15V  
PULSE DURATION = 250µs  
GE  
o
T
= 125 C  
o
J
T
= 125 C  
J
o
o
o
o
T
= 25 C  
T
= 150 C  
T
= 25 C  
T
= 150 C  
J
J
J
J
0
0.4  
V
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
0
0.4  
V
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
, COLLECTOR TO EMITTER VOLTAGE (V)  
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
CE  
FIGURE 5. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
FIGURE 6. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
1400  
800  
R
= 3, L = 500µH, V  
= 390V  
G
CE  
R
= 3, L = 500µH, V  
= 390V  
G
CE  
700  
600  
500  
400  
300  
200  
100  
0
1200  
1000  
800  
600  
400  
200  
0
o
T
= 125 C, V  
= 12V, V = 15V  
GE  
J
GE  
o
T
= 125 C, V  
= 12V OR 15V  
J
GE  
o
T
= 25 C, V  
= 12V OR 15V  
35 40  
J
GE  
30  
o
T
= 25 C, V  
= 12V, V  
30  
= 15V  
J
GE  
GE  
5
10  
15  
20  
25  
5
10  
15  
20  
25  
35  
40  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 7. TURN-ON ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 8. TURN-OFF ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
36  
22  
R
= 3, L = 500µH, V  
= 390V  
CE  
R
= 3, L = 500µH, V = 390V  
CE  
G
G
32  
28  
24  
20  
16  
12  
8
20  
18  
16  
14  
12  
10  
8
o
o
T
= 25 C, T = 125 C, V = 12V  
GE  
J
J
o
o
T
= 25 C, T = 125 C, V  
= 12V  
GE  
J
J
o
= 25 C, T = 125 C, V  
GE  
o
T
= 15V  
35  
J
J
o
o
T
= 25 C OR T = 125 C, V  
= 15V  
J
J
GE  
4
5
10  
15  
20  
25  
30  
35  
40  
5
10  
15  
20  
25  
30  
40  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 9. TURN-ON DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 10. TURN-ON RISE TIME vs COLLECTOR TO  
EMITTER CURRENT  
4
HGTG20N60A4D  
Typical Performance Curves Unless Otherwise Specified (Continued)  
120  
110  
100  
90  
80  
72  
64  
56  
48  
40  
32  
24  
16  
R
= 3, L = 500µH,  
R
= 3, L = 500µH, V  
= 390V  
V
= 390V  
G
G
CE  
CE  
o
V
= 12V, V  
GE  
= 15V, T = 125 C  
J
o
GE  
T
= 125 C, V  
= 12V OR 15V  
= 12V OR 15V  
J
GE  
o
T
= 25 C, V  
J
GE  
80  
o
V
= 12V, V  
GE  
= 15V, T = 25 C  
GE  
J
70  
60  
5
10  
15  
20  
25  
30  
35  
40  
5
10  
15  
20  
25  
30  
35  
40  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
CE  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 11. TURN-OFF DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 12. FALL TIME vs COLLECTOR TO EMITTER  
CURRENT  
16  
240  
oo  
I  
=1mA,R =15,T =25 C  
G(REF)  
L  
J  
DUTY CYCLE < 0.5%, V  
= 10V  
CE  
PULSE DURATION = 250µs  
14  
12  
10  
8
200  
160  
120  
80  
V
= 600V  
CE  
V
= 400V  
CE  
o
T
= 25 C  
V
= 200V  
J
CE  
6
o
T
= 125 C  
J
4
o
T
= -55 C  
40  
J
2
0
0
0
20  
40  
60  
80  
100  
120  
140  
160  
6
7
8
9
10  
11  
12  
Q
, GATE CHARGE (nC)  
V
, GATE TO EMITTER VOLTAGE (V)  
G
GE  
FIGURE 13. TRANSFER CHARACTERISTIC  
FIGURE 14. GATE CHARGE WAVEFORMS  
o
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 125 C, L = 500µH, V  
= 390V, V = 15V  
GE  
J
CE  
R
= 3, L = 500µH, V  
CE  
= 390V, V = 15V  
GE  
G
E
= E  
+ E  
ON2 OFF  
TOTAL  
E
= E  
+ E  
ON2 OFF  
TOTAL  
10  
I
= 30A  
CE  
I
= 30A  
CE  
1
I
I
= 20A  
= 10A  
CE  
I
I
= 20A  
= 10A  
CE  
CE  
CE  
0.1  
3
10  
100  
, GATE RESISTANCE ()  
1000  
25  
50  
75  
100  
125  
150  
o
R
T
, CASE TEMPERATURE ( C)  
G
C
FIGURE 15. TOTAL SWITCHING LOSS vs CASE  
TEMPERATURE  
FIGURE 16. TOTAL SWITCHING LOSS vs GATE RESISTANCE  
5
HGTG20N60A4D  
Typical Performance Curves Unless Otherwise Specified (Continued)  
5
4
3
2
1
0
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
o
FREQUENCY = 1MHz  
DUTY CYCLE < 0.5%, T = 25 C  
J
PULSE DURATION = 250µs  
C
IES  
I
= 30A  
= 20A  
CE  
I
I
CE  
CE  
C
OES  
= 10A  
C
RES  
0
20  
40  
60  
80  
100  
8
9
10  
11  
12  
13  
14  
15  
16  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
V
, GATE TO EMITTER VOLTAGE (V)  
GE  
FIGURE 17. CAPACITANCE vs COLLECTOR TO EMITTER  
VOLTAGE  
FIGURE 18. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
vs GATE TO EMITTER VOLTAGE  
30  
90  
DUTY CYCLE < 0.5%,  
PULSE DURATION = 250µs  
25  
dI /dt = 200A/µs  
EC  
80  
70  
60  
50  
40  
30  
20  
10  
0
o
125 C t  
rr  
o
20  
125 C t  
o
b
125 C t  
a
o
125 C  
15  
o
25 C  
10  
5
o
25 C t  
rr  
o
25 C t  
a
o
25 C t  
b
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
4
8
12  
16  
20  
I
, FORWARD CURRENT (A)  
V
, FORWARD VOLTAGE (V)  
EC  
EC  
FIGURE 19. DIODE FORWARD CURRENT vs FORWARD  
VOLTAGE DROP  
FIGURE 20. RECOVERY TIMES vs FORWARD CURRENT  
50  
800  
I
= 20A, V  
= 390V  
CE  
EC  
V
= 390V  
CE  
o
125 C, I  
= 20A  
40  
30  
20  
10  
0
EC  
o
125 C t  
600  
400  
200  
0
a
o
125 C, I  
= 10A  
= 20A  
EC  
o
125 C t  
b
o
25 C, I  
EC  
o
25 C t  
a
o
25 C t  
o
b
25 C, I  
= 10A  
EC  
200  
300  
400  
500  
600  
700  
800  
900 1000  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
di /dt, RATE OF CHANGE OF CURRENT (A/µs)  
EC  
di /dt, RATE OF CHANGE OF CURRENT (A/µs)  
EC  
FIGURE 21. RECOVERY TIMES vs RATE OF CHANGE OF  
CURRENT  
FIGURE 22. STORED CHARGE vs RATE OF CHANGE OF  
CURRENT  
6
HGTG20N60A4D  
Typical Performance Curves Unless Otherwise Specified (Continued)  
0
10  
0.5  
0.2  
0.1  
-1  
10  
10  
0.05  
0.02  
0.01  
t
1
P
D
-2  
DUTY FACTOR, D = t / t  
1
2
t
SINGLE PULSE  
2
PEAK T = (P X Z  
X R ) + T  
J
D
θJC  
θJC C  
-5  
-4  
-3  
10  
-2  
-1  
10  
0
10  
10  
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
1
FIGURE 23. IGBT NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASE  
Test Circuit and Waveforms  
HGTG20N60A4D  
DIODE TA49372  
90%  
OFF  
10%  
ON2  
V
GE  
E
E
L = 500µH  
V
CE  
R
= 3Ω  
G
90%  
DUT  
10%  
d(OFF)I  
+
I
CE  
t
t
V
= 390V  
rI  
DD  
t
fI  
-
t
d(ON)I  
FIGURE 24. INDUCTIVE SWITCHING TEST CIRCUIT  
FIGURE 25. SWITCHING TEST WAVEFORMS  
ECCOSORBD™ is a trademark of Emerson and Cumming, Inc.  
7
HGTG20N60A4D  
Operating Frequency Information  
Handling Precautions for IGBTs  
Insulated Gate Bipolar Transistors are susceptible to  
gate-insulation damage by the electrostatic discharge of  
energy through the devices. When handling these devices,  
care should be exercised to assure that the static charge  
built in the handler’s body capacitance is not discharged  
through the device. With proper handling and application  
procedures, however, IGBTs are currently being extensively  
used in production by numerous equipment manufacturers in  
military, industrial and consumer applications, with virtually  
no damage problems due to electrostatic discharge. IGBTs  
can be handled safely if the following basic precautions are  
taken:  
Operating frequency information for a typical device  
(Figure 3) is presented as a guide for estimating device  
performance for a specific application. Other typical  
frequency vs collector current (I ) plots are possible using  
CE  
the information shown for a typical unit in Figures 6, 7, 8, 9  
and 11. The operating frequency plot (Figure 3) of a typical  
device shows f  
or f  
; whichever is smaller at each  
MAX1  
MAX2  
point. The information is based on measurements of a  
typical device and is bounded by the maximum rated  
junction temperature.  
f
is defined by f  
MAX1  
= 0.05/(t ).  
+ t  
MAX1  
d(OFF)I d(ON)I  
Deadtime (the denominator) has been arbitrarily held to 10%  
of the on-state time for a 50% duty factor. Other definitions  
1. Prior to assembly into a circuit, all leads should be kept  
shorted together either by the use of metal shorting  
springs or by the insertion into conductive material such  
as “ECCOSORBD™ LD26” or equivalent.  
are possible. t  
and t  
are defined in Figure 25.  
d(OFF)I  
d(ON)I  
Device turn-off delay can establish an additional frequency  
limiting condition for an application other than T . t  
JM d(OFF)I  
2. When devices are removed by hand from their carriers,  
the hand being used should be grounded by any suitable  
means - for example, with a metallic wristband.  
is important when controlling output ripple under a lightly  
loaded condition.  
f
is defined by f  
MAX2  
= (P - P )/(E  
OFF  
+ E ). The  
ON2  
MAX2  
D
C
3. Tips of soldering irons should be grounded.  
allowable dissipation (P ) is defined by P = (T - T )/R  
.
D
D
JM θJC  
C
4. Devices should never be inserted into or removed from  
circuits with power on.  
The sum of device switching and conduction losses must not  
exceed P . A 50% duty factor was used (Figure 3) and the  
D
5. Gate Voltage Rating - Never exceed the gate-voltage  
conduction losses (P ) are approximated by  
C
rating of V  
. Exceeding the rated V can result in  
GEM  
GE  
P
= (V  
x I )/2.  
are defined in the switching waveforms  
is the integral of the  
C
CE CE  
permanent damage to the oxide layer in the gate region.  
E
and E  
OFF  
6. Gate Termination - The gates of these devices are  
essentially capacitors. Circuits that leave the gate open-  
circuited or floating should be avoided. These conditions  
can result in turn-on of the device due to voltage buildup  
on the input capacitor due to leakage currents or pickup.  
ON2  
shown in Figure 25. E  
ON2  
instantaneous power loss (I  
x V ) during turn-on and  
CE  
CE  
E
is the integral of the instantaneous power loss  
OFF  
(I  
x V ) during turn-off. All tail losses are included in the  
CE  
CE  
7. Gate Protection - These devices do not have an internal  
monolithic Zener diode from gate to emitter. If gate  
protection is required an external Zener is recommended.  
calculation for E  
; i.e., the collector current equals zero  
OFF  
(I  
= 0).  
CE  
8
HGTG20N60A4D  
TO-247  
3 LEAD JEDEC STYLE TO-247 PLASTIC PACKAGE  
A
INCHES  
MIN  
MILLIMETERS  
TERM. 4  
ØP  
E
SYMBOL  
MAX  
0.190  
0.051  
0.070  
0.105  
0.026  
0.820  
0.625  
MIN  
4.58  
MAX  
4.82  
NOTES  
ØS  
A
b
0.180  
0.046  
0.060  
0.095  
0.020  
0.800  
0.605  
-
Q
1.17  
1.29  
2, 3  
ØR  
b
b
1.53  
1.77  
1, 2  
1
2
D
2.42  
2.66  
1, 2  
c
0.51  
0.66  
1, 2, 3  
D
E
e
20.32  
15.37  
20.82  
15.87  
-
-
L
1
b1  
b2  
0.219 TYP  
0.438 BSC  
0.090  
5.56 TYP  
11.12 BSC  
4
4
5
-
L
c
e
1
b
J
0.105  
0.640  
0.155  
0.144  
0.220  
0.205  
0.270  
2.29  
2.66  
16.25  
3.93  
3.65  
5.58  
5.20  
6.85  
1
L
0.620  
0.145  
0.138  
0.210  
0.195  
0.260  
15.75  
3.69  
3.51  
5.34  
4.96  
6.61  
1
2
3
3
2
1
J
e
1
L
1
-
BACK VIEW  
1
ØP  
Q
e1  
-
ØR  
-
IGBT Packaging Table  
ØS  
-
LEAD 1  
LEAD 2  
LEAD 3  
TERM. 4  
-
-
-
-
GATE  
NOTES:  
COLLECTOR  
EMITTER  
1. Lead dimension and finish uncontrolled in L .  
1
2. Lead dimension (without solder).  
COLLECTOR  
3. Add typically 0.002 inches (0.05mm) for solder coating.  
4. Position of lead to be measured 0.250 inches (6.35mm) from bottom  
of dimension D.  
5. Position of lead to be measured 0.100 inches (2.54mm) from bottom  
of dimension D.  
6. Controlling dimension: Inch.  
7. Revision 1 dated 1-93.  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
Intersil (Taiwan) Ltd.  
7F-6, No. 101 Fu Hsing North Road  
Taipei, Taiwan  
Republic of China  
TEL: (886) 2 2716 9310  
FAX: (886) 2 2715 3029  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (407) 724-7000  
FAX: (407) 724-7240  
9

相关型号:

HGTG20N60A4D_09

600V, SMPS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
FAIRCHILD

HGTG20N60A4D_NL

Insulated Gate Bipolar Transistor, 70A I(C), 600V V(BR)CES, N-Channel, TO-247, LEAD FREE PACKAGE-3
FAIRCHILD

HGTG20N60B3

40A, 600V, UFS Series N-Channel IGBTs
FAIRCHILD

HGTG20N60B3

40A, 600V, UFS Series N-Channel IGBTs
INTERSIL

HGTG20N60B3

600V,PT IGBT
ONSEMI

HGTG20N60B3D

40A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
FAIRCHILD

HGTG20N60B3D

40A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
INTERSIL

HGTG20N60B3D

600V,PT IGBT
ONSEMI

HGTG20N60B3D_NL

Insulated Gate Bipolar Transistor, 40A I(C), 600V V(BR)CES, N-Channel, TO-247
FAIRCHILD

HGTG20N60B3_NL

暂无描述
FAIRCHILD

HGTG20N60C3

45A, 600V, UFS Series N-Channel IGBT
FAIRCHILD

HGTG20N60C3

45A, 600V, UFS Series N-Channel IGBT
INTERSIL