HGTG20N60B3D [FAIRCHILD]

40A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode; 40A , 600V , UFS系列N沟道IGBT与反并联二极管超高速
HGTG20N60B3D
型号: HGTG20N60B3D
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

40A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
40A , 600V , UFS系列N沟道IGBT与反并联二极管超高速

晶体 二极管 晶体管 电动机控制 瞄准线 双极性晶体管 栅 局域网
文件: 总7页 (文件大小:180K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HGTG20N60B3D  
Data Sheet  
December 2001  
40A, 600V, UFS Series N-Channel IGBT  
with Anti-Parallel Hyperfast Diode  
Features  
o
• 40A, 600V at T = 25 C  
C
The HGTG20N60B3D is a MOS gated high voltage  
switching device combining the best features of MOSFETs  
and bipolar transistors. The device has the high input  
impedance of a MOSFET and the low on-state conduction  
loss of a bipolar transistor. The much lower on-state voltage  
o
Typical Fall Time. . . . . . . . . . . . . . . . . . . . 140ns at 150 C  
• Short Circuit Rated  
• Low Conduction Loss  
• Hyperfast Anti-Parallel Diode  
o
o
drop varies only moderately between 25 C and 150 C. The  
diode used in anti-parallel with the IGBT is the RHRP3060.  
Packaging  
The IGBT is ideal for many high voltage switching  
applications operating at moderate frequencies where low  
conduction losses are essential.  
JEDEC STYLE TO-247  
E
C
G
Formerly developmental type TA49016.  
Ordering Information  
PART NUMBER  
PACKAGE  
BRAND  
G20N60B3D  
HGTG20N60B3D  
TO-247  
COLLECTOR  
(BOTTOM SIDE METAL)  
NOTE: When ordering, use the entire part number.  
Symbol  
C
G
E
FAIRCHILD SEMICONDUCTOR IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS  
4,364,073  
4,598,461  
4,682,195  
4,803,533  
4,888,627  
4,417,385  
4,605,948  
4,684,413  
4,809,045  
4,890,143  
4,430,792  
4,620,211  
4,694,313  
4,809,047  
4,901,127  
4,443,931  
4,631,564  
4,717,679  
4,810,665  
4,904,609  
4,466,176  
4,639,754  
4,743,952  
4,823,176  
4,933,740  
4,516,143  
4,639,762  
4,783,690  
4,837,606  
4,963,951  
4,532,534  
4,641,162  
4,794,432  
4,860,080  
4,969,027  
4,587,713  
4,644,637  
4,801,986  
4,883,767  
©2001 Fairchild Semiconductor Corporation  
HGTG20N60B3D Rev. B  
HGTG20N60B3D  
o
Absolute Maximum Ratings T = 25 C, Unless Otherwise Specified  
C
HGTG20N60B3D  
UNITS  
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BV  
600  
V
V
A
A
A
A
V
V
CES  
Collector to Gate Voltage, R  
= 1M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BV  
600  
GE  
CGR  
Collector Current Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
o
40  
C25  
C110  
(AVG)  
At T = 110 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
20  
20  
o
Average Diode Forward Current at 110 C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
160  
CM  
GES  
GEM  
Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
±20  
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
o
±30  
Switching Safe Operating Area at T = 150 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSOA  
C
30A at 600V  
165  
o
Power Dissipation Total at T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
C
W
D
o
o
Power Dissipation Derating T > 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1.32  
W/ C  
C
o
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . T , T  
-40 to 150  
260  
C
J
STG  
o
Maximum Lead Temperature for Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
C
L
SC  
SC  
Short Circuit Withstand Time (Note 2) at V  
Short Circuit Withstand Time (Note 2) at V  
= 15V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t  
= 10V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . t  
4
µs  
µs  
GE  
GE  
10  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Repetitive Rating: Pulse width limited by maximum junction temperature.  
o
2. V  
CE  
= 360V, T = 125 C, R = 25Ω.  
C G  
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
BV  
TEST CONDITIONS  
MIN  
TYP  
MAX  
-
UNITS  
V
Collector to Emitter Breakdown Voltage  
Collector to Emitter Leakage Current  
I
= 250µA, V  
= 0V  
600  
-
CES  
C
GE  
o
I
V
= BV  
CES  
T
= 25 C  
-
-
-
-
250  
2.0  
2.0  
2.5  
6.0  
±100  
-
µA  
mA  
V
CES  
CE  
C
C
C
C
o
T
T
T
= 150 C  
o
Collector to Emitter Saturation Voltage  
V
I
= I  
,
= 25 C  
-
1.8  
2.1  
5.0  
-
CE(SAT)  
C
C110  
= 15V  
o
V
GE  
= 150 C  
-
V
Gate to Emitter Threshold Voltage  
Gate to Emitter Leakage Current  
Switching SOA  
V
I
= 250µA, V  
= V  
GE  
3.0  
-
V
GE(TH)  
C
CE  
I
V
= ±20V  
nA  
A
GES  
SSOA  
GE  
o
T
V
R
= 150 C  
V
V
= 480V  
= 600V  
100  
30  
-
C
CE  
CE  
= 15V,  
= 10Ω,  
GE  
-
-
A
G
L = 45µH  
Gate to Emitter Plateau Voltage  
On-State Gate Charge  
V
I
I
V
= I  
, V  
C110 CE  
= 0.5 BV  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
8.0  
80  
105  
25  
20  
220  
140  
475  
1050  
1.5  
-
-
105  
135  
-
V
nC  
nC  
ns  
ns  
ns  
ns  
µJ  
µJ  
V
GEP  
C
CES  
Q
= I  
,
V
V
= 15V  
= 20V  
G(ON)  
C
C110  
GE  
= 0.5 BV  
CE  
CES  
GE  
o
Current Turn-On Delay Time  
Current Rise Time  
t
T
= 150 C,  
d(ON)I  
C
I
= I  
C110  
t
CE  
-
rI  
V
V
R
= 0.8 BV  
CE  
CES,  
Current Turn-Off Delay Time  
Current Fall Time  
t
275  
175  
-
d(OFF)I  
= 15V  
GE  
t
fI  
= 10Ω,  
G
Turn-On Energy  
E
ON  
L = 100µH  
Turn-Off Energy (Note 3)  
Diode Forward Voltage  
Diode Reverse Recovery Time  
E
-
OFF  
V
I
I
I
= 20A  
1.9  
55  
45  
0.76  
1.2  
EC  
EC  
EC  
EC  
t
= 20A, dI /dt = 100A/µs  
EC  
ns  
ns  
rr  
= 1A, dI /dt = 100A/µs  
EC  
-
o
Thermal Resistance  
NOTE:  
R
IGBT  
-
C/W  
θJC  
o
Diode  
-
C/W  
3. Turn-Off Energy Loss (E  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending  
OFF  
at the point where the collector current equals zero (I  
= 0A) The HGTG20N60B3D was tested per JEDEC standard No. 24-1 Method for  
CE  
Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss. Turn-On losses include  
diode losses.  
©2001 Fairchild Semiconductor Corporation  
HGTG20N60B3D Rev. B  
HGTG20N60B3D  
Typical Performance Curves  
100  
80  
100  
12V  
PULSE DURATION = 250µs  
V
= 10V  
V
= 15V  
GE  
GE  
DUTY CYCLE <0.5%, V  
= 10V  
CE  
PULSE DURATION = 250µs  
DUTY CYCLE <0.5%, T = 25 C  
80  
60  
40  
20  
0
o
C
o
T
= 150 C  
o
C
V
= 9V  
GE  
60  
T
= 25 C  
C
V
= 8.5V  
= 8.0V  
GE  
40  
20  
0
o
T
= -40 C  
C
V
GE  
V
= 7.5V  
= 7.0V  
GE  
V
GE  
4
6
8
10  
12  
0
2
4
6
8
10  
V
, GATE TO EMITTER VOLTAGE (V)  
GE  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
FIGURE 1. TRANSFER CHARACTERISTICS  
FIGURE 2. SATURATION CHARACTERISTICS  
50  
100  
80  
60  
40  
20  
0
o
PULSE DURATION = 250µs  
T
= 25 C  
C
DUTY CYCLE <0.5%, V  
GE  
= 15V  
40  
30  
20  
V
= 15V  
GE  
o
T
= -40 C  
C
o
T
= 150 C  
C
10  
0
25  
50  
100  
, CASE TEMPERATURE ( C)  
125  
150  
75  
0
1
2
3
4
5
o
T
C
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
FIGURE 3. DC COLLECTOR CURRENT vs CASE  
TEMPERATURE  
FIGURE 4. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
5000  
600  
480  
15  
12  
9
FREQUENCY = 1MHz  
C
IES  
4000  
3000  
2000  
1000  
0
V
= 600V  
CE  
360  
240  
120  
V
= 400V  
CE  
6
C
C
OES  
RES  
V
= 200V  
CE  
o
T
= 25 C  
3
C
I
= 1.685mA  
g(REF)  
= 30Ω  
R
L
0
0
100  
0
5
10  
15  
20  
25  
0
20  
40  
60  
80  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
Q
, GATE CHARGE (nC)  
G
FIGURE 5. CAPACITANCE vs COLLECTOR TO EMITTER  
VOLTAGE  
FIGURE 6. GATE CHARGE WAVEFORMS  
©2001 Fairchild Semiconductor Corporation  
HGTG20N60B3D Rev. B  
HGTG20N60B3D  
Typical Performance Curves (Continued)  
100  
500  
o
o
= 150 C, R = 10, L = 100µH  
T
= 150 C, R = 10, L = 100µH  
G
T
J
J
G
400  
300  
50  
40  
V
= 480V, V = 15V  
GE  
CE  
30  
20  
200  
100  
V
= 480V, V = 15V  
GE  
CE  
10  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
CE  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 7. TURN-ON DELAY TIME vs COLLECTOR TO  
EMITTER CURREN T  
FIGURE 8. TURN-OFF DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
100  
o
1000  
T
= 150 C, R = 10, L = 100µH  
G
J
o
= 150 C, R = 10Ω, L = 100µH  
T
J
G
V
= 480V, V = 15V  
GE  
CE  
V
= 480V, V = 15V  
GE  
CE  
100  
10  
1
10  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
CE  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 9. TURN-ON RISE TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 10. TURN-OFF FALL TIME vs COLLECTOR TO  
EMITTER CURRENT  
1400  
o
2500  
o
= 150 C, R = 10, L = 100µH  
T
= 150 C, R = 10, L = 100µH  
G
T
J
J
G
1200  
1000  
800  
600  
400  
200  
0
2000  
1500  
1000  
500  
0
V
= 480V, V = 15V  
GE  
CE  
V
= 480V, V = 15V  
GE  
CE  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
CE  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 11. TURN-ON ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 12. TURN-OFF ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
©2001 Fairchild Semiconductor Corporation  
HGTG20N60B3D Rev. B  
HGTG20N60B3D  
Typical Performance Curves (Continued)  
500  
o
o
T
= 150 C, T = 75 C, V  
C
= 15V  
120  
J
GE  
o
T
= 150 C, V = 15V, R = 10Ω  
GE G  
R
= 10, L = 100mH  
C
G
100  
80  
60  
40  
20  
0
V
= 480V  
CE  
100  
f
f
= 0.05/(t  
+ t )  
d(ON)I  
+E )  
OFF  
MAX1  
MAX2  
d(OFF)I  
= (P - P )/(E  
D
C
ON  
P
= ALLOWABLE DISSIPATION  
= CONDUCTION DISSIPATION  
(DUTY FACTOR = 50%)  
o
D
C
P
R
= 0.76 C/W  
θJC  
10  
5
10  
20  
30  
40  
0
100  
200  
300  
400  
500  
600  
700  
I
, COLLECTOR TO EMITTER CURRENT (A)  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
CE  
FIGURE 13. OPERATING FREQUENCY vs COLLECTOR TO  
EMITTER CURREN T  
FIGURE 14. SWITCHING SAFE OPERATING AREA  
0
10  
0.5  
0.2  
0.1  
-1  
10  
0.05  
0.02  
t
1
P
D
0.01  
-2  
t
10  
2
SINGLE PULSE  
DUTY FACTOR, D = t / t  
1
2
PEAK T = (P X Z  
X R  
) + T  
JC C  
J
D
JC  
θ
θ
-3  
10  
-5  
-4  
10  
-3  
10  
-2  
-1  
0
1
10  
10  
10  
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
1
FIGURE 15. IGBT NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASE  
100  
80  
60  
40  
20  
0
50  
o
T
= 25 C, dI /dt = 100A/µs  
C
EC  
t
40  
30  
20  
10  
0
rr  
o
150 C  
t
o
a
100 C  
t
b
o
25 C  
0
0.5  
1.0  
1.5  
2.0  
2.5  
1
5
10  
20  
V
, FORWARD VOLTAGE (V)  
I
, FORWARD CURRENT (A)  
EC  
EC  
FIGURE 16. DIODE FORWARD CURRENT vs FORWARD  
VOLTAGE DROP  
FIGURE 17. RECOVERY TIMES vs FORWARD CURRENT  
©2001 Fairchild Semiconductor Corporation  
HGTG20N60B3D Rev. B  
HGTG20N60B3D  
Test Circuit and Waveform  
90%  
OFF  
L = 100µH  
RHRP3060  
10%  
V
GE  
E
E
ON  
R
= 10Ω  
V
I
G
CE  
CE  
90%  
+
V
= 480V  
10%  
d(OFF)I  
DD  
-
t
t
rI  
t
fI  
t
d(ON)I  
FIGURE 18. INDUCTIVE SWITCHING TEST CIRCUIT  
FIGURE 19. SWITCHING TEST WAVEFORMS  
Handling Precautions for IGBTs  
Operating Frequency Information  
Insulated Gate Bipolar Transistors are susceptible to  
Operating frequency information for a typical device (Figure 13)  
is presented as a guide for estimating device performance  
for a specific application. Other typical frequency vs collector  
gate-insulation damage by the electrostatic discharge of  
energy through the devices. When handling these devices,  
care should be exercised to assure that the static charge built  
in the handler’s body capacitance is not discharged through  
the device. With proper handling and discharge procedures,  
however, IGBTs are currently being extensively used in  
production by numerous equipment manufacturers in military,  
industrial and consumer applications, with virtually no damage  
problems due to electrostatic discharge. IGBTs can be  
handled safely if the following basic precautions are taken:  
current (I ) plots are possible using the information shown  
CE  
for a typical unit in Figures 4, 7, 8, 11 and 12. The operating  
frequency plot (Figure 13) of a typical device shows f  
or  
whichever is smaller at each point. The information is  
MAX1  
f
MAX2  
based on measurements of a typical device and is bounded  
by the maximum rated junction temperature.  
f
is defined by f  
= 0.05/(t  
MAX1  
t
).  
MAX1  
d(OFF)I d(ON)I  
Deadtime (the denominator) has been arbitrarily held to 10%  
of the on- state time for a 50% duty factor. Other definitions  
1. Prior to assembly into a circuit, all leads should be kept  
shorted together either by the use of metal shorting  
springs or by the insertion into conductive material such  
as “ECCOSORBD LD26” or equivalent.  
are possible. t  
and t are defined in Figure 19.  
d(ON)I  
d(OFF)I  
Device turn-off delay can establish an additional frequency  
limiting condition for an application other than T . t  
JM d(OFF)I  
2. When devices are removed by hand from their carriers, the  
hand being used should be grounded by any suitable  
means - for example, with a metallic wristband.  
is important when controlling output ripple under a lightly  
loaded condition.  
3. Tips of soldering irons should be grounded.  
f
is defined by f  
MAX2  
= (P - P )/(E  
OFF  
+ E ). The  
ON  
MAX2  
D
C
allowable dissipation (P ) is defined by P = (T - T )/R  
The sum of device switching and conduction losses must  
.
4. Devices should never be inserted into or removed from  
circuits with power on.  
D
D
JM θJC  
C
not exceed P . A 50% duty factor was used (Figure 13)  
5. Gate Voltage Rating - Never exceed the gate-voltage  
D
and the conduction losses (P ) are approximated by  
C
rating of V  
. Exceeding the rated V can result in  
GEM  
GE  
permanent damage to the oxide layer in the gate region.  
P
= (V  
x I )/2.  
C
CE  
CE  
6. Gate Termination - The gates of these devices are  
essentially capacitors. Circuits that leave the gate open-  
circuited or floating should be avoided. These conditions  
can result in turn-on of the device due to voltage buildup  
on the input capacitor due to leakage currents or pickup.  
E
and E  
are defined in the switching waveforms  
OFF  
ON  
shown in Figure 19. E  
power loss (I  
integral of the instantaneous power loss during turn-off. All  
tail losses are included in the calculation for E ; i.e. the  
collector current equals zero (I  
is the integral of the instantaneous  
ON  
x V ) during turn-on and E  
is the  
CE  
CE  
OFF  
OFF  
7. Gate Protection - These devices do not have an internal  
monolithic zener diode from gate to emitter. If gate  
protection is required an external zener is recommended.  
= 0).  
CE  
©2001 Fairchild Semiconductor Corporation  
HGTG20N60B3D Rev. B  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
â
SMART START™  
STAR*POWER™  
Stealth™  
VCX™  
FAST  
ACEx™  
Bottomless™  
CoolFET™  
OPTOLOGIC™  
OPTOPLANAR™  
PACMAN™  
FASTr™  
FRFET™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
GlobalOptoisolator™  
GTO™  
HiSeC™  
ISOPLANAR™  
LittleFET™  
MicroFET™  
MicroPak™  
MICROWIRE™  
CROSSVOLT™  
DenseTrench™  
DOME™  
POP™  
Power247™  
PowerTrenchâ  
QFET™  
EcoSPARK™  
E2CMOSTM  
TinyLogic™  
QS™  
EnSignaTM  
TruTranslation™  
UHC™  
QT Optoelectronics™  
Quiet Series™  
SILENTSWITCHERâ  
FACT™  
FACT Quiet Series™  
UltraFETâ  
STAR*POWER is used under license  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITYARISING OUT OF THE APPLICATION OR USE OFANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICESORSYSTEMSWITHOUTTHEEXPRESSWRITTENAPPROVALOFFAIRCHILDSEMICONDUCTORCORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. H4  

相关型号:

HGTG20N60B3D_NL

Insulated Gate Bipolar Transistor, 40A I(C), 600V V(BR)CES, N-Channel, TO-247
FAIRCHILD

HGTG20N60B3_NL

暂无描述
FAIRCHILD

HGTG20N60C3

45A, 600V, UFS Series N-Channel IGBT
FAIRCHILD

HGTG20N60C3

45A, 600V, UFS Series N-Channel IGBT
INTERSIL

HGTG20N60C3D

45A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
FAIRCHILD

HGTG20N60C3D

45A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
INTERSIL

HGTG20N60C3DR

Insulated Gate Bipolar Transistor, 45A I(C), 600V V(BR)CES, N-Channel, TO-247
FAIRCHILD

HGTG20N60C3D_NL

Insulated Gate Bipolar Transistor, 45A I(C), 600V V(BR)CES, N-Channel, TO-247, LEAD FREE PACKAGE-3
FAIRCHILD

HGTG20N60C3R

40A, 600V, Rugged UFS Series N-Channel IGBTs
FAIRCHILD

HGTG24N60D1

24A, 600V N-Channel IGBT
INTERSIL

HGTG24N60D1D

24A, 600V N-Channel IGBT with Anti-Parallel Ultrafast Diode
INTERSIL

HGTG27N120BN

72A, 1200V, NPT Series N-Channel IGBT
FAIRCHILD