HGTG20N60A4D [FAIRCHILD]

600V, SMPS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode; 600V ,开关电源系列N沟道IGBT与反并联二极管超高速
HGTG20N60A4D
型号: HGTG20N60A4D
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

600V, SMPS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
600V ,开关电源系列N沟道IGBT与反并联二极管超高速

晶体 二极管 开关 晶体管 电动机控制 瞄准线 双极性晶体管 栅 局域网
文件: 总9页 (文件大小:199K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HGTG20N60A4D, HGT4E20N60A4DS  
Data Sheet  
APRIL 2002  
600V, SMPS Series N-Channel IGBT with  
Anti-Parallel Hyperfast Diode  
Features  
• >100kHz Operation At 390V, 20A  
• 200kHz Operation At 390V, 12A  
• 600V Switching SOA Capability  
This family of MOS gated high voltage switching devices  
combine the best features of MOSFETs and bipolar  
transistors. These devices have the high input impedance of  
a MOSFET and the low on-state conduction loss of a bipolar  
transistor. The much lower on-state voltage drop varies only  
o
Typical Fall Time . . . . . . . . . . . . . . . . .55ns at T = 125 C  
J
• Low Conduction Loss  
o
o
moderately between 25 C and 150 C. The IGBT used is the  
development type TA49339. The diode used in anti-parallel  
is the development type TA49372.  
Temperature Compensating SABER™ Model  
www.fairchildsemi.com  
These IGBT’s are ideal for many high voltage switching  
applications operating at high frequencies where low  
conduction losses are essential. These devices have been  
optimized for high frequency switch mode power  
supplies.  
Packaging  
JEDEC STYLE TO-247  
E
C
G
Formerly Developmental Type TA49341.  
Ordering Information  
PART NUMBER  
PACKAGE  
TO-247  
TO-268  
BRAND  
20N60A4D  
20N60A4DS  
HGTG20N60A4D  
HGT4E20N60A4DS  
TO-268AA  
NOTE: When ordering, use the entire part number.  
Symbol  
C
C
G
G
E
E
FAIRCHILD SEMICONDUCTOR IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS  
4,364,073  
4,598,461  
4,682,195  
4,803,533  
4,888,627  
4,417,385  
4,605,948  
4,684,413  
4,809,045  
4,890,143  
4,430,792  
4,620,211  
4,694,313  
4,809,047  
4,901,127  
4,443,931  
4,631,564  
4,717,679  
4,810,665  
4,904,609  
4,466,176  
4,639,754  
4,743,952  
4,823,176  
4,933,740  
4,516,143  
4,639,762  
4,783,690  
4,837,606  
4,963,951  
4,532,534  
4,641,162  
4,794,432  
4,860,080  
4,969,027  
4,587,713  
4,644,637  
4,801,986  
4,883,767  
©2002 Fairchild Semiconductor Corporation  
HGTG20N60A4D, HGT4E20N60A4DS Rev. C  
HGTG20N60A4D, HGT4E20N60A4DS  
o
Absolute Maximum Ratings T = 25 C, Unless Otherwise Specified  
C
HGTG20N60A4D,  
HGT4E20N60A4DS  
UNITS  
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BV  
600  
V
CES  
Collector Current Continuous  
o
At T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
70  
40  
A
A
A
V
V
C25  
o
At T = 110 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
C110  
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
280  
CM  
GES  
GEM  
Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
±20  
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V  
o
±30  
Switching Safe Operating Area at T = 150 C (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . SSOA  
J
100A at 600V  
290  
o
Power Dissipation Total at T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
C
Power Dissipation Derating T > 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
W
D
o
o
2.32  
W/ C  
C
o
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . T , T  
-55 to 150  
260  
C
J
STG  
o
Maximum Lead Temperature for Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
C
L
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. Pulse width limited by maximum junction temperature.  
o
Electrical Specifications T = 25 C, Unless Otherwise Specified  
J
PARAMETER  
SYMBOL  
BV  
TEST CONDITIONS  
= 250µA, V = 0V  
MIN  
TYP  
MAX  
-
UNITS  
V
Collector to Emitter Breakdown Voltage  
Collector to Emitter Leakage Current  
I
600  
-
-
CES  
C
GE  
o
I
V
= 600V  
T = 25 C  
J
-
250  
3.0  
2.7  
2.0  
7.0  
±250  
-
µA  
mA  
V
CES  
CE  
o
T = 125 C  
J
-
-
-
o
Collector to Emitter Saturation Voltage  
V
I
= 20A,  
T = 25 C  
J
1.8  
1.6  
5.5  
-
CE(SAT)  
C
V
= 15V  
GE  
o
T = 125 C  
-
V
J
Gate to Emitter Threshold Voltage  
Gate to Emitter Leakage Current  
Switching SOA  
V
I
= 250µA, V  
= 600V  
4.5  
-
V
GE(TH)  
C CE  
I
V
= ±20V  
nA  
A
GES  
GE  
o
SSOA  
T = 150 C, R = 3, V  
= 15V,  
= 15V  
100  
-
J
G
GE  
L = 100µH, V  
= 600V  
CE  
Gate to Emitter Plateau Voltage  
On-State Gate Charge  
V
I
I
= 20A, V  
= 20A,  
= 300V  
CE  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
8.6  
142  
182  
15  
-
162  
210  
-
V
nC  
nC  
ns  
ns  
ns  
ns  
µJ  
µJ  
µJ  
ns  
ns  
ns  
ns  
µJ  
µJ  
µJ  
GEP  
C
Q
V
GE  
g(ON)  
C
V
= 300V  
CE  
V
= 20V  
o
GE  
Current Turn-On Delay Time  
Current Rise Time  
t
IGBT and Diode at T = 25 C,  
J
d(ON)I  
I
V
V
= 20A,  
CE  
t
12  
-
rI  
= 390V,  
= 15V,  
= 3Ω,  
CE  
GE  
Current Turn-Off Delay Time  
Current Fall Time  
t
73  
-
d(OFF)I  
R
G
t
32  
-
fI  
L = 500µH,  
Test Circuit Figure 24  
Turn-On Energy (Note 3)  
Turn-On Energy (Note 3)  
Turn-Off Energy (Note 2)  
Current Turn-On Delay Time  
Current Rise Time  
E
E
E
105  
280  
150  
15  
-
ON1  
ON2  
OFF  
350  
200  
21  
18  
135  
73  
-
o
t
IGBT and Diode at T = 125 C,  
J
d(ON)I  
I
V
R
= 20A,  
CE  
t
13  
rI  
= 390V, V  
= 15V,  
CE  
GE  
= 3Ω,  
Current Turn-Off Delay Time  
Current Fall Time  
t
105  
55  
G
d(OFF)I  
L = 500µH,  
Test Circuit Figure 24  
t
fI  
Turn-On Energy (Note 3)  
Turn-On Energy (Note 3)  
Turn-Off Energy (Note 2)  
E
E
E
115  
510  
330  
ON1  
ON2  
OFF  
600  
500  
©2002 Fairchild Semiconductor Corporation  
HGTG20N60A4D, HGT4E20N60A4DS Rev. C  
HGTG20N60A4D, HGT4E20N60A4DS  
o
Electrical Specifications T = 25 C, Unless Otherwise Specified (Continued)  
J
PARAMETER  
Diode Forward Voltage  
SYMBOL  
TEST CONDITIONS  
= 20A  
MIN  
TYP  
2.3  
35  
26  
-
MAX  
UNITS  
V
V
I
I
I
-
-
-
-
-
-
-
EC  
EC  
EC  
EC  
Diode Reverse Recovery Time  
Thermal Resistance Junction To Case  
NOTE:  
t
= 20A, dI /dt = 200A/µs  
EC  
ns  
rr  
= 1A, dI /dt = 200A/µs  
EC  
-
ns  
o
R
IGBT  
0.43  
1.9  
C/W  
θJC  
o
Diode  
-
C/W  
2. Turn-Off Energy Loss (E  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending  
OFF  
at the point where the collector current equals zero (I  
= 0A). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement  
CE  
of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.  
3. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. E is the turn-on loss of the IGBT only. E  
ON1  
ON2  
is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same T as the IGBT. The diode type is specified in  
J
Figure 20.  
Typical Performance Curves Unless Otherwise Specified  
100  
120  
o
V
= 15V  
GE  
T
= 150 C, R = 3, V = 15V, L = 100µH  
G GE  
DIE CAPABILITY  
J
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
PACKAGE LIMIT  
25  
50  
75  
100  
125  
150  
0
100  
V
200  
300  
400  
500  
600  
700  
o
T
C
, CASE TEMPERATURE ( C)  
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
FIGURE 1. DC COLLECTOR CURRENT vs CASE  
TEMPERATURE  
FIGURE 2. MINIMUM SWITCHING SAFE OPERATING AREA  
500  
14  
12  
10  
8
450  
400  
350  
300  
250  
o
T
V
GE  
V
= 390V, R = 3, T = 125 C  
G J  
C
o
CE  
75 C  
15V  
300  
I
SC  
f
f
= 0.05 / (t  
d(OFF)I  
+ t  
)
MAX1  
MAX2  
d(ON)I  
+ E )  
OFF  
6
= (P - P ) / (E  
100  
40  
D
C
ON2  
P
= CONDUCTION DISSIPATION  
C
4
200  
150  
100  
t
SC  
(DUTY FACTOR = 50%)  
R
o
= 0.43 C/W, SEE NOTES  
o
ØJC  
2
T
= 125 C, R = 3, L = 500µH, V  
= 390V  
J
G
CE  
20  
0
5
10  
30  
40  
50  
10  
11  
12  
13  
14  
15  
I
, COLLECTOR TO EMITTER CURRENT (A)  
V
, GATE TO EMITTER VOLTAGE (V)  
CE  
GE  
FIGURE 3. OPERATING FREQUENCY vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 4. SHORT CIRCUIT WITHSTAND TIME  
©2002 Fairchild Semiconductor Corporation  
HGTG20N60A4D, HGT4E20N60A4DS Rev. C  
HGTG20N60A4D, HGT4E20N60A4DS  
Typical Performance Curves Unless Otherwise Specified (Continued)  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
DUTY CYCLE < 0.5%, V  
GE  
PULSE DURATION = 250µs  
= 12V  
DUTY CYCLE < 0.5%, V  
= 15V  
PULSE DURATION = 250µs  
GE  
o
T
= 125 C  
o
= 125 C  
J
T
J
o
o
o
o
T
= 25 C  
T
= 150 C  
T
= 25 C  
T
= 150 C  
J
J
J
J
0
0.4  
V
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
0
0.4  
V
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
, COLLECTOR TO EMITTER VOLTAGE (V)  
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
CE  
FIGURE 5. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
FIGURE 6. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
1400  
800  
R
= 3, L = 500µH, V  
= 390V  
CE  
G
R
= 3, L = 500µH, V  
= 390V  
G
CE  
700  
600  
500  
400  
300  
200  
100  
0
1200  
1000  
800  
600  
400  
200  
0
o
T
= 125 C, V  
= 12V, V  
= 15V  
J
GE  
GE  
o
T
= 125 C, V  
= 12V OR 15V  
J
GE  
o
T
= 25 C, V  
= 12V OR 15V  
35 40  
J
GE  
30  
o
T
= 25 C, V  
= 12V, V  
30  
= 15V  
J
GE  
GE  
5
10  
15  
20  
25  
5
10  
15  
20  
25  
35  
40  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 7. TURN-ON ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 8. TURN-OFF ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
36  
22  
R
= 3, L = 500µH, V  
= 390V  
CE  
R
= 3, L = 500µH, V = 390V  
CE  
G
G
32  
28  
24  
20  
16  
12  
8
20  
18  
16  
14  
12  
10  
8
o
o
T
= 25 C, T = 125 C, V = 12V  
GE  
J
J
o
o
T
= 25 C, T = 125 C, V  
= 12V  
GE  
J
J
o
= 25 C, T = 125 C, V  
GE  
o
T
= 15V  
35  
J
J
o
o
T
= 25 C OR T = 125 C, V  
= 15V  
J
J
GE  
4
5
10  
15  
20  
25  
30  
35  
40  
5
10  
15  
20  
25  
30  
40  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
CE  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 9. TURN-ON DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 10. TURN-ON RISE TIME vs COLLECTOR TO  
EMITTER CURRENT  
©2002 Fairchild Semiconductor Corporation  
HGTG20N60A4D, HGT4E20N60A4DS Rev. C  
HGTG20N60A4D, HGT4E20N60A4DS  
Typical Performance Curves Unless Otherwise Specified (Continued)  
80  
72  
64  
56  
48  
40  
32  
24  
16  
120  
110  
100  
90  
R
= 3, L = 500µH, V = 390V  
CE  
R
= 3, L = 500µH,  
V
= 390V  
G
G
CE  
o
V
= 12V, V  
GE  
= 15V, T = 125 C  
J
o
GE  
T
= 125 C, V  
= 12V OR 15V  
= 12V OR 15V  
J
GE  
o
T
= 25 C, V  
J
GE  
80  
o
V
= 12V, V  
GE  
= 15V, T = 25 C  
GE  
J
70  
60  
5
10  
15  
20  
25  
30  
35  
40  
5
10  
15  
20  
25  
30  
35  
40  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
CE  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 11. TURN-OFF DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 12. FALL TIME vs COLLECTOR TO EMITTER  
CURRENT  
16  
240  
o  
I  
G(REF)  
=1mA,R =15,T =25 C  
L  
J  
DUTY CYCLE < 0.5%, V  
= 10V  
PULSE DURATION = 250µs  
CE  
14  
12  
10  
8
200  
160  
120  
80  
V
= 600V  
CE  
V
= 400V  
CE  
o
T
= 25 C  
V
= 200V  
J
CE  
6
o
T
= 125 C  
J
4
o
T
= -55 C  
40  
J
2
0
0
6
0
20  
40  
60  
80  
100  
120  
140  
160  
7
8
9
10  
11  
12  
Q
, GATE CHARGE (nC)  
V
, GATE TO EMITTER VOLTAGE (V)  
G
GE  
FIGURE 13. TRANSFER CHARACTERISTIC  
FIGURE 14. GATE CHARGE WAVEFORMS  
o
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 125 C, L = 500µH, V  
= 390V, V = 15V  
GE  
J
CE  
R
= 3, L = 500µH, V  
= 390V, V = 15V  
GE  
G
CE  
E
= E  
+ E  
ON2 OFF  
TOTAL  
E
= E  
+ E  
ON2  
TOTAL  
OFF  
10  
I
= 30A  
CE  
I
= 30A  
CE  
1
I
I
= 20A  
= 10A  
CE  
CE  
I
I
= 20A  
= 10A  
CE  
CE  
0.1  
3
10  
100  
, GATE RESISTANCE ()  
1000  
25  
50  
75  
100  
125  
150  
o
R
T
, CASE TEMPERATURE ( C)  
G
C
FIGURE 15. TOTAL SWITCHING LOSS vs CASE  
TEMPERATURE  
FIGURE 16. TOTAL SWITCHING LOSS vs GATE RESISTANCE  
©2002 Fairchild Semiconductor Corporation  
HGTG20N60A4D, HGT4E20N60A4DS Rev. C  
HGTG20N60A4D, HGT4E20N60A4DS  
Typical Performance Curves Unless Otherwise Specified (Continued)  
5
4
3
2
1
0
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
o
FREQUENCY = 1MHz  
DUTY CYCLE < 0.5%, T = 25 C  
J
PULSE DURATION = 250µs  
C
IES  
I
= 30A  
= 20A  
CE  
I
I
CE  
C
OES  
= 10A  
CE  
C
RES  
0
20  
40  
60  
80  
100  
8
9
10  
11  
12  
13  
14  
15  
16  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
V
, GATE TO EMITTER VOLTAGE (V)  
GE  
FIGURE 17. CAPACITANCE vs COLLECTOR TO EMITTER  
VOLTAGE  
FIGURE 18. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
vs GATE TO EMITTER VOLTAGE  
30  
90  
DUTY CYCLE < 0.5%,  
PULSE DURATION = 250µs  
25  
dI /dt = 200A/µs  
EC  
80  
70  
60  
50  
40  
30  
20  
10  
0
o
125 C t  
rr  
o
20  
125 C t  
o
b
125 C t  
a
o
125 C  
15  
o
25 C  
10  
5
o
25 C t  
rr  
o
25 C t  
a
o
25 C t  
b
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
4
8
12  
16  
20  
I
, FORWARD CURRENT (A)  
V
, FORWARD VOLTAGE (V)  
EC  
EC  
FIGURE 19. DIODE FORWARD CURRENT vs FORWARD  
VOLTAGE DROP  
FIGURE 20. RECOVERY TIMES vs FORWARD CURRENT  
50  
800  
I
= 20A, V  
= 390V  
CE  
EC  
V
= 390V  
CE  
o
125 C, I  
= 20A  
40  
30  
20  
10  
0
EC  
o
125 C t  
600  
400  
200  
0
a
o
125 C, I  
= 10A  
= 20A  
EC  
o
125 C t  
b
o
25 C, I  
EC  
o
25 C t  
a
o
25 C t  
o
b
25 C, I  
= 10A  
EC  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
di /dt, RATE OF CHANGE OF CURRENT (A/µs)  
EC  
di /dt, RATE OF CHANGE OF CURRENT (A/µs)  
EC  
FIGURE 21. RECOVERY TIMES vs RATE OF CHANGE OF  
CURRENT  
FIGURE 22. STORED CHARGE vs RATE OF CHANGE OF  
CURRENT  
©2002 Fairchild Semiconductor Corporation  
HGTG20N60A4D, HGT4E20N60A4DS Rev. C  
HGTG20N60A4D, HGT4E20N60A4DS  
Typical Performance Curves Unless Otherwise Specified (Continued)  
0
10  
0.5  
0.2  
0.1  
-1  
10  
10  
0.05  
0.02  
0.01  
t
1
P
D
-2  
DUTY FACTOR, D = t / t  
1
2
t
SINGLE PULSE  
2
PEAK T = (P X Z  
X R  
) + T  
θJC C  
J
D
θJC  
-5  
10  
-4  
-3  
10  
-2  
-1  
0
10  
10  
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
1
FIGURE 23. IGBT NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASE  
Test Circuit and Waveforms  
HGTG20N60A4D  
DIODE TA49372  
90%  
OFF  
10%  
ON2  
V
GE  
E
E
L = 500µH  
V
CE  
R
= 3Ω  
G
90%  
DUT  
10%  
d(OFF)I  
+
I
CE  
t
t
V
= 390V  
rI  
DD  
t
fI  
-
t
d(ON)I  
FIGURE 24. INDUCTIVE SWITCHING TEST CIRCUIT  
FIGURE 25. SWITCHING TEST WAVEFORMS  
©2002 Fairchild Semiconductor Corporation  
HGTG20N60A4D, HGT4E20N60A4DS Rev. C  
HGTG20N60A4D, HGT4E20N60A4DS  
Handling Precautions for IGBTs  
Operating Frequency Information  
Insulated Gate Bipolar Transistors are susceptible to  
gate-insulation damage by the electrostatic discharge of  
energy through the devices. When handling these devices,  
care should be exercised to assure that the static charge  
built in the handler’s body capacitance is not discharged  
through the device. With proper handling and application  
procedures, however, IGBTs are currently being extensively  
used in production by numerous equipment manufacturers in  
military, industrial and consumer applications, with virtually  
no damage problems due to electrostatic discharge. IGBTs  
can be handled safely if the following basic precautions are  
taken:  
Operating frequency information for a typical device  
(Figure 3) is presented as a guide for estimating device  
performance for a specific application. Other typical  
frequency vs collector current (I ) plots are possible using  
CE  
the information shown for a typical unit in Figures 6, 7, 8, 9  
and 11. The operating frequency plot (Figure 3) of a typical  
device shows f  
or f ; whichever is smaller at each  
MAX1  
MAX2  
point. The information is based on measurements of a  
typical device and is bounded by the maximum rated  
junction temperature.  
f
is defined by f  
= 0.05/(t  
MAX1  
+ t ).  
d(OFF)I d(ON)I  
MAX1  
Deadtime (the denominator) has been arbitrarily held to 10%  
1. Prior to assembly into a circuit, all leads should be kept  
shorted together either by the use of metal shorting  
springs or by the insertion into conductive material such  
as “ECCOSORBD™ LD26” or equivalent.  
of the on-state time for a 50% duty factor. Other definitions  
are possible. t  
and t are defined in Figure 25.  
d(ON)I  
d(OFF)I  
Device turn-off delay can establish an additional frequency  
limiting condition for an application other than T . t  
JM d(OFF)I  
2. When devices are removed by hand from their carriers,  
the hand being used should be grounded by any suitable  
means - for example, with a metallic wristband.  
is important when controlling output ripple under a lightly  
loaded condition.  
f
is defined by f  
MAX2  
= (P - P )/(E + E  
OFF  
). The  
ON2  
MAX2  
D
C
3. Tips of soldering irons should be grounded.  
allowable dissipation (P ) is defined by P = (T - T )/R  
.
D
D
JM θJC  
C
4. Devices should never be inserted into or removed from  
circuits with power on.  
The sum of device switching and conduction losses must not  
exceed P . A 50% duty factor was used (Figure 3) and the  
D
5. Gate Voltage Rating - Never exceed the gate-voltage  
conduction losses (P ) are approximated by  
C
rating of V  
. Exceeding the rated V can result in  
GEM  
GE  
P
= (V  
x I )/2.  
CE  
C
CE  
permanent damage to the oxide layer in the gate region.  
E
and E  
are defined in the switching waveforms  
OFF  
6. Gate Termination - The gates of these devices are  
essentially capacitors. Circuits that leave the gate open-  
circuited or floating should be avoided. These conditions  
can result in turn-on of the device due to voltage buildup  
on the input capacitor due to leakage currents or pickup.  
ON2  
shown in Figure 25. E  
is the integral of the  
ON2  
instantaneous power loss (I  
x V ) during turn-on and  
CE  
CE  
is the integral of the instantaneous power loss  
E
OFF  
x V ) during turn-off. All tail losses are included in the  
(I  
CE  
CE  
7. Gate Protection - These devices do not have an internal  
monolithic Zener diode from gate to emitter. If gate  
protection is required an external Zener is recommended.  
calculation for E  
; i.e., the collector current equals zero  
OFF  
(I  
= 0).  
CE  
©2002 Fairchild Semiconductor Corporation  
HGTG20N60A4D, HGT4E20N60A4DS Rev. C  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarksꢀ  
â
â
SILENT SWITCHER  
SMARTSTART™  
SPM™  
STAR*POWER™  
Stealth™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
UHC™  
UltraFET  
VCX™  
FAST  
ACEx™  
Bottomless™  
CoolFET™  
CROSSVOLT™  
DenseTrench™  
DOME™  
MICROWIRE™  
OPTOLOGIC  
OPTOPLANAR™  
PACMAN™  
POP™  
â
â
FASTr™  
FRFET™  
GlobalOptoisolator™  
GTO™  
HiSeC™  
Power247™  
I2C™  
â
EcoSPARK™  
PowerTrench  
E2CMOSTM  
ISOPLANAR™  
LittleFET™  
MicroFET™  
MicroPak™  
QFET™  
QS™  
QT Optoelectronics™  
Quiet Series™  
EnSignaTM  
TinyLogic™  
TruTranslation™  
FACT™  
FACT Quiet Series™  
STAR*POWER is used under license  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TOANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGNꢀ FAIRCHILD  
DOES NOTASSUMEANY LIABILITYARISING OUT OF THEAPPLICATION OR USE OFANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERSꢀ  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUTTHE EXPRESS WRITTENAPPROVALOF FAIRCHILD SEMICONDUCTOR CORPORATIONꢀ  
As used herein:  
1ꢀ Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
userꢀ  
2ꢀ A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectivenessꢀ  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product developmentꢀ Specifications may change in  
any manner without noticeꢀ  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later dateꢀ  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
designꢀ  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specificationsꢀ Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve designꢀ  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductorꢀ  
The datasheet is printed for reference information onlyꢀ  
Revꢀ H5  

相关型号:

HGTG20N60A4D_09

600V, SMPS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
FAIRCHILD

HGTG20N60A4D_NL

Insulated Gate Bipolar Transistor, 70A I(C), 600V V(BR)CES, N-Channel, TO-247, LEAD FREE PACKAGE-3
FAIRCHILD

HGTG20N60B3

40A, 600V, UFS Series N-Channel IGBTs
FAIRCHILD

HGTG20N60B3

40A, 600V, UFS Series N-Channel IGBTs
INTERSIL

HGTG20N60B3

600V,PT IGBT
ONSEMI

HGTG20N60B3D

40A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
FAIRCHILD

HGTG20N60B3D

40A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
INTERSIL

HGTG20N60B3D

600V,PT IGBT
ONSEMI

HGTG20N60B3D_NL

Insulated Gate Bipolar Transistor, 40A I(C), 600V V(BR)CES, N-Channel, TO-247
FAIRCHILD

HGTG20N60B3_NL

暂无描述
FAIRCHILD

HGTG20N60C3

45A, 600V, UFS Series N-Channel IGBT
FAIRCHILD

HGTG20N60C3

45A, 600V, UFS Series N-Channel IGBT
INTERSIL