IRG6IC30UPBF [INFINEON]

PDP TRENCH IGBT; PDP TRENCH IGBT
IRG6IC30UPBF
型号: IRG6IC30UPBF
厂家: Infineon    Infineon
描述:

PDP TRENCH IGBT
PDP TRENCH IGBT

光电二极管 双极性晶体管
文件: 总7页 (文件大小:286K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97386  
IRG6IC30UPbF  
Key Parameters  
PDP TRENCH IGBT  
Features  
l
VCE min  
V
600  
1.50  
250  
150  
V
V
Advanced Trench IGBT Technology  
Optimized for Sustain and Energy Recovery  
circuits in PDP applications  
CE(ON) typ. @ IC = 25A  
l
I
RP max @ TC= 25°C  
A
°C  
TM  
l
Low VCE(on) and Energy per Pulse (EPULSE  
for improved panel efficiency  
)
TJ max  
l
l
High repetitive peak current capability  
Lead Free package  
C
E
C
G
G
TO-220AB  
Full-Pak  
E
n-channel  
G
C
E
Gate  
Collector  
Emitter  
Description  
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced  
trenchIGBTtechnologytoachievelowVCE(on)andlowEPULSETM ratingpersiliconareawhichimprovepanel  
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current  
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP  
applications.  
Absolute Maximum Ratings  
Max.  
Parameter  
Units  
VGE  
±30  
Gate-to-Emitter Voltage  
V
IC @ TC = 25°C  
IC @ TC = 100°C  
IRP @ TC = 25°C  
PD @TC = 25°C  
PD @TC = 100°C  
Continuous Collector Current, VGE @ 15V  
Continuous Collector, VGE @ 15V  
Repetitive Peak Current  
25  
A
12  
250  
37  
Power Dissipation  
W
15  
Power Dissipation  
0.30  
Linear Derating Factor  
W/°C  
°C  
TJ  
-40 to + 150  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature for 10 seconds  
Mounting Torque, 6-32 or M3 Screw  
300  
10lb in (1.1N m)  
N
Thermal Resistance  
Parameter  
Typ.  
–––  
Max.  
3.1  
Units  
°C/W  
Rθ  
Junction-to-Case  
Junction-to-Ambient  
JC  
RθJA  
–––  
65  
www.irf.com  
1
03/31/09  
IRG6IC30UPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGE = 0V, ICE = 1.0mA  
Parameter  
Min. Typ. Max. Units  
BVCES  
Collector-to-Emitter Breakdown Voltage  
Emitter-to-Collector Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
600 ––– –––  
15 ––– –––  
V
V
VGE = 0V, ICE = 1.0A  
V(BR)ECS  
Reference to 25°C, ICE = 1mA  
VGE = 15V, ICE = 12A  
VGE = 15V, ICE = 25A  
VGE = 15V, ICE = 40A  
VGE = 15V, ICE = 70A  
∆ΒVCES/TJ  
––– 0.49 ––– V/°C  
––– 1.29 –––  
––– 1.50 1.92  
1.73 –––  
––– 2.16 –––  
––– 2.88 –––  
––– 1.51 –––  
V
VCE(on)  
Static Collector-to-Emitter Voltage  
VGE = 15V, ICE = 120A  
VGE = 15V, ICE = 25A, TJ = 150°C  
V
CE = VGE, ICE = 500µA  
CE = 600V, VGE = 0V  
VGE(th)  
Gate Threshold Voltage  
2.6  
––– 5.0  
V
VGE(th)/TJ  
ICES  
Gate Threshold Voltage Coefficient  
Collector-to-Emitter Leakage Current  
––– -8.9 ––– mV/°C  
V
–––  
–––  
–––  
2.0  
10  
40  
20  
VCE = 600V, VGE = 0V, TJ = 100°C  
–––  
100  
µA  
nA  
V
CE = 600V, VGE = 0V, TJ = 125°C  
CE = 600V, VGE = 0V, TJ = 150°C  
V
––– 150 –––  
––– ––– 100  
––– ––– -100  
VGE = 30V  
IGES  
Gate-to-Emitter Forward Leakage  
Gate-to-Emitter Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
Gate-to-Collector Charge  
Turn-On delay time  
Rise time  
VGE = -30V  
VCE = 25V, ICE = 25A  
VCE = 400V, IC = 25A, VGE = 15V  
gfe  
Qg  
Qgc  
td(on)  
tr  
–––  
–––  
–––  
–––  
–––  
32  
79  
30  
20  
16  
–––  
–––  
–––  
–––  
–––  
S
nC  
IC = 25A, VCC = 400V  
RG = 10 , L=200µH  
ns  
ns  
td(off)  
tf  
td(on)  
tr  
td(off)  
tf  
TJ = 25°C  
Turn-Off delay time  
Fall time  
––– 160 –––  
––– 120 –––  
IC = 25A, VCC = 400V  
RG = 10, L=200µH  
TJ = 150°C  
Turn-On delay time  
Rise time  
–––  
–––  
18  
17  
–––  
–––  
Turn-Off delay time  
Fall time  
––– 190 –––  
––– 240 –––  
100 ––– –––  
VCC = 240V, VGE = 15V, RG= 5.1Ω  
L = 220nH, C= 0.40µF, VGE = 15V  
tst  
Shoot Through Blocking Time  
ns  
µJ  
––– 1020 –––  
––– 1150 –––  
Ω,  
TJ = 25°C  
EPULSE  
VCC = 240V, RG= 5.1  
Energy per Pulse  
L = 220nH, C= 0.40µF, VGE = 15V  
Ω,  
VCC = 240V, RG= 5.1  
Class 2  
(Per JEDEC standard JESD22-A114)  
Class B  
TJ = 100°C  
Human Body Model  
Machine Model  
ESD  
(Per EIA/JEDEC standard EIA/JESD22-A115)  
V
GE = 0V  
Cies  
Coes  
Cres  
LC  
Input Capacitance  
––– 2390 –––  
VCE = 30V  
Output Capacitance  
–––  
–––  
–––  
85  
58  
–––  
–––  
pF  
ƒ = 1.0MHz,  
Between lead,  
See Fig.13  
Reverse Transfer Capacitance  
Internal Collector Inductance  
4.5 –––  
nH 6mm (0.25in.)  
from package  
LE  
Internal Emitter Inductance  
–––  
7.5 –––  
and center of die contact  
Notes:  
 Half sine wave with duty cycle <= 0.02, ton=1.0µsec.  
‚ R is measured at TJ of approximately 90°C.  
θ
ƒ Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
IRG6IC30UPbF  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
V
V
V
V
V
= 18V  
V
V
V
V
V
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
V
(V)  
V
(V)  
CE  
CE  
Fig 2. Typical Output Characteristics @ 75°C  
Fig 1. Typical Output Characteristics @ 25°C  
500  
500  
V
V
V
V
V
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
V
V
V
V
V
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
450  
400  
350  
300  
250  
200  
150  
100  
50  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
V
(V)  
V
(V)  
CE  
CE  
Fig 3. Typical Output Characteristics @ 125°C  
Fig 4. Typical Output Characteristics @ 150°C  
500  
450  
20  
I
= 25A  
C
18  
16  
14  
12  
10  
8
T
= 25°C  
J
400  
350  
300  
250  
200  
150  
100  
50  
T
= 150°C  
T = 25°C  
J
J
T = 150°C  
J
6
4
2
0
0
0
5
10  
15  
20  
0
5
10  
15  
20  
V
, Gate-to-Emitter Voltage (V)  
V
, Voltage Gate-to-Emitter (V)  
GE  
GE  
Fig 5. Typical Transfer Characteristics  
Fig 6. VCE(ON) vs. Gate Voltage  
www.irf.com  
3
IRG6IC30UPbF  
30  
250  
200  
150  
100  
50  
25  
20  
15  
10  
5
ton= 1.0µs  
Duty cycle <= 0.02  
Half Sine Wave  
0
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
(°C)  
100  
125  
150  
Case Temperature (°C)  
T
C
Fig 8. Typical Repetitive Peak Current vs. Case Temperature  
Fig 7. Maximum Collector Current vs. Case Temperature  
1200  
1200  
V
= 240V  
L = 220nH  
C = 0.4µF  
CC  
1100  
1000  
900  
800  
700  
600  
500  
400  
L = 220nH  
C = variable  
1100  
100°C  
1000  
100°C  
900  
25°C  
25°C  
800  
700  
600  
170  
180  
190  
200  
210  
220  
230  
195 200 205 210 215 220 225 230 235 240  
I , Peak Collector Current (A)  
V
Collector-to-Emitter Voltage (V)  
C
CE,  
Fig 9. Typical EPULSE vs. Collector Current  
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage  
1600  
1000  
V
= 240V  
CC  
L = 220nH  
t = 1µs half sine  
1400  
1200  
1000  
800  
C= 0.4µF  
10µsec  
100  
100µsec  
1msec  
C= 0.3µF  
C= 0.2µF  
10  
Tc = 25°C  
Tj = 175°C  
600  
Single Pulse  
400  
1
25  
50  
75  
100  
125  
150  
1
10  
100  
1000  
T , Temperature (ºC)  
V
(V)  
J
CE  
Fig 11. EPULSE vs. Temperature  
Fig 12. Forrward Bias Safe Operating Area  
4
www.irf.com  
IRG6IC30UPbF  
100000  
10000  
1000  
100  
16  
14  
12  
10  
8
V
= 0V,  
= C  
f = 1 MHZ  
+ C , C SHORTED  
ce  
GS  
I
= 25A  
V
C
C
C
C
ies  
ge  
gd  
= C  
res  
oes  
gc  
= C + C  
= 120V  
ce  
gc  
CES  
V
V
= 300V  
= 400V  
CES  
CES  
Cies  
6
4
Coes  
2
Cres  
V
10  
0
0
100  
200  
300  
400  
500  
0
20  
Q
40  
60  
80  
100  
, Collector-toEmitter-Voltage(V)  
, Total Gate Charge (nC)  
CE  
G
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage  
10  
D = 0.50  
1
0.20  
0.10  
0.05  
0.1  
0.02  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.01  
0.21623 0.000302  
τ
τ
J τJ  
τ
Cτ  
0.01  
0.001  
0.41114 0.002861  
1.31259 0.179036  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
1.41309  
2.673  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRG6IC30UPbF  
A
RG  
C
PULSE A  
PULSE B  
DRIVER  
L
VCC  
B
Ipulse  
RG  
DUT  
tST  
Fig 16b. tst Test Waveforms  
Fig 16a. tst and EPULSE Test Circuit  
VCE  
Energy  
IC Current  
L
VCC  
DUT  
0
1K  
Fig 16c. EPULSE Test Waveforms  
Fig. 17 - Gate Charge Circuit (turn-off)  
6
www.irf.com  
IRG6IC30UPbF  
TO-220AB Full-Pak Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220AB Full-Pak Part Marking Information  
TO-220AB Full-Pak package is not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
The specifications set forth in this data sheet are the sole and  
exclusive specifications applicable to the identified product,  
and no specifications or features are implied whether by  
industry custom, sampling or otherwise. We qualify our  
products in accordance with our internal practices and  
procedures, which by their nature do not include qualification to  
all possible or even all widely used applications. Without  
limitation, we have not qualified our product for medical use or  
applications involving hi-reliability applications. Customers are  
encouraged to and responsible for qualifying product to their  
own use and their own application environments, especially  
where particular features are critical to operational performance  
or safety. Please contact your IR representative if you have  
specific design or use requirements or for further information.  
Data and specifications subject to change without notice.  
This product has been designed for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.03/09  
www.irf.com  
7

相关型号:

IRG6S320U

Insulated Gate Bipolar Transistor, 42A I(C), 330V V(BR)CES, N-Channel, TO-263AB, PLASTIC, D2PAK-3
INFINEON

IRG6S320UPBF

PDP TRENCH IGBT
INFINEON

IRG6S320UTRL

Insulated Gate Bipolar Transistor, 42A I(C), 330V V(BR)CES, N-Channel, TO-263AB, PLASTIC, D2PAK-3
INFINEON

IRG6S320UTRLPBF

Insulated Gate Bipolar Transistor, 42A I(C), 330V V(BR)CES, N-Channel, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRG6S320UTRR

Insulated Gate Bipolar Transistor, 42A I(C), 330V V(BR)CES, N-Channel, TO-263AB, PLASTIC, D2PAK-3
INFINEON

IRG6S320UTRRPBF

Insulated Gate Bipolar Transistor, 42A I(C), 330V V(BR)CES, N-Channel, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRG6S330UPBF

PDP TRENCH IGBT
INFINEON

IRG7CH35UB

Insulated Gate Bipolar Transistor, 20A I(C), 1200V V(BR)CES, N-Channel
INFINEON

IRG7I313UPBF

PDP TRENCH IGBT
INFINEON

IRG7I319UPBF

Insulated Gate Bipolar Transistor, 30A I(C), 330V V(BR)CES, N-Channel, TO-220AB, LEAD FREE, PLASTIC, FULL-PAK-3
INFINEON

IRG7IA19UPBF

Insulated Gate Bipolar Transistor, 30A I(C), 360V V(BR)CES, N-Channel, TO-220AB, LEAD FREE, PLASTIC, TO-220, FULL PACK-3
INFINEON

IRG7IC18FDPBF

Insulated Gate Bipolar Transistor, 14A I(C), 600V V(BR)CES, N-Channel
INFINEON