IRG6I330UPBF [INFINEON]

PDP TRENCH IGBT; PDP TRENCH IGBT
IRG6I330UPBF
型号: IRG6I330UPBF
厂家: Infineon    Infineon
描述:

PDP TRENCH IGBT
PDP TRENCH IGBT

光电二极管 双极性晶体管
文件: 总7页 (文件大小:307K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96192A  
IRG6I330UPbF  
Key Parameters  
PDP TRENCH IGBT  
Features  
l
VCE min  
V
330  
1.30  
250  
150  
V
V
Advanced Trench IGBT Technology  
Optimized for Sustain and Energy Recovery  
circuits in PDP applications  
CE(ON) typ. @ IC = 28A  
l
IRP max @ TC= 25°C  
TJ max  
A
°C  
TM  
l
Low VCE(on) and Energy per Pulse (EPULSE  
for improved panel efficiency  
)
l
l
High repetitive peak current capability  
Lead Free package  
C
E
C
G
G
TO-220AB  
Full-Pak  
E
n-channel  
G
C
E
Gate  
Collector  
Emitter  
Description  
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced  
trenchIGBTtechnologytoachievelowVCE(on)andlowEPULSETM ratingpersiliconareawhichimprovepanel  
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current  
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP  
applications.  
Absolute Maximum Ratings  
Max.  
Parameter  
Units  
VGE  
±30  
Gate-to-Emitter Voltage  
V
IC @ TC = 25°C  
IC @ TC = 100°C  
IRP @ TC = 25°C  
PD @TC = 25°C  
PD @TC = 100°C  
Continuous Collector Current, VGE @ 15V  
Continuous Collector, VGE @ 15V  
Repetitive Peak Current  
28  
A
15  
250  
43  
Power Dissipation  
W
17  
Power Dissipation  
0.34  
Linear Derating Factor  
W/°C  
°C  
TJ  
-40 to + 150  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature for 10 seconds  
Mounting Torque, 6-32 or M3 Screw  
300  
10lb in (1.1N m)  
N
Thermal Resistance  
Parameter  
Typ.  
–––  
Max.  
2.9  
Units  
°C/W  
RθJC  
Junction-to-Case  
www.irf.com  
1
09/11/09  
IRG6I330UPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGE = 0V, ICE = 1 mA  
Parameter  
Min. Typ. Max. Units  
BVCES  
Collector-to-Emitter Breakdown Voltage  
Emitter-to-Collector Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
330 ––– –––  
V
VGE = 0V, ICE = 1 A  
V(BR)ECS  
30 ––– –––  
V
Reference to 25°C, ICE = 1mA  
VGE = 15V, ICE = 15A  
∆ΒVCES/TJ  
––– 0.29 ––– V/°C  
––– 1.13 –––  
VGE = 15V, ICE = 28A  
––– 1.30 1.55  
VGE = 15V, ICE = 40A  
VGE = 15V, ICE = 70A  
1.43 –––  
––– 1.80 –––  
––– 2.38 –––  
––– 2.10 –––  
V
VCE(on)  
Static Collector-to-Emitter Voltage  
VGE = 15V, ICE = 120A  
VGE = 15V, ICE = 70A, TJ = 150°C  
V
CE = VGE, ICE = 500µA  
VGE(th)  
Gate Threshold Voltage  
2.6  
–––  
–––  
–––  
–––  
––– 5.0  
V
VGE(th)/TJ  
ICES  
Gate Threshold Voltage Coefficient  
Collector-to-Emitter Leakage Current  
-12 ––– mV/°C  
V
V
V
CE = 330V, VGE = 0V  
2.0  
10  
40  
20  
CE = 330V, VGE = 0V, TJ = 100°C  
CE = 330V, VGE = 0V, TJ = 125°C  
–––  
200  
µA  
nA  
VCE = 330V, VGE = 0V, TJ = 150°C  
VGE = 30V  
––– 150 –––  
––– ––– 100  
––– ––– -100  
IGES  
Gate-to-Emitter Forward Leakage  
Gate-to-Emitter Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
Gate-to-Collector Charge  
Turn-On delay time  
Rise time  
V
GE = -30V  
VCE = 25V, ICE = 25A  
CE = 200V, IC = 25A, VGE = 15V  
gfe  
Qg  
Qgc  
td(on)  
tr  
–––  
–––  
–––  
–––  
–––  
94  
86  
36  
39  
32  
–––  
–––  
–––  
–––  
–––  
S
V
nC  
IC = 25A, VCC = 196V  
R = 10 , L=200µH, L = 150nH  
ns  
ns  
G
S
td(off)  
tf  
td(on)  
tr  
td(off)  
tf  
TJ = 25°C  
Turn-Off delay time  
Fall time  
––– 120 –––  
–––  
–––  
–––  
55  
37  
33  
–––  
–––  
–––  
IC = 25A, VCC = 196V  
Turn-On delay time  
Rise time  
R = 10 , L=200µH, L = 150nH  
G
S
TJ = 150°C  
Turn-Off delay time  
Fall time  
––– 159 –––  
––– 95 –––  
tst  
VCC = 240V, VGE = 15V, RG= 5.1Ω  
Shoot Through Blocking Time  
100 ––– –––  
ns  
µJ  
L = 220nH, C= 0.40µF, VGE = 15V  
VCC = 240V, RG= 5.1Ω, TJ = 25°C  
L = 220nH, C= 0.40µF, VGE = 15V  
––– 943 –––  
EPULSE  
Energy per Pulse  
––– 1086 –––  
VCC = 240V, RG= 5.1Ω, TJ = 100°C  
Class 2  
Human Body Model  
Machine Model  
(Per JEDEC standard JESD22-A114)  
Class B  
(Per EIA/JEDEC standard EIA/JESD22-A115)  
ESD  
V
GE = 0V  
Cies  
Coes  
Cres  
LC  
Input Capacitance  
––– 2275 –––  
VCE = 30V  
Output Capacitance  
––– 108 –––  
pF  
ƒ = 1.0MHz,  
See Fig.13  
Reverse Transfer Capacitance  
Internal Collector Inductance  
–––  
–––  
75  
–––  
–––  
4.5  
Between lead,  
nH 6mm (0.25in.)  
from package  
LE  
Internal Emitter Inductance  
–––  
7.5  
–––  
and center of die contact  
Notes:  
 Half sine wave with duty cycle = 0.05, ton=2µsec.  
‚ R is measured at TJ of approximately 90°C.  
θ
ƒ Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
IRG6I330UPbF  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
V
= 18V  
V
= 18V  
GE  
GE  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
VGE = 6.0V  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
VGE = 6.0V  
0
2
4
6
8
10  
0
2
4
6
8
10  
V
(V)  
V
(V)  
CE  
CE  
Fig 2. Typical Output Characteristics @ 75°C  
Fig 1. Typical Output Characteristics @ 25°C  
500  
500  
V
= 18V  
V
= 18V  
GE  
GE  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
VGE = 6.0V  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
VGE = 6.0V  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
0
2
4
6
8
10  
0
2
4
6
8
10  
V
(V)  
V
(V)  
CE  
CE  
Fig 3. Typical Output Characteristics @ 125°C  
Fig 4. Typical Output Characteristics @ 150°C  
500  
25  
I
= 25A  
C
T
= 25°C  
J
400  
300  
200  
100  
0
20  
15  
10  
5
T = 150°C  
J
T = 25°C  
J
T = 150°C  
J
0
0
2
4
6
8
10 12 14 16 18  
(V)  
5
10  
15  
20  
V
V
(V)  
GE  
GE  
Fig 5. Typical Transfer Characteristics  
Fig 6. VCE(ON) vs. Gate Voltage  
www.irf.com  
3
IRG6I330UPbF  
30  
25  
20  
15  
10  
5
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
ton= 2µs  
Duty cycle <= 0.05  
Half Sine Wave  
60  
40  
20  
0
0
0
25  
50  
75  
(°C)  
100  
125  
150  
25  
50  
75  
100  
125  
150  
T
C
Case Temperature (°C)  
Fig 8. Typical Repetitive Peak Current vs. Case Temperature  
Fig 7. Maximum Collector Current vs. Case Temperature  
1100  
1100  
V
= 240V  
L = 220nH  
C = 0.4µF  
CC  
1050  
1000  
950  
900  
850  
800  
750  
700  
650  
600  
L = 220nH  
C = variable  
1000  
100°C  
100°C  
900  
800  
25°C  
25°C  
700  
600  
500  
150 160 170 180 190 200 210 220 230  
195 200 205 210 215 220 225 230 235 240  
I , Peak Collector Current (A)  
C
V
Collector-to-Supply Voltage (V)  
CC,  
Fig 9. Typical EPULSE vs. Collector Current  
Fig 10. Typical EPULSE vs. Collector-to-Supply Voltage  
1400  
1000  
V
= 240V  
CC  
C= 0.4µF  
L = 220nH  
t = 1µs half sine  
1200  
1000  
800  
100  
10µsec  
100µsec  
C= 0.3µF  
1msec  
10  
C= 0.2µF  
600  
1
400  
Tc = 25°C  
Tj = 150°C  
Single Pulse  
200  
0.1  
25  
50  
75  
100  
125  
150  
1
10  
100  
1000  
T , Temperature (ºC)  
V
(V)  
J
CE  
Fig 11. EPULSE vs. Temperature  
Fig 12. Forrward Bias Safe Operating Area  
4
www.irf.com  
IRG6I330UPbF  
16  
14  
12  
10  
8
100000  
10000  
1000  
100  
V
= 0V,  
= C  
f = 1 MHZ  
+ C , C  
GS  
I
= 25A  
V
C
C
C
C
SHORTED  
ies  
ge  
gd  
ce  
= C  
= 240V  
res  
oes  
gc  
CES  
= C + C  
ce  
gc  
V
V
= 150V  
= 60V  
CES  
CES  
Cies  
6
4
Coes  
Cres  
2
0
10  
0
20  
40  
60  
80  
100  
0
50  
100  
150  
200  
Q
, Total Gate Charge (nC)  
G
V
, Collector-toEmitter-Voltage(V)  
CE  
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage  
10  
D = 0.50  
1
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.1  
0.01  
0.02  
0.01  
0.11889 0.000045  
τ
τ
J τJ  
τ
Cτ  
0.35666 0.001841  
1.09829 0.128114  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
1.32616  
2.452  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRG6I330UPbF  
A
RG  
C
PULSE A  
PULSE B  
DRIVER  
L
VCC  
B
Ipulse  
RG  
DUT  
tST  
Fig 16b. tst Test Waveforms  
Fig 16a. tst and EPULSE Test Circuit  
VCE  
Energy  
IC Current  
L
VCC  
DUT  
0
1K  
Fig 16c. EPULSE Test Waveforms  
Fig. 17 - Gate Charge Circuit (turn-off)  
6
www.irf.com  
IRG6I330UPbF  
TO-220 Full-Pak Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220 Full-Pak Part Marking Information  
TO-220AB Full-Pak package is not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
The specifications set forth in this data sheet are the sole and  
exclusive specifications applicable to the identified product,  
and no specifications or features are implied whether by  
industry custom, sampling or otherwise. We qualify our  
products in accordance with our internal practices and  
procedures, which by their nature do not include qualification to  
all possible or even all widely used applications. Without  
limitation, we have not qualified our product for medical use or  
applications involving hi-reliability applications. Customers are  
encouraged to and responsible for qualifying product to their  
own use and their own application environments, especially  
where particular features are critical to operational performance  
or safety. Please contact your IR representative if you have  
specific design or use requirements or for further information.  
Data and specifications subject to change without notice.  
This product has been designed for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.09/2009  
www.irf.com  
7

相关型号:

IRG6IC30UPBF

PDP TRENCH IGBT
INFINEON

IRG6S320U

Insulated Gate Bipolar Transistor, 42A I(C), 330V V(BR)CES, N-Channel, TO-263AB, PLASTIC, D2PAK-3
INFINEON

IRG6S320UPBF

PDP TRENCH IGBT
INFINEON

IRG6S320UTRL

Insulated Gate Bipolar Transistor, 42A I(C), 330V V(BR)CES, N-Channel, TO-263AB, PLASTIC, D2PAK-3
INFINEON

IRG6S320UTRLPBF

Insulated Gate Bipolar Transistor, 42A I(C), 330V V(BR)CES, N-Channel, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRG6S320UTRR

Insulated Gate Bipolar Transistor, 42A I(C), 330V V(BR)CES, N-Channel, TO-263AB, PLASTIC, D2PAK-3
INFINEON

IRG6S320UTRRPBF

Insulated Gate Bipolar Transistor, 42A I(C), 330V V(BR)CES, N-Channel, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRG6S330UPBF

PDP TRENCH IGBT
INFINEON

IRG7CH35UB

Insulated Gate Bipolar Transistor, 20A I(C), 1200V V(BR)CES, N-Channel
INFINEON

IRG7I313UPBF

PDP TRENCH IGBT
INFINEON

IRG7I319UPBF

Insulated Gate Bipolar Transistor, 30A I(C), 330V V(BR)CES, N-Channel, TO-220AB, LEAD FREE, PLASTIC, FULL-PAK-3
INFINEON

IRG7IA19UPBF

Insulated Gate Bipolar Transistor, 30A I(C), 360V V(BR)CES, N-Channel, TO-220AB, LEAD FREE, PLASTIC, TO-220, FULL PACK-3
INFINEON