IRFP4110PBF [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
IRFP4110PBF
型号: IRFP4110PBF
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

文件: 总8页 (文件大小:289K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97311  
IRFP4110PbF  
Applications  
HEXFET® Power MOSFET  
l High Efficiency Synchronous Rectification in SMPS  
VDSS  
RDS(on) typ.  
max.  
ID (Silicon Limited)  
ID (Package Limited)  
100V  
l Uninterruptible Power Supply  
l High Speed Power Switching  
l Hard Switched and High Frequency Circuits  
:
:
c
3.7m  
4.5m  
180A  
120A  
Benefits  
l Improved Gate, Avalanche and Dynamic dv/dt  
Ruggedness  
D
S
D
l Fully Characterized Capacitance and Avalanche  
SOA  
l Enhanced body diode dV/dt and dI/dt Capability  
S
D
G
G
TO-247AC  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
Parameter  
Max.  
180c  
130c  
120  
Units  
A
ID @ TC = 25°C  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)  
Pulsed Drain Current d  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
670  
PD @TC = 25°C  
370  
W
Maximum Power Dissipation  
2.5  
Linear Derating Factor  
W/°C  
V
VGS  
20  
Gate-to-Source Voltage  
5.3  
Peak Diode Recovery f  
dv/dt  
TJ  
V/ns  
°C  
-55 to + 175  
300  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
10lbxin (1.1Nxm)  
Mounting torque, 6-32 or M3 screw  
Avalanche Characteristics  
Single Pulse Avalanche Energy e  
EAS (Thermally limited)  
190  
108  
37  
mJ  
A
Avalanche Currentꢀd  
IAR  
Repetitive Avalanche Energy g  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Junction-to-Case k  
Typ.  
–––  
Max.  
Units  
RθJC  
0.402  
–––  
40  
RθCS  
RθJA  
0.24  
–––  
°C/W  
Case-to-Sink, Flat Greased Surface  
Junction-to-Ambient j  
www.irf.com  
1
03/03/08  
IRFP4110PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
100 ––– –––  
––– 0.108 ––– V/°C Reference to 25°C, ID = 5mAd  
Conditions  
VGS = 0V, ID = 250µA  
V
V(BR)DSS/TJ  
RDS(on)  
–––  
2.0  
3.7  
4.5  
4.0  
20  
VGS = 10V, ID = 75A g  
mΩ  
VGS(th)  
–––  
V
VDS = VGS, ID = 250µA  
IDSS  
Drain-to-Source Leakage Current  
––– –––  
µA VDS = 100V, VGS = 0V  
DS = 100V, VGS = 0V, TJ = 125°C  
nA VGS = 20V  
GS = -20V  
––– ––– 250  
––– ––– 100  
––– ––– -100  
V
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
V
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Parameter  
Forward Transconductance  
Min. Typ. Max. Units  
Conditions  
VDS = 50V, ID = 75A  
nC ID = 75A  
DS = 50V  
VGS = 10V g  
160 ––– –––  
S
Qg  
Total Gate Charge  
––– 150 210  
Qgs  
Qgd  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
–––  
–––  
–––  
35  
43  
–––  
–––  
V
RG  
td(on)  
tr  
Gate Resistance  
Turn-On Delay Time  
Rise Time  
1.3  
25  
67  
78  
88  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
ns  
VDD = 65V  
ID = 75A  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
RG = 2.6Ω  
VGS = 10V g  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
––– 9620 –––  
––– 670 –––  
––– 250 –––  
––– 820 –––  
––– 950 –––  
pF VGS = 0V  
VDS = 50V  
ƒ = 1.0MHz  
Coss eff. (ER)  
Effective Output Capacitance (Energy Related)  
VGS = 0V, VDS = 0V to 80V i  
iꢁ  
Coss eff. (TR)  
VGS = 0V, VDS = 0V to 80V h  
Effective Output Capacitance (Time Related)  
h
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
D
S
Continuous Source Current  
––– –––  
A
MOSFET symbol  
170  
c
(Body Diode)  
showing the  
integral reverse  
G
ISM  
Pulsed Source Current  
(Body Diode)ꢁdi  
Diode Forward Voltage  
Reverse Recovery Time  
––– ––– 670  
p-n junction diode.  
TJ = 25°C, IS = 75A, VGS = 0V g  
VSD  
trr  
––– –––  
1.3  
75  
V
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 85V,  
–––  
–––  
–––  
50  
60  
94  
ns  
IF = 75A  
90  
di/dt = 100A/µs g  
Qrr  
Reverse Recovery Charge  
140  
nC  
A
––– 140 210  
––– 3.5 –––  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Calculated continuous current based on maximum allowable junction  
temperature. Bond wire current limit is 120A. Note that current  
limitations arising from heating of the device leads may occur with  
„ ISD 75A, di/dt 630A/µs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400µs; duty cycle 2%.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
some lead mounting arrangements.  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.033mH  
RG = 25, IAS = 108A, VGS =10V. Part not recommended for use  
above this value.  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
mended footprint and soldering techniques refer to application note #AN-994.  
‰ Rθ is measured at TJ approximately 90°C.  
.
.
2
www.irf.com  
IRFP4110PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
4.5V  
60µs PULSE WIDTH  
Tj = 25°C  
60µs PULSE WIDTH  
Tj = 175°C  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 75A  
D
V
= 10V  
GS  
T
= 25°C  
J
T
= 175°C  
J
1
V
= 25V  
DS  
60µs PULSE WIDTH  
0.1  
1
2
3
4
5
6
7
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
100000  
10000  
1000  
12.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 75A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
= C  
10.0  
rss  
oss  
gd  
= C + C  
V
V
= 80V  
= 50V  
ds  
gd  
DS  
DS  
C
8.0  
6.0  
4.0  
2.0  
0.0  
iss  
C
oss  
C
rss  
100  
1
10  
, Drain-to-Source Voltage (V)  
100  
0
50  
100  
150  
200  
V
Q , Total Gate Charge (nC)  
DS  
G
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRFP4110PbF  
10000  
1000  
100  
10  
1000  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
J
100  
10  
1
100µsec  
T
= 25°C  
J
10msec  
1msec  
DC  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
1
0.1  
0
1
10  
100  
1000  
0.0  
0.5  
1.0  
1.5  
2.0  
V
, Drain-to-Source Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode Forward Voltage  
180  
125  
120  
115  
110  
105  
100  
95  
Id = 5mA  
160  
Limited By Package  
140  
120  
100  
80  
60  
40  
20  
0
90  
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20 0 20 40 60 80 100120140160180  
T
, Case Temperature (°C)  
T
, Temperature ( °C )  
C
J
Fig 10. Drain-to-Source Breakdown Voltage  
Fig 9. Maximum Drain Current vs. Case Temperature  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
800  
I
D
700  
600  
500  
400  
300  
200  
100  
0
TOP  
17A  
27A  
BOTTOM 108A  
0
20  
V
40  
60  
80  
100  
120  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
Drain-to-Source Voltage (V)  
DS,  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
Fig 11. Typical COSS Stored Energy  
4
www.irf.com  
IRFP4110PbF  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
τi (sec)  
0.09876251 0.000111  
0.2066697 0.001743  
0.09510464 0.012269  
0.02  
0.01  
Ri (°C/W)  
0.01  
τ
J τJ  
τ
τ
CτC  
τ
1 τ1  
τ
2 τ2  
3 τ3  
Ci= τi/Ri  
Ci= τi/Ri  
0.001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Allowed avalanche Current vs avalanche  
Duty Cycle = Single Pulse  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
1
Allowed avalanche Current vs avalanche  
∆Τ  
pulsewidth, tav, assuming  
Tstart = 150°C.  
j = 25°C and  
0.1  
1.0E-05  
1.0E-04  
1.0E-03  
tav (sec)  
1.0E-02  
1.0E-01  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
250  
200  
150  
100  
50  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
TOP  
BOTTOM 1.0% Duty Cycle  
= 108A  
Single Pulse  
I
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
D
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRFP4110PbF  
25  
20  
15  
10  
5
4.0  
3.5  
3.0  
2.5  
I = 30A  
F
V
= 85V  
R
T = 25°C  
J
T = 125°C  
J
I
I
I
= 250µA  
= 1.0mA  
= 1.0A  
D
D
D
2.0  
1.5  
1.0  
0.5  
0
0
200  
400  
600  
800  
1000  
-75 -50 -25  
0
25 50 75 100 125 150 175 200  
, Temperature ( °C )  
di /dt (A/µs)  
T
F
J
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
25  
560  
I = 45A  
I = 30A  
F
F
V
= 85V  
V
= 85V  
R
R
480  
400  
320  
240  
160  
80  
20  
15  
10  
5
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
di /dt (A/µs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
560  
I = 45A  
F
V
= 85V  
R
480  
400  
320  
240  
160  
80  
T = 25°C  
J
T = 125°C  
J
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRFP4110PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
R
G
V
DD  
-
I
A
AS  
V
2
GS  
0.01Ω  
t
p
I
AS  
Fig 21b. Unclamped Inductive Waveforms  
Fig 21a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 22a. Switching Time Test Circuit  
Fig 22b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
Vgs(th)  
0
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 23a. Gate Charge Test Circuit  
Fig 23b. Gate Charge Waveform  
www.irf.com  
7
IRFP4110PbF  
TO-247AC Package Outline  
Dimensions are shown in millimeters (inches)  
TO-247AC Part Marking Information  
TO-247AC packages are not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 03/08  
www.irf.com  
8

相关型号:

IRFP4127PBF

Power Field-Effect Transistor
INFINEON

IRFP4137PBF

Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
INFINEON

IRFP420

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
SAMSUNG

IRFP421

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
SAMSUNG

IRFP422

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
SAMSUNG

IRFP4227

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFP4227PBF

PDP SWITCH
INFINEON

IRFP4228PBF

pop switch
INFINEON

IRFP4229PBF

PDP SWITCH
INFINEON

IRFP423

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
SAMSUNG

IRFP4232PBF

PDP MOSFET
INFINEON

IRFP4232PBF_07

Advanced process technology
INFINEON