IRFP4228PBF [INFINEON]

pop switch; 弹出开关
IRFP4228PBF
型号: IRFP4228PBF
厂家: Infineon    Infineon
描述:

pop switch
弹出开关

开关
文件: 总8页 (文件大小:672K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97229  
IRFP4228PbF  
PDP SWITCH  
Features  
Key Parameters  
l
Advanced Process Technology  
Key Parameters Optimized for PDP  
Sustain, Energy Recovery and Pass  
Switch Applications  
l
VDS min  
150  
180  
12  
V
V
m
V
DS (Avalanche) typ.  
RDS(ON) typ. @ 10V  
IRP max @ TC= 100°C  
TJ max  
l
Low EPULSE Rating to Reduce Power  
Dissipation in PDP Sustain, Energy  
Recovery and Pass Switch Applications  
Low QG for Fast Response  
High Repetitive Peak Current Capability for  
Reliable Operation  
170  
175  
A
°C  
l
l
D
D
l
Short Fall & Rise Times for Fast Switching  
S
l
175°C Operating Junction Temperature for  
Improved Ruggedness  
D
G
G
l
Repetitive Avalanche Capability for  
Robustness and Reliability  
TO-247AC  
S
G
D
S
Gate  
Drain  
Source  
Description  
This HEXFET® Power MOSFET is specifically designed for Sustain; Energy Recovery & Pass switch  
applicationsinPlasmaDisplayPanels. ThisMOSFETutilizesthelatestprocessingtechniquestoachieve  
low on-resistance per silicon area and low EPULSE rating. Additional features of this MOSFET are 175°C  
operating junction temperature and high repetitive peak current capability. These features combine to  
make this MOSFET a highly efficient, robust and reliable device for PDP driving applications.  
Absolute Maximum Ratings  
Max.  
±30  
Parameter  
Units  
V
VGS  
Gate-to-Source Voltage  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
78  
A
55  
330  
IRP @ TC = 100°C  
PD @TC = 25°C  
PD @TC = 100°C  
170  
Repetitive Peak Current  
310  
Power Dissipation  
W
150  
Power Dissipation  
2.0  
Linear Derating Factor  
W/°C  
°C  
TJ  
-40 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature for 10 seconds  
Mounting Torque, 6-32 or M3 Screw  
300  
10lb in (1.1N m)  
N
Thermal Resistance  
Parameter  
Typ.  
Max.  
0.49  
–––  
40  
Units  
Junction-to-Case  
RθJC  
–––  
0.24  
–––  
°C/W  
Rθ  
Case-to-Sink, Flat, Greased Surface  
Junction-to-Ambient  
CS  
RθJA  
Notes  through †are on page 8  
www.irf.com  
1
06/26/06  
IRFP4228PbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGS = 0V, ID = 250µA  
Reference to 25°C, I = 1mA  
Parameter  
Min. Typ. Max. Units  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
150  
–––  
–––  
3.0  
–––  
150  
12  
–––  
V
V
/ T  
J
∆Β  
––– mV/°C  
D
DSS  
VGS = 10V, ID = 33A  
RDS(on)  
VGS(th)  
15.5  
5.0  
mΩ  
V
VDS = VGS, ID = 250µA  
–––  
-14  
–––  
–––  
–––  
–––  
–––  
72  
VGS(th)/TJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
170  
–––  
–––  
100  
––– mV/°C  
VDS = 150V, VGS = 0V  
20  
1.0  
µA  
mA  
nA  
VDS = 150V, VGS = 0V, TJ = 125°C  
VGS = 20V  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
100  
-100  
–––  
110  
–––  
–––  
VGS = -20V  
VDS = 25V, ID = 50A  
gfs  
Qg  
Qgd  
tst  
S
VDD = 120V, ID = 50A, VGS = 10V  
nC  
Gate-to-Drain Charge  
26  
VDD = 120V, VGS = 15V, RG= 5.1Ω  
Shoot Through Blocking Time  
–––  
ns  
µJ  
L = 220nH, C= 0.3µF, VGS = 15V  
–––  
–––  
58  
–––  
–––  
EPULSE  
VDS = 120V, RG= 5.1Ω, TJ = 25°C  
Energy per Pulse  
L = 220nH, C= 0.3µF, VGS = 15V  
110  
VDS = 120V, RG= 5.1Ω, TJ = 100°C  
VGS = 0V  
Ciss  
Input Capacitance  
––– 4530 –––  
VDS = 25V  
Coss  
Crss  
Output Capacitance  
–––  
–––  
–––  
–––  
550  
100  
480  
4.5  
–––  
–––  
–––  
–––  
pF  
ƒ = 1.0MHz  
Reverse Transfer Capacitance  
Effective Output Capacitance  
Internal Drain Inductance  
VGS = 0V, VDS = 0V to 120V  
Coss eff.  
LD  
Between lead,  
D
S
nH 6mm (0.25in.)  
from package  
G
LS  
Internal Source Inductance  
–––  
7.5  
–––  
and center of die contact  
Avalanche Characteristics  
Typ.  
–––  
–––  
180  
–––  
Max.  
210  
33  
Parameter  
Units  
mJ  
mJ  
V
EAS  
Single Pulse Avalanche Energy  
Repetitive Avalanche Energy  
Repetitive Avalanche Voltage  
Avalanche Current  
EAR  
VDS(Avalanche)  
IAS  
–––  
50  
A
Diode Characteristics  
Conditions  
Parameter  
Min. Typ. Max. Units  
IS @ TC = 25°C  
ISM  
MOSFET symbol  
Continuous Source Current  
–––  
–––  
78  
showing the  
(Body Diode)  
A
integral reverse  
p-n junction diode.  
Pulsed Source Current  
(Body Diode)  
–––  
–––  
330  
TJ = 25°C, IS = 50A, VGS = 0V  
TJ = 25°C, IF = 50A, VDD = 50V  
di/dt = 100A/µs  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
76  
1.3  
110  
350  
V
ns  
nC  
Qrr  
230  
2
www.irf.com  
IRFP4228PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.5V  
6.0V  
5.5V  
5.0V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.5V  
6.0V  
5.5V  
5.0V  
TOP  
TOP  
BOTTOM  
BOTTOM  
1
5.0V  
5.0V  
0.1  
0.01  
60µs PULSE WIDTH  
Tj = 25°C  
60µs PULSE WIDTH  
Tj = 175°C  
1
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 2. Typical Output Characteristics  
Fig 1. Typical Output Characteristics  
1000  
100  
10  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
I
= 50A  
D
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
J
1
V
= 25V  
DS  
60µs PULSE WIDTH  
0.1  
3
4
5
6
7
8
9
10 11  
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
120  
120  
L = 220nH  
C = Variable  
L = 220nH  
C = 0.3µF  
100°C  
110  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100°C  
25°C  
25°C  
85 90 95 100 105 110 115 120 125  
60 65 70 75 80 85 90 95 100 105  
V
Drain-to-Source Voltage (V)  
I
, Peak Drain Current (A)  
DS,  
D
Fig 5. Typical EPULSE vs. Drain-to-Source Voltage  
Fig 6. Typical EPULSE vs. Drain Current  
www.irf.com  
3
IRFP4228PbF  
140  
1000  
100  
10  
L = 220nH  
120  
T
= 175°C  
J
100  
C = 0.3µF  
80  
T
= 25°C  
J
60  
C = 0.2µF  
40  
1
C = 0.1µF  
20  
V
= 0V  
1.4  
GS  
0
0.1  
20  
40  
60  
80  
100 120 140 160  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.6  
V
, Source-to-Drain Voltage (V)  
SD  
Temperature (°C)  
Fig 8. Typical Source-Drain Diode Forward Voltage  
Fig 7. Typical EPULSE vs.Temperature  
12.0  
100000  
10000  
1000  
100  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 50A  
D
C
C
C
+ C , C  
SHORTED  
ds  
iss  
gs  
gd  
V
= 120V  
= 75V  
= 30V  
DS  
= C  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
rss  
oss  
gd  
V
DS  
= C + C  
ds  
gd  
V
DS  
C
iss  
C
oss  
C
rss  
10  
0
10 20 30 40 50 60 70 80  
1
10  
100  
1000  
Q , Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 9. Typical Capacitance vs.Drain-to-Source Voltage  
Fig 10. Typical Gate Charge vs.Gate-to-Source Voltage  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1000  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
100µsec  
100  
10  
1
10msec  
1msec  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
25  
50  
T
75  
100  
125  
150  
175  
1
10  
100  
1000  
, Junction Temperature (°C)  
V
, Drain-to-Source Voltage (V)  
J
DS  
Fig 12. Maximum Safe Operating Area  
Fig 11. Maximum Drain Current vs. Case Temperature  
4
www.irf.com  
IRFP4228PbF  
60  
50  
40  
30  
20  
10  
0
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
I
I
= 50A  
D
D
TOP  
9.0A  
19A  
BOTTOM 50A  
T
= 125°C  
J
T
= 25°C  
12  
J
4
6
8
10  
14  
16  
18  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
V
Gate -to -Source Voltage (V)  
GS,  
Fig 14. Maximum Avalanche Energy vs. Temperature  
Fig 13. On-Resistance vs. Gate Voltage  
250  
5.0  
4.5  
4.0  
3.5  
ton= 1µs  
Duty cycle = 0.25  
Half Sine Wave  
Square Pulse  
200  
150  
100  
50  
I
= 250µA  
D
3.0  
2.5  
2.0  
1.5  
1.0  
0
25  
50  
75  
100  
125  
150  
175  
-75 -50 -25  
0
25 50 75 100 125 150 175  
Case Temperature (°C)  
T , Temperature ( °C )  
J
Fig 16. Typical Repetitive peak Current vs.  
Fig 15. Threshold Voltage vs. Temperature  
Case temperature  
1
D = 0.50  
0.1  
0.01  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
0.02  
0.01  
Ri (°C/W) τi (sec)  
0.0768 0.000083  
τ
J τJ  
τ
τ
Cτ  
τ
1τ1  
τ
2 τ2  
3τ3  
0.2337 0.001175  
0.1797 0.008326  
Ci= τi/Ri  
0.001  
/
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRFP4228PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
***  
V
=10V  
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
*
VDD  
**  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple 5%  
* Use P-Channel Driver for P-Channel Measurements  
** Reverse Polarity for P-Channel  
*** VGS = 5V for Logic Level Devices  
Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
GS  
0.01  
t
p
I
AS  
Fig 19b. Unclamped Inductive Waveforms  
Fig 19a. Unclamped Inductive Test Circuit  
Current Regulator  
Same Type as D.U.T.  
Id  
Vds  
50KΩ  
.2µF  
Vgs  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
V
GS  
Vgs(th)  
3mA  
I
I
D
G
Current Sampling Resistors  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 20a. Gate Charge Test Circuit  
Fig 20b. Gate Charge Waveform  
6
www.irf.com  
IRFP4228PbF  
A
PULSE A  
PULSE B  
RG  
C
DRIVER  
L
VCC  
B
Ipulse  
DUT  
RG  
tST  
Fig 21b. tst Test Waveforms  
Fig 21a. tst and EPULSE Test Circuit  
Fig 21c. EPULSE Test Waveforms  
www.irf.com  
7
IRFP4228PbF  
TO-247AC Package Outline  
Dimensions are shown in millimeters (inches)  
TO-247AC Part Marking Information  
TO-247AC package is not recommended for Surface Mount Application.  
Notes:  
 Repetitive rating; pulse width limited by max. junction temperature.  
‚ Starting TJ = 25°C, L = 0.173mH, RG = 25, IAS = 50A.  
ƒ Pulse width 400µs; duty cycle 2%.  
„ R is measured at TJ of approximately 90°C.  
θ
Half sine wave with duty cycle = 0.25, ton=1µsec.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 06/06  
8
www.irf.com  

相关型号:

IRFP4229PBF

PDP SWITCH
INFINEON

IRFP423

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
SAMSUNG

IRFP4232PBF

PDP MOSFET
INFINEON

IRFP4232PBF_07

Advanced process technology
INFINEON

IRFP4242PBF

PDP MOSFET
INFINEON

IRFP430

TRANSISTOR | MOSFET | N-CHANNEL | 500V V(BR)DSS | 4.5A I(D) | TO-247VAR
ETC

IRFP431

TRANSISTOR | MOSFET | N-CHANNEL | 450V V(BR)DSS | 4.5A I(D) | TO-247VAR
ETC

IRFP4310Z

N-Channel MOSFET Transistor
ISC

IRFP4310ZPBF

HEXFET Power MOSFET
INFINEON

IRFP432

Power Field-Effect Transistor, 4A I(D), 500V, 2ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-3P, 3 PIN
SAMSUNG

IRFP4321PBF

HEXFET Power MOSFET
INFINEON

IRFP433

TRANSISTOR | MOSFET | N-CHANNEL | 450V V(BR)DSS | 4A I(D) | TO-247VAR
ETC