BFP420E6433HTMA1 [INFINEON]

RF Small Signal Bipolar Transistor,;
BFP420E6433HTMA1
型号: BFP420E6433HTMA1
厂家: Infineon    Infineon
描述:

RF Small Signal Bipolar Transistor,

文件: 总9页 (文件大小:561K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BFP420  
Low Noise Silicon Bipolar RF Transistor  
For high gain and low noise amplifiers  
3
Minimum noise figure NF  
= 1.1 dB at 1.8 GHz  
min  
2
1
4
Outstanding G = 21 dB at 1.8 GHz  
ms  
For oscillators up to 10 GHz  
Transition frequency f = 25 GHz  
T
Pb-free (RoHS compliant) and halogen-free package  
with visible leads  
Qualification report according to AEC-Q101 available  
ESD (Electrostatic discharge) sensitive device, observe handling precaution!  
Type  
BFP420  
Marking  
AMs  
Pin Configuration  
1=B 2=E 3=C 4=E  
Package  
SOT343  
-
-
Maximum Ratings at T = 25 °C, unless otherwise specified  
A
Parameter  
Symbol  
Value  
Unit  
V
Collector-emitter voltage  
V
CEO  
T = 25 °C  
4.5  
4.1  
15  
15  
1.5  
60  
A
T = -55 °C  
A
Collector-emitter voltage  
Collector-base voltage  
Emitter-base voltage  
Collector current  
V
V
V
CES  
CBO  
EBO  
mA  
mW  
°C  
I
C
9
210  
Base current  
Total power dissipation  
I
B
1)  
P
tot  
T 98 °C  
S
150  
Junction temperature  
T
J
Storage temperature  
T
-55 ... 150  
Stg  
1
T is measured on the emitter lead at the soldering point to the pcb  
S
Thermal Resistance  
Parameter  
Junction - soldering point  
Symbol  
Value  
250  
Unit  
K/W  
1)  
R
thJS  
1
2013-09-19  
BFP420  
Electrical Characteristics at T = 25 °C, unless otherwise specified  
A
Parameter  
Symbol  
Values  
Unit  
min.  
typ. max.  
DC Characteristics  
4.5  
5
-
-
V
Collector-emitter breakdown voltage  
V
(BR)CEO  
I = 1 mA, I = 0  
C
B
-
-
10  
µA  
Collector-emitter cutoff current  
= 15 V, V = 0  
I
CES  
V
CE  
BE  
-
100 nA  
Collector-base cutoff current  
= 5 V, I = 0  
I
CBO  
V
CB  
E
-
-
3
µA  
-
Emitter-base cutoff current  
= 0.5 V, I = 0  
I
EBO  
V
EB  
C
60  
95  
130  
DC current gain  
I = 20 mA, V = 4 V, pulse measured  
h
FE  
C
CE  
1
For the definition of R  
please refer to Application Note AN077 (Thermal Resistance Calculation)  
thJS  
2
2013-09-19  
BFP420  
Electrical Characteristics at T = 25 °C, unless otherwise specified  
A
Parameter  
Symbol  
Values  
typ. max.  
Unit  
min.  
AC Characteristics (verified by random sampling)  
18  
25  
-
GHz  
Transition frequency  
f
T
I = 30 mA, V = 3 V, f = 2 GHz  
C
CE  
-
-
-
0.15  
0.3 pF  
Collector-base capacitance  
= 2 V, f = 1 MHz, V = 0 ,  
emitter grounded  
C
C
C
cb  
ce  
eb  
V
CB  
BE  
0.37  
0.55  
-
-
Collector emitter capacitance  
V
= 2 V, f = 1 MHz, V = 0 ,  
CE  
BE  
base grounded  
Emitter-base capacitance  
V
= 0.5 V, f = 1 MHz, V = 0 ,  
EB  
CB  
collector grounded  
-
-
1.1  
21  
-
-
dB  
dB  
Minimum noise figure  
NF  
min  
I = 5 mA, V = 2 V, f = 1.8 GHz, Z = Z  
C
CE  
S
Sopt  
1)  
Power gain, maximum stable  
G
ms  
I = 20 mA, V = 2 V, Z = Z ,  
C
CE  
S
Sopt  
Z = Z  
, f = 1.8 GHz  
L
Lopt  
2
Insertion power gain  
= 2 V, I = 20 mA, f = 1.8 GHz,  
|S |  
14  
-
17  
22  
12  
-
-
-
21  
V
CE  
C
Z = Z = 50 Ω  
S
L
2)  
Third order intercept point at output  
= 2 V, I = 20 mA, f = 1.8 GHz,  
IP3  
dBm  
V
CE  
C
Z = Z = 50 Ω  
S
L
1dB compression point at output  
P
-
-1dB  
I = 20 mA, V = 2 V, Z = Z = 50 ,  
C
CE  
S
L
f = 1.8 GHz  
1
G
= |S / S |  
21 12  
ms  
2
IP3 value depends on termination of all intermodulation frequency components.  
Termination used for this measurement is 50from 0.1 MHz to 6 GHz  
3
2013-09-19  
BFP420  
Total power dissipation P = ƒ(T )  
Permissible Pulse Load R  
= ƒ(t )  
tot  
S
thJS  
p
10 3  
240  
mW  
K/W  
180  
150  
120  
90  
10 2  
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.005  
D = 0  
60  
30  
10 1  
0
10 -7 10 -6 10 -5 10 -4 10 -3 10 -2  
10 0  
°C  
s
0
30  
60  
90  
150  
T
t
p
S
Permissible Pulse Load  
Collector-base capacitance C = ƒ(V  
)
cb  
CB  
P
/P  
= ƒ(t )  
f = 1MHz  
totmax totDC  
p
10 1  
0.3  
pF  
0.2  
0.15  
0.1  
D = 0  
0.005  
0.01  
0.02  
0.05  
0.1  
-
0.2  
0.5  
0.05  
10 0  
0
10 -7 10 -6 10 -5 10 -4 10 -3 10 -2  
10 0  
0
1
2
4
s
V
t
V
CB  
p
4
2013-09-19  
BFP420  
Transition frequency f = ƒ(I )  
Power gain G , G , |S |² = ƒ (f)  
ma ms 21  
T
C
f = 2 GHz  
V
= 2 V, I = 20 mA  
CE C  
V
= parameter in V  
CE  
30  
44  
GHz  
2 to 4  
1.5  
40  
36  
32  
28  
24  
20  
16  
12  
8
24  
22  
20  
18  
16  
14  
12  
10  
8
1
0.75  
Gms  
0.5  
Gma  
2
|S21|  
6
4
2
4
0
mA  
0
5
10  
15  
20  
25  
30  
40  
0
0
1
2
3
4
5
6
I
f [GHz]  
C
Power gain G , G = ƒ (I )  
Power gain G , G = ƒ (V  
)
ma  
ms  
C
ma  
ms  
CE  
V
= 2V  
I = 20 mA  
CE  
C
f = parameter in GHz  
f = parameter in GHz  
30  
dB  
30  
dB  
0.9  
1.8  
0.9  
1.8  
24  
22  
20  
18  
16  
14  
12  
10  
8
24  
22  
20  
18  
16  
14  
12  
10  
8
2.4  
3
2.4  
3
4
4
5
6
5
6
6
6
4
4
2
2
0
0
mA  
V
0
4
8
12 16 20 24 28 32  
40  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4.5  
I
V
C
CE  
5
2013-09-19  
BFP420  
Noise figure F = ƒ(I )  
Noise figure F = ƒ(I )  
C
C
V
= 2 V, Z = Z  
V = 2 V, f = 1.8 GHz  
CE  
S
Sopt  
CE  
4
3
dB  
dB  
3
2.5  
2
2
1.5  
1
ZS = 50 Ohm  
ZS = ZSopt  
1.5  
1
f = 6 GHz  
f = 5 GHz  
f = 4 GHz  
f = 3 GHz  
f = 2.4 GHz  
f = 1.8 GHz  
f = 0.9 GHz  
0.5  
0
0.5  
0
mA  
mA  
0
4
8
12 16 20 24 28 32  
38  
0
4
8
12 16 20 24 28  
36  
I
I
C
C
Noise figure F = ƒ(f)  
Source impedance for min.  
V
= 2 V, Z = Z  
noise figure vs. frequency  
CE  
S
Sopt  
V
= 2 V, I = 5 mA / 20 mA  
CE  
C
3
+j50  
dB  
+j25  
+j100  
+j10  
2
1.5  
1
2.4GHz  
1.8GHz  
0.9GHz  
3GHz  
0
10  
25  
50  
100  
0.45GHz  
4GHz  
5GHz  
-j10  
IC = 20 mA  
IC = 5 mA  
6GHz  
0.5  
0
-j25  
-j100  
-j50  
GHz  
0
1
2
3
4
6
f
6
2013-09-19  
BFP420  
SPICE GP Model  
For the SPICE Gummel Poon (GP) model as well as for the S-parameters  
(including noise parameters) please refer to our internet website  
www.infineon.com/rf.models.  
Please consult our website and download the latest versions before actually  
starting your design. You find the BFP420 SPICE GP model in the internet  
in MWO- and ADS-format, which you can import into these circuit simulation tools  
very quickly and conveniently. The model already contains the package parasitics  
and is ready to use for DC and high frequency simulations. The terminals of the  
model circuit correspond to the pin configuration of the device. The model  
parameters have been extracted and verified up to 10 GHz using typical devices.  
The BFP420 SPICE GP model reflects the typical DC- and RF-performance  
within the limitations which are given by the SPICE GP model itself. Besides the DC  
characteristics all S-parameters in magnitude and phase, as well as noise figure  
(including optimum source impedance, equivalent noise resistance and flicker noise)  
and intermodulation have been extracted.  
7
2013-09-19  
Package SOT343  
BFP420  
8
2013-09-19  
BFP420  
Edition 2009-12-02  
Published by  
Infineon Technologies AG  
85579 Neubiberg, Germany  
© Infineon Technologies AG 2009.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be  
considered as a guarantee of characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of  
non-infringement, regarding circuits, descriptions and charts stated herein.  
Information  
For further information on technology, delivery terms and conditions and prices  
please contact your nearest Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements components may contain dangerous substances.  
For information on the types in question please contact your nearest Infineon  
Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or  
systems with the express written approval of Infineon Technologies, if a failure of  
such components can reasonably be expected to cause the failure of that  
life-support device or system, or to affect the safety or effectiveness of that device  
or system.  
Life support devices or systems are intended to be implanted in the human body,  
or to support and/or maintain and sustain and/or protect human life. If they fail,  
it is reasonable to assume that the health of the user or other persons may be  
endangered.  
9
2013-09-19  

相关型号:

BFP420F

NPN Silicon RF Transistor
INFINEON

BFP420F-E6327

Transistor
INFINEON

BFP420F-E6433

Transistor
INFINEON

BFP420FH6327XTSA1

RF Small Signal Bipolar Transistor, 0.06A I(C), 1-Element, C Band, Silicon, NPN, HALOGEN FREE AND ROHS COMPLIANT, PLASTIC, TSFP-4-1, 4 PIN
INFINEON

BFP420F_07

NPN Silicon RF Transistor
INFINEON

BFP420H6327

For high gain low noise amplifiers
INFINEON

BFP420H6433XTMA1

RF Small Signal Bipolar Transistor, 0.035A I(C), 1-Element, X Band, Silicon, NPN, ROHS COMPLIANT PACKAGE-4
INFINEON

BFP420H6740

RF Small Signal Bipolar Transistor, 0.035A I(C), 1-Element, X Band, Silicon, NPN, ROHS COMPLIANT PACKAGE-4
INFINEON

BFP420H6801

RF Small Signal Bipolar Transistor, 0.035A I(C), 1-Element, X Band, Silicon, NPN, ROHS COMPLIANT PACKAGE-4
INFINEON

BFP450

NPN Silicon RF Transistor (For medium power amplifiers)
INFINEON

BFP450-E6327

RF Small Signal Bipolar Transistor, 0.1A I(C), 1-Element, L Band, Silicon, NPN, 1.25 MM X 2 MM, 4 PIN
INFINEON

BFP450-E6433

Transistor
INFINEON