BFP420F-E6327 [INFINEON]

Transistor;
BFP420F-E6327
型号: BFP420F-E6327
厂家: Infineon    Infineon
描述:

Transistor

文件: 总7页 (文件大小:61K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BFP420F  
NPN Silicon RF Transistor*  
For high gain low noise amplifiers  
Smallest Package 1.4 x 0.8 x 0.59 mm  
Noise figure F = 1.1 dB at 1.8 GHz  
3
2
1
4
outstanding G = 20 dB at 1.8 GHz  
ms  
Transition frequency f = 25 GHz  
T
Gold metallization for high reliability  
SIEGET 25 GHz fT - Line  
1)  
Pb-free (RoHS compliant) package  
Qualified according AEC Q101  
* Short term description  
ESD (Electrostatic discharge) sensitive device, observe handling precaution!  
Type  
Marking  
Pin Configuration  
1=B 2=E 3=C 4=E  
Package  
TSFP-4  
BFP420F  
AMs  
-
-
Maximum Ratings  
Parameter  
Symbol  
Value  
Unit  
V
Collector-emitter voltage  
T > 0 °C  
V
CEO  
4.5  
4.1  
15  
A
T 0 °C  
A
Collector-emitter voltage  
Collector-base voltage  
Emitter-base voltage  
Collector current  
V
V
V
CES  
CBO  
EBO  
15  
1.5  
35  
mA  
mW  
°C  
I
I
C
3
Base current  
B
2)  
160  
Total power dissipation  
P
tot  
T 111 °C  
S
150  
Junction temperature  
Ambient temperature  
Storage temperature  
T
T
T
j
-65 ... 150  
-65 ... 150  
A
stg  
1Pb-containing package may be available upon special request  
2T is measured on the collector lead at the soldering point to the pcb  
S
2007-04-20  
1
BFP420F  
Thermal Resistance  
Parameter  
Symbol  
Value  
Unit  
1)  
K/W  
Junction - soldering point  
R
240  
thJS  
Electrical Characteristics at T = 25°C, unless otherwise specified  
A
Parameter  
Symbol  
Values  
Unit  
min.  
typ. max.  
DC Characteristics  
4.5  
5
-
-
V
Collector-emitter breakdown voltage  
V
(BR)CEO  
I = 1 mA, I = 0  
C
B
-
-
10  
µA  
Collector-emitter cutoff current  
= 15 V, V = 0  
I
CES  
V
CE  
BE  
-
100 nA  
Collector-base cutoff current  
= 5 V, I = 0  
I
CBO  
V
CB  
E
-
-
10  
µA  
-
Emitter-base cutoff current  
= 0.5 V, I = 0  
I
EBO  
V
EB  
C
60  
95  
130  
DC current gain  
I = 5 mA, V = 4 V, pulse measured  
h
FE  
C
CE  
1For calculation of R  
please refer to Application Note Thermal Resistance  
thJA  
2007-04-20  
2
BFP420F  
Electrical Characteristics at T = 25°C, unless otherwise specified  
A
Parameter  
Symbol  
Values  
typ. max.  
Unit  
min.  
AC Characteristics (verified by random sampling)  
18  
25  
-
GHz  
Transition frequency  
f
T
I = 30 mA, V = 3 V, f = 2 GHz  
C
CE  
-
-
-
0.15  
0.3 pF  
Collector-base capacitance  
= 2 V, f = 1 MHz, V = 0 ,  
C
C
C
cb  
ce  
eb  
V
CB  
BE  
emitter grounded  
0.33  
0.5  
-
-
Collector emitter capacitance  
V
= 2 V, f = 1 MHz, V = 0 ,  
BE  
CE  
base grounded  
Emitter-base capacitance  
V
= 0.5 V, f = 1 MHz, V = 0 ,  
CB  
EB  
collector grounded  
Noise figure  
-
-
1.1  
-
-
dB  
F
I = 5 mA, V = 2 V, f = 1.8 GHz, Z = Z  
Sopt  
C
CE  
S
1)  
19.5  
Power gain, maximum available  
G
ma  
I = 20 mA, V = 2 V, Z = Z  
Z = Z  
,
Lopt  
C
CE  
S
Sopt, L  
f = 1.8 GHz  
2
Insertion power gain  
= 2 V, I = 20 mA, f = 1.8 GHz,  
|S |  
-
-
-
16.5  
24  
-
-
-
dB  
21  
V
CE  
C
Z = Z = 50 Ω  
S
L
2)  
Third order intercept point at output  
= 2 V, I = 20 mA, f = 1.8 GHz,  
IP  
dBm  
3
V
CE  
C
Z = Z = 50 Ω  
S
L
1dB Compression point at output  
P
10.5  
-1dB  
I = 20 mA, V = 2 V, Z = Z = 50 ,  
C
CE  
S
L
f = 1.8 GHz  
1/2  
1G  
ma  
= |S  
/ S  
| (k-(k²-1)  
)
21e 12e  
2IP3 value depends on termination of all intermodulation frequency components.  
Termination used for this measurement is 50from 0.1 MHz to 6 GHz  
2007-04-20  
3
BFP420F  
SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax):  
Transistor Chip Data:  
0.20045  
28.383  
2.0518  
19.705  
1.1724  
3.4849  
1.8063  
6.7661  
1
fA  
V
-
-
1.2432  
19.049  
1.3325  
-
IS =  
BF =  
72.534  
0.48731  
7.8287  
0.69141  
8.5757  
0.31111  
0.8051  
0.42199  
0
NF =  
A
-
fA  
-
VAF =  
NE =  
IKF =  
BR =  
ISE =  
NR =  
V
-
A
0.019237 fA  
VAR =  
NC =  
RBM =  
CJE =  
TF =  
IKR =  
RB =  
ISC =  
IRB =  
RC =  
0.72983  
0.10105  
0.46576  
0.23794  
234.53  
0.3  
mA  
-
fF  
RE =  
-
V
VJE =  
XTF =  
PTF =  
MJC =  
CJS =  
XTB =  
FC =  
MJE =  
VTF =  
CJC =  
XCJC =  
VJS =  
EG =  
ps  
mA  
V
-
V
deg  
fF  
-
ITF =  
VJC =  
TR =  
0.81969  
2.3249  
0
-
0.30232  
0
ns  
-
F
-
0.75  
V
1.11  
eV  
K
MJS =  
XTI =  
0
3
-
300  
0.73234  
TNOM  
C`-E`-dioden Data (Berkley-Spice 1G.6 Syntax): IS = 3.5 fA; N = 1.02 -, RS = 10 Ω  
All parameters are ready to use, no scalling is necessary.  
Package Equivalent Circuit:  
0.22  
0.28  
0.22  
L
=
=
=
nH  
nH  
nH  
nH  
nH  
nH  
fF  
fF  
fF  
-
BO  
CCB  
L
EO  
L
CO  
L BO  
L BI  
L CI  
L CO  
L =  
0.42  
0.26  
B’  
Transistor  
Chip  
C’  
BI  
B
C
L =  
EI  
C’-E’-  
Diode  
E’  
L =  
0.35  
34  
CI  
CBE  
CCE  
C
=
=
=
BE  
2
C
L EI  
BC  
33  
C
CE  
0.1  
=
K
K
K
K
K
K
BO-EO  
BO-CO  
EO-CO  
L EO  
0.01  
0.11  
-0.05  
=
=
-
-
EHA07389  
E
=
=
-
CI-EI  
The TSFP-4 package has two emitter leads. To avoid high  
complexity fo the package equivalent circuit, both leads are  
combined in one electrical connection.  
-0.08  
-
BI-CI  
=
0.2  
-
BI-EI  
RLXI are series resistors for the inductances L and K  
are the  
0.15  
R
=
XI  
xa-by  
LBI  
coupling coefficients between the inductances L and L . The  
ax  
referencepin for the couple ports are B, E, C, B`, E`, C  
For examples and ready to use parameters please contact  
your local Infineon Technologies distributor or sales office to  
obtain a InfineonTechnologies CD-ROM or see Internet:  
http//www.infineon.com/silicondiscretes  
yb  
R
=
=
0.11  
0.13  
LEI  
R
LCI  
Valid up to 6GHz  
2007-04-20  
4
BFP420F  
For non-linear simulation:  
· Use transistor chip parameters in Berkeley SPICE 2G.6 syntax for all simulators.  
· If you need simulation of the reverse characteristics, add the diode with the  
C'-E'- diode data between collector and emitter.  
· Simulation of package is not necessary for frequencies < 100MHz.  
For higher frequencies add the wiring of package equivalent circuit around the  
non-linear transistor and diode model.  
Note:  
· This transistor is constructed in a common emitter configuration. This feature causes  
an additional reverse biased diode between emitter and collector, which does not  
effect normal operation.  
C
B
E
E
EHA07307  
Transistor Schematic Diagram  
The common emitter configuration shows the following advantages:  
· Higher gain because of lower emitter inductance.  
· Power is dissipated via the grounded emitter leads, because the chip is mounted  
on copper emitter leadframe.  
Please note, that the broadest lead is the emitter lead.  
2007-04-20  
5
Package TSFP-4  
BFP420F  
Package Outline  
±0.05  
1.4  
±0.04  
0.55  
±0.05  
0.2  
4
1
3
2
±0.05  
±0.05  
0.2  
0.15  
±0.05  
0.5  
±0.05  
0.5  
Foot Print  
0.35  
0.5  
0.5  
Marking Layout (Example)  
Manufacturer  
BFP420F  
Type code  
Pin 1  
Standard Packing  
Reel ø180 mm = 3.000 Pieces/Reel  
Reel ø330 mm = 10.000 Pieces/Reel  
0.2  
4
1.55  
0.7  
Pin 1  
2007-04-20  
6
BFP420F  
Edition 2006-02-01  
Published by  
Infineon Technologies AG  
81726 München, Germany  
© Infineon Technologies AG 2007.  
All Rights Reserved.  
Attention please!  
The information given in this dokument shall in no event be regarded as a guarantee  
of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any  
examples or hints given herein, any typical values stated herein and/or any information  
regarding the application of the device, Infineon Technologies hereby disclaims any  
and all warranties and liabilities of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices  
please contact your nearest Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements components may contain dangerous substances.  
For information on the types in question please contact your nearest  
Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or  
systems with the express written approval of Infineon Technologies, if a failure of  
such components can reasonably be expected to cause the failure of that  
life-support device or system, or to affect the safety or effectiveness of that  
device or system.  
Life support devices or systems are intended to be implanted in the human body,  
or to support and/or maintain and sustain and/or protect human life. If they fail,  
it is reasonable to assume that the health of the user or other persons  
may be endangered.  
2007-04-20  
7

相关型号:

BFP420F-E6433

Transistor
INFINEON

BFP420FH6327XTSA1

RF Small Signal Bipolar Transistor, 0.06A I(C), 1-Element, C Band, Silicon, NPN, HALOGEN FREE AND ROHS COMPLIANT, PLASTIC, TSFP-4-1, 4 PIN
INFINEON

BFP420F_07

NPN Silicon RF Transistor
INFINEON

BFP420H6327

For high gain low noise amplifiers
INFINEON

BFP420H6433XTMA1

RF Small Signal Bipolar Transistor, 0.035A I(C), 1-Element, X Band, Silicon, NPN, ROHS COMPLIANT PACKAGE-4
INFINEON

BFP420H6740

RF Small Signal Bipolar Transistor, 0.035A I(C), 1-Element, X Band, Silicon, NPN, ROHS COMPLIANT PACKAGE-4
INFINEON

BFP420H6801

RF Small Signal Bipolar Transistor, 0.035A I(C), 1-Element, X Band, Silicon, NPN, ROHS COMPLIANT PACKAGE-4
INFINEON

BFP450

NPN Silicon RF Transistor (For medium power amplifiers)
INFINEON

BFP450-E6327

RF Small Signal Bipolar Transistor, 0.1A I(C), 1-Element, L Band, Silicon, NPN, 1.25 MM X 2 MM, 4 PIN
INFINEON

BFP450-E6433

Transistor
INFINEON

BFP450H6327

High Linearity Silicon Bipolar RF Transistor
INFINEON

BFP450H6327XTSA1

RF Small Signal Bipolar Transistor, 0.15A I(C), 1-Element, X Band, Silicon Germanium Carbon, NPN, HALOGEN FREE AND ROHS COMPLIANT, PLASTIC PACKAGE-4
INFINEON