ICS87973I-147 [IDT]

LOW SKEW, 1-TO-12 LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER; 低偏移, 1到12 LVCMOS / LVTTL时钟乘法器/零延迟缓冲器
ICS87973I-147
型号: ICS87973I-147
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

LOW SKEW, 1-TO-12 LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER
低偏移, 1到12 LVCMOS / LVTTL时钟乘法器/零延迟缓冲器

时钟
文件: 总19页 (文件大小:1156K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LOW SKEW, 1-TO-12 LVCMOS/LVTTL CLOCK MULTIPLIER/  
ZERO DELAY BUFFER  
ICS87973I-147  
General Description  
Features  
The ICS87973I-147 is a LVCMOS/LVTTL clock  
Fully integrated PLL  
S
IC  
generator and a member of the HiPerClockSfamily  
of High Performance Clock Solutions from IDT. The  
ICS87973I-147 has three selectable inputs and  
provides 14 LVCMOS/LVTTL outputs.  
Fourteen LVCMOS/LVTTL outputs to include: twelve clocks,  
HiPerClockS™  
one feedback, one sync  
Selectable differential CLK, nCLK inputs or LVCMOS/LVTTL  
reference clock inputs  
The ICS87973I-147 is a highly flexible device. The three  
selectable inputs (1 differential and 2 single ended inputs) are  
often used in systems requiring redundant clock sources. Up to  
three different output frequencies can be generated among the  
three output banks.  
CLK0, CLK1 can accept the following input levels:  
LVCMOS or LVTTL  
CLK, nCLK pair can accept the following differential  
input levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL  
Output frequency range: 10MHz to 150MHz  
VCO range: 240MHz to 500MHz  
The three output banks and feedback output each have their own  
output dividers which allows the device to generate a multitude of  
different bank frequency ratios and output-to-input frequency  
ratios. In addition, 2 outputs in Bank C (QC2, QC3) can be  
selected to be inverting or non-inverting. The output frequency  
range is 10MHz to 150MHz. The input frequency range is 6MHz to  
120MHz.  
Output skew: 200ps (maximum)  
Cycle-to-cycle jitter, (all banks ÷4): 55ps (maximum)  
Full 3.3V supply voltage  
-40°C to 85°C ambient operating temperature  
Compatible with PowerPCand PentiumMicroprocessors  
The ICS87973I-147 also has a QSYNC output which can be used  
for system synchronization purposes. It monitors Bank A and  
Bank C outputs and goes low one period prior to coincident rising  
edges of Bank A and Bank C clocks. QSYNC then goes high again  
when the coincident rising edges of Bank A and Bank C occur.  
This feature is used primarily in applications where Bank A and  
Bank C are running at different frequencies, and is particularly  
useful when they are running at non-integer multiples of one  
another.  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
Pin Assignment  
Example Applications:  
39 38 37 36 35 34 33 32 31 30 29 28 27  
1.System Clock generator: Use a 16.66MHz reference clock to  
generate eight 33.33MHz copies for PCI and four 100MHz  
copies for the CPU or PCI-X.  
26  
25  
FSEL_B1 40  
FSEL_B0 41  
FSEL_A1 42  
FSEL_FB1  
QSYNC  
24 GNDO  
23  
2.Line Card Multiplier: Multiply differential 62.5MHz from a back  
plane to single-ended 125MHz for the line Card ASICs and  
Gigabit Ethernet Serdes.  
QC0  
FSEL_A0  
QA3  
43  
44  
45  
46  
22 VDDO  
21 QC1  
VDDO  
QA2  
20 FSEL_C0  
3.Zero Delay buffer for Synchronous memory: Fanout up to twelve  
100MHz copies from a memory controller reference clock to the  
memory chips on a memory module with zero delay.  
19  
18  
17  
16  
GNDO 47  
QA1 48  
FSEL_C1  
QC2  
VDDO  
VDDO  
QA0 50  
49  
QC3  
15 GNDO  
51  
52  
GNDO  
VCO_SEL  
14 INV_CLK  
1
2 3 4 5 6 7 8 9 10 11 12 13  
ICS87973I-147  
52-Lead LQFP  
10mm x 10mm x 1.4mm package body  
Y Package  
Top View  
IDT™ / ICS™ LVCMOS CLOCK MULTIPLIER/ZERO DELAY BUFFER  
1
ICS87973DYI-147 REV. A DECEMBER 9, 2008  
ICS87973I-147  
LOW SKEW, 1-TO-12, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Block Diagram  
Pullup  
VCO_SEL  
Pullup  
PLL_SEL  
Pullup  
REF_SEL  
Pullup  
CLK  
nCLK  
SYNC  
FRZ  
QA0  
Pullup  
CLK0  
SYNC  
FRZ  
QA1  
QA2  
Pullup  
CLK1  
SYNC  
FRZ  
Pullup  
CLK_SEL  
SYNC  
FRZ  
Pullup  
QA3  
EXT_FB  
SYNC  
FRZ  
QB0  
QB1  
QB2  
QB3  
SYNC  
FRZ  
SYNC  
FRZ  
SYNC  
FRZ  
FSEL_FB2  
Pullup  
nMR/OE  
QC0  
QC1  
QC2  
SYNC  
FRZ  
SYNC  
FRZ  
SYNC  
FRZ  
QC3  
QFB  
2
2
2
3
Pullup  
Pullup  
Pullup  
FSEL_A[0:1]  
FSEL_B[0:1]  
FSEL_C[0:1]  
FSEL_FB[0:2]  
SYNC  
FRZ  
QSYNC  
Pullup  
Pullup  
Pullup  
Pullup  
FRZ_CLK  
FRZ_DATA  
INV_CLK  
IDT™ / ICS™ LVCMOS CLOCK MULTIPLIER/ZERO DELAY BUFFER  
2
ICS87973DYI-147 REV. A DECEMBER 9, 2008  
ICS87973I-147  
LOW SKEW, 1-TO-12, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Simplified Block Diagram  
nMR/OE  
Pullup  
FSEL_A[0:1]  
2
CLK  
nCLK  
1
0
FSEL_  
A1 A0 QAx  
SYNC  
FRZ  
Pullup  
Pullup  
QA0  
CLK0  
CLK1  
0
1
PLL  
0
0
1
1
0
1
0
1
÷4  
÷6  
÷8  
SYNC  
FRZ  
QA1  
QA2  
VCO RANGE  
240MHz - 500MHz  
Pullup  
Pullup  
CLK_SEL  
REF_SEL  
EXT_FB  
SYNC  
FRZ  
0
1
÷12  
SYNC  
FRZ  
QA3  
÷2  
÷1  
0
1
Pullup  
FSEL_B[0:1]  
2
SYNC  
FRZ  
FSEL_  
B1 B0 QBx  
QB0  
QB1  
QB2  
QB3  
Pullup  
Pullup  
0
0
1
1
0
1
0
1
÷4  
÷6  
÷8  
SYNC  
FRZ  
VCO_SEL  
PLL_SEL  
SYNC  
FRZ  
÷10  
SYNC  
FRZ  
FSEL_C[0:1]  
2
FSEL_  
C1 C0 QCx  
QC0  
QC1  
QC2  
QC3  
0
0
1
1
0
1
0
1
÷2  
÷4  
÷6  
÷8  
SYNC  
FRZ  
SYNC  
FRZ  
0
1
SYNC  
FRZ  
Pullup  
INV_CLK  
FSEL_FB[0:2]  
3
FSEL_  
FB2 FB1 FB0 QFB  
QFB  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
÷4  
÷6  
÷8  
÷10  
÷8  
÷12  
÷16  
÷20  
Pullup  
Pullup  
FRZ_CLK  
FRZ_DATA  
O
UTPUT  
D
ISABLE  
SYNC  
FRZ  
QSYNC  
C
IRCUITRY  
IDT™ / ICS™ LVCMOS CLOCK MULTIPLIER/ZERO DELAY BUFFER  
3
ICS87973DYI-147 REV. A DECEMBER 9, 2008  
ICS87973I-147  
LOW SKEW, 1-TO-12, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Table 1. Pin Descriptions  
Number  
Name  
Type  
Description  
1
GNDI  
Power  
Input  
Power supply ground.  
Master reset and output enable. When HIGH, enables the outputs.  
When LOW, resets the outputs in a high-impedance state and resets output divide  
circuitry. Enables and disables all outputs. LVCMOS / LVTTL interface levels.  
2
nMR/OE  
Pullup  
3
4
FRZ_CLK  
FRZ_DATA  
Input  
Input  
Pullup  
Pullup  
Clock input for freeze circuitry. LVCMOS / LVTTL interface levels.  
Configuration data input for freeze circuitry. LVCMOS / LVTTL interface levels.  
5,  
26,  
27  
FSEL_FB2,  
FSEL_FB1,  
FSEL_FB0  
Select pins control Feedback Divide value. LVCMOS / LVTTL interface levels.  
See Table 3B.  
Input  
Input  
Pullup  
Pullup  
Selects between the PLL and reference clocks as the input to the output dividers.  
When HIGH, selects PLL. When LOW, bypasses the PLL and reference clocks.  
LVCMOS / LVTTL interface levels.  
6
PLL_SEL  
Selects between CLK0 or CLK1 and CLK, nCLK inputs. When LOW, selects CLK0  
or CLK1. When HIGH, CLK, nCLK inputs. LVCMOS / LVTTL interface levels.  
7
8
REF_SEL  
CLK_SEL  
Input  
Input  
Pullup  
Pullup  
Clock select input. When LOW, selects CLK0. When HIGH, selects CLK1.  
LVCMOS / LVTTL interface levels.  
9, 10  
11  
CLK0, CLK1  
CLK  
Input  
Input  
Input  
Power  
Input  
Pullup  
Pullup  
Single-ended reference clock inputs. LVCMOS/LVTTL interface levels.  
Non-inverting differential clock input.  
12  
nCLK  
Inverting differential clock input. VDD/2 default when left floating.  
Analog supply pin.  
13  
VDDA  
14  
INV_CLK  
Pullup  
Inverted clock select for QC2 and QC3 outputs. LVCMOS / LVTTL interface levels.  
15, 24, 30,  
35, 39, 47,  
51  
GNDO  
Power  
Power supply ground.  
16, 18,  
21, 23  
QC3, QC2,  
QC1, QC0  
Output  
Power  
Input  
Single-ended Bank C clock outputs. LVCMOS/ LVTTL interface levels.  
Output power supply pins.  
17, 22, 33,  
37, 45, 49  
VDDO  
19,  
20  
FSEL_C1,  
FSEL_C0  
Pullup  
Pullup  
Select pins for Bank C outputs. LVCMOS / LVTTL interface levels. See Table 3A.  
Synchronization output for Bank A and Bank C. Refer to Figure 1, Timing Diagrams.  
LVCMOS / LVTTL interface levels.  
25  
QYSNC  
Output  
28  
29  
31  
VDD  
QFB  
Power  
Output  
Input  
Power supply pin.  
Single-ended feedback clock output. LVCMOS / LVTTL interface levels.  
External feedback. LVCMOS / LVTTL interface levels.  
EXT_FB  
32, 34,  
36, 38  
QB3, QB2,  
QB1, QB0  
Output  
Input  
Single-ended Bank B clock outputs. LVCMOS/ LVTTL interface levels.  
Select pins for Bank B outputs. LVCMOS / LVTTL interface levels. See Table 3A.  
Select pins for Bank A outputs. LVCMOS / LVTTL interface levels. See Table 3A.  
Single-ended Bank A clock outputs. LVCMOS/ LVTTL interface levels.  
40,  
41  
FSEL_B1,  
FSEL_B0  
Pullup  
Pullup  
42,  
43  
FSEL_A1,  
FSEL_A0  
Input  
44, 46  
48, 50  
QA3, QA2,  
QA1, QA0  
Output  
Input  
Selects VCO. When HIGH, selects VCO ÷ 1. When LOW, selects VCO ÷ 2.  
LVCMOS / LVTTL interface levels.  
52  
VCO_SEL  
Pullup  
NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
IDT™ / ICS™ LVCMOS CLOCK MULTIPLIER/ZERO DELAY BUFFER  
4
ICS87973DYI-147 REV. A DECEMBER 9, 2008  
ICS87973I-147  
LOW SKEW, 1-TO-12, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Table 2. Pin Characteristics  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
CIN  
Input Capacitance  
4
RPULLUP Input Pullup Resistor  
51  
k  
Power Dissipation Capacitance  
(per output)  
CPD  
VDD, VDDA, VDDO = 3.465V  
18  
12  
pF  
ROUT  
Output Impedance  
5
7
Function Tables  
Table 3A. Output Bank Configuration Select Function Table  
Inputs  
Outputs  
QA  
Inputs  
Outputs  
QB  
Inputs  
Outputs  
QC  
FSEL_A1  
FSEL_A0  
FSEL_B1  
FSEL_B0  
FSEL_C1  
FSEL_C0  
0
0
1
1
0
1
0
1
÷4  
0
0
1
1
0
1
0
1
÷4  
0
0
1
1
0
1
0
1
÷2  
÷6  
÷6  
÷4  
÷8  
÷8  
÷6  
÷12  
÷10  
÷8  
Table 3B. Feedback Configuration Select Function Table  
Inputs  
Outputs  
QFB  
÷4  
FSEL_FB2  
FSEL_FB1  
FSEL_FB0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
÷6  
÷8  
÷10  
÷8  
÷12  
÷16  
÷20  
Table 3C. Control Input Select Function Table  
Control Pin  
VCO_SEL  
REF_SEL  
CLK_SEL  
PLL_SEL  
nMR/OE  
Logic 0  
VCO/2  
Logic 1  
VCO  
CLK0 or CLK1  
CLK0  
XTAL  
CLK1  
BYPASS PLL  
Enable PLL  
Enable Outputs  
Inverted QC2, QC3  
Master Reset/Output High-Impedance  
Non-Inverted QC2, QC3  
INV_CLK  
IDT™ / ICS™ LVCMOS CLOCK MULTIPLIER/ZERO DELAY BUFFER  
5
ICS87973DYI-147 REV. A DECEMBER 9, 2008  
ICS87973I-147  
LOW SKEW, 1-TO-12, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
fVCO  
1:1 Mode  
QA  
QC  
QSYNC  
2:1 Mode  
QA  
QC  
QSYNC  
3:1 Mode  
QC(÷2)  
QA(÷4)  
QSYNC  
3:2 Mode  
QC(÷2)  
QA(÷8)  
QSYNC  
4:1 Mode  
QC(÷2)  
QA(÷8)  
QSYNC  
4:3 Mode  
QA(÷6)  
QC(÷8)  
QSYNC  
6:1 Mode  
QA(÷12)  
QC(÷2)  
QSYNC  
Figure 1. Timing Diagrams  
IDT™ / ICS™ LVCMOS CLOCK MULTIPLIER/ZERO DELAY BUFFER  
6
ICS87973DYI-147 REV. A DECEMBER 9, 2008  
ICS87973I-147  
LOW SKEW, 1-TO-12, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VDD  
Inputs, VI  
4.6V  
-0.5V to VDD + 0.5V  
-0.5V to VDDO + 0.5V  
42.3°C/W (0 lfpm)  
-65°C to 150°C  
Outputs, VO  
Package Thermal Impedance, θJA  
Storage Temperature, TSTG  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VDD = VDDA = VDDO = 3.3V 5ꢀ, TA = -40°C to 85°C  
Symbol  
VDD  
Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum  
3.465  
3.465  
3.465  
225  
Units  
V
Core Supply Voltage  
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
VDDA  
VDDO  
IDD  
3.135  
3.3  
V
3.135  
3.3  
V
mA  
mA  
IDDA  
20  
Table 4B. DC Characteristics, VDD = VDDA = VDDO = 3.3V 5ꢀ, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
VDD + 0.3  
0.8  
Units  
V
VIH  
VIL  
Input High Voltage  
2
Input Low Voltage  
-0.3  
V
IIN  
Input Current  
120  
µA  
V
VOH  
VOL  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
IOH = -20mA  
IOL = 20mA  
2.4  
0.3  
0.5  
1
V
Peak-to-Peak Input Voltage;  
NOTE 2, 3  
VPP  
CLK, nCLK  
CLK, nCLK  
V
V
Common Mode Input Voltage;  
NOTE 2, 3  
VCMRP  
V
DD - 2  
VDD - 0.6  
NOTE 1: Outputs terminated with 50to VDDO/2. See Parameter Measurement Information section. Load Test Circuit diagram.  
NOTE 2: VIL should not be less than -0.3V.  
NOTE 3: Common mode input voltage is defined as VIH.  
IDT™ / ICS™ LVCMOS CLOCK MULTIPLIER/ZERO DELAY BUFFER  
7
ICS87973DYI-147 REV. A DECEMBER 9, 2008  
ICS87973I-147  
LOW SKEW, 1-TO-12, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Table 5. Input Frequency Characteristics, VDD = VDDA = VDDO = 3.3V 5ꢀ, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
120  
Units  
MHz  
MHz  
CLK0, CLK1; NOTE 1  
FRZ_CLK  
FIN Input Frequency  
20  
NOTE 1: Input frequency depends on the feedback divide ratio to ensure "clock * feedback divide" is in the VCO range of 240MHz to  
500MHz.  
AC Electrical Characteristics  
Table 6. AC Characteristics, VDD = VDDA = VDDO = 3.3V 5ꢀ, TA = -40°C to 85°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
150  
125  
83.33  
62.5  
300  
245  
165  
200  
55  
Units  
MHz  
MHz  
MHz  
MHz  
ps  
÷2  
÷4  
÷6  
÷8  
fMAX  
Output Frequency  
CLK0  
-10  
-65  
145  
90  
Static Phase Offset;  
NOTE 1  
QFB ÷ 8,  
In Frequency = 50MHz  
t(Ø)  
CLK1  
ps  
CLK, nCLK  
-130  
18  
ps  
tsk(o)  
tjit(cc)  
fVCO  
Output Skew; NOTE 2, 3  
Cycle-to-Cycle Jitter; NOTE 3  
PLL VCO Lock Range  
ps  
All Banks ÷ 4  
0.8V to 2V  
ps  
240  
500  
10  
MHz  
ms  
ps  
tLOCK  
tR / tF  
odc  
PLL Lock Time; NOTE 4  
Output Rise/Fall Time  
150  
45  
700  
55  
Output Duty Cycle  
tPZL, PZH  
t
Output Enable Time; NOTE 4  
Output Disable Time; NOTE 4  
10  
ns  
tPLZL, PHZ  
t
8
ns  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the  
device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after  
thermal equilibrium has been reached under these conditions.  
NOTE 1: Defined as the time difference between the input reference clock and the average feedback input signal when the PLL is locked  
and the input reference frequency is stable.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at VDDO/2.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 4: These parameters are guaranteed by characterization. Not tested in production.  
IDT™ / ICS™ LVCMOS CLOCK MULTIPLIER/ZERO DELAY BUFFER  
8
ICS87973DYI-147 REV. A DECEMBER 9, 2008  
ICS87973I-147  
LOW SKEW, 1-TO-12, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Parameter Measurement Information  
1.65V 5ꢀ  
V
DD  
SCOPE  
V
V
DD,  
nCLK  
CLK  
DDA,  
V
DDO  
Qx  
VPP  
VCMR  
Cross Points  
LVCMOS  
GND  
GND  
-1.65V 5ꢀ  
LVCMOS Output Load AC Test Circuit  
Differential Input Level  
VDDO  
2
VDDO  
2
VDDO  
2
QA[0:3],  
QB[0:3],  
QC[0:3],  
QSYNC,  
QFB  
Qx  
tcycle n  
tcycle n+1  
tjit(cc) = tcycle n – tcycle n+1  
|
|
Qy  
1000 Cycles  
tsk(o)  
Cycle-to-Cycle Jitter  
Output Skew  
nCLK  
nCLK  
VDD  
VDD  
2
CLK0,  
CLK1  
2
VDD  
2
VDD  
2
EXT_FB  
EXT_FB  
t(Ø)  
t(Ø)  
t(Ø) mean = Static Phase Offset  
Where t(Ø) is any random sample, and t(Ø) mean is the  
average of the sampled cycles measured on controlled edges  
t(Ø) mean = Static Phase Offset  
Where t(Ø) is any random sample, and t(Ø) mean is the  
average of the sampled cycles measured on controlled edges  
LVCMOS Static Phase Offset  
Differential Static Phase Offset  
IDT™ / ICS™ LVCMOS CLOCK MULTIPLIER/ZERO DELAY BUFFER  
9
ICS87973DYI-147 REV. A DECEMBER 9, 2008  
ICS87973I-147  
LOW SKEW, 1-TO-12, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Parameter Measurement Information, continued  
VDDO  
2
QA[0:3],  
QA[0:3],  
QB[0:3],  
QC[0:3],  
QSYNC,  
QFB  
2V  
tPW  
2V  
QB[0:3],  
QC[0:3],  
QSYNC,  
QFB  
tPERIOD  
0.8V  
0.8V  
tR  
tF  
tPW  
x 100ꢀ  
odc =  
tPERIOD  
Output Duty Cycle/Pulse Width Period  
Output Rise/Fall Time  
Application Information  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
CLK/nCLK Inputs  
LVCMOS Outputs  
All unused LVCMOS output can be left floating. There should be no  
trace attached.  
For applications not requiring the use of the differential input, both  
CLK and nCLK can be left floating. Though not required, but for  
additional protection, a 1kresistor can be tied from CLK to  
ground.  
CLK Inputs  
For applications not requiring the use of the clock input, it can be  
left floating. Though not required, but for additional protection, a  
1kresistor can be tied from the CLK to ground.  
LVCMOS Control Pins  
All control pins have internal pull-ups; additional resistance is not  
required but can be added for additional protection. A 1kresistor  
can be used.  
IDT™ / ICS™ LVCMOS CLOCK MULTIPLIER/ZERO DELAY BUFFER  
10  
ICS87973DYI-147 REV. A DECEMBER 9, 2008  
ICS87973I-147  
LOW SKEW, 1-TO-12, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Power Supply Filtering Technique  
As in any high speed analog circuitry, the power supply pins are  
vulnerable to random noise. To achieve optimum jitter perform-  
ance, power supply isolation is required. The ICS87973I-147  
provides separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL. VDD, VDDA and VDDO  
should be individually connected to the power supply plane  
through vias, and 0.01µF bypass capacitors should be used for  
each pin. Figure 2 illustrates this for a generic VDD pin and also  
shows that VDDA requires that an additional 10resistor along with  
a 10µF bypass capacitor be connected to the VDDA pin.  
3.3V  
VDD  
.01µF  
.01µF  
10  
VDDA  
10µF  
Figure 2. Power Supply Filtering  
Wiring the Differential Input to Accept Single Ended Levels  
Figure 3 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_BIAS = VDD/2 is  
generated by the bias resistors R1, R2 and C1. This bias circuit  
should be located as close as possible to the input pin. The ratio of  
R1 and R2 might need to be adjusted to position the V_BIAS in the  
center of the input voltage swing. For example, if the input clock  
swing is only 2.5V and VDD = 3.3V, V_BIAS should be 1.25V and  
VDD  
R1  
1K  
Single Ended Clock Input  
R2/R1 = 0.609.  
CLK  
V_Bias  
nCLK  
C1  
0.1u  
R2  
1K  
Figure 3. Single-Ended Signal Driving Differential Input  
IDT™ / ICS™ LVCMOS CLOCK MULTIPLIER/ZERO DELAY BUFFER  
11  
ICS87973DYI-147 REV. A DECEMBER 9, 2008  
ICS87973I-147  
LOW SKEW, 1-TO-12, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Differential Clock Input Interface  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL  
and other differential signals. Both signals must meet the VPP and  
VCMR input requirements. Figures 4A to 4E show interface  
examples for the HiPerClockS CLK/nCLK input driven by the most  
common driver types. The input interfaces suggested here are  
examples only. Please consult with the vendor of the driver  
component to confirm the driver termination requirements. For  
example, in Figure 4A, the input termination applies for IDT  
HiPerClockS open emitter LVHSTL drivers. If you are using an  
LVHSTL driver from another vendor, use their termination  
recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50  
Zo = 50Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
Zo = 50Ω  
HiPerClockS  
Input  
nCLK  
LVPECL  
HiPerClockS  
LVHSTL  
R1  
50  
R2  
50  
Input  
R1  
50  
R2  
50  
IDT  
HiPerClockS  
LVHSTL Driver  
R2  
50  
Figure 4A. HiPerClockS CLK/nCLK Input  
Driven by an IDT Open Emitter  
HiPerClockS LVHSTL Driver  
Figure 4B. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V LVPECL Driver  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
3.3V  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
CLK  
CLK  
R1  
100  
nCLK  
nCLK  
Zo = 50Ω  
HiPerClockS  
Input  
LVPECL  
Receiver  
LVDS  
R1  
84  
R2  
84  
Figure 4C. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V LVPECL Driver  
Figure 4D. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V LVDS Driver  
2.5V  
3.3V  
Zo = 50Ω  
*R3  
*R4  
33  
33  
CLK  
Zo = 50Ω  
nCLK  
HiPerClockS  
Input  
HCSL  
R1  
50  
R2  
50  
*Optional – R3 and R4 can be 0Ω  
Figure 4E. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V HCSL Driver  
IDT™ / ICS™ LVCMOS CLOCK MULTIPLIER/ZERO DELAY BUFFER  
12  
ICS87973DYI-147 REV. A DECEMBER 9, 2008  
ICS87973I-147  
LOW SKEW, 1-TO-12, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Using the Output Freeze Circuitry  
each FRZ_DATA bit with the rising edge of the FRZ_CLK signal. To  
OVERVIEW  
place an output in the freeze state, a logic “0” must be written to the  
respective freeze enable bit in the shift register. To unfreeze an  
output, a logic “1” must be written to the respective freeze enable  
bit. Outputs will not become enabled/disabled until all 12 data bits  
are shifted into the shift register. When all 12 data bits are shifted  
in the register, the next rising edge of FRZ_CLK will enable or  
disable the outputs. If the bit that is following the 12th bit in the  
register is a logic “0”, it is used for the start bit of the next cycle;  
otherwise, the device will wait and won’t start the next cycle until it  
sees a logic “0” bit. Freezing and unfreezing of the output clock is  
synchronous (see the timing diagram below). When going into a  
frozen state, the output clock will go LOW at the time it would  
normally go LOW, and the freeze logic will keep the output low until  
unfrozen. Likewise, when coming out of the frozen state, the output  
will go HIGH only when it would normally go HIGH. This logic,  
therefore, prevents runt pulses when going into and out of the  
frozen state.  
To enable low power states within a system, each output of  
ICS87973I-147 (Except QC0 and QFB) can be individually frozen  
(stopped in the logic “0” state) using a simple serial interface to a  
12 bit shift register. A serial interface was chosen to eliminate the  
need for each output to have its own Output Enable pin, which  
would dramatically increase pin count and package cost. Common  
sources in a system that can be used to drive the ICS87973I-147  
serial interface are FPGA’s and ASICs.  
PROTOCOL  
The Serial interface consists of two pins, FRZ_Data (Freeze Data)  
and FRZ_CLK (Freeze Clock). Each of the outputs which can be  
frozen has its own freeze enable bit in the 12 bit shift register. The  
sequence is started by supplying a logic “0” start bit followed by  
12NRZ freeze enable bits. The period of each FRZ_DATA bit  
equals the period of the FRZ_CLK signal. The FRZ_DATA serial  
transmission should be timed so the ICS87973I-147 can sample  
FRZ_DATA  
QA0 QA1 QA2 QA3 QB0 QB1 QB2 QB3 QC1 QC2 QC3 QSYNC  
FRZ_CLK  
Figure 5A. Freeze Data Input Protocol  
Qx FREEZE Internal  
Qx Internal  
Qx Out  
Figure 5. Output Disable Timing Diagram  
IDT™ / ICS™ LVCMOS CLOCK MULTIPLIER/ZERO DELAY BUFFER  
13  
ICS87973DYI-147 REV. A DECEMBER 9, 2008  
ICS87973I-147  
LOW SKEW, 1-TO-12, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Schmatic Example  
Figure 6 shows a schematic example of using ICS87973I-147. This  
example shows general design of input, output termination, logic  
control input pull up/down and power supply filtering. In this  
example, the clock input is driven by an LVCMOS driver.  
R1  
43  
Zo = 50  
VDD  
U1  
VDD  
R9  
1K  
Serial Clcok  
R8  
1K  
1
2
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
GNDI  
GNDO  
QB0  
nMR/OE  
FRZ_CLK  
FRZ_DATA  
FSEL_FB2  
PLL_SEL  
REF_SEL  
CLK_SEL  
CLK0  
R10 1K  
Zo = 50  
3
VDDO  
QB1  
Serial Data  
RS  
VDD  
4
5
GNDO  
QB2  
6
7
VDDO  
QB3  
8
9
EXT_FB  
GNDO  
QFB  
10  
11  
12  
13  
CLK1  
CLK  
LVCMOS CLOCK  
nCLK  
VDD  
VDDA  
FSEL_FB0  
R7  
VDD  
10 - 15  
C16  
10u  
R5  
1K  
R6  
1K  
C11  
0.01u  
ICS87973I-147  
R2  
43  
Zo = 50  
Logic Input Pin Examples  
Set Logic  
R4  
1K  
Set Logic  
Input to  
'0'  
VDD  
VDD  
Input to  
'1'  
RU1  
1K  
RU2  
Not Install  
R3  
43  
Zo = 50  
To Logic  
Input  
To Logic  
(U1-17)  
C3  
(U1-22)  
(U1-28)  
(U1-33)  
(U1-37)  
(U1-45)  
(U1-49)  
VDD  
Input  
pins  
pins  
RD1  
RD2  
1K  
C4  
0.1uF  
C5  
0.1uF  
C6  
0.1uF  
C7  
0.1uF  
C8  
0.1uF  
C9  
0.1uF  
VDD=3.3V  
Not Install  
0.1uF  
ICS87973I-147 Schematic Layout  
IDT™ / ICS™ LVCMOS CLOCK MULTIPLIER/ZERO DELAY BUFFER  
14  
ICS87973DYI-147 REV. A DECEMBER 9, 2008  
ICS87973I-147  
LOW SKEW, 1-TO-12, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Reliability Information  
Table 7. θJA vs. Air Flow Table for a 52 Lead LQFP  
θJA by Velocity  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
58.0°C/W  
42.3°C/W  
47.1°C/W  
36.4°C/W  
42.0°C/W  
34.0°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
Transistor Count  
The transistor count for ICS87973I-147: 8364  
Pin Compatible with MPC973  
IDT™ / ICS™ LVCMOS CLOCK MULTIPLIER/ZERO DELAY BUFFER  
15  
ICS87973DYI-147 REV. A DECEMBER 9, 2008  
ICS87973I-147  
LOW SKEW, 1-TO-12, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Package Outline and Package Dimensions  
Package Outline - Y Suffix for 52 Lead LQFP  
Table 8. Package Dimensions for 52 Lead LQFP  
JEDEC Variation: BCC  
All Dimensions in Millimeters  
Symbol  
Minimum  
Nominal  
Maximum  
N
52  
A
1.60  
0.15  
1.45  
0.38  
0.20  
A1  
0.05  
1.35  
0.22  
0.09  
0.10  
1.40  
A2  
b
c
D & E  
D1 & E1  
D2 & E2  
e
12.00 Basic  
10.00 Basic  
7.80 Ref.  
0.65 Basic  
0.60  
L
0.45  
0°  
0.75  
7°  
θ
ccc  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
IDT™ / ICS™ LVCMOS CLOCK MULTIPLIER/ZERO DELAY BUFFER  
16  
ICS87973DYI-147 REV. A DECEMBER 9, 2008  
ICS87973I-147  
LOW SKEW, 1-TO-12, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Ordering Information  
Table 9. Ordering Information  
Part/Order Number  
87973DYI-147  
87973DYI-147T  
87973DYI-147LF  
87973DYI-147LFT  
Marking  
Package  
52 Lead LQFP  
52 Lead LQFP  
Shipping Packaging  
Tray  
1000 Tape & Reel  
Tray  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS7973DYI-147  
ICS87973DYI-147  
ICS87973DI147L  
ICS87973DI147L  
“Lead-Free” 52 Lead LQFP  
“Lead-Free” 52 Lead LQFP  
1000 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
IDT™ / ICS™ LVCMOS CLOCK MULTIPLIER/ZERO DELAY BUFFER  
17  
ICS87973DYI-147 REV. A DECEMBER 9, 2008  
ICS87973I-147  
LOW SKEW, 1-TO-12, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Revision History Sheet  
Rev  
Table  
Page  
Description of Change  
Date  
T4B  
T6  
7
Differential DC Characteristics Table - updated NOTES.  
AC Characteristics Table - added thermal note.  
8
10  
12  
16  
17  
Added Recommendations for Unused Input and Output Pins section.  
Updated Differetnial Clock Input Interface section.  
A
12/9/08  
T8  
T9  
UpdatePackage Outline and Package Dimensions Table.  
Ordering Information Table - added lead-free part number and marking.  
IDT™ / ICS™ LVCMOS CLOCK MULTIPLIER/ZERO DELAY BUFFER  
18  
ICS87973DYI-147 REV. A DECEMBER 9, 2008  
ICS87973I-147  
LOW SKEW, 1-TO-12, LVCMOS/LVTTL CLOCK MULTIPLIER/ZERO DELAY BUFFER  
Contact Information:  
www.IDT.com  
Corporate Headquarters  
Sales  
Technical Support  
Integrated Device Technology, Inc.  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
netcom@idt.com  
+480-763-2056  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
United States  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
www.IDT.com/go/contactIDT  
© 2008 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device  
Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered  
trademarks used to identify products or services of their respective owners.  
www.IDT.com  
Printed in USA  

相关型号:

ICS87974AY

PLL Based Clock Driver, 15 True Output(s), 0 Inverted Output(s), PQFP52, 10 X 10 MM, 1.40 MM HEIGHT, MS-026, LQFP-52
IDT

ICS87974AY-01

PLL Based Clock Driver, 15 True Output(s), 0 Inverted Output(s), PQFP52, 10 X 10 MM, 1.40 MM HEIGHT, MS-026, LQFP-52
IDT

ICS87974AY-01LF

PLL Based Clock Driver, 15 True Output(s), 0 Inverted Output(s), PQFP52, 10 X 10 MM, 1.40 MM HEIGHT, MS-026, LQFP-52
IDT

ICS87974AY-01LFT

PLL Based Clock Driver, 15 True Output(s), 0 Inverted Output(s), PQFP52, 10 X 10 MM, 1.40 MM HEIGHT, MS-026, LQFP-52
IDT

ICS87974AY-01T

PLL Based Clock Driver, 15 True Output(s), 0 Inverted Output(s), PQFP52, 10 X 10 MM, 1.40 MM HEIGHT, MS-026, LQFP-52
IDT

ICS87974AY-T

PLL BASED CLOCK DRIVER, 14 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP52, 10 X 10 MM, 1.40 MM HEIGHT, MS-026, LQFP-52
IDT

ICS87974AY-T-LF

PLL Based Clock Driver, 14 True Output(s), 0 Inverted Output(s), PQFP52, 10 X 10 MM, 1.40 MM HEIGHT, MS-026, LQFP-52
IDT

ICS87974AYI

PLL Based Clock Driver, 14 True Output(s), 0 Inverted Output(s), CMOS, PQFP52, 10 X 10 MM, 1.40 MM HEIGHT, MS-026, LQFP-52
IDT

ICS87974AYI-01

PLL Based Clock Driver, 14 True Output(s), 0 Inverted Output(s), PQFP52, 10 X 10 MM, 1.40 MM HEIGHT, MS-026, LQFP-52
IDT

ICS87974AYI-01LF

PLL Based Clock Driver, 14 True Output(s), 0 Inverted Output(s), PQFP52, 10 X 10 MM, 1.40 MM HEIGHT, MS-026, LQFP-52
IDT

ICS87974AYI-01LFT

PLL Based Clock Driver, 14 True Output(s), 0 Inverted Output(s), PQFP52, 10 X 10 MM, 1.40 MM HEIGHT, MS-026, LQFP-52
IDT

ICS87974AYILF

PLL Based Clock Driver, 14 True Output(s), 0 Inverted Output(s), PQFP52, 10 X 10 MM, 1.40 MM HEIGHT, MS-026, LQFP-52
IDT