ICS843002AKI-41 [ICSI]

700MHz, FEMTOCLOCKS-TM VCXO BASED SONET/SDH JITTER ATTENUATOR; 700MHz的, FEMTOCLOCKS -TM VCXO BASED SONET / SDH抖动衰减器
ICS843002AKI-41
型号: ICS843002AKI-41
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

700MHz, FEMTOCLOCKS-TM VCXO BASED SONET/SDH JITTER ATTENUATOR
700MHz的, FEMTOCLOCKS -TM VCXO BASED SONET / SDH抖动衰减器

晶体 外围集成电路 石英晶振 压控振荡器 衰减器 时钟
文件: 总21页 (文件大小:277K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
ICS843002I-41  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, FEMTOCLOCKS™ VCXO BASED  
SONET/SDH JITTER ATTENUATOR  
GENERAL DESCRIPTION  
FEATURES  
The ICS843002I-41 is a member of the (2) Differential LVPECL outputs  
ICS  
HiperClockS™ family of high performance clock  
solutions from ICS.The ICS843002I-41 is a PLL  
based synchronous clock generator that is  
optimized for SONET/SDH line card applications  
Selectable CLKx, nCLKx differential input pairs  
HiPerClockS™  
CLKx, nCLKx pairs can accept the following differential  
input levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL or  
single-ended LVCMOS or LVTTL levels  
where jitter attenuation and frequency translation is needed.  
The device contains two internal PLL stages that are cascaded  
in series.The first PLL stage uses a VCXO which is optimized  
to provide reference clock jitter attenuation and to be jitter  
tolerant, and to provide a stable reference clock for the 2nd  
PLL stage (typically 19.44MHz). The second PLL stage  
provides additional frequency multiplication (x32), and it  
maintains low output jitter by using a low phase noise  
FemtoClock™ VCO. PLL multiplication ratios are selected  
from internal lookup tables using device input selection pins.  
The device performance and the PLL multiplication ratios are  
optimized to support non-FEC (non-Forward Error Correction)  
SONET/SDH applications with rates up to OC-48 (SONET)  
Maximum output frequency: 700MHz  
FemtoClock VCO frequency range: 560MHz - 700MHz  
RMS phase jitter @ 155.52MHz, using a 19.44MHz crystal  
(12kHz to 20MHz): 0.81ps (typical)  
Full 3.3V or mixed 3.3V core/2.5V output supply voltage  
-40°C to 85°C ambient operating temperature  
or STM-16 (SDH).The VCXO requires the use of an external, PIN ASSIGNMENT  
inexpensive pullable crystal.VCXO PLL uses external passive  
loop filter components which are used to optimize the PLL  
loop bandwidth and damping characteristics for the given  
line card application.  
The ICS843002I-41 includes two clock input ports. Each one  
can accept either a single-ended or differential input. Each  
input port also includes an activity detector circuit, which  
reports input clock activity through the LOR0 and LOR1 logic  
output pins.The two input ports feed an input selection mux.  
“Hitless switching” is accomplished through proper filter  
tuning. Jitter transfer and wander characteristics are  
influenced by loop filter tuning, and phase transient  
performance is influenced by both loop filter tuning and  
alignment error between the two reference clocks.  
32 31 30 29 28 27 26 25  
LF1  
LF0  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
LOR0  
LOR1  
nc  
ISET  
VCC  
VCCO_LVCMOS  
VCCO_LVPECL  
nQB  
CLK0  
nCLK0  
CLK_SEL  
QB  
QA_SEL2  
VEE  
9
10 11 12 13 14 15 16  
Typical ICS843002I-41 configuration in SONET/SDH Systems:  
VCXO 19.44MHz crystal  
Loop bandwidth: 50Hz - 250Hz  
Input Reference clock frequency selections:  
19.44MHz, 38.88MHz, 77.76MHz, 155.52MHz,  
311.04MHz, 622.08MHz  
ICS843002I-41  
32-LeadVFQFN  
Output clock frequency selections:  
19.44MHz, 77.76MHz, 155.52MHz, 311.04MHz,  
622.08MHz, Hi-Z  
5mm x 5mm x 0.75mm package body  
K Package  
TopView  
The Preliminary Information presented herein represents a product in prototyping or pre-production.The noted characteristics are based on initial  
product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.  
843002AKI-41  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 1, 2005  
1
PRELIMINARY  
ICS843002I-41  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, FEMTOCLOCKS™ VCXO BASED  
SONET/SDH JITTER ATTENUATOR  
BLOCK DIAGRAM  
19.44 MHz  
External  
Pullable  
xtal  
Loop  
Components  
ISET  
ICS843002-41  
LF0  
LF1  
Phase  
Detector  
VCCO_LVCMOS  
Charge  
Pump  
and Loop  
Filter  
R Divider =  
1, 2, 4, 8,  
16 or 32  
Divide  
by 32  
19.44 MHz  
VCXO  
CLK1  
nCLK1  
Activity  
Detector  
1
0
LOR1  
Divide  
by 32  
CLK0  
nCLK0  
Activity  
Detector  
VCXO Jitter Attenuation PLL  
LOR0  
VCCO_PECL  
622.08 MHz  
QA  
nQA  
Cx Divider =  
1,2,4,8,16,32,  
HiZ or Disable  
110  
110  
CLK_SEL  
FemtoClock  
PLL  
111  
111  
x32  
3
3
QA_SEL2:0  
QB  
nQB  
Cx Divider =  
1,2,4,8,16,32,  
HiZ or Disable  
3
R_SEL2:0  
QB_SEL2:0  
NOTE 1: 19.44MHzVCXO crystal shown is typical for SONET/SDH device applications.  
843002AKI-41  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 1, 2005  
2
PRELIMINARY  
ICS843002I-41  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, FEMTOCLOCKS™ VCXO BASED  
SONET/SDH JITTER ATTENUATOR  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Analog  
Input/Output  
Analog  
Input/Output  
Description  
1, 2  
LF1, LF0  
Loop filter connection node pins.  
Charge pump current setting pin.  
3
ISET  
4
5
VCC  
Power  
Input  
Core power supply pin.  
CLK0  
Pulldown Non-inverting differential clock input.  
Pullup/ Inverting differential clock input.  
Pulldown VCC/2 bias voltage when left floating.  
6
nCLK0  
Input  
7
8
CLK_SEL  
QA_SEL2  
Input  
Input  
Pulldown Input clock select. LVCMOS/LVTTL interface levels. See Table 3A.  
Pulldown LVPECL output divider control for QA/nQA outputs. See Table 3C.  
9,  
10  
QA_SEL1,  
QA_SEL0  
Input  
Input  
Input  
Pullup  
LVPECL output divider control for QA/nQA outputs. See Table 3C.  
11  
QB_SEL2  
Pulldown LVPECL output divider control for QB/nQB outputs. See Table 3C.  
12,  
13  
QB_SEL1,  
QB_SEL0  
Pullup  
LVPECL output divider control for QB/nQB outputs. See Table 3C.  
14  
15, 16  
17, 27  
18, 19  
20  
VCCA  
QA, nQA  
VEE  
Power  
Output  
Power  
Output  
Power  
Power  
Unused  
Analog supply pin.  
Differential clock output pair. LVPECL interface levels.  
Negative supply pins.  
QB, nQB  
VCCO_LVPECL  
VCCO_LVCMOS  
nc  
Differential clock output pair. LVPECL interface levels.  
Output power supply pin for QA, nQA and QB, nQB.  
Power supply pin for LOR0 and LOR1.  
No connect.  
21  
22  
Alarm output, loss of reference for CLK1.  
LVCMOS/LVTTL interface levels.  
Alarm output, loss of reference for CLK0.  
LVCMOS/LVTTL interface levels.  
23  
24  
LOR1  
LOR0  
Output  
Output  
Pullup/ Inverting differential clock input.  
Pulldown VCC/2 bias voltage when left floating.  
25  
26  
nCLK1  
CLK1  
Input  
Input  
Pulldown Non-inverting differential clock input.  
28,  
29,  
30  
R_SEL0,  
R_SEL1,  
R_SEL2  
Input  
Pulldown Input divider selection. LVCMOS/LVTTL interface. See Table 3B.  
31,  
32  
XTAL_OUT,  
XTAL_IN  
Crystal oscillator interface. XTAL_OUT is the output.  
XTAL_IN is the input.  
Input  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
CIN  
Input Capacitance  
Input Pullup Resistor  
4
pF  
kΩ  
kΩ  
RPULLUP  
50  
50  
RPULLDOWN Input Pulldown Resistor  
843002AKI-41  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 1, 2005  
3
PRELIMINARY  
ICS843002I-41  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, FEMTOCLOCKS™ VCXO BASED  
SONET/SDH JITTER ATTENUATOR  
TABLE 3A. INPUT REFERENCE SELECTION FUNCTION TABLE  
Inputs  
CLK_SEL  
Input Selected  
CLK0  
0
1
CLK1  
TABLE 3B. INPUT REFERENCE DIVIDER SELECTION FUNCTION TABLE  
Inputs  
R_SEL2:0  
000  
R Divider Value or State  
÷1  
001  
÷2  
010  
÷4  
011  
÷8  
100  
÷16  
÷32  
101  
110  
bypass VCXO PLL  
111  
bypass VCXO and FemtoClock™ PLL's  
TABLE 3C. OUTPUT DIVIDER SELECTION FUNCTION TABLE  
Inputs  
Qx_SEL2:0  
000  
Output Divider Value or State  
Output Q and nQ Hi-Z  
001  
÷32  
÷8  
010  
011  
÷4  
100  
÷16  
÷2  
101  
110  
÷1  
111  
Output Q at LVPECL VOL, Output nQ at LVPECL VOH  
843002AKI-41  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 1, 2005  
4
PRELIMINARY  
ICS843002I-41  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, FEMTOCLOCKS™ VCXO BASED  
SONET/SDH JITTER ATTENUATOR  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
CC  
Inputs, V  
-0.5V to VCC + 0.5V  
-0.5V to VCCO + 0.5V  
I
Outputs, VO (LVCMOS)  
Outputs, IO (LVPECL)  
Continuous Current  
Surge Current  
50mA  
100mA  
PackageThermal Impedance, θ  
34.8°C/W (0 lfpm)  
-65°C to 150°C  
JA  
StorageTemperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = 3.3V 5ꢀ, VCCO_LVCMOS, VCCO_LVPECL = 3.3V 5ꢀ OR 2.5V 5ꢀ,  
TA = -40°C TO 85°C  
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Core Supply Voltage  
Analog Supply Voltage  
3.135  
3.135  
3.135  
2.375  
3.3  
3.3  
3.3  
2.5  
175  
10  
3.465  
3.465  
3.465  
2.625  
V
V
VCCA  
V
VCCO_LVCMOS,  
VCCO_LVPECL  
IEE  
Output Supply Voltage  
V
Power Supply Current  
Analog Supply Current  
mA  
mA  
ICCA  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = VCCA = 3.3V 5ꢀ, VCCO_LVCMOS = 3.3V 5ꢀ OR 2.5V 5ꢀ,  
TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
2
VCC + 0.3  
0.8  
V
V
-0.3  
CLK_SEL, QA_SEL2,  
QB_SEL2, R_SEL0:R_SEL2  
V
CC = VIN = 3.465V  
150  
5
µA  
Input  
High Current  
IIH  
QA_SEL0:1, QB_SEL0:1  
VCC = VIN = 3.465V  
µA  
µA  
V
CC = 3.465V,  
IN = 0V  
VCC = 3.465V,  
IN = 0V  
CCO_LVCMOS = 3.3V  
VCCO_LVCMOS = 2.5V  
CLK_SEL, QA_SEL2,  
QB_SEL2, R_SEL0:R_SEL2  
-5  
V
Input  
Low Current  
IIL  
QA_SEL0:1, QB_SEL0:1  
LOR0, LOR1; NOTE 1  
LOR0, LOR1; NOTE 1  
-150  
µA  
V
V
2.6  
1.8  
V
V
Output  
High Voltage  
VOH  
VOL  
V
CCO_LVCMOS = 3.3V or  
2.5V  
Output  
Low Voltage  
0.5  
V
NOTE 1: Outputs terminated with 50Ω toVCCO_LVCMOS/2 .See Parameter Measurement Information Section,  
“Output LoadTest Circuit”.  
843002AKI-41  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 1, 2005  
5
PRELIMINARY  
ICS843002I-41  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, FEMTOCLOCKS™ VCXO BASED  
SONET/SDH JITTER ATTENUATOR  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VCC = VCCA = 3.3V 5ꢀ, VCCO_LVPECL = 3.3V 5ꢀ OR 2.5V 5ꢀ,  
TA = -40°C TO 85°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
Minimum Typical Maximum Units  
CLK0, CLK1  
nCLK0, nCLK1  
CLK0, CLK1  
150  
150  
µA  
µA  
µA  
µA  
VIN = VCC = 3.465V  
V
IN = 0V, VCC = 3.465V  
-5  
IIL  
Input Low Current  
nCLK0, nCLK1  
VIN = 0V, VCC = 3.465V  
-150  
VPP  
Peak-to-Peak Input Voltage  
0.15  
1.3  
V
V
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
VEE + 0.5  
VCC - 0.85  
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended applications, the maximum input voltage for CLKx, nCLKx is VCC + 0.3V.  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = VCCA = 3.3V 5ꢀ, VCCO_LVPECL = 3.3V 5ꢀ OR 2.5V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCCO - 1.4  
VCCO - 2.0  
0.6  
VCCO - 0.9  
VCCO - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50 Ω to VCCO_LVPECL - 2V. See "Parameter Measurement Information" section,  
"Output Load Test Circuit".  
TABLE 5. CRYSTAL CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
fN  
fT  
fS  
Nominal Frequency  
19.44  
MHz  
ppm  
ppm  
°C  
Frequency Tolerance  
Frequency Stability  
Operating Temperature Range  
Load Capacitance  
TBD  
TBD  
70  
0
CL  
12  
4
pF  
CO  
Shunt Capacitance  
Pullability Ratio  
pF  
CO/C1  
ESR  
220  
240  
50  
1
Equivalent Series Resistance  
Drive Level  
Ω
mW  
Mode of Operation  
Fundamental  
843002AKI-41  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 1, 2005  
6
PRELIMINARY  
ICS843002I-41  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, FEMTOCLOCKS™ VCXO BASED  
SONET/SDH JITTER ATTENUATOR  
TABLE 6A. AC CHARACTERISTICS, VCC = VCCA = VCCO_LVCMOS, VCCO_LVPECL = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
FOUT  
Output Frequency  
19.44  
700  
MHz  
RMS Phase Jitter, (Random);  
NOTE 1  
155.52MHz, Integration range:  
12kHz - 20MHz  
tjit(ø)  
0.81  
ps  
tsk(o)  
tR / tF  
odc  
Output Skew; NOTE 2, 3  
Output Rise/Fall Time  
Output Duty Cycle  
105  
890  
50  
ps  
ps  
20ꢀ to 80ꢀ  
See Parameter Measurement Information section.  
NOTE 1: Please refer to the Phase Noise Plot.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
TABLE 6B. AC CHARACTERISTICS, VCC = VCCA = 3.3V 5ꢀ, VCCO_LVCMOS, VCCO_LVPECL = 2.5V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
FOUT  
Output Frequency  
19.44  
700  
MHz  
RMS Phase Jitter, (Random);  
NOTE 1  
155.52 MHz, Integration range:  
12kHz - 20MHz  
tjit(ø)  
0.83  
ps  
tsk(o)  
tR / tF  
odc  
Output Skew; NOTE 2, 3  
Output Rise/Fall Time  
Output Duty Cycle  
95  
900  
50  
ps  
ps  
20ꢀ to 80ꢀ  
See Parameter Measurement Information section.  
NOTE 1: Please refer to the Phase Noise Plot.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
843002AKI-41  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 1, 2005  
7
PRELIMINARY  
ICS843002I-41  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, FEMTOCLOCKS™ VCXO BASED  
SONET/SDH JITTER ATTENUATOR  
TYPICAL PHASE NOISE AT 155.52MHZ  
0
-10  
-20  
-30  
-40  
Filter  
155.52MHz  
RMS Phase Jitter (Random)  
12kHz to 20MHz = 0.81ps (typical)  
-50  
-60  
-70  
-80  
-90  
Raw Phase Noise Data  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
Phase Noise Result by adding  
Filter to raw data  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FREQUENCY (HZ)  
843002AKI-41  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 1, 2005  
8
PRELIMINARY  
ICS843002I-41  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, FEMTOCLOCKS™ VCXO BASED  
SONET/SDH JITTER ATTENUATOR  
PARAMETER MEASUREMENT INFORMATION  
2V  
2.8V 0.04V  
2V  
SCOPE  
SCOPE  
VCC  
VCCA,  
VCCO_LVPECL  
,
VCC  
VCCA  
,
Qx  
Qx  
VCCO_LVPECL  
LVPECL  
LVPECL  
VEE  
nQx  
nQx  
VEE  
-1.3V 0.165V  
-0.5V 0.125V  
3.3V CORE/2.5V LVPECL OUTPUT LOAD AC TEST CIRCUIT  
3.3V CORE/3.3V LVPECL OUTPUT LOAD AC TEST CIRCUIT  
Phase Noise Plot  
VCC  
nCLK0,  
nCLK1  
Phase Noise Mask  
VPP  
VCMR  
Cross Points  
nCLK0,  
nCLK1  
Offset Frequency  
f1  
f2  
VEE  
RMS Jitter = Area Under the Masked Phase Noise Plot  
DIFFERENTIAL INPUT LEVEL  
PHASE JITTER  
nQx  
Qx  
nQA, nQB  
QA, QB  
tPW  
tPERIOD  
nQy  
tPW  
Qy  
odc =  
x 100ꢀ  
tsk(o)  
tPERIOD  
OUTPUT SKEW  
OUTPUT DUTY CYCLE/PULSE WIDTH/tPERIOD  
80ꢀ  
tF  
80ꢀ  
VSWING  
Clock  
20ꢀ  
20ꢀ  
Outputs  
tR  
OUTPUT RISE/FALL TIME  
843002AKI-41  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 1, 2005  
9
PRELIMINARY  
ICS843002I-41  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, FEMTOCLOCKS™ VCXO BASED  
SONET/SDH JITTER ATTENUATOR  
APPLICATION INFORMATION  
DESCRIPTION OF THE PLL STAGES  
SETTING THE VCXO PLL LOOP RESPONSE  
The ICS843002I-41 is a two stage device, a VCXO PLL  
followed by a low phase noise FemtoClock PLL. The VCXO  
uses an external pullable crystal which can be pulled  
100ppm by the VCXO PLL circuitry to phase lock it to  
the input reference frequency. The FemtoClock PLL is a  
wide bandwidth PLL (about 800kHz) which means it will  
phase track the VCXO PLL. Most of the reference clock  
jitter attenuation needs to be accomplished by VCXO PLL.  
The VCXO PLL loop response is determined both by fixed  
device characteristics and by other characteristics set by the  
user.This includes the values of RS, CS, CP and RSET as shown  
in the External VCXO PLL Components figure on this page.  
TheVCXO PLL loop bandwidth is approximated by:  
RS x ICP x KO  
NBW (VCXO PLL) =  
32  
By using the bypass FemtoClock PLL mode (Table 3B),  
the selected input reference clock can be passed directly  
to the FemtoClock PLL which will multiply it up by 32 to a  
higher frequency. A second mode, VCXO and FemtoClock  
bypass, routes the selected input refrence directly to the  
LVPECL output dividers.  
WHERE:  
RS = Value of resistor RS in loop filter in Ohms  
ICP = Charge pump current in amps (see table on page 12)  
KO = VCXO Gain in Hz/V  
The above equation calculates the “normalized” loop bandwidth  
(denoted as “NBW”) which is approximately equal to the - 3dB  
bandwidth. NBW does not take into account the effects of  
damping factor or the second pole imposed by CP. It does,  
however, provide a useful approximation of filter performance.  
VCXO PLL LOOP RESPONSE CONSIDERATIONS  
Loop response characteristics of the VCXO PLL is affected  
by the VCXO feedback divider value (bandwidth and damp-  
ing factor), and by the external loop filter components  
(bandwidth, damping factor, and 2nd frequency response).  
A practical range of VCXO PLL bandwidth is from about  
10Hz to about 1kHz. The setting of VCXO PLL bandwidth  
and damping factor is covered later in this document. A  
PC based PLL bandwidth calculator is also under devel-  
opment. For assistance with loop bandwidth suggestions  
or value calculation, please contact ICS applications.  
To prevent jitter on the clock output due to modulation of the  
VCXO PLL by the phase detector frequency, the following general  
rule should be observed:  
ƒ (Phase Detector)  
NBW (VCXO PLL) ≤  
20  
ƒ(Phase Detector) = Input Frequency ÷ (R Divider x 32)  
The PLL loop damping factor is determined by:  
RS  
2
ICP x CS x KO  
32  
DF (VCLK) =  
x
WHERE:  
CS = Value of capacitor CS in loop filter in Farads  
843002AKI-41  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 1, 2005  
10  
PRELIMINARY  
ICS843002I-41  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, FEMTOCLOCKS™ VCXO BASED  
SONET/SDH JITTER ATTENUATOR  
EXTERNAL VCXO PLL COMPONENTS  
CP establishes a second pole in the VCXO PLL loop filter. For  
higher damping factors (> 1), calculate the value of CP based on  
a CS value that would be used for a damping factor of 1.This will  
minimize baseband peaking and loop instability that can lead to  
output jitter.  
In general, the loop damping factor should be 0.7 or greater to  
ensure output stability.A higher damping factor will create less  
peaking in the passband. A higher damping factor may also  
increase lock time and output clock jitter when there is excess  
digital noise in the system application, due to the reduced ability  
of the PLL to respond to and therefore compensate for phase  
noise ingress.  
CP also dampens VCXO PLL input voltage modulation by the  
charge pump correction pulses. A CP value that is too low will  
result in increased output phase noise at the phase detector  
frequency due to this. In extreme cases where input jitter is high,  
charge pump current is high, and CP is too small, theVCXO PLL  
input voltage can hit the supply or ground rail resulting in non-  
linear loop response.  
32  
31  
LF1  
LF0  
1
2
3
The best way to set the value of CP is to use the filter response  
software under development from ICS (please refer to the  
following section). CP should be increased in value until it just  
starts affecting the passband peak.  
ISET  
CP  
RS  
CS  
RSET  
LOOP FILTER RESPONSE SOFTWARE  
Online tools to calculate loop filter response (coming soon) at  
www.icst.com. Contact your local sales representative if a tool  
cannot be found for this product.  
The external crystal devices and loop filter components should  
be kept close to the device. Loop filter and crystal PCB  
connection traces should be kept short and well separated from  
each other and from other signal traces. Other signal traces  
should not run underneath the device, the loop filter or crystal  
components.  
NOTES ON EXTERNAL CRYSTAL LOAD CAPACITORS  
In the loop filter schematic diagram, capacitors are shown be-  
tween pins 32 to ground and between pins 31 to ground.These  
are optional crystal load capacitors which can be used to cen-  
ter tune the external pullable crystal (the crystal frequency can  
only be lowered by adding capacitance, it cannot be raised).  
Note that the addition of external load capacitors will decrease  
the crystal pull range and the Kvco value.  
NOTES ON SETTING THE VALUE OF CP  
As another general rule, the following relationship should be  
maintained between components CS and CP in the loop filter:  
CS  
CP =  
20  
LOSS OF REFERENCE INDICATOR (LOR0 AND LOR1) OUTPUT PINS.  
The LOR0 and LOR1 pins are controlled by the internal clock as an “edge”). The LOR output will otherwise be low. The  
activity monitor circuits. The clock activity monitor circuits are activity monitor does not flag excessive reference transitions in  
clocked by the VCXO PLL phase detector feedback clock. an phase detector observation interval as an error.The monitor  
The LOR output is asserted high if there are three consecutive only distinguishes between transitions occurring and no transi-  
feedback clock edges without any reference clock edges (in tions occurring.  
both cases, either a negative or positive transition is counted  
843002AKI-41  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 1, 2005  
11  
PRELIMINARY  
ICS843002I-41  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, FEMTOCLOCKS™ VCXO BASED  
SONET/SDH JITTER ATTENUATOR  
NOTES ON SETTING CHARGE PUMP CURRENT  
The recommended range for the charge pump current is 50μA  
to 300μA. Below 50μA, loop filter charge leakage, due to PCB or  
capacitor leakage, can become a problem.This loop filter leakage  
can cause locking problems, output clock cycle slips, or low  
frequency phase noise.  
As can be seen in the loop bandwidth and damping factor  
equations or by using the filter response software available from  
ICS, increasing charge pump current (ICP) increases both  
bandwidth and damping factor.  
CHARGE PUMP CURRENT, EXAMPLE SETTINGS  
RSET  
17.6k  
8.8k  
4.4k  
2.2k  
Charge Pump Current (ICP)  
62.5µA  
125µA  
250µA  
500µA  
1E-3  
100E-6  
10E-6  
1k  
10k  
100k  
RSET, Ω  
FIGURE 1. CHARGE PUMP CURRENT VS. VALUE OF RSET (EXTERNAL RESISTOR) GRAPH  
843002AKI-41  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 1, 2005  
12  
PRELIMINARY  
ICS843002I-41  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, FEMTOCLOCKS™ VCXO BASED  
SONET/SDH JITTER ATTENUATOR  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise.The ICS843002I-41 provides  
separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL.VCC, VCCA, andVCCO_X  
should be individually connected to the power supply  
plane through vias, and bypass capacitors should be  
used for each pin. To achieve optimum jitter performance,  
power supply isolation is required. Figure 2 illustrates how  
a 10Ω resistor along with a 10μF and a .01μF bypass  
capacitor should be connected to each VCCA pin.  
3.3V  
VCC  
.01μF  
.01μF  
10Ω  
VCCA  
10μF  
FIGURE 2. POWER SUPPLY FILTERING  
TERMINATION FOR 2.5V LVPECL OUTPUT  
Figure 3A and Figure 3B show examples of termination for 2.5V ground level. The R3 in Figure 3B can be eliminated and the  
LVPECL driver.These terminations are equivalent to terminat- termination is shown in Figure 3C.  
ing 50Ω to VCC - 2V. For VCC = 2.5V, the VCC - 2V is very close to  
2.5V  
VCC=2.5V  
2.5V  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
Zo = 50 Ohm  
R1  
250  
R3  
250  
+
-
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
2,5V LVPECL  
Driv er  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 3B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
FIGURE 3A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
FIGURE 3C. 2.5V LVPECL TERMINATION EXAMPLE  
843002AKI-41  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 1, 2005  
13  
PRELIMINARY  
ICS843002I-41  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, FEMTOCLOCKS™ VCXO BASED  
SONET/SDH JITTER ATTENUATOR  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs.The two different layouts mentioned  
are recommended only as guidelines.  
drive 50Ω transmission lines. Matched impedance techniques  
should be used to maximize operating frequency and minimize  
signal distortion. Figures 4A and 4B show two different layouts  
which are recommended only as guidelines. Other suitable clock  
layouts may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs.Therefore, terminat-  
ing resistors (DC current path to ground) or current sources  
must be used for functionality. These outputs are designed to  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 4A. LVPECL OUTPUT TERMINATION  
FIGURE 4B. LVPECL OUTPUT TERMINATION  
843002AKI-41  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 1, 2005  
14  
PRELIMINARY  
ICS843002I-41  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, FEMTOCLOCKS™ VCXO BASED  
SONET/SDH JITTER ATTENUATOR  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL here are examples only. Please consult with the vendor of the  
and other differential signals.BothVSWING and VOH must meet the driver component to confirm the driver termination requirements.  
VPP and VCMR input requirements. Figures 5A to 5E show inter- For example in Figure 5A, the input termination applies for ICS  
face examples for the HiPerClockS CLK/nCLK input driven by HiPerClockS LVHSTL drivers.If you are using an LVHSTL driver  
the most common driver types.The input interfaces suggested from another vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
Input  
LVPECL  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
R1  
50  
R2  
50  
LVHSTL Driver  
R3  
50  
FIGURE 5A. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
ICS HIPERCLOCKS LVHSTL DRIVER  
FIGURE 5B. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
R4  
125  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiver  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 5C. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 5D. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
C1  
C2  
LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
nCLK  
HiPerClockS  
Input  
R5  
100 - 200  
R6  
100 - 200  
R1  
84  
R2  
84  
R5,R6 locate near the driver pin.  
FIGURE 5E. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER WITH AC COUPLE  
843002AKI-41  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 1, 2005  
15  
PRELIMINARY  
ICS843002I-41  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, FEMTOCLOCKS™ VCXO BASED  
SONET/SDH JITTER ATTENUATOR  
SINGLE ENDED CLOCK INPUT INTERFACE  
When using a LVCMOS or LVTTL clock driver, the clock capacitance, this resistor acts as a low pass signal filter.  
input is connected to the CLKx (CLK0 or CLK1) input pin.The The typical value for this optional series filter resistor is 100Ω.  
nCLKx (nCLK0 or nCLK1) pin is left unconnected. To help This will lower both the amplitude and edge rate of the clock  
reduce interference with the internal VCO circuits, an external input signal. In the case of a very short clock trace a series  
resistor can be placed in series with the clock signal right termination resistor may not be needed.  
near the CLKx input pin. Combined with the input pin  
Optional  
Series  
Filter  
3.3V  
3.3V  
Series  
Termination  
Resistor  
CLKx  
CLK  
LVTTL or  
LVCMOS  
50kΩ  
50kΩ  
nCLKx  
(no connection)  
nCLK  
Differential  
Input Stage  
50kΩ  
External Circuitry  
Internal Device Circuitry  
FIGURE 6. SINGLE-ENDED CLOCK INPUT INTERFACE  
843002AKI-41  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 1, 2005  
16  
PRELIMINARY  
ICS843002I-41  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, FEMTOCLOCKS™ VCXO BASED  
SONET/SDH JITTER ATTENUATOR  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS843002I-41.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS843002I-41 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 175mA = 606.375mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
If all outputs are loaded, the total power is 2 * 30mW = 120mW  
Total Power_MAX (3.465V, with all outputs switching) = 606.375mW + 60mW = 666.38mW  
2. JunctionTemperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming an  
air flow of 0 linear feet per minute and a multi-layer board, the appropriate value is 34.8°C/W perTable 7 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.666W * 34.8°C/W = 108.2°C. This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 7. THERMAL RESISTANCE θJA FOR 32-PIN VFQFN, FORCED CONVECTION  
θJA vs. Air Flow (Linear Feet per Minute)  
0
Multi-Layer PCB, JEDEC Standard Test Boards  
34.8°C/W  
843002AKI-41  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 1, 2005  
17  
PRELIMINARY  
ICS843002I-41  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, FEMTOCLOCKS™ VCXO BASED  
SONET/SDH JITTER ATTENUATOR  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 7.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 7. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage ofV - 2V.  
CCO  
For logic high, VOUT = V  
= V  
– 0.9V  
OH_MAX  
CCO_MAX  
)
= 0.9V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
L
L
[(2V - 0.9V)/50Ω) * 0.9V = 19.8mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
/R ] * (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50Ω) * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
843002AKI-41  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 1, 2005  
18  
PRELIMINARY  
ICS843002I-41  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, FEMTOCLOCKS™ VCXO BASED  
SONET/SDH JITTER ATTENUATOR  
RELIABILITY INFORMATION  
TABLE 8. θJAVS. AIR FLOW TABLE FOR A 32 LEAD VFQFN  
θJA vs. Air Flow (Linear Feet per Minute)  
0
Multi-Layer PCB, JEDEC Standard Test Boards  
34.8°C/W  
TRANSISTOR COUNT  
The transistor count for ICS843002I-41 is: 5536  
843002AKI-41  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 1, 2005  
19  
PRELIMINARY  
ICS843002I-41  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, FEMTOCLOCKS™ VCXO BASED  
SONET/SDH JITTER ATTENUATOR  
PACKAGE OUTLINE - K SUFFIX FOR A 32 LEAD VFQFN  
TABLE 9. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
VHHD-2  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
--  
0.80  
0
1.00  
0.05  
A1  
A3  
b
--  
0.25 Ref.  
0.25  
0.18  
0.30  
8
ND  
NE  
D
8
5.00 BASIC  
2.25  
D2  
E
1.25  
1.25  
0.30  
3.25  
3.25  
0.50  
5.00 BASIC  
2.25  
E2  
e
0.50 BASIC  
0.40  
L
Reference Document: JEDEC Publication 95, MO-220  
843002AKI-41  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 1, 2005  
20  
PRELIMINARY  
ICS843002I-41  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, FEMTOCLOCKS™ VCXO BASED  
SONET/SDH JITTER ATTENUATOR  
TABLE 10. ORDERING INFORMATION  
Part/Order Number  
ICS843002AKI-41  
ICS843002AKI-41T  
Marking  
Package  
Shipping Packaging  
tray  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
ICS43002A41  
ICS43002A41  
32 Lead VFQFN  
32 Lead VFQFN  
2500 tape & reel  
The aforementioned trademarks, HiPerClockS and FEMTOCLOCKS are trademarks of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
843002AKI-41  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 1, 2005  
21  

相关型号:

ICS843002AKI-41LF

Clock Generator, 700MHz, 3 X 3 MM, 0.95 MM HEIGHT, ROHS COMPLIANT, MO-220VHHD, VFQFN-32
IDT

ICS843002AKI-41LFT

Clock Generator, 700MHz, 3 X 3 MM, 0.95 MM HEIGHT, ROHS COMPLIANT, MO-220VHHD, VFQFN-32
IDT

ICS843002AKI-41T

700MHz, FEMTOCLOCKS-TM VCXO BASED SONET/SDH JITTER ATTENUATOR
ICSI

ICS843002ALF

FEMTOCLOCKS⑩ CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843002BKI-72LFT

Clock Generator, 122.88MHz, 5 X 5 MM, 0.925 MM HEIGHT, ROHS COMPLIANT, MO-220VHHD, VFQFN-32
IDT

ICS843002BY-31

PLL/Frequency Synthesis Circuit
IDT

ICS843002BY-31LF

Clock Generator, 700MHz, PQFP64, 10 X 10 MM, 1 MM HEIGHT, ROHS COMPLIANT, MS-026ACD-HD, TQFP-64
IDT

ICS843002BY-31LFT

Clock Generator, 700MHz, PQFP64, 10 X 10 MM, 1 MM HEIGHT, ROHS COMPLIANT, MS-026ACD-HD, TQFP-64
IDT

ICS843002BY-31T

PLL/Frequency Synthesis Circuit
IDT

ICS843002CY-31

700MHZ FEMTOCLOCKS? VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
ICSI

ICS843002CY-31LF

700MHZ FEMTOCLOCKS? VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
ICSI

ICS843002CY-31LFT

700MHZ FEMTOCLOCKS? VCXO BASED FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
ICSI